
C. Dubois, P. Masci, D. Méry (Eds): 2nd International Workshop
on Formal Integrated Development Environment (F-IDE 2015)
EPTCS 187, 2015, pp. 72–85, doi:10.4204/EPTCS.187.6

c© B. Nokovic & E. Sekerinski
This work is licensed under the
Creative Commons Attribution License.

A Holistic Approach in Embedded System Development

Bojan Nokovic
Computing and Software Department

McMaster University
Hamilton, Canada

nokovib@mcmaster.ca

Emil Sekerinski
Computing and Software Department

McMaster University
Hamilton, Canada
emil@mcmaster.ca

We present pState, a tool for developing “complex” embedded systems by integrating validation into
the design process. The goal is to reduce validation time. To this end, qualitative and quantitative
properties are specified in system models expressed as pCharts, an extended version of hierarchical
state machines. These properties are specified in an intuitive way such that they can be written by
engineers who are domain experts, without needing to be familiar with temporal logic. From the
system model, executable code that preserves the verified properties is generated. The design is
documented on the model and the documentation is passed as comments into the generated code. On
the series of examples we illustrate how models and properties are specified using pState.

1 Introduction

The main traditional software validation techniques are peer review, testing, and performance measure-
ment. Peer review is the process of static code examination by the author and colleagues. The goal
is to detect and identify problems and to confirm main design decisions. Quantitative studies indicate
that peer review is an effective technique which catches on average about 60% of defects [3]. Software
testing and performance measurement examine code by executing it on a specified target in a particular
environment. For each specified input, a test is performed. Correctness is determined based on program
execution paths. It is often not possible to test all execution paths, especially in concurrent systems, so
in practice correctness is determined on a subset of all possible executable paths. This implies that the
correctness is relative to the examined paths. The correctness of software systems in the conventional
software development process, shown in Figure 1, is relative to the specification and to consequently
executed test cases. This process can discover errors but cannot guarantee correctness: an error may still
exist in the product. The other problem is that errors are discovered late, when the product is already
built. The sooner errors are found, the lower the cost of repairing them is.

Requirements System model
Design Generate

Code Peer Review
Test Results

Figure 1: Conventional Software Design Process

To overcome these two problems in the development of embedded systems, a technique based on
model checking is proposed. From a model that describes the system behaviour in a mathematically
precise manner, a simplified model suitable for model checking is generated. Model checking allows to
explore all possible system states in a systematic manner. In our approach, the system model is described
by pCharts [21], a version of hierarchical state machines extended with probabilistic transitions, timed
transitions, stochastic timing, and costs/rewards. Using pCharts we can specify both a system and its

http://dx.doi.org/10.4204/EPTCS.187.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

B. Nokovic & E. Sekerinski 73

environment. Qualitative and quantitative properties are expressed directly in the model. Verification
of qualitative properties returns true or false. Verification of quantitative property returns a numerical
value. In Figure 2, the qualitative property ”inQ⇒¬ inT” states that whenever the system is in the state
Q it should not be in the state T . The quantitative query ”?$power.max” returns the maximum value of
power spent by the time a state is reached.

Requirements

System model

Environment model

inQ⇒¬ inT
?$power.max Code

Design Generate

Figure 2: Model Checking Software Design Process

In embedded systems, the impact of the working environment and the reaction to external stimuli
determine the correctness of a system. In order to verify those properties, a model of the environment
has to be created together with a model of the system. If errors are detected by model checking, either the
system model or the environment model need to be modified. Once the properties are verified from the
system model executable code that preserves those properties is generated. The same formalism, pCharts
is used to describe the system model and the environment (unlike in classical discrete event systems).
Code is generated according to the algorithm presented in [21], and tested on a number of case studies.
Although it is not formally proved to be correct, we believe that generated code is trustworthy.

The main strength of the model checking approach is the automatic verification based on sound
mathematical foundations. The main weakness is related to scalability, a.k.a. the state-space-explosion
problem, and the fact that it verifies a system model, not the system itself. Because of that we can say that
any model checking technique is only as good as the model of the system itself. Model checking tech-
nique enjoys a rapidly increasing interest by industry [3] because of its potential to make the engineering
process more efficient.

2 Related Work

Probabilistic transitions can be used to express randomized algorithms or quantify the uncertainty of
the environment. Probabilistic descriptions are useful for analyzing quality of service, response time,
unreliable environments, and fault-tolerant systems. Quantitative queries can also be attached to any
state in a state hierarchy. In general, quantitative queries are specified in the temporal logic PCTL [3]
with operators for probabilities and costs/rewards. Analysis in pState proceeds by generating from the
visual specification a Markov Decision Process (MDP) model and quantitative queries that are passed
to a probabilistic model checker. An MDP model of PRISM [13] corresponds to a probabilistic timed
automaton of [24].

Modelling tools like RHAPSODY, Stateflow with Simulink, Papyrus, Yakindu, SCADE Suite, and
IAR visualSTATE do not support invariants, probabilistic transitions, stochastic transitions and direct
cost/rewards specification. In [28] translation of extended UML diagrams [10] to PRISM is proposed,
but parallel composed system is passed as a system of multiple models to PRISM. This process does not
allow nested concurrency representation, only top level concurrency. On the other hand pState translates

74 A Holistic Approach in Embedded System Development

arbitrarily nested parallel compositions and creates one model. Advantage is that in addition to the model
checker input code, it is possible to generate executable code, so pState is not only a PRISM front-end.

We use PRISM for two reasons: (1) pChart’s normal form of transitions correspond to the form of
the input commands to PRISM, and (2) PRISM shows better overall performance compared to other
probabilistic model checking tools like ETMCC, MRMC, YMER, VESTA [23]. PRISM uses efficient
algorithms and data structures based on binary decision diagrams that allow compact representation and
increase tool scalability [13].

Model checking tools based on exhaustive checking are feasible only for systems with up to 108-109

states. To address this problem, statistical model checking (SMC) which solves the verification problem
for stochastic systems in a less precise but still rigorous and efficient way is introduced [5]. UPPAAL
tool with SMC extension is capable to verify systems with more than 109 states, so it can verify bigger
systems than pState but in less precise manner.

The original motivation for this work came from the design of RFID tags for postal systems [19].
The use of PRISM for wireless network protocols is further studied in [7], where the example in Figure 3
is specified by a simple state diagram. Overall our thrust is to have a tool founded in solid theory and
is intuitive enough to be used by engineers for analyzing design tradeoffs. An overview of pState with
examples of generated code is in [20]. In this work we focus on the property specification and generation
of the documentation.1

Requirements-oriented Semantics. Hierarchical state machines, pCharts, are meant primarily for the
design of embedded synchronous reactive systems. Transitions in the top level states have priority over
transitions in lower level states. Reset always bring the system to its initial state, and there is no history
transitions. We can think of a pCharts as a compact representation of a flat-state machine. On the
response to an external event, a pCharts may broadcast additional events. The execution step completes
as soon as the chain of reactions comes to a halt [17]. With embedded systems in mind, pCharts follow
an event-centric interpretation, in which events are executable procedures, implying that their execution
is fast enough and no queuing of events is needed [26]. That is, if an event leads to broadcasting of
another event, the second one is executed like a called procedure, rather than queued. This is in contrast
to the state-centric interpretation in UML and Statemate [9], in which events are data in queues. These
interpretations are called requirements-oriented and implementation-oriented semantics in [6], with our
event-centric interpretation being the requirements-oriented semantics.

A number of quantitative extensions of statecharts, similar to pCharts, have been proposed, all based
on UML state machines [10, 11, 16, 28]. These follow a state-centric interpretation where the state of a
chart is given by its configuration (the “states” of the current state), a set of events, and the valuation of
the variables (e.g. p. 67 in [10]). In pCharts, the state consists only of the configuration and the valuation
of the variables, thus reducing the state space and facilitating model checking. UML state machines
events have a single receiving object, whereas pCharts follow the original Statemate interpretation and
always broadcast events to all concurrent states.

The event-centric interpretation allows pCharts to be represented through probabilistic guarded com-
mands [18]. The translation is simple and intuitive enough to serve as the definition of pCharts. The
definition supports state hierarchies with inter-level transitions and concurrent states with broadcasting
in arbitrary combinations. The event-centric translation of statecharts without probabilities in [27], gen-
erates nested guarded commands as supported in the B Method [1, 26]. However, for the purpose of
probabilistic model checking, a flat structure of guarded commands is needed. A probabilistic guarded

1pState can be downloaded at http://pstate.mcmaster.ca

http://pstate.mcmaster.ca

B. Nokovic & E. Sekerinski 75

command is in normal form if it is a nondeterministic choice among a set of guarded statements,

b1→ S1 [] · · · [] bm→ Sm

where each bi is a Boolean expression, each Si is a probabilistic choice among multiple assignment
statements Aj with probability pj:

p1 : A1⊕·· ·⊕pm : Am

Thus pState translates pCharts to probabilistic guarded commands in normal form. A variation is used
to translate sub-charts without probabilistic choice to nested control structures, which can be executed
more efficiently than flat guarded commands. From an intermediate representation of nested control
structures C code generation is currently supported. We extend the hierarchical chart structure to allow
the specification of a cost/reward of being in a state and of taking a transition. We are not aware that
costs in this form have been considered for hierarchical charts. In pState the cost/reward specifications
are first validated and then translated as annotations of the generated probabilistic guarded commands.
A theory for costs/rewards in that form is given by priced probabilistic automata; a recent overview with
model checking procedures is given in [22].

3 Property Specification

The example of the wireless sender and mobile receiver in Figure 3 illustrates the basic elements of
pCharts. The setup is typical for networks of sensors, in particular RFID tags. The state System is an
AND (concurrent) state with children Sender and Receiver, separated by a dashed line. Both Sender and
Receiver are XOR states with Basic states as children. The sender is initially in the state Sleep and the
receiver in Listening. The sender exits sleep mode on a wake-up event. For active RFID tags 2, that event
can be created either by a low frequency electromagnetic field, by a motion sensor, or by an internal
timer. When this event is generated by a motion sensor or an internal timer, the sender always goes into
transmission mode. On the other hand, an electromagnetic field can be created by system antennas (good
field), or by other sources like power lines, monitors, cell phones, or electrical machines (parasite field).
A good field has a unique identification number. If the sender recognizes the field number, it goes into
transmission mode; otherwise it goes back into sleep mode. This is expressed by a probabilistic transition
that with probability 0.4 goes to state Sending and with probability 0.6 goes back to state Sleeping. A
sent message may reach the receiver or may get lost. This is expressed by another probabilistic transition
that with probability 0.9 broadcasts msg to the receiver, which causes the receiver to go from Listening to
Off. The receiver then shuts off to save power, while the sender (with unidirectional transmission) keeps
retransmitting the message.

We wish to analyze the following properties of the system:

• Is the system correct in the sense that the receiver is attentive when needed? We express this by
attaching the invariant (Sender inSleeping)⇒¬(Receiver inOff) to the state System; pState reports
true.

• What is the minimal probability that the receiver shuts off? We express this by attaching the query
?P.min to state Off ; pState reports 1.0.

• What is the maximal number of expected message transitions of the sender until the receiver shuts
off? For this, we attach the cost of $tran = 1 to the sending transition and ask what the maximal

2http://www.lyngsoesystems.com/Canada/Tags.asp

http://www.lyngsoesystems.com/Canada/Tags.asp

76 A Holistic Approach in Embedded System Development

System | in Sleeping⇒¬ in Off

Sender

Receiver

Sending
$energy = 2

send
$tran = 1

@0.9/msg

@0.1

Sleeping
$energy = 0.1

wup @0.6

@0.4

msg

Listening Off
?P.min ?tran.max
?$energy.max
?P > 0.5

p p

Figure 3: Sender-receiver

expected value of tran upon entering state Off is by attaching the query ?$tran.max to Off ; pState
reports 1.11.

• What is the maximal expected energy consumption until the message reaches the receiver? For
this, we attach the cost of $energy = 0.1 to state Sleep and $energy = 2 to Sending. Now we can
ask what the maximal expected value of energy is in state Off by attaching the query ?$energy.max
to Off ; pState reports 2.39.

• Is the probability that the receiver shuts off at least 0.5? We express this by attaching the query
P > 0.5 to Off ; pState reports true.

In general, state invariants are safety conditions that can be attached to any state in a state hierarchy
and specify what has to hold in that state. Every incoming transition to the state must ensure that the state
invariant holds, and every outgoing transition can assume that the invariant holds. State invariants can
express safety of an embedded system or consistency of a software system. The accumulated invariant
of a state consists of a conjunction of invariants “inherited” from ancestor states and a combination
of invariants of descendant states. For example, the accumulated invariant of System is the invariant
attached to System and the invariant of Sleeping or Sending and the invariant of Listening or Off. We have
implemented accumulated invariants in pCharts following the definition and algorithm of [27]. When
using a model checker for invariant verification, we interpret invariants as temporal always-conditions
rather than as inductive invariants as in [25]. For this example pState generates the code in Figure 4.

Queries in PRISM are specified separately from the PRISM model. In this section, state refers to
states of PRISM models, i.e. configurations of pCharts and path is a sequence of PRISM states. The
Boolean-valued query P∼ r[pathprop], where ∼ is <,<=,>,>=,=, is true in a state if the probability
that pathprop is satisfied by the paths from that state is ∼ r. Among the path properties that can be
specified is the always property, written G prop. The invariant (Sender in Sleeping)⇒¬(Receiver inOff)
of state System is translated by pState as:

P >= 1[G((sender = Sleeping) =>!(receiver = Off))]

B. Nokovic & E. Sekerinski 77

mdp

const Sending=0; const Sleeping=1;
const Off=0; const Listening =1;

module SenderReceiver
sender :[0..1] init Sleeping ;
receiver :[0..1] init Listening ;

[wup] (sender=Sleeping) −> 0.6:(sender’=Sending) + 0.4:(sender’=Sleeping) ;
[send] (sender=Sending) &(receiver!= Listening) −> 0.1:(sender’=Sending) +

0.9:(sender’=Sending);
[send] (sender=Sending) &(receiver=Listening) −> 0.1:(sender’=Sending) +

0.9:(sender’=Sending)& (receiver ’=Off) ;
endmodule

// State rewards
rewards ”energy”

(sender=Sending): 2;
(sender=Sleeping) : 0.1;

endrewards

// Transition rewards
rewards ”tran”

[send] true :1;
endrewards

Figure 4: Generated Code for Sender-receiver Code

The real-valued queries Pmin =?[pathprop] and Pmax =?[pathprop] return the minimal and maximal
probability, which may differ due to nondeterminism. The query for the minimal probability that the
receiver eventually shuts off uses the eventually operator F prop:

Pmin =?[F(receiver = Off)]

The total reward for a path is the sum of the state rewards plus transition rewards along the path. The
Boolean-valued query R ∼ r[rewardprop], evaluates to true in a state if the expected reward associated
with rewardprop is ∼ r when starting from that state. The real-valued queries Rmin =?[rewardprop]
and Rmax =?[rewardprop] return the minimal and maximal reward, which may again differ due to non-
determinism. For rewardprop we consider only the reachability reward F prop, which is the reward
accumulated along a path until a state satisfying prop is reached. The maximum expected number of
transmission attempts of the sender until a message reaches the receiver and the receiver shuts off is
expressed as follows; as several reward structures can be specified, reward formulae have to refer to the
structure, here tran:

R{”tran”}max =?[F(receiver = Off)]

For the maximal energy pState generates:

R{”energy”}max =?[F(receiver = Off)]

The maximal expected energy is calculated by PRISM as 2.39. If the transitions were reliable, the result
would be 2.1. Such analysis can be used to evaluate tradeoffs. For example, if we assume that spending

78 A Holistic Approach in Embedded System Development

10% more energy for sending increases the probability of successful transmission to 0.98, we obtain that
1.02 transmission attempts are needed. This gives an appealing alternative to the practice of basing such
evaluations exclusively on lab experiments.

3.1 The Logic PCTL in pCharts

pCharts allows both model design and property specification in the same hierarchical state structure,
while the specification of properties in the PRISM model is done separately from the model itself. To
express a query decsribing minimal probability to reach some state, we need to write formula

Pmin =?[F(scopeVariable = state)]

in PRISM. In pCharts, we do not need to write full formula. By writing only ”?P.min” and attaching
it to the state of interest we can specify the same property. The tool pState creates a PRISM formula by
automatically taking into account the sates hierarchy. In a similar way it is possible to specify a reward
property by ”?tran.max” which is translated into the reward formula

R{”tran”}max =?[F(scopeVariable = state)]

Properties are specified according to the following grammar:

Formula ::= ”?”(probability | reward)(”.” |>|<)(”max” | ”min” | real)[”F < ” time]
probability ::= ”P”
reward ::= ”$”identifier
time ::= digit{digit}(”d”|”h”|”s”|”ms”|”µs”)
identifier ::= letter{letter | digit}

Another way to specify the property is to write the formula in the special formula text-box. The properties
are written in PCTL [2,13], a probabilistic extension of temporal logic CTL [4]. The logic for MDP and
PTA properties specification is similar, the difference is that PTA property includes clock constraints.
PTA has two model checking engines digital clocks [15] and stochastic games [12]. In the digital clock
engine, clock variables are allowed in P operator expressions and temporal logic property types F and
U can be used. However, this engine does not support time-bounded reachability properties, as the one
used in the section 6 example.

3.2 Floating Formula Example

For the system of seven states {S0, . . . ,S6} and five transitions {t0, . . . , t4} in Fig. 5, we want to find
out the minimal probability to reach a particular state. The initial state is S0 and probabilistic transition
t0 moves the system to S1 with 30% probability and to S2 with 70% probability. This is indicated by
two alternatives @0.3 and @0.7 going from the P pseudo-state to the states S1 and S2. To find out the
minimal probability of reaching state S3, we need to place the pCharts formula ?P.min in the state S3.
pState creates the PRISM formula

Pmin =?[F(root = S3)]

which returns 0.03 as the verification result, as can be verified manually by multiplying the probabilities
0.3 and 0.1.

B. Nokovic & E. Sekerinski 79

S6

S0 I
 P

S1

S2

S3

 P

S4

S5

 P

@0.3

@0.7

t1

@0.1

@0.9

t2

@0.24

@0.5

?P.min

t0

 P t3

@0.78@0.22

@0.26

t4

Figure 5: Probability of State Reachability

To determine the probability of entering S4, which can be reached on three different paths S0→ S1→
S3→ S4, S0→ S1→ S4, and S0→ S2→ S4, it is sufficient to move the formula ?P.min from state S3 to
state S4, as shown in Figure 6.

Figure 6: Moving Formula From One State to Another

Verification of
Pmin =?[F(root = S4)]

returns that minimal probability to reach state S4 is 0.4446. Moving formula box to state S6, pState
creates formula

Pmin =?[F(root = S6)]

which as result returns 0.6499, that is actually 0.65. The error comes from floating point rounding of the
model checker. This would be difficult to calculate manually since there are five different paths to reach
this state.

In this example we calculated minimal probability, but since there are no nondeterministic transitions
in the system, the calculation of the maximal probability by ”?P.max” would return the same result.

4 Documentation in pCharts

The design can be documented using text boxes in the model itself. The comments are inserted in the
generated code. There are three types of comments general comments, state comments and transition

80 A Holistic Approach in Embedded System Development

comments. The main reason for including the documentation is to justify the design. Passing the com-
ments to the generated code allows for forward and backward traceability, which would be necessary for
the certification of the generated code.

Each comment can be connected to either a state or a transition by dashed comment line. If it is
not connected, it is associated to the state surrounding the comment box. General comments are placed
outside any states and are technically associated to the root state.

State Documentation As the generated code is event centric, i.e. states become variables and events
become procedures, the comments about a state are inserted in the generated code where the state is
declared.

Transition Documentation A transition comment is inserted into generated code of transition event.
The comment is connected to the transition by Comment Connector figure. Timed transitions do not have
an associated event name, but a name is generated for the corresponding procedure and the comment is
associated to that procedure in the same way as for untimed events.

Example In Fig. 7, a simple transition from state Off to state On on the event poweron is shown. In the
grey text-box connected by a dashed line to the state Off , the description of the state is given. Another
option to describe the state is to place description text-box in the state, as it is shown for Off . Code
generated for this example is shown in Figure 8.

 i
Off

On

poweron
The light is on

The light is off The event is
generated when
switch is on

Figure 7: State and Transition Documentation

5 Case Study - RFID Tag

In the pCharts model of Fig. 9 we analyze properties of an RFID tag used in postal systems. The model
has two concurrent states, Tag and Environment. In the Tag state the basic operation of the RFID device
is represented. Initially, a tag is in StandBy and on wakeUp goes into Receive. This event is broadcasted
by Environment. The environment is initially in NoField and on event fieldOn it goes to SystemField or to
Interference. Based on testing we estimate that approximately 30% of the time the tag will be excited by
a system field and in 70% of time it will be excited by some unwanted field which may come from some

B. Nokovic & E. Sekerinski 81

/∗ Variables ∗/
enum root status {Off, On} root;
// Off − The light is off
// On − The light is on

int main(void){
/∗ Initialization ∗/
root = Off;

return 0;
}

// The event is generated when the switch is on
void poweron(void){

if ((root == Off)) {
root = On;

}
}

Figure 8: Generated Code for Simple Transition with Comments

other sources of low frequency like computers, TV, some machinery, etc. On the transition to System-
Field, the event wakeUp is generated. After time T0 it goes back to NoField and increments counterB,
which counts valid excitations. On the event T1, environment goes from Interference to NoField state.
We associate the interference cost interf = 1 to this transition.

On the tag side, in Receive, we read the system field ID. If the field ID is recognized, the tag goes
into the Transition, and if not, it goes back into StandBy. We estimate that a tag can recognize the field
ID 80% of the time. Once it finishes the messages transition, the tag goes back into Sleep and increases
successful transmissions counter counterA. In each state of Tag, we specify the costs of being in that
state. This is used to evaluate power consumption and for optimization of the system.
By selecting View → Verify the MDP model of the pCharts is built and passed to the PRISM model
checker together with properties. In a separate window the result of property verification is displayed.
The model built by PRISM has 136955 states and 318657 transitions. In this example we verify three
properties. Those formulas contain conditions of the counters which have to be satisfied and are not
specified in the states, but in the formula text box. The the formula

?$energy.min (countB = 10) (1)

we can calculate the minimum expected energy on ten wakeUp events; the result is: 60.06. The formula

?P.max (countA = 2)&(countB < 5)

calculates the maximum probability of having two successful transmissions in less than five excitations.
The result is 0.99. The formula

?$interf .min (countB = 10)

calculates the minimum expected number of interferences in ten good excitations. The result is: 23.33.
If we change the probabilities of transitions, or energy consumption we can automatically calculate

new values. For instance if the hardware design is improved by the selection of better components such
that the energy in Receive is 1.2, formula 1 will result in 59.06; that is by decreasing state consumption for

82 A Holistic Approach in Embedded System Development

PostalSystem

Tag; N=100; countA:0..N

Environment; M=200; countB:0..M

StandBy
$energy=0.1Receive

$energy=1.3

SystemField

Interference

NoField

 P fieldOn

@0.3/ wakeUp

@0.7

 I

Transition
$energy=5

sleep[countA<100]/ countA:=countA+1

 I

wakeUp / countA:=0

T1 $interf=1

T0[countB<M]/countB:=countB+1
 I

/ countB:=0

 P received

@0.1

@0.9

Figure 9: Model of RFID Tag Excitation

8.7% minimum expected energy on ten wakeUp events is reduced by 2.7%. If costs of new components
and labour to alternate receiver is less than saving in energy, that alternation can be done.

6 Case Study - Hubble Telescope

This example is based on the model of failure of the Hubble telescope as presented in [23]. Six gyro-
scopes are used for navigation. The telescope is designed such that it can fully operate with only three
gyroscopes. When less than three gyroscopes are operational, the telescope goes into sleep mode and
waits for repair. As long as at least one gyroscope works, the telescope is operational, otherwise it will
crash. The goal of modelling is to find out the probability that the system will operate without failure for
a given period of time.

We build a formal probabilistic model of the system as a pCharts model with 13 states. In the model
we assume that each gyroscope has an average lifetime of 10 years. Since six gyroscopes are operational,
and any one can fail, we can expect that the outgoing rate is 6 · 1

10 = 0.6, which means that there is a
60% of chance that at least one gyroscope will fail in 365 days. That is modelled as a probabilistic
timed transition from state SixG to state FiveG. If five gyroscopes are correct, the probability to have a
failure in one year is 0.5, which is modelled as probabilistic transition from state FiveG to state FourG.
When only two gyroscopes are active, the telescope needs to go into sleep mode. The probability that the
telescope will go into sleep mode and the rescue operation starts in three days is 99.8%. In that case, in
approximately 60 days, with probability 0.968% all failed gyroscopes will be fixed and the system goes
into the initial SixG state. If the rescue operation fails, the system goes into FailOne and consecutively
into SleepOne state. This means only one gyroscope is functional, and the telescope is in sleep mode.
The rescue operation is taken within two months (60 days) with 98.4% chance of success. While in state
TwoG, if the system fails to go to SleepTwo state, it will continue to work with two gyroscopes until one
fails in approximately 730 days. Then, it tries to go from OneG into SleepOne and to start the rescue
operation. The telescope can end up in the Crash state if it can not go into sleep mode, or if the rescue

B. Nokovic & E. Sekerinski 83

SixG

 i

FiveG FourG ThreeG

TwoG

OneG

SleepOne
SleepTwo

Crash

365d

 P 3d

@0.998

@0.002

 P 3d

@0.999

@0.001

 P 60d

@0.968

@0.032
 P 60d

@0.016

@0.984

365d 365d

365d

?P.min F<3650d

NotSleepTwo

730d

NotSleepOne365d

FailOne

730d

FailAll

360d

 P @0.6
@0.4

 P @0.5
@0.5

 P @0.4
@0.6

 P

@0.3

@0.7

Figure 10: pCharts Model of Hubble Space Telescope

operation is not successful. From the model, by formula

Pmin =?[F < 3650(root = Crash)]

we determine that the crash probability in 10 years (3650 days) is 0.01226%, or the probability that the
Hubble telescope will be operational in 10 years is 99.98774%.

7 Conclusion

This paper reports on the formalism of pCharts and its associated tool pState. The focus is on properties
specification directly on the model in an intuitive way. We believe this technique will make the model
checking approach more convenient for developers who are domain experts, but not software experts.
The design can be documented and the documentation is passed to the generated code to allow trace-
ability, e.g. for the certification of the generated code. The goal is to have a seamless and automated
approach from modelling and analysis to code generation that can be used to evaluate design alternatives
and generate trustworthy code. Future work will include formal proof of correctness of the generated
code.

Our approach is holistic, means that qualitative properties, notably structural well-formedness, cor-
rectness with respect to invariants, and timing guarantees, can be verified together with quantitative
properties, notably resource consumption, reliability, and performance. These properties cannot be ana-
lyzed by considering exclusively the computerized part; rather, its environment has to be considered to
certain extent.

84 A Holistic Approach in Embedded System Development

References

[1] Jean-Raymond Abrial (1996): The B Book: Assigning Programs to Meanings. Cambridge University Press,
doi:10.1017/CBO9780511624162.

[2] Adnan Aziz, Vigyan Singhal, Felice Balarin, RobertK. Brayton & AlbertoL. Sangiovanni-Vincentelli (1995):
It usually works: The temporal logic of stochastic systems. In Pierre Wolper, editor: Computer Aided Ver-
ification, Lecture Notes in Computer Science 939, Springer Berlin Heidelberg, pp. 155–165, doi:10.1007/3-
540-60045-0 48.

[3] C. Baier & J. P. Katoen (2008): Principles of Model Checking. MIT Press, New York.

[4] Edmund M. Clarke & E.Allen Emerson (1982): Design and synthesis of synchronization skeletons using
branching time temporal logic. In Dexter Kozen, editor: Logics of Programs, Lecture Notes in Computer
Science 131, Springer Berlin Heidelberg, pp. 52–71, doi:10.1007/BFb0025774.

[5] Edmund M. Clarke & Paolo Zuliani (2011): Statistical Model Checking for Cyber-Physical Systems. In
Tevfik Bultan & Pao-Ann Hsiung, editors: Automated Technology for Verification and Analysis, Lecture
Notes in Computer Science 6996, Springer Berlin Heidelberg, pp. 1–12, doi:10.1007/978-3-642-24372-1 1.

[6] Rik Eshuis, David N. Jansen & Roel Wieringa (2002): Requirements-Level Semantics and Model Checking of
Object-Oriented Statecharts. Requirements Engineering V7(4), pp. 243–263, doi:10.1007/s007660200019.

[7] Matthias Fruth (2011): Formal Methods for the Analysis of Wireless Network Protocols. Ph.D. thesis, Uni-
versity of Oxford.

[8] David Harel & Hillel Kugler (2004): The Rhapsody Semantics of Statecharts (or, On the Executable Core
of the UML). In Hartmut Ehrig, Werner Damm, Jörg Desel, Martin Große-Rhode, Wolfgang Reif, Eckehard
Schnieder & Engelbert Westkämper, editors: Integration of Software Specification Techniques for Applica-
tions in Engineering, Lecture Notes in Computer Science 3147, Springer Berlin Heidelberg, pp. 325–354,
doi:10.1007/978-3-540-27863-4 19.

[9] David Harel & Amnon Naamad (1996): The STATEMATE Semantics of Statecharts. ACM Trans. Softw.
Eng. Methodol. 5(4), pp. 293–333, doi:10.1145/235321.235322.

[10] D. N. Jansen (2003): Extensions of Statecharts with Probability, Time, and Stochastic Timing. Ph.D. thesis,
University of Twente, Enschede. Available at http://doc.utwente.nl/58230/.

[11] D.N. Jansen, H. Hermanns & J.P. Katoen (2002): A probabilistic extension of UML statecharts: Specifica-
tion and Verification. In W. Damm & E.-R. Olderog, editors: Formal Techniques in Real-Time and Fault-
Tolerant Systems, Lecture Notes in Computer Science 2469, Springer, Oldenburg, Germany, pp. 355–374,
doi:10.1007/3-540-45739-9.

[12] Marta Kwiatkowska, Gethin Norman & David Parker (2009): Stochastic Games for Verification of Proba-
bilistic Timed Automata. In: Proceedings of the 7th International Conference on Formal Modeling and Anal-
ysis of Timed Systems, FORMATS ’09, Springer-Verlag, Berlin, Heidelberg, pp. 212–227, doi:10.1007/978-
3-642-04368-0 17.

[13] Marta Kwiatkowska, Gethin Norman & David Parker (2011): PRISM 4.0: Verification of Probabilistic Real-
Time Systems. In Ganesh Gopalakrishnan & Shaz Qadeer, editors: Computer Aided Verification, Lecture
Notes in Computer Science 6806, Springer Berlin Heidelberg, pp. 585–591, doi:10.1007/978-3-642-22110-
1 47.

[14] Marta Kwiatkowska, Gethin Norman, Jeremy Sproston & Fuzhi Wang (2007): Symbolic model check-
ing for probabilistic timed automata. Information and Computation 205(7), pp. 1027 – 1077,
doi:10.1016/j.ic.2007.01.004. Available at http://www.sciencedirect.com/science/article/pii/
S0890540107000077.

[15] Marta Z. Kwiatkowska, Gethin Norman, David Parker & Jeremy Sproston (2006): Performance analysis
of probabilistic timed automata using digital clocks. Formal Methods in System Design 29(1), pp. 33–78,
doi:10.1007/s10703-006-0005-2.

http://dx.doi.org/10.1017/CBO9780511624162
http://dx.doi.org/10.1007/3-540-60045-0_48
http://dx.doi.org/10.1007/3-540-60045-0_48
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-642-24372-1_1
http://dx.doi.org/10.1007/s007660200019
http://dx.doi.org/10.1007/978-3-540-27863-4_19
http://dx.doi.org/10.1145/235321.235322
http://doc.utwente.nl/58230/
http://dx.doi.org/10.1007/3-540-45739-9
http://dx.doi.org/10.1007/978-3-642-04368-0_17
http://dx.doi.org/10.1007/978-3-642-04368-0_17
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1016/j.ic.2007.01.004
http://www.sciencedirect.com/science/article/pii/S0890540107000077
http://www.sciencedirect.com/science/article/pii/S0890540107000077
http://dx.doi.org/10.1007/s10703-006-0005-2

B. Nokovic & E. Sekerinski 85

[16] Florian Leitner-Fischer & Stefan Leue (2011): QuantUM: Quantitative Safety Analysis of UML Models.
In Mieke Massink & Gethin Norman, editors: Proceedings Ninth Workshop on Quantitative Aspects of
Programming Languages, Saarbrücken, Germany, April 1-3, 2011, Electronic Proceedings in Theoretical
Computer Science 57, Open Publishing Association, pp. 16–30, doi:10.4204/EPTCS.57.2.

[17] Gerald Löttgen & Michael Mendler (2000): Fully-Abstract Statecharts Semantics via Intuitionistic Kripke
Models. In: ICALP, Lecture Notes in Computer Science 1853, Springer, pp. 163–174, doi:10.1007/3-
540-45022-X 14. Available at http://dblp.uni-trier.de/db/conf/icalp/icalp2000.html#

LuttgenM00.
[18] Carroll Morgan, Annabelle McIver & Karen Seidel (1996): Probabilistic Predicate Transformers. ACM

Trans. Program. Lang. Syst. 18(3), pp. 325–353, doi:10.1145/229542.229547. Available at http://doi.
acm.org.libaccess.lib.mcmaster.ca/10.1145/229542.229547.

[19] Bojan Nokovic & Emil Sekerinski (2010): Analysis of Interrogator-tag Communication Protocols. SQRL
Report 60, McMaster University.

[20] Bojan Nokovic & Emil Sekerinski (2013): pState: A probabilistic statecharts translator. In: Embedded Com-
puting (MECO), 2013 2nd Mediterranean Conference on, pp. 29–32, doi:10.1109/MECO.2013.6601339.

[21] Bojan Nokovic & Emil Sekerinski (2014): Verification and Code Generation for Timed Transitions in
pCharts. In: Proceedings of the 2014 International C* Conference on Computer Science #38; Software
Engineering, C3S2E ’14, ACM, New York, NY, USA, pp. 3:1–3:10, doi:10.1145/2641483.2641522.

[22] G. Norman, D. Parker & J. Sproston (2012): Model checking for probabilistic timed automata. Formal
Methods in System Design, pp. 1–27, doi:10.1007/s10703-012-0177-x.

[23] H.A. Oldenkamp (2007): Probabilistic model checking : a comparison of tools. Master’s thesis, University
of Twente. Available at http://essay.utwente.nl/591/.

[24] Roberto Segala (1995): Modelling and Verification of Randomized Distributed Real Time Systems. Ph.D.
thesis, Technical Report MIT/LCS/TR-676, Massachusetts Institute of Technology. Available at http://
profs.sci.univr.it/~segala/www/phd.html.

[25] E. Sekerinski (2008): Verifying Statecharts with State Invariants. In: Proceedings of the 13th IEEE Interna-
tional Conference on on Engineering of Complex Computer Systems, IEEE Computer Society, Washington,
DC, USA, pp. 7–14, doi:10.1109/ICECCS.2008.40.

[26] E. Sekerinski & R. Zurob (2001): iState: A Statechart Translator. In M. Gogolla and C. Kobryn, editors
UML 2001 - The Unified Modeling Language, 4th International Conference, Lecture Notes in Computer
Science 2185, pages 376-390, Toronto, Canada, doi:10.1007/3-540-45441-1 28.

[27] Emil Sekerinski (2009): Design Verification with State Invariants. In Kevin Lano, editor: UML 2 Semantics
and Applications, John Wiley & Sons, pp. 317–347, doi:10.1002/9780470522622.

[28] Yefei Zhao, Zongyuan Yang, Jinkui Xie & Qiang Liu (2010): Quantitative Analysis of System Based
on Extended UML State Diagrams and Probabilistic Model Checking. JSW 5(7), pp. 793–800,
doi:10.4304/jsw.5.7.793-800.

http://dx.doi.org/10.4204/EPTCS.57.2
http://dx.doi.org/10.1007/3-540-45022-X_14
http://dx.doi.org/10.1007/3-540-45022-X_14
http://dblp.uni-trier.de/db/conf/icalp/icalp2000.html#LuttgenM00
http://dblp.uni-trier.de/db/conf/icalp/icalp2000.html#LuttgenM00
http://dx.doi.org/10.1145/229542.229547
http://doi.acm.org.libaccess.lib.mcmaster.ca/10.1145/229542.229547
http://doi.acm.org.libaccess.lib.mcmaster.ca/10.1145/229542.229547
http://dx.doi.org/10.1109/MECO.2013.6601339
http://dx.doi.org/10.1145/2641483.2641522
http://dx.doi.org/10.1007/s10703-012-0177-x
http://essay.utwente.nl/591/
http://profs.sci.univr.it/~segala/www/phd.html
http://profs.sci.univr.it/~segala/www/phd.html
http://dx.doi.org/10.1109/ICECCS.2008.40
http://dx.doi.org/10.1007/3-540-45441-1_28
http://dx.doi.org/10.1002/9780470522622
http://dx.doi.org/10.4304/jsw.5.7.793-800

	1 Introduction
	2 Related Work
	3 Property Specification
	3.1 The Logic PCTL in pCharts
	3.2 Floating Formula Example

	4 Documentation in pCharts
	5 Case Study - RFID Tag
	6 Case Study - Hubble Telescope
	7 Conclusion

