
C. Dubois, P. Masci, D. Méry (Eds.): F-IDE 2016
EPTCS 240, 2017, pp. 82–90, doi:10.4204/EPTCS.240.6

Interfacing Automatic Proof Agents in Atelier B:
Introducing “iapa”∗

Lilian Burdy
ClearSy System Engineering, Aix-en-Provence, France

lilian.burdy@clearsy.com

David Déharbe†

david.deharbe@clearsy.com

ClearSy System Engineering, Aix-en-Provence, France

Étienne Prun
ClearSy System Engineering, Aix-en-Provence, France

etienne.prun@clearsy.com

The application of automatic theorem provers to discharge proof obligations is necessary to apply
formal methods in an efficient manner. Tools supporting formal methods, such as Atelier B, generate
proof obligations fully automatically. Consequently, such proof obligations are often cluttered with
information that is irrelevant to establish their validity.

We present iapa, an “Interface to Automatic Proof Agents”, a new tool that is being integrated
to Atelier B, through which the user will access proof obligations, apply operations to simplify these
proof obligations, and then dispatch the resulting, simplified, proof obligations to a portfolio of
automatic theorem provers.

1 Introduction

Historically, the B Method[1] was introduced in the late 80’s to design provably safe software. Promoted
and supported by RATP, the B method and Atelier B, the tool implementing it, have been successfully
applied to the industry of transportation leading to a worldwide implementation of the B technology for
safety critical software, mainly as automatic train controllers for subways.

The development of such controllers corresponds to a ”big” industrial project. To give an idea of
the size of such a development, a train controller is composed of different software components com-
municating together. Taking from a real example, the size of the critical parts of a real-life controller is
around 500.000 lines of B which give after translation 300.000 lines of Ada and 160.000 generated proof
obligations. The proof, already mainly automated, of those proof obligations is a substantial part of the
development cost for such projects. Limiting these costs by using more efficient provers, or by using
more efficiently provers is a real concern in industry.

Atelier B comes with two provers developed in the 90’s. Recently the ProB model checker [8] has
been added as a prover that can be called during an interactive proof session. The BWare project[10] [7]
aims to provide a mechanized framework to apply automated theorem provers, such as first order provers
and SMT (Satisfiability Modulo Theories) solvers on proof obligations coming from the development
of industrial applications using the B method. This approach produces proof obligations in the format
of Why3 [3], which is used then responsible for calling different automatic theorem provers with the
adequate input, interpreting their output and synthesizing a verification result.

∗This work is partly supported by the BWare (ANR-12-INSE-0010, http://bware.lri.fr/) project of the French na-
tional research organization (ANR).

†On leave from Universidade Federal do Rio Grande do Norte.

http://dx.doi.org/10.4204/EPTCS.240.6
http://bware.lri.fr/

L. Burdy, D. Déharbe & É. Prun 83

SMT provers are routinely used by any tool that has to deal with a logic-based verification task.
Notably, they have already been added as plugins in Rodin[6], another IDE for Event-B, which is a
formal method closely related to the B method. Concerning BWare, promising first results[9] [4] have
already been published.

We present here the integration of such automated provers in Atelier B considering the specificities
of proof obligations produced by industrial software developments, described in Section 3. The basic
elements of this integration are the Why3-based bridge to automated theorem provers developed in the
BWare project and a new approach for efficiently selecting the relevant parts of a proof obligation. The
principles of this latter aspect are presented in Section 4. The implementation of this functionality in a
graphical user interface is then presented in Section 5.

2 Presenting the B method

The development of a project using the B method comprises two activities that are closely linked: writing
formal texts and proving these same texts.

The writing activity consists in writing the specifications for abstract machines using a high level
mathematical formalism. In this way, a B specification comprises data (that may be expressed among
other ways using integers, Boolean values, sets, relations, functions or sequences), invariant properties
that relate to the data (expressed using first order logic), and finally services that describe the initialization
and possible evolutions of the data (data transformations being expressed as substitutions). The proof
activity for a B specification comprises performing a number of demonstrations in order to prove the
establishment and conservation of invariant properties in the specification (e.g. it is necessary to prove
that a service call retains the invariant properties). The generation of such proof obligations is based
essentially on the transformation of predicates using substitutions.

The development of an abstract machine continues during the successive refinement steps. Refining
a specification consists in reformulating it so as to provide more and more concrete solutions, but also to
enrich it. The proof activity relating to refinements performs a number of static checks and demonstra-
tions in order to prove that the refinement is a valid reformulation of the specification.

3 Proof obligations

Verifying program by proving verification conditions (called proof obligations here) leads to deal with
huge lemmas. This problem is not specific to the B Method, indeed the same observation is done, for
example, in [5] for verification conditions issued from C program verification.

Concerning the B Method[1], Figure 1 shows a proof obligation template. One can see that hypothe-
ses are collected in many clauses of many components. As an example, let us consider the declaration of
constants and their properties: as the B Method is a modular software development method, constants are
usually declared in some specific components. When a function needs to use a constant, the component
in which the constant is declared is seen1 and with the needed constant come all the properties of all the
constants of the component. So all the proof obligations will have as hypotheses the properties of all the
constants of the seen component even if only few of them are relevant for the proof.

1The SEES link is used to reference within a component, an abstract machine instance, to access its constituents (sets,
constants and variables) without modifying them.

84 Interfacing Automatic Proof Agents in Atelier B

“Machine parameter constraints” ∧
“Properties of constants of previous refinements” ∧
“Properties of refinement constants” ∧
“Properties of constants of components seen” ∧
“Properties of constants of components included” ∧
“Invariants and assertions of included components” ∧
“Invariants and assertions of components seen” ∧
“Invariants and assertions of the vertical development” ∧
“Precondition of the abstract operation”
⇒
“Precondition of the refinement operation” ∧
“Refinement operation applied to the negation of the specified operation applied to the negation

of the invariant”

Figure 1: Refinement proof obligation template

The incremental approach to refinement is another source of growth in the size of the proof obliga-
tions. Indeed, in each new refinement, all the proof obligations will include the contexts from all the
components that come before in the refinement chain.

In the real project described previously, the average number of hypotheses for a lemma is around
2000 formulas. Some proof obligations can contain more that 4000 hypotheses. Of course, not all of
them are necessary in the proof of each goal. To use efficiently automated provers on such lemmas, we
argue that it is necessary to filter relevant hypotheses. This is the motivation for the development of an
“Interface to Automatic Proof Agents” (IAPA), giving the users of Atelier B the means to build scripts
constructing a mini-lemma from a generated proof obligation, and to submit such mini-lemmas to the
provers.

4 Core functionality in iapa

Atelier B already contains an interface to discharge proof obligations: the interactive prover, where users
spend most of their time. Some functionalities in iapa are similar to those found in the interactive prover
and will be familiar to the users.

The iapa tool is invoked within Atelier B on a given component, once the proof obligations of that
component have been generated (as with the interactive prover). In Atelier B, all the proof obligations
of a component are available in a single file, and can be either in a legacy format called the “theory
language” or in a XML-based format. Only the latter contains typing annotations and this format has
been chosen in the BWare initiative as the basis for interfacing with the Why3 platform. Thus, iapa reads
the proof obligations of a given component from the XML-based file.

In the iapa interface, proof obligations are grouped according to their origin in the corresponding B
component (assertions, initialization, operations). Navigating through these proof obligations is a first
core functionality available in iapa, and its principles mimick those of the interactive prover. Regarding
this aspect, one important difference with respect to the interactive prover is that well-definedness proof
obligations are presented together with those proof obligations instead of in a separate project.

L. Burdy, D. Déharbe & É. Prun 85

Formally, a proof obligation is a pair (Γ,ϕ), where Γ is a set of hypotheses and ϕ is the goal. The
main goal of iapa is to assist the user in selecting the relevant information in the current proof obligation.
This consists in building a new proof obligation (Γ′,ϕ) such that Γ′ ⊆ Γ. In iapa, the new, simplified,
proof obligation is termed the lemma. The interface also contains means to submit lemmas to a portfolio
of automatic theorem provers.

One notable requirement of iapa is that the steps leading to the construction of a lemma for a given
proof obligation can be applied automatically to other proof obligations. This is achieved by means of
two kinds of entities: contexts and lexicons, that the user has to manipulate and combine in order to build
a lemma.

A context γ ⊆ Γ is a set of hypotheses that originates from the proof obligation (Γ,ϕ). When a proof
obligation is loaded in iapa, a number of contexts are pre-defined:

• all contains all the hypotheses;

• local contains all the hypotheses that are local in the proof obligation, i.e. hypotheses stemming
from conditions found in the operation corresponding to the proof obligation;

• global contains all but the local hypotheses;

• a number of contexts that correspond to the different sections in a B component (properties, in-
variants, etc.);

• B definitions contains hypotheses on pre-defined sets such as implementable integers.

A lexicon l is a set of free identifiers of the original proof obligations. Assuming fv returns the set
of free identifiers in a formula, then l ⊆

⋃
{fv(ψ) | ψ ∈ Γ∪{ϕ}}. Initially, there is a single pre-defined

lexicon, named goal, and containing fv(ϕ) (the free identifiers in the goal).
At any time, the state of iapa contains the following elements:

• (Γ,ϕ) the current proof obligation;

• C : a set of contexts (∀x ∈ C ,x⊆ Γ);

• L : a set of lexicons (∀ l ∈L , l ⊆
⋃
{fv(ψ) | ψ ∈ Γ∪{ϕ}});

• c: a current context (c ∈ C);

• l: a current lexicon (l ∈L);

• S: a set of selected hypotheses (S⊆ Γ).

The pre-defined values for C and L are as described previously, those of c, l and S are local, goal,
and /0, respectively. Then the commands on contexts and lexicons currently implemented in iapa are the
following:

• ah adds the hypotheses in the current context to the set of selected hypotheses;

• dh removes the hypotheses in the current context from the set of selected hypotheses;

• chctx(ctx) sets the current context to ctx;

• chlex(lex) sets the current lexicon to lex;

• mklex creates a new lexicon with the free identifiers of the current context;

• mklex(i1,..., in) creates a new lexicon with the given identifiers;

• mkctx(Some) creates a new context containing the hypotheses in the current context that have at
least one free identifier in the current lexicon;

86 Interfacing Automatic Proof Agents in Atelier B

command effect condition
ah S := S∪ c
dh S := S\ c
chctx(ctx) c := ctx ctx ∈ C
chctx(lex) l := lex lex ∈L
mklex L := L ∪{fv(c)} fv(c) 6= /0
mklex(i1,...,in) L := L ∪{{i1, · · · , in}} i1 ∈ l · · · in ∈ l
mkctx(Some) C := C ∪{{h|h ∈ c ∧ fv(h)∩ l 6= /0}} {h|h ∈ c ∧ fv(h)∩ l 6= /0} 6= /0
mkctx(All) C := C ∪{{h|h ∈ c ∧ l ⊆ fv(h)}} {h|h ∈ c ∧ l ⊆ fv(h)} 6= /0
mkctx(h1,...,hn) C := C ∪{{h1, · · · ,hn}} h1 ∈ c · · ·hn ∈ c

Table 1: Formalization of iapa commands.

script description
ah builds the lemma containing only local hypotheses
chctx(all) & ah builds the lemma identical to proof obligation
mklex & chctx(all) & mkctx(Some) & ah builds the lemma with hypotheses containing an

identifier in the local hypotheses

Table 2: Example iapa scripts (& being used as command separator).

• mkctx(All) creates a new context containing the hypotheses in the current context such that their
free identifiers includes the current lexicon;

• mkctx(h1,...,hn) creates a new context containing the given hypotheses.

The condition and effect of the execution of these commands are summarized in Table 1, and some
illustrative scripts are presented in Table 2. The following section presents the iapa interface, including
how the user can play such commands.

5 The iapa tool

The core functionality is presented in a graphical user interface that has to be launched from Atelier B’s
main window on a given component. The functionalities are offered both by textual and point-and-click
means. Figure 2 contains a screenshot of the initial contents of the window. At that point, two views are
populated: Provers and Proof obligations. The contents of the latter is found in Atelier B’s database. The
contents of the former is obtained by querying the automatic provers currently installed. Since, at the
moment, the access to these provers is realized through Why3, this information is found automatically
using Why3 and its auto-configuration facilities. Besides the menu and the tool bar found at the top of
the window, the Command section contains a widget containing a command-line interface to iapa. Here,
the user has already typed the command ne, which, when executed, will open the next proof obligation.

Opening a proof obligation results in filling the Goal, Context manager and Lexicon manager sec-
tions, and enables actions corresponding to the core iapa functionalities. Figure 3 shows the contents of
the iapa window after the user has managed to complete a proof after having selected some hypotheses
in the context (using here one of the scripts presented in Table 2) and started the provers on the resulting
lemma with the pr command. Scenarios where the proof obligation is not found valid correspond to the

L. Burdy, D. Déharbe & É. Prun 87

Figure 2: Initial contents of the iapa window.

88 Interfacing Automatic Proof Agents in Atelier B

Figure 3: Contents of the iapa window during a session.

L. Burdy, D. Déharbe & É. Prun 89

following cases: the original proof obligation is not valid, the user did not select a relevant subset of
hypotheses, or the tools did not find the proof.

In any case, the steps realized by the user are saved and displayed in the Script section. Also the
Messages section is dedicated to the display of feed-back information.

6 Conclusions and future work

This paper presents an on-going work to reduce the cost of discharging proof obligations when applying
formal methods in an industrial environment. This work is embodied in iapa, a prototype for an exten-
sion of Atelier B aiming at both integrating additional proof engines and offering hypotheses selection
facilities to the user.

The effectiveness of the approach will be assessed through a systematic evaluation on a representative
set of industrial projects. The results of this evaluation will decide whether iapa is eventually deployed
together with the distributions of Atelier B. We also plan to improve the usability of iapa, by adding
hypotheses selection criteria based on formula patterns, and also taking user feed-back into account.

Certification is another important aspect of tooling in an industrial setting for safety-critical systems.
The historical provers in Atelier B have been certified but certifying new tools is costly. We forecast some
solutions to address this issue in iapa. First, since some automated theorem provers are proof-producing,
we envision using the proofs thus produced to build proofs that can be played by the certified provers.
Second, since redundancy is also a mean to achieve desired safety levels, a second tool chain could be
developed. It would bypass Why3 and generate proof obligations directly in the input language of the
automatic provers. An approach similar to [6], targetting the SMT-LIB format [2] is a good candidate.

References

[1] Jean-Raymond Abrial (2005): The B-book - assigning programs to meanings. Cambridge University Press.

[2] Clark Barrett, Pascal Fontaine & Cesare Tinelli (2015): The SMT-LIB Standard: Version 2.5. Technical
Report, Department of Computer Science, The University of Iowa. Available at www.SMT-LIB.org.

[3] François Bobot, Jean-Christophe Filliâtre, Claude Marché & Andrei Paskevich (2011): Why3: Shepherd your
herd of provers. In: Boogie 2011: First International Workshop on Intermediate Verification Languages, pp.
53–64.

[4] Sylvain Conchon & Mohamed Iguernelala (2014): Tuning the Alt-Ergo SMT Solver for B Proof Obligations.
In Yamine Ait Ameur & Klaus-Dieter Schewe, editors: Abstract State Machines, Alloy, B, TLA, VDM, and
Z: 4th International Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceedings, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 294–297, doi:10.1007/978-3-662-43652-3 27.

[5] Jean-François Couchot & Thierry Hubert (2007): A Graph-based Strategy for the Selection of Hypotheses.
In: FTP’07, Int. Workshop on First-Order Theorem Proving, Liverpool, UK.

[6] David Déharbe, Pascal Fontaine, Yoann Guyot & Laurent Voisin (2012): SMT Solvers for Rodin. In: Pro-
ceedings of the Third International Conference on Abstract State Machines, Alloy, B, VDM, and Z, ABZ’12,
Springer-Verlag, Berlin, Heidelberg, pp. 194–207, doi:10.1007/978-3-642-30885-7 14.

[7] David Delahaye, Catherine Dubois, Claude Marché & David Mentré (2014): The BWare Project: Building a
Proof Platform for the Automated Verification of B Proof Obligations. In: Abstract State Machines, Alloy,
B, VDM, and Z (ABZ), pp. –, doi:10.1007/978-3-662-43652-3 26.

[8] Michael Leuschel & Michael Butler (2003): ProB: A Model Checker for B. In Keijiro Araki, Stefania Gnesi
& Dino Mandrioli, editors: FME 2003: Formal Methods: International Symposium of Formal Methods

http://dx.doi.org/10.1007/978-3-662-43652-3_27
http://dx.doi.org/10.1007/978-3-642-30885-7_14
http://dx.doi.org/10.1007/978-3-662-43652-3_26

90 Interfacing Automatic Proof Agents in Atelier B

Europe, Pisa, Italy, September 8-14, 2003. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
855–874, doi:10.1007/978-3-540-45236-2 46.

[9] David Mentré, Claude Marché, Jean-Christophe Filliâtre & Masashi Asuka (2012): Discharging Proof Obli-
gations from Atelier B using Multiple Automated Provers. In Steve Reeves & Elvinia Riccobene, editors:
ABZ - 3rd International Conference on Abstract State Machines, Alloy, B and Z, Lecture Notes in Com-
puter Science 7316, Springer, Pisa, Italy, pp. 238–251, doi:10.1007/978-3-642-30885-7 17. Available at
https://hal.inria.fr/hal-00681781.

[10] BWare team (2012): The BWare Project. Available at http://bware.lri.fr/.

http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1007/978-3-642-30885-7_17
https://hal.inria.fr/hal-00681781
http://bware.lri.fr/

	1 Introduction
	2 Presenting the B method
	3 Proof obligations
	4 Core functionality in iapa
	5 The iapa tool
	6 Conclusions and future work

