An Algebra of Synchronous Scheduling Interfaces

Michael Mendler

Faculty of Information Systems and Applied Computer Sciences
Bamberg University

michael.mendlerQuni-bamberg.de

In this paper we propose an algebra of synchronous scheduling interfaces which combines the expres-
siveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic
for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from
arealisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism
or propositions-as-types principle). The resulting algebra of interface types aims to provide a general
setting for specifying type-directed and compositional analyses of worst-case scheduling bounds.
It covers synchronous control flow under concurrent, multi-processing or multi-threading execution
and permits precise statements about exactness and coverage of the analyses supporting a variety
of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples
taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in
synchronous programming.

1 Introduction

The algebra discussed in this paper aims at the specification of behavioural interfaces under the execution
model of synchronous programming. Such interfaces abstract externally observable Boolean controls
for components activated under the regime of a global synchronous scheduler familiar from data-flow
oriented languages such as Lustre [11]], Signal [8], Lucid Synchrone [24], or imperative control-flow
oriented languages such as Statecharts [12}, [23]], Esterel [5] and Quartz [25]. In this model computations
are coordinated under one or more global system clocks, which may be physical or logical. They divide
physical time into a sequence of discrete ficks, or instants. During each instant the synchronous com-
ponents interact using broadcast signals, which can have one of two statuses, present or absent. These
signal statuses evolve monotonically as they are propagated through the system, generating the emission
or inhibition of further signals and computations. Under the synchrony hypothesis [10] it is assumed
that at each instant, outputs are synchronous with the inputs. In other words, computations take place
instantaneously and appear to happen at each tick “all at once.”

The synchrony hypothesis conveniently abstracts internal, possibly distributed computations into
atomic reactions, making signals appear almost like Boolean variables and (stateful) interfaces almost
like Mealy automata with Boolean labels. Unfortunately, this abstraction is not perfect, so that Boolean
algebra is insufficient. First, it is well-known [14}20] that classical two-valued Boolean analysis is inad-
equate to handle the causality and compositionality problems associated with the synchrony hypothesis
adequately. E.g., Boolean algebra by itself cannot guarantee there are no races between signal presence
and absence, thus guaranteeing unique convergence after a finite number of signal propagation steps.
Some form of causality information needs to be preserved. Secondly, quite practically, in many appli-
cations we want to compute non-Boolean information about otherwise “instantaneous” control signals,
such as latency or worst-case reaction times, maximal throughput, earliest deadlines, or other quanti-
tative information about the scheduling process. This provides one way to motivate the work reported

Benoit Caillaud and Axel Legay (Eds.): (© Michael Mendler
Foundations of Interface Technologies (FIT’10) This work is licensed under the
EPTCS 46, 2011, pp. 28-48} doi:10.4204/EPTCS 46.3 Creative Commons| Attribution License.

http://dx.doi.org/10.4204/EPTCS.46.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Michael Mendler 29

here, viz. the search for a fully abstract synchronisation algebra as an economic refinement of classi-
cal Boolean algebra in situations where Booleans are subject to synchronous schedules and quantitative
resource consumption.

Another motivation may be drawn from the arithmetical point of view. One of the challenges in
quantitative resource analysis is the clever interchange (distribution) of max, min and +. For instance,
consider the analysis of worst-case reaction times (WCRT). In its simplest form, given a weighted de-
pendency graph, the WCRT is the maximum of all sums of paths delays, an expression of the form
max(Y;c " di1, Y e ” dp,... ,Z,-Epn din) where p ; are execution paths of the system and d;; the delay of
path segment i in path p;. As it happens, the number 7 of paths is exponential in the number of elemen-
tary nodes of a system. Practicable WCRT analyses therefore reduce the max-of-sums to the polynomial
complexity of sum-of-maxes (dynamic programming on dependency graphs) employing various forms
of dependency abstraction. For illustration, imagine two alternative path segments of length d, e; se-
quentially followed by two alternative path segments of length d,, e,, respectively. The distribution
max(dy + dp,dy + ez,e1 + da,e1 + e2) = max(dy,e;) + max(da,e;) for efficiently calculating the longest
possible path, is exact only if we have a full set of path combinations. In general, there will be dependen-
cies ruling out certain paths, in which case sum-of-maxes obtains but conservative over-approximations.
E.g., assume the combination of d; with e; is infeasible. Then, the sum-of-maxes is not exact since
max(dy,ey) +max(dy,e;) > max(d) + da,e; +dp,e; + e2). On the other hand, knowing the infeasibil-
ity of d; + e, we would rather compute max(dy + dp,e; +max(da,e;)) = max(d; +da,e1 +dp,e1 +e2)
which eliminates one addition and thus is both exact and more efficient than the full conservative max-
of-sums. The same applies to min-plus problems such as shortest path or network flow. In the former,
the efficient sum-of-mins is an under-approximation of the exact min-of-sums on all feasible paths. For
network flow the arithmetic is complicated further by the fact that min/max do not distribute over +, i.e.,
min(d,e; + ey) # min(d,e;) +min(d,e;) which obstructs simple linear programming techniques.

The art of scheduling analysis consists in finding a judicious trade-off between merging paths early
in order to aggregate data on the one hand, and refining dependency paths by case analysis for the sake
of exactness, on the other hand. A scheduling algebra for practicable algorithms must be able to express
and control this trade-off. In this paper we present an interface theory which achieves this by coupling
resource weights d with logic formulas ¢. A pair d : ¢ specifies the semantic meaning of d within
the control-flow of a program module. Logical operations on the formulas then go hand-in-hand with
arithmetic operations on resources. E.g., suppose a schedule activates control points X and Y with a cost
of d and d,, respectively, expressed d; : oX Ad; : oY. If the threads are resource concurrent then both
controls are jointly active within the maximum, i.e., max(d;,dz) : o(X AY). If we are only concerned
whether one of the controls is reached, then we take the minimum min(d,,d,) : o(X @Y. If activations
of X and Y requires interleaving of resources, then we must use addition d; +d, : o(X ®Y).

Our interface theory combines min-max-plus algebra (Ne, min, max, 4,0, —oo, +o0), see e.g. [4]], with
a refinement of Boolean algebra to reason about logical control-flow. It features two conjunctions A, ® to
distinguish concurrent from multi-threading parallelism, two disjunctions V, @ to separate external from
internal scheduling choices, respectively. A consequence of its constructive nature, our algebra replaces
classical negation by a weaker and more expressive pseudo-complement for which X = x and x +x = 1
are no longer tautologies. This turns Boolean into a so-called Heyting algebra. The work presented here
is an extension and adaptation of our earlier work on propositional stabilisation theory [21]] which has
been developed to provide a semantic foundation for combinational timing analyses.

The plan for the paper is as follows: To start with, Sec.[2|lays out the syntactic and semantical ground-
work for our interface type theory which is then studied in some more detail in Sec. (3| For compactness
we keep these theoretical Sections [2] and [3] fairly condensed, postponing examples to Secs. @ and[5] In

30 An Algebra of Synchronous Scheduling Interfaces

the former, Sec. 4, we sketch applications to network flow, shortest path and task scheduling, while in
Sec. [5| we discuss the problem of WCRT analysis for Esterel-style synchronous processing. The paper
concludes in Sec. |6l with a discussion of related work.

2 Syntax and Semantics of Synchronous Scheduling Interfaces

Synchronous scheduling assumes that all dependencies in the control flow of a single instant are acyclic
and the propagation of control, for all threads, is a monotonic process in which each atomic control point
is only ever activated at most once. Let V be a set of signals, or control variables, which specify the
atomic control points in the interface of a synchronous module. An event is a subset E C V of control
variables. A synchronous activation sequence, or simply an activation, is a monotonically increasing
function 6 € n — 2V fromn = {0, 1,...,n—1} into the set of events, i.e., 6(i) C o (j) forall 0 <i < j < n.
The length |c| of o is the number of events it contains, i.e., |6| = n. The unique activation of length
0 = 0 is called the empty activation, also denoted @.

Activations model the monotonic process of signal propagation during one synchronous instant, i.e.,
between two ticks of the logical clock. They induce a Boolean valuation on the control variables in the
sense that A € V may be considered “present” for the instant if A € 6(i) for some 0 <i < |o| and “absent”
otherwise. In the former case, index i is the activation level for the presence of control A. In general, the
domain n over which an activation is defined acts as a discrete domain of quantifiable resources which
are consumed by control variables becoming active at different resource levels. In this way, activation
sequences give an operational understanding of truth values that is faithful to causality and resource
consumption. A canonical interpretation is the temporal reading: The length |o| is the duration of the
synchronous instant, i.e., the overall reaction time, and A € (i) means that A is activated, or is present
from micro-step i.

Definition 2.1 Let 6 € n — 2V be an activation.

e A sub-activation 6’ C 6 of is an activation 6’ € m — 2V such that there exists a strictly mono-
tonic function f € m — nwith ¢’ (i) = o (f(i)) for all i € m.

o We write 6 = 01 U 0, to express that sub-activations 01,0, C O form an activation cover of o,
or an interleaving decomposition in the sense that each event is contained in 0] or in 0y, i.e.,
Vie |o|.3j=1,2.3k € |oj|.i = fj(k) where f; are the index embeddings of 6, j =1,2.

e For every i € N we define the shifted activation oli,:] : m — 2V, where m =44 {j | 0 < j+i <n}
and 61i,1(j) =4y (i +9)

A shifted activation is also a sub-activation, o[i,:] C 0. We have o[i,:] =0 if 6 =0 or if i > |o]|.
The shift operator is monotonic wrt sub-activations and antitonic wrt resource level, i.e., if 6’ C ¢ and
0 <i < jthen ¢’[j,:] C oli,:]. This depends on strict monotonicity of the index embedding in ¢’ C ©.

In order to model non-determinism (abstracting from internal parameters or external environment)
our interfaces are interpreted over subsets ¥ of activation sequences, called (synchronous) schedules.
These schedules (of a program, a module, or any other program fragment) will be specified by a schedul-
ing type ¢ generated by the logical operators

¢ = Al rtrue | false | NG [=0 [@O0 [9VO [9B¢ | 929 | of

generated from control variables A € V. We will write £ |= ¢ (0 |=) to say that schedule X (activation o)
satisfies the type ¢. The semantics of types is formally defined below in Def.[2.2] As a type specification,

Michael Mendler 31

each control variable A € V represents the guarantee that “A is active (the signal is present, the program
label has been traversed, the state is activated) in all activations of ¥”°. The constant true is satisfied
by all schedules and false only by the empty schedule or the schedule which contains only the empty
activation. The type operators —, D are negation and implication. The operators V and & are two
forms of logical disjunction to encode internal and external non-determinism and A, ® are two forms
of logical conjunction related to true concurrency and interleaving concurrency, respectively. Finally,
o is the operator to express resource consumption. The usual bracketing conventions apply: The unary
operators —, o have highest binding power, implication D binds most weakly and the multiplicatives A, ®
are stronger than the summations V, @. Occasionally, bi-implication ¢ = y is useful as an abbreviation
for (¢ D W) A(y D ¢@). Also, we note that —¢ is equivalent to ¢ D false.

A scheduling type ¢ by itself only captures the functional aspect of an interface. To get a full interface
we need to enrich types by resource information. To this end, we associate with every scheduling type ¢
a set of scheduling bounds Bnd(q)) recursively as follows:

Bnd(false) = Bnd(true) =1

Bnd(A) = Bnd(—¢) =1
Bnd(¢ \y) :Bnd() X Bnd(y) Bnd(¢ vV v) = Bnd(¢) + Bnd(y)
Bnd(¢ @ y) = Bnd(¢) x Bnd(y) Bnd(¢ O y) = Bnd(¢) — Bnd(y)
Bnd(o¢) = Ne, x Bnd(¢) Bnd(¢ @ y) = Bnd(¢) x Bnd(y),

where 1 = {0} is a distinguished singleton set. Elements of the disjoint sum Bnd(¢) + Bnd(y) are
presented as pairs (0, f) where f € Bnd(¢) or (1,g) where g € Bnd(y). The set Bnd(¢) x Bnd(y) is the
Cartesian product of the sets Bnd(¢) and Bnd(y) and Bnd(¢) — Bnd(y) the set of total functions from
Bnd(¢) to Bnd(y). Intuitively, an element f € Bnd(¢) may be seen as a form of generalised higher-order
resource matrix for schedules of shape ¢.

Definition 2.2 A scheduling interface is a pair f : ¢ consisting of a scheduling type ¢ and a scheduling
bound f € Bnd(9). An activation o satisfies an interface f : ¢, or satisfies the scheduling type ¢ with
bound f, written ¢ |= f : ¢, according to the following inductive rules:

c E 0:false iff |o|=0ie,0c=0

c E O:true iff always

c F 0:A iff VY0<i<|o|=Aco(i

o & (f.0):0Aw ff o=fipadolg:y

o £ (0f):ovw iff cEfio

o F (Lg:¢vy iff okEg:y

o F (f,.g):90y iff oFf:9orclg:y

G & [0y iff Vo'Co.vgeBnd(9). (o' g9 =0k fg:v)

c E (d,f):o00 iff |o|=00rdieN.0<i<dandoli,:|E=f:¢

c EF (f,g):9®@y iff Fo,00Co.c=01Uocy andoj=f:9andor=g: .

A schedule ¥ satisfies ¢ with bound f, written L = f : @, if forall 6 € X, 6 |= [: ¢. A schedule satisfies
¢ or is bounded for ¢ if there exists f € Bnd(§) such that X |= f : ¢.

The semantics £ |= f : ¢ as formalised in Def. is a ternary relation: It links schedules, types and
bounds. The symbol = separates the behavioural model X from the formal interface f : ¢. The latter,
in turn, combines a qualitative and a quantitative aspect. The type ¢ captures the causal relationships
between the control points and the bound f € Bnd(¢) refines this quantitatively by weaving in concrete
activation levels. The colon : is a binary connective which separates these concerns.

32 An Algebra of Synchronous Scheduling Interfaces

Proposition 2.3 o = f: ¢ and 6’ C o implies 6’ |= f : ¢. Moreover, |o| = 0 implies 6 = [: ¢.

Prop. says that interfaces are inherited by sub-activations. This is natural since a sub-activation
selects a subset of events and thus (in general) contains more control variables with lower activation dis-
tances. The degenerated case is the empty activation which is inconsistent and thus satisfies all interfaces,
including the strongest specification O : false, viz. “everything is true with zero resource consumption”.

The most general way to use the semantic relation of Def. is to consider the set of (typically
abstracted) activations for a given module P as a schedule Xp, and then determine a suitable interface for
it. Any such f: ¢ with Xp = f : ¢ may be taken as a valid interface specification of P giving a quantified
behavioural guarantee for all activations ¢ € Xp under the given scheduling assumptions. Ideally, we are
interested in the best fitting or tightest interface, if such exists. To measure the relative strength of an
interface we employ Def. [2.2]to associate with every pair f : ¢ the schedule [f: 9] ={o | o= f: ¢}
which is the semantic meaning of the interface. Interfaces may then be compared naturally. The smaller
the set of associated activations [[f : ¢]) the tighter is the interface f : ¢. Formally, we write

fro=zg:y it [f:e)Cle:v]

and f: @ = g:yincase [f: @] =[g: w]. We call an interface f : ¢ tight for Xp if it is minimal wrt
=, i.e., whenever g: y < f: ¢ and Lp =g : wthen f: ¢ = g: y. A tight interface provides exact
information about Xp in both the functional and the resource dimensions within the expressiveness of
our typing language. Typically, however, we are given some schedule Xp together with a fixed type ¢
and ask for a minimal bound f such that Xp = f : ¢. If such a tight bound exists and is unique we call it
worst-case for ¢.

We generalise equivalence to arbitrary types, taking ¢ = y to mean that for every f € Bnd(¢) there
is g € Bnd(y) such that f: ¢ = g : v and vice versa, for each g € Bnd(y) we can find f € Bnd(9)
with g: Y = f: ¢. The main purpose of the relations < and = is to justify strengthening, weakening or
semantics-preserving, transformations to handle interfaces as tightly as sensible. They are the basis of
the interface algebra, some of whose laws will be studied next.

3 The Algebra of Scheduling Types

The set of scheduling bounds Bnd(¢) captures the amount of resource information associated with a
type ¢. In this respect the most simple class of types is that for which Bnd(¢) is (order) isomorphic
to 1. Such types are called pure since they do not carry resource information and thus specify only
functional behaviour. It will be convenient to exploit the isomorphisms Bnd({) = 1 and identify all
bounds f € Bnd({) of a pure type canonically with the unique O € 1. Further, since it is unique, we
may as well drop the (non-informative) bound and simply write § instead of O : {. This means, e.g., that
§ingy, (0,0): 51 AE and 0: &) AL, are all identified.

Second, with this simplification on pure types in place, we may mix bounds and types and apply
the type operators to full interfaces. Since f : ¢ specifies individual activations it formally behaves like
an atomic statement. Hence, it is possible to use interfaces f : ¢ themselves as generalised ‘“control
variables” in types such as (f : ¢) Ay or o(f : ¢). We simply define

Bud(f:9) =41 G=0:(f:¢)iffc|=f:¢

which turns an interface f : ¢ into a pure type. Then, e.g., [f: ¢ Ag: y] =[(0,0): (f: 9 Ag:y)]| =
[O:(F:)n[0: (g:w)] =[r:olN[g: vl

Michael Mendler 33

A few basic facts about the interface algebra arising from Def. are readily derived. Not really
surprisingly, true and false are complements, —true == false, —false = true as well as neutral false ® ¢ =
Jfalse ® ¢ = true A ¢ = ¢ and dominant elements false A\ ¢ = false, true ® ¢ = trueV ¢ = true @ ¢ = true.
Shifting a type by —eo and 4o produces the strongest and weakest statements false and true, respectively:

Proposition 3.1 For arbitrary types ¢, —oo : o) = false and +oo : o) = true.

All operators V, A, @ and ® are commutative. The pairs V <+ A and @ <> A fully distribute over
each other, while ® distributes over both ¢ and V, but not the other way round. Between ® and A no
distribution is possible, in general. One can show that the fragment V, A, false, —, D satisfies the laws of
Heyting algebras seen in Prop. [3.2]

Proposition 3.2 For arbitrary types ¢1, ¢, W:

v D v Xtrue 01 D (¢2 D ¢1) = true
(1AQ) DW= D (DY) (01 D) N0 =1 A
(1Ve) DY = (1 DY)A (2D) VO (O AR)=(YD o)AV D)
false D y = true W D true = true
v D false = ~y true D Y= y.

It is worthwhile to observe that the classical principles of the Excluded Middle A @ —-A and AV —-A
are both different and not universally valid in WCRT algebra. The latter says A is static, i.e., A is present
in all activations or absent in all activations, the former that signal A is stable, i.e., in each activation
individually, A is either present from the start or never becomes active. Clearly, not every signal is
static or stable. The absence of the axioms A & —A, AV —A, which arises naturally from the activation
semantics, is a definitive characteristics of intuitionistic logic or Heyting algebra. This feature is crucial
to handle the semantics of synchronous languages in a compositional and fully abstract way [20].

Boolean Types. An important sub—class of pure types are negated types —¢. They express universal
statements about each singleton event of each activation sequence in a schedule. For instance, X =
—(A ® B) says that no event (i) CV (0 <i < |o|) in any o € £ contains A or B. Similarly, (A D B)
states that A is present and B is absent in every event of every activation sequence, which is the same as
——(A A—B). Negated types are expressively equivalent to, and can be transformed into, Boolean types
obtained from the following grammar, where ¢ is an arbitrary type:

B = true | false | A| =B | BAB | BRB | ¢ DP.

Proposition 3.3 The Boolean types form a Boolean algebra with -, A, ® as classical complement,
conjunction and disjunction, respectively. Moreover, ¥ |= B iff for every 6 € £ and i € |G| the event
o (i) C V satisfies B as a classical Boolean formula in control variables V.

A consequence of Prop.[3.3]is that the interface algebra contains ordinary classical Boolean algebra as
the fragment of Boolean types. In particular, for Boolean types the Double Negation principle -—f = 8
and Excluded Middle -8 ® B = true hold as well as the De-Morgan Laws —(; A 82) = —f; ® -3, and
=(B1 ® B2) = —B; A—f,. Boolean types, like all types satisfying =—¢ = ¢ or ~¢ ® ¢ = true, behave
exactly like expressions of Boolean algebra, encapsulating a Boolean condition to be satisfied by each
event in a sequence.

34 An Algebra of Synchronous Scheduling Interfaces

Pure Types. The sum operator @ takes us outside the sub-language of Boolean types. The reason is
that the truth of &, e.g., in stability A ® —A, depends on the global behaviour of an activation and cannot
be reduced to a single Boolean condition. This is highlighted by the difference between ¢ = A © B
which is the condition Vi € ||, A € o(i) or Vi € ||, B € (i) and 6 |= A ® B which says Vi € |0|, A €
o(i) or B € o(i). The larger class of pure types, which includes @, give us the possibility to express
“Boolean” conditions across activations, as opposed to Boolean types which act within activations. The
pure types, denoted by meta-variable {, are characterised syntactically as follows:

§ w= BlEng|Cac|ial]¢DC,

where 8 is Boolean and ¢ is an arbitrary type. Notice that not only every Boolean type, but also every
negation ~@ = ¢ D false, is pure according to this syntactic criterion.

Proposition 3.4 Every pure type § has a representation § = @, B; over Boolean types ;.

Elementary Types. Pure types have the special property that schedules ¥ are bounded for them iff each
individual activation o € ¥ is bounded, i.e., they express properties of individual activations. Formally,
if X = ¢ and X, = § then £, UX, | §. Disjunctions §; V &, and resource types o{, in contrast, do
not share this locality property: Although each activation ¢ may satisfy {; or {;, the schedule X as
a whole need not be resource-bounded for §; V {; as this would mean all activations satisfy {; or all
satisfy {,. Similarly, each individual activation ¢ € ¥ may validate { with some resource bound, without
necessarily there being a single common bound for all activations in X.

A useful class of types containing \V and o are those for which Bnd(¢) is canonically order-isomor-
phic to a Cartesian product of numbers, i.e., to N% for some n > 0. These scheduling types ¢ with
Bnd(¢) = NZ are called elementary. They are generated by the grammar

0 = C|ONO | 006 |60 |f|yDH,

where { is pure and y is o-free. Elementary scheduling types are of special interest since their elements
are first-order objects, i.e., vectors and matrices of natural numbers.

Elementary interfaces specify the resource consumption of logical controls. For instance, ¢ = (d,0) :
of, given § = @;f; (see Prop. , says that o enters and remains inside a region of events described
by one of the Boolean conditions f3; and consumes at most d resource units to do that. The special case
O |=d : ofalse says that ¢ consumes no more than d units during any instant. Similarly, o = § D (d,0) :
of with { = @;; and & = @;; says that every sub-activation ¢’ C ¢ that runs fully inside one of the
regions 3; must reach one of the regions y; with resources bounded by d. Then, o |= § D (d,0) : ofalse
means that o consumes no more than d units while staying in any of the regions f;.

To compactify the notation we will write tuples (d;,d>) for the bounds ((d;,0), (d2,0)) € (Neo x 1) X
(Ne X 1) 2 No X No of types such as o8} @ oy, o) Aoy, of; ®of,. We apply this simplification
also to bounds f € 1 — N, x 1 & N, for types such as {; D ol;: We write [d] : §; D o, treating
the bracketed value [d] like a function Ax.(d,0). In fact, [d] : §; D o{, is the special case of a 1 x 1
matrix. We will systematically write column vectors [dy;d,] instead of Ax.((d,,0), (d,0)) for the bounds
of types such as { D ol G oy, § D oli Aoy or { D ol ® oy, and row-vectors [d,d;] in place of
Ax.casexof[(0,0) — (d1,0),(1,0) — (da,0)] for types &V & D of. Our linearised matrix notation uses
semicolon for row-wise and ordinary colon for columns-wise composition of sub-matrices. Specifically,
[d11;d21,d12;da2] and [dy1,d12;da1,dpn] denote the same 2 X 2 matrix.

Michael Mendler 35

In the following Secs. @ and[5|we are going illustrate different sub-algebras of specialised elementary
types to manipulate combined functional and quantitative information and to facilitate interface abstrac-
tions. These generalise the algebra of dioids [4, [17] to full max-min-plus, obtaining an equally tight as
uniform combination of scheduling algebra and logical reasoning.

4 Examples I: Network Flow, Shortest Path, Task Scheduling

The logical operations on types control the arithmetical operations on resource bounds. The next two
Props. {.T]and .2 sum up some important basic facts.

Proposition 4.1 The arithmetic operations min, max and + compute worst-case bounds such that

[di]: 81 Dol Alda]: 3 D083 = [di+dy]: &1 Dols (1)
[di]: £ Dol Aldo]: E D0l =< [max(di,da2)]: § D o(8iNE) 2)
[di]: E Dol Aldo]: D0l =X [min(di,db)]: § Do(8i® () 3)
[di]: 81208 Alda]: & Dol = [max(d,dr)]: (§1© &) Dol “4)
[di]: 1 Dol Aldo]: 5 Dol = [min(di,d2)]: (i AG) Dol)

The law (I]) expresses a sequential composition of an offset by d; from control point §; to §, with
a further shift of d, from &, to {3. The best guarantee we can give for the cost between §; and {3 is
the addition d; + dy. The bounds [d;] and [d;] act like typed functions with [d] + d>] being function
composition, [d;] - [d;] = [d) +d>]. This is nothing but the multiplication of 1 x 1 matrices in max-plus or
min-plus algebra. The law (2) is conjunctive forking: If it takes at most d; units from ¢ to some control
point & and at most d; to §,, then we know that within max(d;,d,) we have activated both together,
81 A &o. A special case of this occurs when § = true, i.e., d) : 081 Ady : 08y = max(dy,dz) 1 o(§1 N E).
Now suppose conjunction is replaced by sum §; @ &y, i.e., we are only interested in activating one of &,
or &, but do not care which. The worst-case bound for this disjunctive forking is the minimum, as seen
in (3). Again, there is the special case d; : 0§} Ady : 08y = min(dy,da) : o(§) @). Dually, disjunctive
Jjoins (@) are governed by the maximum: Suppose that starting in §; activates { with at most d; cost and
starting in §, takes at most d; resource units. Then, if we only know the activation starts from §; or &
but not which, we can obtain { if we are prepared to expend the maximum of both costs. If, however, we
assume the schedule activates both §; and &, which amounts to conjunctive join, then the destination §
is obtained with the minimum of both shifts, see (3)).

Proposition 4.2 Let {1, § be pure types which are persistent in the sense that whenever o (k) = ; for

0 <k < |o|, then ok,:] =, too. Then,
di 1001 ®dy: 00 2 di+dy:o(81D) (6)
(di1:0G AN (G D &))@ (dr: 0N (82D 8)) 2 ditdr:o(GAG). (7

Consider (0) of Prop. 4.2 Suppose a schedule o splits into two (sub-)threads ¢ = o7 U 0, each
switching control {; and {, consuming at most d; and d5 units, respectively. Since they can be arbitrarily
interleaved and we do not know which one completes first, all we can claim is o (k) = §; for some
k <dy+d, and i = 1,2. By persistence, this suffices to maintain §; from level k onwards, so that
o Ed +dy:o(f ®&). Without imposing further assumptions, a sub-thread may be allocated an
unknown number of resource units, thereby stalling the progress of the other, unboundedly. The situation

36 An Algebra of Synchronous Scheduling Interfaces

changes, however, if the {; are synchronisation points where the threads must give up control unless the
other thread has passed its own synchronisation point {; (i # j), too. This is the content of and
specified formally by the additional constraints §; D ;.

Prop. 1] and [4.2] highlight how the arithmetic of min-max-plus algebra are guided by the logical
semantics of interface types. From this vantage point, resource analysis is nothing but a semantics-
consistent manipulation of a collection of numbers: Whether [d}] : ¢, [d2] : ¢ are to be added, maximised
or minimised depends on their types ¢; and ¢,. In particular, keeping track of the types will make the
difference between a max-of-sums (sum-of-mins) as opposed to a sum-of-maxes (min-of-sums).

4.1 Network Flow

Consider the dependency graph in Fig. [I|with con-
trol nodes V = {A,B,C,D,E,F} and dependency 2
edges labelled by positive integers. Let us as- E

.. 5 1 5
sume the graph models a communication network / \
in which control nodes represent packet routers \~® @ 4
and edges are directed point-to-point connections R\ / \
of limited bandwidth. For instance, the router at ©/8'®\~
node D receives packets from routers B and C
through channels of bandwidth 1 and 4, respec-
tively. It forwards the incoming traffic to routers
E or F of bandwidth 5 and 4, respectively. The bandwidth measures the maximal amount of information
that can travel across the channel per synchronisation instant. The analysis of the maximum throughput
is a synchronous scheduling problem which can be modelled using interface types.

We associate with the network N a scheduling type @y, such that the amount of packets that can
be pushed into a node X is given by the minimal d such that ¢y < X D d : ofalse, i.e., the maximal
number of scheduling cycles that node X may be kept alive within any activation specified by ¢y. The
idea is that if o € [[¢n]] is a valid activation of N then each cycle i € || such that X € o(i) represents
a packet unit i sent through X. The event (i) C V encodes the packet’s path, i.e., the set of all routers
that payload unit 7 is passing on its journey through the network. The statement ¢ =X D d : ofalse then
says that whenever X becomes alive in activation ¢ it handles no more d packets. This number may vary
between activations. The minimal d, bounding all activations in this way, is the maximal throughput
at X permitted by specification ¢y. Observe that both capacity values 0 and —eo are equivalent, O :
ofalse = —oo : ofalse = false. In fact, the type X D 0 : ofalse paraphrased “X forwards 0 packets” and
X D —oo: ofalse saying “X does not forward any packets”, are the same statements and equivalent to —X.

Now consider node D again. Within the synchronous measurement instant, all packets arriving at D
must be scheduled to leave through channels D — E or D — F. Consider an activation ¢ |= D, i.e., all
i € |o| are packets dispatched through D. Some of these will go to E, others to F and all go to one of
the two. Hence there are sub-activations 6 = 07 U 0, such that 6; = E and 0, = F. Also, because of
the channel limitations, there can be at most 5 packet units of the former and 4 of the latter type. Thus,
o1 |E E NS5 : ofalse and 0y |= F A4 : ofalse. All in all, we have found the type specifying D and its
connections in N to be D D (E A5 : ofalse) ® (F N4 : ofalse).

The tensor ® is used to model the output branching at a node. Observe that if we increase one of
the channel capacities to +eo, say the one giving access to E, we get D D (E A+ : ofalse) @ (F N4 :
ofalse) =2 D D E ® (F N4 : ofalse) because E A +oo : ofalse = E A true = E. This means the channel
D — E does not impose any further constraints on the throughput besides what E prescribes. If we

2

Figure 1: Scheduling Dependency Graph N

Michael Mendler 37

decrease the capacity to 0, the type reduces to D D (E A0 : ofalse) ® (F A4 : ofalse) = D D F N4 : ofalse
since E AQ : ofalse = E A false = false and false @ ¢ = ¢. Hence, a capacity of 0 behaves as if the
channel was cut off completely. Consequently, the degenerated case of a node X without any exits would
be specified by X D false or —X. If we conjoin the types for all nodes of N as seen in Fig.[I] we get

On =ay true O (AN oo ofalse) 8)
ANA D ((BAS : ofalse) ® (C N3 : ofalse)))
AB D ((EN2:ofalse) @ (DA : ofalse)) (10)
ANC D ((DA4: ofalse) ® (F N8 : ofalse)) (11)
AD D ((E NS5 : ofalse) ® (F N4 : ofalse)) (12)
NE D (F N2 : ofalse) (13)
AF D (true \+oo : ofalse). (14)

Type (8) designates A as the source node of the network. It formalises a source channel of infinite
capacity permitting the global environment, represented by the logical control true, to push as many
packets as possible into A. Analogously, destination node F returns packets back to the external
environment. Again, this sink channel has infinite capacity, since all packets arriving at F will delivered.

The throughput dy of N is the smallest d such that ¢y < d : ofalse. To get the “exact” or “optimal”
bound we must explore the network in breadth and depth. The analysis strategy involves non-linear
global optimisation such as the Ford-Fulkerson or Goldberg’s Preflow-Push algorithms. This is not the
place to review these algorithm. We shall merely indicate how their logical content can be coded in type
theory. Consider that each of the network implications (B)—(14)) of the form X D ®y (Y Ady : ofalse) can
be used as an equation X = X A ®y (Y Ady : ofalse) for transformations by substitution. For example,
proceeding forwards from the source A, breadth-first, we can derive

true = A
= AN((BAS: ofalse) ® (C A3 : ofalse))
2 AN((BA((EN2:ofalse) @ (DA 1 : ofalse)) A5 : ofalse)
® (CA((DN4:ofalse) @ (F A8 : ofalse)) \3 : ofalse))

= ((AANBAE A2 : ofalse) (15)
®(AANBADA1 : ofalse)) (16)

@ (((AANCADA3: ofalse) (17)

® (AANCAF A3:ofalse)) A3 : ofalse), (18)

using the special A/® distribution X A (¢ @ ¢2) = (X AP1) @ (X A @) for atoms X € V, and the derivable
laws ((¢) Adj : ofalse) @ (¢2 Ndy : ofalse)) Ne : ofalse = (¢) \d : ofalse) @ (¢ \d, : ofalse) for e > dy +
dy and ((@; Nd, : ofalse) @ (¢ ANda : ofalse)) Ne : ofalse = (¢ Ne: ofalse) @ (¢ A e : ofalse) N e : ofalse
for e < min(d,,d,).

The type (T5)—(I8) describes the resource usage of packets entering the network up to a depth of 3
nodes, classifying them into 4 separate flows: The packets from pass through A — B — E and can
occupy at most 2 bandwidth units, those from (16) follow the path A — B — D and have a volume of at
most 1 unit. Furthermore, the packets travelling along A — C — D or (18)) on path A — C — F each
have at most volume 3, as specified by AACAD A3 : ofalse and ANCAF A3 : ofalse. Moreover, their
sum must not exceed the limit 3 either, as enforced by the extra outer conjunct 3 : ofalse. The maximal

38 An Algebra of Synchronous Scheduling Interfaces

flow through the network can be obtained by applying the (in-)equations (I5)—(I8) in this fashion until
saturation is achieved, when all logical controls may be dropped, turning equation = into inequation =<:

true= A = ...

=~ ((AANBANENF N2 : ofalse)

®(AANBADNAF A1 :ofalse))

@ (((((AANCADNF A3 ofalse)
®(ANCADNENF N2 : ofalse)) A3 : ofalse)
® (ANCNF N3 :ofalse)) N\3 : ofalse)

= (2: ofalse ® 1 : ofalse)

® ((((3: ofalse ®2 : ofalse) N3 : ofalse) @3 : ofalse) \3 : ofalse) = 6 : ofalse,

using the laws d : ofalse A e : ofalse = min(d, e) : ofalse and d : ofalse ® e : ofalse = d + e : ofalse, derived
from (3)) and (@), respectively.

This saturation process is a fixed-point construction which may be implemented using a standard
“max-flow” algorithm. Specifically, the graph algorithms of Ford-Fulkerson or Goldberg are efficient
decision procedures for deciding the algebra induced by the fragment of types appearing in (8)—(I8).
This sub-algebra of “logical numbers” provides a purely algebraic interpretation for these standard algo-
rithms. It should be clear that the graph-theoretic information is coded in the syntactic structure of the
types. However, in contrast to plain graphs, types are equipped with behavioural meaning in the form of
scheduling sequences. They generate a plus-min algebra of scheduling sequences which is not a linear
algebra, as it does not satisfy distribution. Specifically, e : ofalse A (d; : ofalse @ d, : ofalse) = min(e,d) +
dy) : ofalse < min(e,d,) + min(e,dy) : ofalse = (e : ofalse \d, : ofalse) ® (e : ofalse \d, : ofalse). This
approximation offset, of course, is why max-flow problems are not linear matrix problems but require
global search and relaxation methods.

4.2 Shortest Path

A different interpretation of the scheduling graph Fig.|l|reads the edge labels as distances and asks for
the length of the shortest path through the network. This leads to an “inverted” network algebra: The
sequential composition of edges is addition and the branching of edges at a node is associated with the
minimum operation, whereas in the network flow situation of Sec. 4.1} sequential composition corre-
sponds to minimum and branching is addition. Not surprisingly, the shortest path interpretation invokes
a different fragment of the type theory. Again, each node is a control variable V = {A,B,C,D,E F}.
An activation ¢ models a journey through the network activating control nodes as it passes them. If o
activates X at time i, then X € o(i), and if it traverses an edge X — Y with distance label d, then for
some 0 <k <d,Y € 6(i+k). Hence o satisfies the type X D d : oY. If there are several outgoing edges
X — YY) and X — Y, and o reaches X, then, because we are interested in the shortest path, we permit o
to explore both branches “in parallel”. Hence, ¢ fulfils both implications X D d; : oY} and X D d> : oY>.
Following this idea, the network N as given in Fig.[T|comes out as the type specification

Ov =4fADS5:0BANAD3:0C ANBD1:oD NBD2:oE
ANACD4:0D ANCD8:0F ADDS5:0ENDD4:0oF NED2:0F. (19)

The length of the shortest path between X and Y is the minimal d such that ¢y <X D d : oY. By (),
sequentially connecting edges X D d; : oY and Y D d, : oZ yields X D dj +d, : oZ, and a choice of two

Michael Mendler 39

paths X D d; : oZ and X D d; : oZ between the same start and end node, by implies X D min(d,d,) :
oZ as desired. Now the values of 0 and —oo have different meaning: X D 0: oY is equivalentto X DY
modelling an edge without cost. In contrast, X D —co : oY is semantically the same as X D false which
says that no activation reaches control node X. A distance +oo expresses absence of a connection since
X D +oo:0Y 2 X D true = true which does not give any information about how to reach Y from X.

It is well-known how to compute shortest paths by linear programming. This exploits the distribution
law min(e +di,e + dy) = e + min(d,,d»), which permits us to organise the scheduling bounds in the
network theory (T9) in form of matrices and to manipulate them using typed matrix multiplications. For
instance, we can combine the two outgoing edges of A into a single type

(ADS5:0B) AN(AD3:0C) = AD(5,3):0BAoC = [5;3]:ADoBAoC, (20)

where [5;3] abbreviates the function Ax. ((5,0), (3,0)) interpreted as a column vector of numbers. Dually,
the two incoming edges into node D can be combined into a single type

(BD1:0D) A (CD4:0D) = [1,4]:BVC D oD, (1)

where [1,4] is the function Ax. case x of [0 — (1,0),1 — (4,0)] thought of as a row vector. The type
algebra, essentially (I) and (3), proves that the conjunction of both and implies the matrix
multiplication

([5;3] :ADoBASC)A([1,4] :BVC DoD) <X min(5+1,3+4):ADoD = [1,4]-[5;3]: A D oD

in min-plus algebra. More generally, for every sub-network with source nodes X;,X>,...,X,, and sink
nodes Y1,Y>,...,Y, we have an elementary type D : VL, X; O A’j_,oY; describing the shortest path be-
tween any source to any target, in which the scheduling bound D € Bnd((V!",X;) D ®?:10Yj) behaves
like a 7 X m matrix in min-plus algebra. For instance, take the decomposition of N into the edge sets
N =df {A —B,A —>C},N2 =df {B—>E,B—>D,C—>D,C—>F} and N3 =df {D—)E,D—)F,E—)F}:

D(N;) =1[5;3] :AD (oBAC)
D(N,) = [152;400,4;+00;8] : (BVC) D (oD AoE AoF)
D(N3) = [4,2,0] : (DVEVF) > oF.

The shortest path from A to F is then obtained by multiplying these matrices
[4,2,0] - [1;2;400,4;+00;8] - [5;3] = [4,2,0] - [6;7;11] =9: A D oF

in min-plus-algebra. The type-theoretic approach facilitates a compositional on-the-fly construction of
the shortest path matrix. The pure algebraic technique would combine all the information in a global
6 x 6 network matrix N : (VxeyX) D (AxeyvoX) where (N)xy = d < 4o if there exists anedge X Dd: Y
in ¢y. Then, the shortest path matrix is N* = Id AN AN A -- -, where Id is the identity matrix with Os in
the diagonal and +oo everywhere else and A is the operation of forming element-wise minimum, lifting
the logical operation d; : oX Ady : oX = min(d,,d,) : oX to matrices. The entries in N* are the shortest
distances between any two nodes in the network.

This way of solving shortest paths is well-known, of course. But now the behavioural typing permits
us safely to play over- and under-approximation games which are difficult to control in pure algebra
or graph theory without model-theoretic semantics. Just to give a simple example, suppose we wanted
to derive a lower bound on the shortest path. Such can be obtained by identifying some of the control

40 An Algebra of Synchronous Scheduling Interfaces

nodes, i.e., pretending we could jump between them on our path to reach the destination. For instance,
assuming C = B, we find that ¢y A\C =B <A D 7 : oF is the shortest distance. Since the conjunction
oy N C = B specifies a subset of activations, the shortest distance between A and F relative to gy AC =B
is a lower bound on the shortest distance relative to ¢y. It may be more efficient to compute since the
network @y A C = B only has 5 different nodes rather than 6 as with @y.

4.3 Task Scheduling

In yet another interpretation of network N the nodes are tasks and edges scheduling dependencies asso-
ciated with upper bounds for task completion. Computing the worst-case completion time for the overall
schedule, sequential composition of edges corresponds to addition as in the shortest path scenario Sec.[4.2]
but branching now involves maximum rather than the minimum. Again, this is induced by the logical
nature of the problem, the fact that the input join now is conjunctive rather than disjunctive as before. For
instance, task D in Fig.|l|cannot start before both tasks C and B have started with a set-up delay of 4 time
units from the start of C and 1 unit from B. Let us assume the task activation times are included in these
set-up delays. To model this type-theoretically we take the edges as the atomic control variables, i.e.,
V ={AC,AB,CD,CF,BD,BE,DE,DF,F}. Whenever XY € o (i), for i € |o|, this says that the edge XY
is ready, i.e., the source task X is completed and the start token has arrived at the corresponding control
input of target task Y. The node D establishes a logical-arithmetical relationship between its input edges
CD, BD and its output edges DF, DE, given by CD ABD D (4 : oDF) A (5 : oDE). Overall,

On =ay (true O3 : 0ACA5:0AB) A (AC D 4:0CDA8:oCF)
AN(ABD 1:0BDA2:0BE)A((CDABD) D4 :0DF A5:0DE)
A(DEABE S 2 : oEF)A(CF ADF AEF >0 oF).

The critical path is the minimal d such that ¢y < d : oF. It can be computed by linear programming
involving matrix multiplication in max-plus algebra using essentially the laws (I)) and (2)).

5 Examples II: Esterel-style Synchronous Multi-threading

Like task scheduling in Sec. [4.3] the timing analysis of Esterel programs [6, 22] involves max-plus
algebra, yet takes place in an entirely different fragment of the type theory. Instead of implications
CiNE D o0&l Aok, as in Sec. we employ dependencies of the form §; V §; D o0& @& o&,, which
are handled by (I)) and (4) rather than (I)) and (2). In addition, we use the tensor ® for capturing multi-
threaded parallelism. Here we provide some further theoretical background for the work reported in [22].

Esterel programs communicate via signals, which are either present or absent during one instant.
Signals are set present by the emit statement and tested with the present test. They are reset at the
start of each instant. Esterel statements can be either combined in sequence (;) or in parallel (|).
The loop statement simply restarts its body when it terminates. All Esterel statements are considered
instantaneous, except for the pause statement, which pauses for one instant, and derived statements like
halt (= loop pause end), which stops forever. Esterel supports multiple forms of preemption, e. g.,
via the abort statement, which simply terminates its body when some trigger signal is present. Abortion
can be either weak or strong. Weak abortion permits the activation of its body in the instant the trigger
signal becomes active, strong abortion does not. Both kinds of abortions can be either immediate or
delayed. The immediate version already senses for the trigger signal in the instant its body is entered,
while the delayed version ignores it during the first instant in which the abort body is started.

Michael Mendler 41

Consider the Esterel fragment in Figure[2b] It consists of two threads. The first thread G emits signals
R, S, T depending on some input signal I. In any case, it emits signal U and terminates instantaneously.
The thread H continuously emits signal R, until signal I occurs. Thereafter, it either halts, when E is
present, or emits S and terminates otherwise, after having executed the skip statement nothing.

o

% module T
[% thread G
present | then emit R end present;
present | else emit S; emit T end present;

=T - L N N P I SR

vO fork I emit U;
% thread H
weak abort
loop
10 pause;emit R
11 end loop
12 when immediate |;
13 present E then halt end present;

14 emit S; nothing;

(b) Esterel module T

LO1: TO: PAR 1,GO,1
L02: PAR 1,H0,2
L03: PARE Al

L04: GO: PRESENT 1,G1
LO5: EMIT R

L06: G1: PRESENT |,G3
LO7: GOTO G2

L08: G3: EMIT S

L09: EMIT T

L10: G2: EMIT U

L11: HO: WABORT I[,H1
L12: H3: PAUSE

L13: EMIT R

L14: GOTO H3

L15: H1: PRESENT E,H2

r L16: HALT
v16 join L17: H2: EMIT S
L18: NOTHING
lLZO L19: Al: JOIN
(a) CKAG (c) KEP Assembler

Figure 2: Esterel module 7' (b) with control-flow graph (a) and resulting KEP Assembler (c).

The concurrent KEP assembler graph (18] (CKAG, see Fig. captures the control flow, both
standard control and abortions, of an Esterel program. The CKAG is derived from the Esterel program by
structural translation. For a given CKAG, the generation of assembly code for the Kiel Esterel Processor
(KEP) [18,[19], executing synchronous parallelism by multi-threading, is straight-forward (see Fig. [2c).

Let S, I and M be disjoint sets of (input or output) signals, control flow labels and synchro-
nisation states, respectively. For the Esterel module in Fig. [2| we have S = {[LE,R,S,T,U}, L =
{LO,...,L20,GO0,...,G3,HO,...,H3}. As synchronisation states we use the names of the atomic de-

42 An Algebra of Synchronous Scheduling Interfaces

lay nodes, i.e., the pause, halt and join nodes, M = {vg,v;3,vi6}. These describe the different state
bits of the synchronous automaton coded by the program block 7. To distinguish the cases of a thread
starting from or ending in a given state s € M during an instant we use the modifiers out(s) and in(s).
The former expresses that the thread is leaving from s at the beginning of the instant and the latter that
it enters and terminates the instant in s. The set M" =45 {out(s),in(s) | s € M} collects these atomic
statements. The set of control variables, specifying the atomic control points of a program module, is
the union V. =SULUMT. All the controls out(s) are stable, i.e., we may assume out(s) © —out(s). This
is not true for controls in(s) which are switched on dynamically as the schedule enters a delay node.

One possible activation of the Esterel module 7" in Fig. [2a) would be as follows. Initially, control
variable T0 is set, so 6(0) = {T0}. Then the PAR and PARE instructions making up the fork node vy
are executed in line numbers LO1, L02, LO3 of Fig. each taking one instruction cycle (ic). The two
PAR instructions set up internal counters for thread control, which does not change the set of events
in the variables of Fig. Hence, (1) = 6(2) = {T0}. After the PARE both control variable GO,
HO become present bringing threads G and H to life. This means o(3) = {T0,G0,H0}. The next
instruction could be any of the two first instructions of G or H. As it happens, the KEP Assembler
Fig. [2c|assigns higher priority to H so that our activation continues with wabort (node vsg), i.e., 6(4) =
{T0,G0,H0,L12}. This brings up the pause instruction vo. Now, depending on whether signal [is
present or not the activation of pause either moves to vi» (weak immediate abort) or terminates. Let us
assume the latter, i.e., 0(5) = {T0,G0,H0,L12,in(v9)}, where thread H is finished up for the instant
and has entered a wait state in node vg. The activation continues with the first instruction of G, the
present node v; at label GO. Since [is assumed absent, its activation effects a jump to label G1, i.e.,
0(6) ={T0,G0,H0,L12,in(vg9),G1}. Thereafter, we run sequentially through nodes v3, vs, vs, v7 giving
o(7) =0(6)U{G3}, 0(8) =0c(7)U{L9} and 6(9) = c(8) U{L10}.

Executing the final emit instruction v; hits the join at entry L11, so that (10) = {T0,G0,HO,
L12, in(v9),G1,G3,L9,L10,L11}. Now both threads G and H are finished. While G is terminated and
hands over to the main thread 7 for good, H is still pausing in vg. It takes one activation step of the
join node vi¢ to detect this and to terminate the synchronous instant of 7' with the final event o(11) =
{T0,G0,H0,L12,in(v9),G1,G3,L9,L10,L11,in(vis)}. Overall, we get an activation of the outer-most
main thread of 7, 6 = 6(0),...,0(11), starting from program label 70 consisting of 12 ics in total. In the
next logical instant when 7 is resumed in v and vo, with initial event 6(0) = {out(vy),out(vi¢)}, and
thread H eventually comes out at control point L19 (if signal / is present and E absent), then executing
the join v will bring us to control point 20 and out of T instantaneously.

Activation sequences starting in control label 770 and ending in L20 are called through paths, those
starting in 70 and pausing in a synchronisation state in(s), s € {v9,vi3,Vv16}, are sink paths; source paths
begin in a state out(s) and end in L20, while internal paths begin in a state and end in a state.

Esterel 10-Interface Types. Our normal form interfaces to describe Esterel-KEP modules are of the
form 6 = ¢ D y, with input control ¢ = \/7"; §; and output control y = @}_, o where the §; and &
are pure types. The former ¢ captures all the possible ways in which a program module (or any other
fragment) of type 6 can be started within an instant and the latter ¥ sums up the ways in which it can
be exited during the instant. Intuitively, £ = 6 says that whenever the schedule ¥ enters the fragment
through one of the input controls §; then within some bounded number of ics it is guaranteed to exit
through one of the output controls &. The disjunction V in the input control ¢ models the external
non-determinism resolved by the environment which determines how a program block is started. On the
output side y, the selection of which exit & is taken is expressed by @ since it is an internal choice which

Michael Mendler 43

is dynamically resolved during each activation. Each delay operator o stands for a possibly different delay
depending on which output & is taken. Contrast this with an output control such as ¥ = o(@®}_; &)
which only specifies one bound for all exits &. An interface bound T' € Bnd(¢ D) can be understood
as a n X m shaped timing matrix relative to the Boolean controls {; and &, serving as “base” vectors.
The logical conjunction of these interfaces in a fixed set of such base controls corresponds to matrix
multiplications in max-plus algebra. Furthermore, using logical reasoning on base controls {;, £; we can
massage the semantics of timing matrices very much like we do with base transformations in ordinary
linear algebra. Two important operations on IO-interfaces are matrix multiplication and the Kronecker
product which in our scheduling algebra are now strongly typed and thus receive semantic meaning in
logical spaces.

Transient and Sequential Submodules G and H. A full and exact WCRT specification encapsulating
the synchronous block G as a component would require mention of program labels G1, G3, G2 which are
accessible from outside for jump statements. Therefore, the interface type for single-threaded scheduling
of G would be [6,4,3,1] : GOV G1V G3V G2 D oL11. This is still not the exact description of G since
it neither expresses the dependency of the WCRT on signal /, nor the emissions of R, S, T, U. For
instance, if / is present then all threads must take control edges L5 and L7 rather than G1 or G3 which
are blocked. If I is absent then both G1 and G3 must be taken instead. As a result the longest path
v1 + v +v3 +vs + v + v7 with delay 6 is not executable. To capture this, we consider signal I as another
control input and refine the WCRT interface type of G:

[5,5,3,4,3,1] : (GOAT)V (GOA—=I)V (GI AT)V (G1 A—I)V G3V G2 D oLll. 22)

The inclusion of signal / in the interface has now resulted in the distinction of two different delay values
3 and 4 for G1 D oL11 depending on whether / is present or absent. On the other hand, GO, split into
controls GO A1 and GO A =, produces the same delay of 5 ics in both cases, which is a decrease of
WCRT compared to [6] : GO D oL11 from above. Assuming that input signal / is causally stable, i.e.,
I & —I = true, it is possible to optimise the interface without losing precision: since (GOAT) @& (GO A
—I) =2 GOA (I ®—I) = GO Atrue = GO the column vector [0;0] : GO D o(GOAT) @ o(GOA—I) is sound
and can be used to compress the two entries of value 5 in (22)) into a single value 5 = max(5,5) giving
[5,3,4,3,1] : GOV (GI AI)V (GI A=) VG3V G2 D oL11. In the same vein, but this time without
referring to stability, we could further bundle G1 Al and G3 into a single control with the single delay
[3] : (GLAI)® G3 D oL11 at the same level of precision. This finally yields [5,3,4,1] : GOV ((G1 AI) &
G3)V (G1 A=I)V G2 D oLl1. Still, if we only ever intend to use G as an encapsulated block with entry
GO and exit L11 the following typing is sufficient:

[5]: GO D oLl1. (23)

Now we take a look at the sequential control flow which starts and terminates in pause and halt
nodes. Consider the sub-module H from Fig.[2al consisting of nodes vg—v;5. Nodes wabort, emit, goto,
present, nothing are transient and specified as before for G. But now the instantaneous paths are broken
by the delay nodes vg and v;3.

First, consider the pause node vg. It can be entered by two controls, line number L.12 and program
label H3, and left via two exits, a non-instantaneous edge L13 and an instantaneous exit Hl1 (weak
abortion). When a control thread enters vg then either it terminates the current instant inside the node or
leaves through the weak abort H1 (data-dependent, if signal [is present) continuing the current reaction,
instantaneously. A thread entering vy never exits through L13 in the same instant. On the other hand, if

44 An Algebra of Synchronous Scheduling Interfaces

a thread is started (resumed) from inside the pause node vg then control can only exit through L13. This
suggests to specify the pause node as follows:

[1:1,1;1] : H3VLI2 > oH1&oin(vo) (24)
[1] : out(vg) D oLl3. (25)

The interface (24)) says that if pause is entered through H3 or L12 it can be left through H1 or terminate
(in) inside the pause. In all cases activation takes 1 instruction cycle. Since there are no differences
in the delays we could bundle the controls H3, L12 and compress the matrix (24) as [1] : H3® L12 D
o(H1@in(vg)) without losing information. We could also record the dependency of control on signal 7,
with the more precise interface [1; —oo, —co, 1] : (H3® LI2)AI)V ((H3® L12) A—I) D oH1 @ oin(vg).
This separates the threads which must stop inside the pause from those which must leave via H1 due
to a weak immediate abort on signal /. The specification (25]) accounts for threads starting in the pause
which must necessarily pass control to L13 within one instruction cycle.

The halt node vy3 in Fig. [2alis not only a sink for control threads entering through L.16 but it also
has an internal path of length 1 (which is repeated at every instant). It is specified by the interface
[1,1] : (out(vi3) V L16) D oin(v13). By composition from the WCRT interfaces of nodes vip—vs5 using
matrix multiplications in max-plus algebra we get

H =1[5;4,7;6] : HOV out(H) D oL19® oin(H) (26)

recording the lengths of the longest through path vg 4+ vg +vi2 +vi4 + v15, sink path vg +vg +vi2 +vy3,
source path vg 4+ vig + vi1 + V9 4+ vi2 + via + vi5 and internal path vo +vig 4 vi1 +vo + V1o + Vi3.

Multi-threading Composition: Fork and Join. Finally, consider the two blocks G and H as they are
combined inside the Esterel module T (Fig. and synchronised by fork and join nodes vy and vig. The
main thread starts G and H in their initial controls, i.e., by activating GO A HO. Then, the executions
of G and H are interleaved, depending on the priorities assigned by the compiler about which we shall
make no assumptions. Child thread G can only run through its instantaneous path until it reaches L11
where it is stopped by the join. The sequential block H has two options: It can take its instantaneous
through path stopping at L19 or it pauses in one of its delay nodes. In the former case we have reached
L11 A L19, where the synchronising join takes over letting the main thread continue by instantaneously
activating L20 within the same instant. In the latter case we have activated L11 A in(H) where the
synchronous instant is finished and the combined system pauses. Activation is resumed in the next
instant from L11 A out(H), while G is still inactive and waiting at L11. Child thread H may either leave
instantaneously through L19, giving L11 A L19 overall, or once more pause internally, leading again to
L1l Nin(H).

This synchronous composition is obtained by the Kronecker product GH =, G' ® H' where G" and
H' are the stand-alone interfaces of G (23)) and H (26) instrumented for the synchronisation:

G = Sync,; N\[5,0] : GOVL11 D oLll
H' = Sync, \[5;4,7;6] : HOV out(H) D oL19 & oin(H).

G is extended by the additional input control L11 and trivial path [0] : L11 D oL11 to let G start an instant
from L11 when H is pausing. The conjunct Sync; =45 —L11 expresses the synchronisation whereby G
finishes once it reaches L11. Similarly, the conjunct Sync, =45 —(L19®in(H)) added to the interface (26))

Michael Mendler 45

stops H from continuing its activation instant past L11 or in(H). The Kronecker product G’ ® H' now
generates all possible interleaving of activations specified by type G’ with those from type H':

G' @H' =<[5,01®[5;4,7;6] = [5-[5;4,7;6],0-[5;4,7;6]] = [10;9,12;11,5;4,7;6]
£ (GO AHO)V (GO Aout(H)) V (L11 AHO)V (L1 Aour(H)) > o(L11 AL19) @ o(L11 Ain(H)).

In the synchronised composition GH we are only interested in the (surface) paths initiated by GO A HO
and the (depth) paths activated by the combination L11 A out(H). All other paths cannot be activated
inside the fork and join context. Thus, we drop these column vectors and only continue with

GH = [10;9,12;11,5;4,7;6] - [0; —o0; —o0; —o0, —o0; —oo; —eo, 0] = [10;9,7;6]
- (GOAHO)V (L11 Aout(H)) S o(L11 AL19) @ o(L11 Ain(H)).

This models the concurrent composition of G and H but not yet the interface of the composite block T
with fork and join as depicted in Fig. These are additional components specified as

join =[1; —eo, —co; 1] : (LITAL19) V (L11 Ain(H)) D oL20& oin(T)
fork =[3; —co, —e0;0] : TOV out(T) D o(GOAHO) & o(L11 Aout(H))

with new state controls in(T) and out(T) for module 7. The JOIN instruction in line 19 of Fig. 2¢|is
always executed upon termination of both threads from G and H inside T and the associated activation
time of one ic is accounted for in the join interface above. Specifically, this is a through path [1] :
(L11 AL19) D oL20 and source path [1] : L11 Ain(H) D oin(T). The entry [3] : T0 D o(GOA HO) of fork
includes the ics for two PAR, one PARE from lines 1-3 of Fig.[2c| Adding fork and join on the input and
output side then obtains

T = [1;—00,—00;1]-[10;9,7;6] - [3; —o0, —e0;0] = [14;13,8;7] : TOV out(T) D oL20 & oin(T)

for the composite module 7. Indeed, the longest through path is exemplified by the sequence of nodes
vo(3) +{vi+v2+vi+va+vrtc(S) +{vs+vo+via+vis+vistu(5) +vie(l) = 14. Alongest sink path
isvo(3) +{vi+v2+v3+va+vi}c(5)+{vs+vo+via+viz}u(4)+vie(l) = 13. As a maximal source
path we could take {}¢(0) + {vo +vio+vii +vo+vi2+via +vis}u(7) +vie(1) = 8 and as a possible
longest internal path {}5(0) + {vo +vio+vi1 +vo +via +vi3}u(6) +vie(l) =7.

In specific WCRT algorithms such as the one of [6] many of the matrix multiplications shown above
are executed efficiently in the combinatorics of traversing the program’s control flow graph forming
maximum and additions as we go along. This is possible only so far as control flow dependencies
are represented explicitly in the graph. In general, with data-dependencies, this may be an exponential
problem so that symbolic techniques for modular analyses are needed. Our logical interface algebra can
be used to keep track of the semantic meaning of WCRT data. Even without data-dependencies, the
WCRT interfaces presented here give rise to a depth-first search algorithm [22]] which is already more
precise than the one presented in [[6].

6 Related Work

Most interface models in synchronous programming are restricted to causality issues, i. e., dependency
analysis without considering quantitative time. Moreover, the granularity of dependency is limited. E.g.,
the modules of André et al. [3] do not permit instantaneous interaction. Such a model is not suitable

46 An Algebra of Synchronous Scheduling Interfaces

for compositional, intra-instant, scheduling analysis. Hainque et al. [9] use a topological abstraction
of the underlying circuit graphs (or syntactic structure of Boolean equations) to derive a fairly rigid
component dependency model. A component is assumed executable iff all of its inputs are available;
after component execution all of its outputs become defined. This is fine for concurrent execution but
too restricted to model single- or multi-threaded execution compositionally. The interface model also
does not cover data dependencies and thus cannot deal with dynamic schedules. It also does not support
quantitative resource information, either.

The causality interfaces of Lee et al. [17] are much more flexible. These are functions associating
with every pair of input and output ports an element of a dependency domain D, which expresses if and
how an output depends on some input. Causality analysis is then performed by multiplication on the
global system matrix. Using an appropriate dioid structure D, one can perform the analyses of Hainque
et. al. [9]] as well as restricted forms of WCRT. Lee’s interfaces presuppose a fixed static distinction
between inputs and outputs and cannot express the difference between an output depending on the joint
presence of several values as opposed to depending with each input individually. Similarly, there is no
coupling of outputs, e. g., that two outputs always occur together at “the same time.” Thus, they do
not support full AND- and OR-type synchronisation dependencies for representing multi-threading and
multi-processing. Also, the model does not include data dependency. The work reported here can be seen
as an extension of [17] to include such features. In particular, note that our scheduling interfaces can also
be used in situations where linear algebra is not applicable, as in the case of network flow problems.

Recent works [27, [13]] combining network calculus [4, [7] with real-time interfaces are concerned
with the compositional modelling of regular execution patterns. Existing interface theories [17, 27} [13]],
which aim at the verification of resource constraints for real-time scheduling, handle timing properties
such as task execution latency, arrival rates, resource utilisation, throughput, accumulated cost of context
switches, and so on. The dependency on data and control flow is largely abstracted. For instance,
since the task sequences of Henzinger and Matic [13] are independent of each other, their interfaces
do not model concurrent forking and joining of threads. The causality expressible there is even more
restricted than that by Lee et al. [17] in that it permits only one-to-one associations of inputs with outputs.
The interfaces of Wandeler and Thiele [27] for modular performance analysis in real-time calculus are
like those of Henzinger and Matic [13] but without sequential composition of tasks and thus do not
model control flow. On the other hand, the approaches [27,|13]] can describe continuous and higher-level
stochastic properties which our interface types cannot.

AND- and OR-type synchronisation dependencies are important for synchronous programming since
reachability of control nodes in general depends both conjunctively and disjunctively on the presence
of data. Also, control branching may be conjunctive (as in multi-threading or concurrent execution)
or disjunctive (as in single-threaded code). Moreover, execution may depend on the absence of data
(negative triggering conditions), which makes compositional modelling rather a delicate matter in the
presence of logical feedback loops. This severely limits the applicability of existing interface models.
The assume-guarantee style specification [27,13] does not address causality issues arising from feedback
and negative triggering conditions. The interface automata of Alfaro, Henzinger, Lee, Xiong [1} [15]]
model synchronous macro-states and assume that all stabilisation processes (sequences of micro-states)
can be abstracted into atomic interaction labels. The introduction of transient states [16] alleviates
this, but the focus is still on regular (scheduling) behaviour. The situation is different, however, for
cyclic systems, in which causality information is needed. Our interface algebra is semantically sound
with respect to feedback and indeed supports causality analysis as a special case: A signal A is causal
if oA @ —A can be derived in the type theory of a module. Because of the complications arising from
causality issues, there is currently no robust component model for synchronous programming. We believe

Michael Mendler 47

that the interface types introduced in this paper, cover new ground towards such a theory.

Finally, note that our algebra is not intended as a general purpose interface model such as, e.g., the
relational interfaces of Tripakis et al. [26]. While these relational interfaces permit contracts in first-
order logic between inputs and outputs, our interfaces only describe propositional relations. Therefore,
our algebra cannot describe the full functional behaviour of data processing (other than by coding it
into finite Booleans). Our interfaces are logically restricted to express monotonic scheduling processes
and the resource consumption inside synchronous instants. Because we use an intuitionistic realisability
semantics (Curry-Howard) we obtain enough expressiveness to deal with causality problems and upper-
bound scheduling costs. The interface algebra does not aim to cover behavioural aspects of sequences
of instants such as in approaches based on temporal logics or the timed interfaces of Alfaro, Henzinger
and Stoelinga [2f], which build on timed automata. The scheduling problem addressed here is a simpler
problem in the sense that it arises afresh within each synchronous step and does not need to carry (e.g.,
timing) constraints across steps. However, note that our algebra can fully capture finite-state sequential
transition functions in the standard way by duplicating propositional state variables s using out(s) and
in(s) as seen in Sec. An inter-instant transition (instantaneous, no clock tick) between s; and s; is
given by the implication out(s|) D oin(s;) while the intra-instant transition (sequential, upon clock tick)
is the weak implication —in(s;) @ out(s;). In this way, we can derive exact state-dependent worst-case
bounds across all reachable states of a finite state behaviour.

The scheduling algebra in this paper extends [21] in that it not only captures concurrent execution
(as in combinational circuits) but also includes the tensor @ for multi-threading. More subtly, while [21]
is restricted to properties of activation sequences stable under the suffix preordering, here we consider
the much richer lattice of arbitrary sub-sequences. This paper introduces the theory behind [22] which
reported on the application to WCRT analysis for Esterel and also provides more detailed information on
the modelling in Sec. 3]

Acknowledgements. The author would like to thank the anonymous reviewers for their suggestions to
improve the presentation.

References

[1] L. de Alfaro & T. Henzinger (2001): Interface automata. In: Proc. Foundations of Software Engineering,
ACM Press, pp. 109-120.

[2] L. de Alfaro, Th. Henzinger & Marielle Stoelinga (2002): Timed interfaces. In: Proc. EMSOFT’02.

[3] C. André, F. Boulanger, M.-A. Péraldi, J. P. Rigault & G. Vidal-Naquet (1997): Objects and synchronous
programming. European Journal on Automated Systems 31(3), pp. 417-432.

[4] F. L. Baccelli, G. Cohen, G. J. Olsder & J.-P. Quadrat (1992): Synchronisation and Linearity. John Wiley &
Sons.

[5] Gérard Berry & Georges Gonthier (1992): The Esterel synchronous programming language: Design, seman-
tics, implementation. Science of Computer Programming 19(2), pp. 87-152.

[6] Marian Boldt, Claus Traulsen & Reinhard von Hanxleden (2008): Worst case reaction time analysis of con-
current reactive programs. ENTCS 203(4), pp. 65-79. Proc. SLA++P’07, March 2007, Braga, Portugal.

[7] J. Le Boudec & P. Thiran (2001): Network Calculus - A theory of deterministic queuing systems for the
internet, Lecture Notes in Computer Science 2050. Springer.

[8] Paul Le Guernic, Thierry Goutier, Michel Le Borgne & Claude Le Maire (1991): Programming real time
applications with SIGNAL. Proceedings of the IEEE 79(9).

48

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

An Algebra of Synchronous Scheduling Interfaces

Olivier Hainque, Laurent Pautet, Yann Le Biannic & Eric Nassor (1999): Cronos: A separate compilation
toolset for modular Esterel applications. In: Jeannette M. Wing, Jim Woodcock & Jim Davies, editors: World
Congress on Formal Methods, Lecture Notes in Computer Science 1709, Springer, pp. 1836—1853.

Nicolas Halbwachs (1998): Synchronous programming of reactive systems, a tutorial and commented bib-
liography. 1In: Tenth International Conference on Computer-Aided Verification, CAV 98, LNCS 1427,
Springer Verlag, Vancouver (B.C.).

Nicolas Halbwachs (2005): A synchronous language at work: The story of Lustre. In: Third ACM-IEEE
International Conference on Formal Methods and Models for Codesign, MEMOCODE’05, Verona, Italy.

D. Harel, A. Pnueli, J. Pruzan-Schmidt & R. Sherman (1987): On the formal semantics of Statecharts. In:
LICS °87, IEEE Computer Society Press, pp. 54—64.

Th. Henzinger & S. Matic (2006): An interface algebra for real-time components. In: Proceedings of the
12th Annual Real-Time and Embedded Technology and Applications Symposium (RTAS), IEEE Computer
Society, Los Alamitos, CA, USA, pp. 253-266.

C. Huizing (1991): Semantics of Reactive Systems: Comparison and Full Abstraction. Ph.D. thesis, Eind-
hoven Univ. of Technology.

E. A. Lee & Y. Xiong (2001): System-level types for component-based design. In: Workshop on Embedded
Software EMSOFT 2001, Lake Tahoe, CA, USA.

E. A. Lee & Y. Xiong (2004): A behavioral type system and its application in Ptolemy II. Formal Aspects of
Computing 13(3), pp. 210-237.

E. A. Lee, H. Zheng & Y. Zhou (2005): Causality interfaces and compositional causality analysis. In:
Foundations of Interface Technologies (FIT’05), ENTCS, Elsevier.

Xin Li, Marian Boldt & Reinhard von Hanxleden (2006): Mapping Esterel onto a multi-threaded embedded
processor. In: Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’06), San Jose, CA.

Xin Li & Reinhard von Hanxleden (2010): Multi-threaded reactive programming—The Kiel Esterel proces-
sor. IEEE Transactions on Computers .

G. Luettgen & M. Mendler (2002): The intuitionism behind Statecharts steps. ACM Transactions on Com-
putational Logic 3(1), pp. 1-41.

M. Mendler (2000): Characterising combinational timing analyses in intuitionistic modal logic. The Logic
Journal of the IGPL 8(6), pp. 821-853.

Michael Mendler, Reinhard von Hanxleden & Claus Traulsen (2009): WCRT algebra and interfaces for
Esterel-style synchronous processing. In: Proceedings of the Design, Automation and Test in Europe
(DATE’09), Nice, France.

Amir Pnueli & M. Shalev (1991): What is in a step: On the semantics of Statecharts. In: TACS ’91:
Proceedings of the International Conference on Theoretical Aspects of Computer Software, Springer-Verlag,
London, UK, pp. 244-264.

Marc Pouzet (2006): Lucid Synchrone, version 3. Tutorial and reference manual. Université Paris-Sud, LRI.
Distribution available at: www.lri.fr/~pouzet/lucid-synchrone.

Klaus Schneider (2002): Proving the equivalence of microstep and macrostep semantics. In: TPHOLs *02:
Proceedings of the 15th International Conference on Theorem Proving in Higher Order Logics, Springer-
Verlag, London, UK, pp. 314-331.

S. Tripakis, B. Lickly, Th. A. Henzinger & E. A. Lee (2009): On relational interfaces. Technical Report
UCB/EECS-2009-60, Electrical Enginering and Computer Sciences, Univ. of California at Berkely.

E. Wandeler & L. Thiele (2005): Real-time interfaces for interface-based design of real-time systems with
fixed priority scheduling. In: Proceedings of the ACM International Conference on Embedded Software
(EMSOFT’05).

	1 Introduction
	2 Syntax and Semantics of Synchronous Scheduling Interfaces
	3 The Algebra of Scheduling Types
	4 Examples I: Network Flow, Shortest Path, Task Scheduling
	4.1 Network Flow
	4.2 Shortest Path
	4.3 Task Scheduling

	5 Examples II: Esterel-style Synchronous Multi-threading
	6 Related Work

