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C-O Diagrams have been introduced as a means to have a visual representation of normative texts and
electronic contracts, where it is possible to represent theobligations, permissions and prohibitions of
the different signatories, as well as what are the penaltiesin case of not fulfillment of their obliga-
tions and prohibitions. In such diagrams we are also able to represent absolute and relative timing
constrains. In this paper we consider a formal semantics forC-O Diagrams based on a network of
timed automata and we present several relations to check theconsistency of a contract in terms of
realizability, to analyze whether an implementation satisfies the requirements defined on its contract,
and to compare several implementations using the executed permissions as criteria.

1 Introduction

In the software context, the termcontracthas traditionally been used as a metaphor to represent limited
kinds of “agreements” between software elements at different levels of abstraction. The first use of the
term in connection with software programming and design wasdone by Meyer in the context of the
language Eiffel (programming-by-contracts, or design-by-contract). This notion of contracts basically
relies on the Hoare notion of pre and post-conditions and invariants. Though this paradigm has proved to
be useful for developing object oriented systems, it seems to have shortcomings for novel development
paradigms such as service-oriented computing and component-based development. These new applica-
tions have a more involved interaction and therefore require a more sophisticated notion of contracts. As
a response, behavioural interfaces have been proposed to capture richer properties than simple pre and
post-conditions [5]. Here it is possible to express contracts on the history of events, including causal-
ity properties. In the context of SOA, there are different service contract specification languages, like
ebXML, WSLA, and WS-Agreement. These standards and specification languages suffer from one or
more of the following problems: They are restricted to bilateral contracts, lack of formal semantics (so
it is difficult to reason about them), their treatment of functional behaviour is rather limited and the
sub-languages used to specify, for instance, security constraints are usually limited to small application-
specific domains. The lack of suitable languages for contracts in the context of SOA is a clear conclusion
of the survey [13] where a taxonomy is presented.

In [10] C-O Diagramswere introduced, a graphical representation not only for electronic contracts
but also for the specification of any kind of normative text (Web service composition behaviour, software
product lines engineering, requirements engineering, . . .). C-O Diagramsallow the representation of
complex clauses describing the obligations, permissions,and prohibitions of different signatories (as de-
fined in deontic logic [12]), as well asreparationsdescribing contractual clauses in case of not fulfillment
of obligations and prohibitions. Besides,C-O Diagramspermit to define real-time constraints. In [9]
some of the satisfaction rules needed to check if a timed automaton satisfies aC-O Diagramspecification
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2 Conformance Verification of C-O Diagrams

were defined. In [11],C-O Diagramsare equipped with a formal semantics based on a transformation
of these diagrams into a network of timed automata (NTA). Thecontribution of this work pursues the
further development of our previous work. This time we will focus on the development of different rela-
tions to check the consistency of contracts, to seek whetheran implementation conforms a given contract
and to compare several implementations. To achieve this goal, we consider a semantics in terms of NTAs
and we establish relations with the implementations also written in terms of NTAs.

2 Related Work

The use of deontic logic for reasoning about contracts is widely spread in the literature since it was
proposed in [3] for modelling communication processes. In [8] Marjanovic and Milosevic present their
initial ideas for formal modelling of e-contracts based on deontic constraints and verification of deon-
tic consistency, including temporal constraints. In [4] Governatori et al. go a step further providing
a mechanism to check whether business processes are compliant with business contracts. They intro-
duce the logic FCL to reason about the contracts, based againon deontic logic. In [7] Lomuscio et al.
provides another methodology to check whether service compositions are compliant with e-contracts,
using WS-BPEL to specify both, all the possible behaviours of each service and the contractually correct
behaviours, translating these specifications into automata supported by the MCMAS model checker to
verify the behaviours automatically.

None of the previous works provides a visual model for the definition of contracts. However, there
are several works that define a meta-model for the specification of e-contracts which purpose is their
enactment or enforcement. In [2] Chiu et al. present a meta-model for e-contract templates written
in UML, where a template consists of a set of contract clausesof three different types: obligations,
permissions and prohibitions. These clauses are later mapped into ECA rules for contract enforcement
purposes, but the templates do not include any kind of reparation or recovery associated to the clauses.
In [6] Krishna et al. another meta-model based on entity-relationship diagrams is proposed to generate
workflows supporting e-contract enactment. This meta-model includes clauses, activities, parties and the
possibility of specifying exceptional behaviour, but thisapproach is not based on deontic logic and says
nothing about including real-time aspects natively.

3 C-O Diagrams Syntax and Semantics

We first introduce a motivation example to understand the diagrams in an easy way. Figure 1 consists of
three sub-figures, a) depicting a basic structure of a clause, and, b) and c) depicting our running example.
This example consists in the payment and shipment of an item previously sold during an online auction.
Thus the action starts after the auction has finished, that is, if the bid placed by thebuyer is the highest
one, then the activities concerning the payment and the shipment of the item start. First, thebuyerhas
three days to perform the payment, which can be done by means of credit card or PayPal. After the
payment has been performed, theseller hasfourteen daysto send the item to thebuyer. If the item is
not received within this period of time, theauction servicehasseven daysto refund the payment to the
buyerand can penalize theseller in some way.

At first sight, the figures are top down hierarchical structures with several boxes and branches. In
Figure 1, we can observe several examples. At the top-left hand side of this figure, Figure 1-a, we can
observe the basic construction element calledbox, also referred as proposition or clause. It is divided
into four fields. Theguardg specifies the conditions under which the contract clause must be taken into
account (boolean expression). Thetime restrictiontr specifies the time frame during which the contract
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Figure 1:C-O Diagramsexamples
clause must be satisfied (deadlines, timeouts, etc.). Thepropositional contentP, on the centre, is the
main field of the box, and it is used to specify normative aspects such as obligations (O), permissions
(P) and prohibitions (F), that are applied over actions, and/or the specification ofthe actions themselves.
The last field of these boxes, on the right-hand side, is thereparationR. This reparation, if specified by
the contract clause, is a reference to another contract thatmust be satisfied in case the main norm is not
satisfied (aprohibition is violated or anobligation is not fulfilled, there is no reparation forpermission),
considering the clause eventually satisfied if this reparation is satisfied. Each box has also a name at the
bottom part and an agent at the top part.

These are the basic boxes, which can be composed by using somerefinements. Refinements are
classified into three types: joiningAND-refinements, disjunctiveOR-refinementsand sequentialSEQ-
refinement. Joining refinements require that all the hanging propositions should be accomplished to
declare the upper proposition accomplished; on the contrary, disjunctive propositions only require one to
be accomplished; whereas, sequential propositions require a left-to-right ordered sequential satisfaction
of every proposition to obtain the same result. In Figure 1-c, the root box, which only shows the name
and guardg1 (this guard checks if the buyer is the auction winner) is decomposed into two sub-clauses
via sequential composition, that is, first the one on the lefthand side,PaymentItem and, afterwards,
the one on the right hand side,SendItem. The first one is theobligation (O) of payment with the
temporal restrictiont1, three days in this case, then this obligation is decomposedvia anOR-refinement
into Clause 3andClause 4composing the actions of paying by credit card or PayPal by means of an
OR-refinement. On the right-hand side we have theobligation (O) specified inClause 5, which has been
calledSendItem, including the real-time constraintt2 14 days and a reference to reparationR1.

Since reparations are references to new contracts, in Figure 1-b we can see the diagram correspond-
ing to reparationR1. It has been calledRefundPenalty, including the real-time constraintt3, and it is
decomposed into two subclauses by means of anAND-refinement. The subclause on the left corresponds
to theobligation (O) specified inClause 7, which has been calledRefundBuyer, and the subclause on
the right corresponds to thepermission (P) specified inClause 8, which has been calledPenaltySeller
regarding the possibility of performing some kind of penalization over the seller by theAuction Service.

Thesyntax of C-O Diagramswas first presented in [10]. Next, we just present a brief description of
the EBNF grammar followed in the diagrams:

C := (agent,name,g, tr,O(C2),R) | C1 := C(And C)+ |C(Or C)+ |C(Seq C)+

(agent,name,g, tr,P(C2),ε) | C2 := a|C3 (And C3)
+ |C3 (Or C3)

+ |C3 (Seq C3)+

(agent,name,g, tr,F(C2),R) | C3 := (ε,name,ε,ε,C2,ε)
(ε,name,g, tr,C1,ε) R := C|ε
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The C-O diagramsemanticsis defined by using NTAs (Network of Timed Automata) [1] as semantic
objects. Here we omit this formal translation and the technical definitions can be found in [11]. Instead,
we present an informal interpretation of the NTA behaviors.When transforming a C-O diagram into a
network of timed automata, the nodes of the generated automata are decorated with the set of contractual
obligations, prohibitions and permissions that are eitherviolated or satisfied.

Definition 1 (Violation, Satisfaction and Permissions Sets) Let us consider the set of contractual obliga-
tions and prohibitions CN ranged over cn, cn′,. . . standing for identifiers of obligations and prohibitions
and the set of contractual permissions CP ranged over cp, cp′, . . . .

Definition 2 (Decorated timed automaton)
A decorated timed automaton is a timed automaton(N,n0,E, I) (see [1]) where for each n∈ N we have
defined the following sets V(n)⊆CN (the set of the obligationsviolatedin n), S(n) ⊆CN (the set of the
obligationssatisfiedin n), and P(n)⊆CP (the set of permissions granted in n).

Graphically, when we draw a timed automaton extended with these three sets, we write under each
noden (between braces) its violation setV(n) on the left, its satisfaction setS(n) on the centre and
its permission setP(n) on the right. These sets are initially empty, and they do not change except in
two cases, a) when either a obligation or a prohibition is violated or satisfied, b) when a permission is
performed.

Let us recall that the intuitive meaning of an NTA is the parallel composition of several timed au-
tomata. We consider a set of actionsACT, in which we have the following actions:

• An internal actionτ ∈ ACT.

• An input actionm?∈ ACT.

• An output actionm! ∈ ACT.

• A synchronization actionm ∈ ACT that
comes from a synchronization of an input ac-
tion m? and an output actionm!.

The semantics of timed automata is well known [1]. It is basedon a timed labelled system, where
states are pairss= (n,v) wheren is a node of the automaton andv is a valuation of the clocks. There are
two types of transition:

• timed transitions1 s d
−−→ s′(d ∈ IR+) • and action transitionss a

−−→ s′(a∈ ACT).

A Network of Timed Automata(NTA) is then defined as a set of timed automata that run simultane-
ously, using the same set of clocks, and synchronizing on thecommon actions. Internal actions can be
executed by the corresponding automata independently, andthey will be ranged over the lettersa,b, . . .
whereas synchronization actions must be executed simultaneously by two automata. Synchronization
actions are ranged over lettersm,m′

, . . . and they come from the synchronization of two actionsm! and
m?, executed from two different automata2.

The operational semantics of a network of timed automata hasthe following transitions:

• A delay transition ofd time units requires that all the involved automata are able to perform this
delay individually.

• Autonomous action transitions that correspond to the evolution of a single timed automaton.

• Synchronization transitions that require two automata to perform two complementary actions,m!
andm?, respectively.

1Timed transitions only change the valuation of clocks.
2In the original definition the only internal action isτ, and synchronizations always yield internal actions.
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Figure 2: Automata for the PaymentShipment example,A0 andA1

Definition 3 (Semantics of an NTA)
Let N=(A1, , . . . ,Ak) be an NTA. Astateof N is a tuples=(s1, . . . ,sk), where si is a state of the automaton
Ai (for i = 1, . . . ,k). We have the following transitions:

• Timed transitions. If ∀1≤ j ≤ k : sj
d

−−→ s′j , then: (s1, . . . ,sk)
d

−−→ (s′1, . . . ,s
′
k) with d∈ IR+.

• Autonomous transitions. If∃1≤ j ≤ k : sj
a

−−→ s′j for a∈ ACT, a6= m! and a 6= m?, then:

(s1, . . . ,sj , . . .sk)
a

−−→ (s1, . . . ,s′j , . . .sk).

• Synchronization transitions.∃1≤ i, j ≤ k : sj
m?
−−→ s′j , si

m!
−−→ s′i for m?,m! ∈ ACT, then:

(. . . ,sj , . . . ,si , . . . ,)
m

−−→ (. . . ,s′j , . . . ,s
′
i , . . .), assuming that j≤ i, the other case is similar.

The complete semantics forC-O Diagramsin terms of NTAs translation can be found in [11]. Figure
2 shows the resulting NTA once these transformations are applied over thePaymentShipmentexample.
This NTA consists of two automata running in parallel, that is, NTAP&S= {A0,A1}. AutomatonA0 is
where the main part is translated and the starting point of this example. The main translated structures
we can observe here are the three kind of refinements and the reparation of a violated clause. Besides
these main structures, we can see how guards and time restrictions are translated.

In A0, this contract starts with a SEQ-refinement of two clauses 2 and 5, which assemble in sequence
via the transition between nodesn7 andn8, that is, the end of clause 2 and the beginning of clause 5,
respectively. From noden0, where clause 2 starts, we may reach eithern2 or n4, which correspond
to an OR-refinement representing the payment made either by credit card or paypal. Noden6 only
captures termination in the event that that the time for the payment expires without performing any of
these actions. Notice that once the payment has been done (nodesn3 or n5) we move into noden7,
from which the “sending item action” clause 5 starts, which corresponds to actiona3. In this case we
have 14 time units. If this time expires and the client has notreceived the item the reparation clause
is activated (noden10). In this case we have an AND-refinement, so a second timed automaton (A1)
is created, which corresponds to the right-hand side part ofthe AND-refinement (the left-hand side is
performed byA0). Both automata synchronize at their beginning and at theirtermination in order to be
executed simultaneously. The obligation to refund the money is captured by actiona4 in A0, whereas the
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permission to penalize the seller is captured by actiona5 in A1. Over-line actions label those transitions
enabled when the main action is not performed.

Guards are here translated as guards in the transitions and time restrictions are used to denote the
invariants of certain states and some guards in transitions, which determine whether a clause is satisfied
in time. In reference to the different violation, satisfaction and permission sets, we will comment the
most significant ones, which correspond with the maximal paths except when a reparation is defined.
Violation setsV6,V10 andV13 consist of the violated clauses: either clause 3 or 4, clause 5 and clause
7, respectively. The satisfaction setS15 will consist of clauses 3 or 4 (depending on the payment is made
either by credit card or paypal), and either clause 5 (if the item has been sent on time) or clause 7 (if the
clause 5 has been repaired). Finally, permission setP15 is either empty or clause 8 (if we have followed
the reparation and the permission to penalize the seller hasbeen performed).

4 Conformance relations

In this section we define a set of conformance relations to establish whether an implementation of a
contract conforms to the contract we want to satisfy. We willconsider a semantic relation inspired in the
conformance testingrelation given in [14]. We take as starting point a normativedocument written in
terms of a C-O Diagram, which is then translated into a network of timed automata. We also consider
an implementation I of this contract which is also provided as an NTA, with at least the same actions we
had in the contract. We intend to define a black box conformance relation, which means that we do not
know how the implementation has been done, so we can only use the information about the actions it
performs.

Definition 4 A timed traceis a sequence[a1d1a2d2 · · ·andn] ∈ (ACT× IR+)∗. We will use the symbols
t, t1, t2, tn,... to denote traces. The empty trace is denoted by[]. The concatenation of t1 and t2 will be
denoted by t1 · t2. We will say that t1 is a subtrace of t2, written t1 ≤ t2, if there is a trace t such that
t2 = t1 · t.

Let N be an NTA, where we define thetimed computations ofN as follows:

• s
[]

==⇒ s.

• s
t·[ad]

===⇒ s′ for a∈ ACT and d∈ IR+ if there exist statess1,s′1, . . . , ,sl ,s′l of N with l≥ 1 such that

s
t
=⇒ s1

d1
−−→ s′1

τ
−−→ s2

d2
−−→ s′2 · · · sl−1

dl−1
−−−−→ s′l−1

τ
−−→ sl

dl
−−→ s′l

a
−−→ s′ and d= ∑1≤i≤l di

We define theset of timed tracesof N astr(N) = {t | ∃s : s0
t
=⇒ s}, beings0 the initial state of N.

The following definition extends the sets V, S and P to traces,by accumulating the contents of the
respective sets V, S, P over the traversed nodes until reaching the final node of the trace.

Definition 5 Let N= (A1, . . .Ak) be an NTA and t∈ tr(N), we define the sets of violation (denoted
V(N, t)), satisfaction (denotedS(N, t)), and permission (denotedP(N, t)) as follows:

• V(N, t) = {
⋃

1≤i≤kV(ni) | s0
t
=⇒ (s′1, . . . ,s

′
k), s′i = (ni ,vi)}

• S(N, t) = {
⋃

1≤i≤kS(ni) | s0
t
=⇒ (s′1, . . . ,s

′
k), s′i = (ni ,vi)}

• P(N, t) = {
⋃

1≤i≤k P(ni) | s0
t
=⇒ (s′1, . . . ,s

′
k), s′i = (ni ,vi)}

Wheres0 is the initial state of N. We say that t is agoodtrace, denoted by t∈ good(N) if it is maximal3,
∀S∈ S(N, t) : S 6=∅, and∀V ∈ V(N, t) : V =∅.

We say that t is acleantrace, denoted by t∈ clean(N), if ∀t ′ ≤ t : V(N, t ′) = {∅}.
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Trace Description Nodes V S P

t0 = [a14] 4 days without paying. (n6,n0) 2 ∅ ∅

t1 = [a13a38] Credit card payment in 3 days and then
item shipped in 8 days.

(n15,n0) ∅ 3, 5 ∅

t2 = [a13a315a48] Similar tot1 but the item is not shipped. (n13,n4) 5 3 ∅

t3 = [a13a315a52a46] Similar tot2 but with a penalization. (n13,n4) 5 3 8
t4 = [a22a315a44] Paypal payment in 2 days, item not re-

ceived but refunded in 19 days.
(n15,n5) ∅ 4, 7, 5 ∅

t5 = [a22a315a44a51] Similar tot4 but a penalization is made.(n15,n5) ∅ 4, 7, 5 8

Table 1: Trace examples forNTAP&S.

Comming back to our running exampleNTAP&S, let us analyse the following maximal traces of Table
1. Thegood traces will bet1, t4 andt5 since their violation sets are empty but not their satisfaction sets.
From these traces onlyt1 corresponds to acleantrace sincet4 andt5 have violated the shipment clause
5, however they have been recovered viaR1.

Definition 6 Let C be an NTA corresponding to a C-O diagram. We say that C is consistent if the
following conditions hold:

• clean(C)∩ good(C) 6= ∅. This means that there is a way to meet contracts without making any
violations.

• ∀cn∈ CN ∃t ∈ clean(C)∩ good(C) : ∃S∈ S(C, t) : cn∈ S. That is there is a way to meet all
obligations and prohibitions without making any violation.

Our NTAP&S example satisfies both conditions since tracet1 is a good andclean trace that meets
both obligations, the payment and the shipment.

As we have indicated previously, we assume that implementations are given as networks of timed
automata. Implementations usually need to implement a single action by making several simple actions.
For instance let us suppose that a contract specifies that a payment can be done by credit card. When
implementing the payment procedure, several invisible steps like connecting with the bank or checking
the credit card should be performed. All these actions are not considered in the specification of the
contract and they should not be taken into account. All we need in this case is the amount of time
required to perform these actions. Thus, these implementation traces may contain actions that are not
considered in the contract, so we need tohide these actions.

Definition 7 Let us consider ACT⊆ ACT′ and t∈ (ACT′ × IR+)∗. We consider the operatorhideACT

defined as follows:

• hideACT([]) = []

• hideACT([ad] · t) = [ad] ·hideACT(t) for a∈ ACT, a6= τ

• hideACT([ad] · t) = d+hideACT(t) for a 6∈ ACT or a= τ , where the operator+ adds d units of time
to the last action of t. Formally it is defined as follows:

– d+[] = []

– d+([ad1] · t) = [a(d1+d)] · t

3A maximal trace is a trace that cannot be extended anymore: ift ∈ tr(N) but t · [ad] 6∈ tr(N) for all a∈ ACT andd ∈ IR+.
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Let us consider the following tracet6 = [a13a′32a′′32a34] belonging to a possible implementation of
our contract. The actionsa′3 anda′′3 are internal actions of the implementation (for instance the seller
obtains the deliver company list related to the shipment addressa′3 and sends the shipment info to the
deliverer a′′3). Therefore, the result ofhideACT(t6) = [a13a38], where the internal actions have been
omitted and the intermediate time delays are 2 + 2 + 4 = 8.

Now, we have all the machinery needed to define our conformance relation. We will consider that an
implementation satisfies a contract if a) there is at least one trace that execute all the actions expressed in
the obligations in due time, and not any actions from the prohibitions; that is, satisfying all the obligations
and prohibitions expressed in the contract, and b) if at any time a violation occurs, then it will be repaired
in the future. In our example, the ideal implementation should be able to “allow the user to at least pay
with either credit card or paypal in 3 days, and then, the seller send the item in time”. This ideal behavior
is represented by condition a), since it gathers all contract obligations and prohibitions. However we
should be most realistic and think that all systems are proneto errors, then implementations can as well
fail in some occasions. But if they do, then they should been able to recover somehow. That is the idea
behind the second condition, that is, if a seller does not send the item, he should at least refund the buyer.

Definition 8 Let us consider a consistent contract specification C and an implementation I, we say that
I conforms C, written IconfC, iff

• For any cn∈ CN there exists t∈ tr(I) such thathideACT(t) ∈ clean(C) ∪ good(C) and ∃S∈
S(I ,hideACT(t)) : cn∈ S.

• If there exists t∈ tr(I) and cn∈CN with∃V ∈ V(C,hideACT(t)) : cn∈V, there exists t′ such that
t · t ′ ∈ tr(I) such thathideACT(t · t ′) ∈ tr(C) and∀V ′ ∈ V(C,hideACT(t · t ′)) : cn 6∈V ′.

Let us consider the following implementationsI1, I2 and I3 where tr(I1) = {t1, t2}, tr(I2) = {t4}
andtr(I3) = {t1, t4} of our running exampleNTAP&S. The implementationI1 satisfies the first condition
sincet1 is good and clean and satisfies all thecn∈CN, although it does not satisfies the second becauset2
violates clause 5, which is never repaired. Thus implementation I1 does not conform the given contract.
Regarding toI2, we have the opposite situation, here tracet4 violates the clause 5, but reparationR1 is
now applied to refund the buyer. Therefore this trace satisfies the second condition but not the first one
because it does not includes all thecn∈CN. Finally, implementationI3 is the only one that conforms
the contract written asI3 conf NTAP&S, since it includest1 andt2, which fulfil both conditions.

We are now interested in a comparison of different implementations of a consistent contract, taking
into account the permissions allowed for each implementation. This comparison will be based on the
permissions performed by an implementation in such a way that an implementation will be considered
better than other if it is able to perform more permissions. In our example we can consider two imple-
mentations, one that after the seller refunds the buyer (because the item has not been sent), allows him to
penalize the seller; and other implementation, which does not allow penalizations. In this case, we will
say that the first one is better than the former one.

Definition 9 Let us consider a consistent contract specification C and twoimplementations I1 and I2
such that I1 confC and I2 confC. We say that I1 is better with respect to the permissions than I2, written
I2≤P I1 iff for any t2 ∈ tr(I2) such that∀V ∈V(C,hideACT(t2)) :V =∅ there is a trace t1 ∈ tr(I1) such that
∀V ∈ V(C,hideACT(t1)) : V = ∅ and for any P1 ∈ P(C,hideACT(t1)) there exists P2 ∈ P(C,hideACT(t2))
such that P2 ⊆ P1.

Let us consider two new implementationsI4, I5, wheretr(I4) = [t1, t4] andtr(I5) = [t1, t5]. Both I4
andI5 conform toC, as they have at least one trace (t1) fulfilling all the obligations and prohibitions, and
tracest4 for I4 andt5 for I5 violate a clause, but the corresponding reparation is performed on time. That
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IP&S

AD

Seller

a’ ?
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c:=0
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Deliverer
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Buyer
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Buyer

a1

c:=0

c 14≤
c 15≤

Asys
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a’ !3-fail
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Pay. G
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Pay. G
a’ !1-ack
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a’ ?
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Pay. G
a’ !4-fail

Pay. G
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Pay. G

a’ ?1-fail

Pay. G
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a’ !
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c 14≤

Seller
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c==15
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a’ !

4-begin
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Pay. G
a’ ?4-fail

cont 3≤

cont++
Pay. G
a’ ?4-ack

c 14≤

a3

Figure 3: PaymentShipment implementation example.

implies that bothI4 and I5 conf NTAP&S. However, the permission set forI4 is empty, whereas forI5
clause 8 is the permission set. Thus,P4 ⊆ P5, implying thatI4≤P I5.

In Figure 3, an implementation of thePaymenShipmentexampleIP&S is presented whereIP&S =
{AD,APG,ASYS}. ASYSis the main automata where the main actions concerning to thecontract are im-
plemented.AD andAPG implement the behaviors of a deliverer and a payment gateway, both automata
present some doted lines to describe a set of internal actions that we abstract to simplify the example. All
the actions described in these two automata are synchronization actions whose counterparts are defined
in the main automata. The deliverer automaton consists of three actions: the first one is used to start
the deliverer process by receiving the item data and delivery address, then, the second one and the third
are used to inform the seller whether the delivery has succeed within a time window of 10 days. The
payment gateway is in charge of performing two processes: charging the buyers credit card and perform
the refund if needed. They are performed via actionsa′1−...

and actionsa′4−...

where fail and ack actions
are used to communicate whether the operation has succeed ornot, respectively.

Let us now analyze this implementation. The main answer to decipher is if IP&Sconf NTAP&S. We
can observe that the above defined tracet1 is obtained hiding the following tracet ′1 =[a′1−in f o0a′1−ack3
a10a′3−data0 a′3−ack8 a30], that is, t1 = hideACT(t ′1), and t ′1 ∈ tr(IP&S). As we have shown before,t1
satisfies the first condition. Regarding to the second condition, note that when a contract is broken it is
not necessary that the contract is always repaired, but it should exist at least one trace allowing it4. This
occurs in tracet4, which can be obtained hiding theIP&S tracet ′4 = [a′1−in f o0 a′1−ack2 a10 a315 a′1−begin0
a′1−ack4 a40] and substitutinga2 by a1, that is, substituting the equivalent actions “paypal” payment for
a “credit card” payment. Thus, we show that the conformance relation is held by our example, since it
fulfils both criteria.

5 Conclusions

In this paper we have used the formal semantics based on NTAs (Network of Timed Automata) for nor-
mative contracts written in terms of C-O diagrams introduced in [10] in order to define a conformance
relation between a contract and an implementation. We have introduced the notion ofconsistentcontracts

4Cont variable is used to force the refund for three times. If the refund is not feasible then a fail action is executed.
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on the basis on their corresponding NTA, as those NTAs that allow to find final traces without violating
any clauses. Then, implementations of contracts are also NTAs, which must satisfy all the obligations
and prohibitions, or in the event of a violation, implement the corresponding reparation. These imple-
mentations are said to be conforming to the contract. We havealso presented a first comparison relation
between implementations, on the basis of the permissions allowed for each one. We intend to define a
set of implementation comparisons, taking into account thenumber of clauses that have been violated,
or assigning a weight to some clauses, thus considering someclauses as more important.

References

[1] R. Alur & D.L. Dill (1994): A Theory of Timed Automata. Theoretical Computer Science126(2), pp. 183–
235, doi:10.1016/0304-3975(94)90010-8.

[2] D. Chiu, S. Cheung & S. Till (2003):A Three-Layer Architecture for E-Contract Enforcement in an E-Service
Environment. Proceedings of the 36th Hawaii International Conference onSystem Sciences (HICSS-36), pp.
74–83, doi:10.1109/HICSS.2003.1174188.

[3] F. Dignum & H. Weigand (1995): Modelling Communication between Cooperative Systems. Pro-
ceedings of Advanced Information Systems Engineering (CAISE’95), pp. 140–153, doi:10.1007/
3-540-59498-1_243.

[4] G. Governatori, Z. Milosevic & S. Sadiq (2006):Compliance checking between business processes and
business contracts. Proceedings of the 10th IEEE Conference on Enterprise Distributed Object Computing,
pp. 221–232, doi:10.1109/EDOC.2006.22.

[5] J. Hatcliff, G.T. Leavens, k.R.M. Leino, P. Muller & M. Parkinson (2009):Behavioral Interface Specification
Languages. Technical Report CS-TR-09-01, School of EECS, Universityof Central Florida, doi:10.1145/
2187671.2187678.

[6] P.R. Krishna, K. Karlapalem & A.R. Dani (2005):From Contract to E-Contracts: Modeling and Enactment.
Information Technology and Management6(4), pp. 363–387, doi:10.1007/s10799-005-3901-z.

[7] A. Lomuscio, H. Qu & M. Solanki (2008):Towards verifying contract regulated service composition. Pro-
ceedings of IEEE International Conference on Web Services (ICWS 2008), pp. 254–261, doi:10.1109/
ICWS.2008.115.

[8] O. Marjanovic & Z. Milosevic (2001):Towards formal modeling of e-Contracts. Proceedings of 5th IEEE
International Enterprise Distributed Object Computing Conference, pp. 59–68, doi:10.1109/EDOC.2001.
950423.

[9] E. Martı́nez, G. Dı́az & M. E. Cambronero (2011):Contractually Compliant Service Compositions. ICSOC
2011 - The Ninth International Conference on Service Oriented Computing, pp. 636–644, doi:10.1007/
978-3-642-25535-9_50.

[10] E. Martı́nez, G. Dı́az, M. E. Cambronero & G. Schneider (2010): A Model for Visual Specification of e-
Contracts. In: The 7th IEEE International Conference on Services Computing (IEEE SCC’10), pp. 1–8,
doi:10.1109/SCC.2010.32.

[11] E. Martı́nez, G. Dı́az, M. E. Cambronero & G. Schneider (2012): Specification and Verification of Norma-
tive Specifications using C-O Diagrams. https://www.dsi.uclm.es/descargas/thecnicalreports/
DIAB-12-05-1/TSE11.pdf.

[12] P. McNamara (2006):Deontic Logic. In: Gabbay, D.M., Woods, J., eds.: Handbook of the History of Logic,
7, North-Holland Publishing, pp. 197–289, doi:10.1016/S1874-5857(06)80029-4.

[13] J. C. Okika & A. P. Ravn (2008):Classification of SOA Contract Specification Languages. In: 2008 IEEE
International Conference on Web Services (ICWS’08), IEEE Computer Society, pp. 433–440, doi:10.1109/

ICWS.2008.36.

[14] J. Tretmans (1999):Testing Concurrent Systems: A Formal Approach. In: CONCUR’99, LNCS 1664,
Springer, pp. 46–65, doi:10.1007/3-540-48320-9_6.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1109/HICSS.2003.1174188
http://dx.doi.org/10.1007/3-540-59498-1_243
http://dx.doi.org/10.1007/3-540-59498-1_243
http://dx.doi.org/10.1109/EDOC.2006.22
http://dx.doi.org/10.1145/2187671.2187678
http://dx.doi.org/10.1145/2187671.2187678
http://dx.doi.org/10.1007/s10799-005-3901-z
http://dx.doi.org/10.1109/ICWS.2008.115
http://dx.doi.org/10.1109/ICWS.2008.115
http://dx.doi.org/10.1109/EDOC.2001.950423
http://dx.doi.org/10.1109/EDOC.2001.950423
http://dx.doi.org/10.1007/978-3-642-25535-9_50
http://dx.doi.org/10.1007/978-3-642-25535-9_50
http://dx.doi.org/10.1109/SCC.2010.32
https://www.dsi.uclm.es/descargas/thecnicalreports/DIAB-12-05-1/TSE11.pdf
https://www.dsi.uclm.es/descargas/thecnicalreports/DIAB-12-05-1/TSE11.pdf
http://dx.doi.org/10.1016/S1874-5857(06)80029-4
http://dx.doi.org/10.1109/ICWS.2008.36
http://dx.doi.org/10.1109/ICWS.2008.36
http://dx.doi.org/10.1007/3-540-48320-9_6

	1 Introduction
	2 Related Work
	3 C-O Diagrams Syntax and Semantics
	4 Conformance relations
	5 Conclusions

