Conformance Verification of Normative Specifications using
C-O Diagrams

Gregorio Diaz, Luis Llan&, Valentin Valerd and Jose A. Matéo
1. Computer Science Dept. University of Castilla-La Mancha
[gregorio.diaz,valentin.valero, joseantonio.mateo]@uclm.es
2. Computer Science Dept. Complutensis University of Mhdri

llana@fdi.ucm.es

C-O Diagrams have been introduced as a means to have a \@puasentation of normative texts and
electronic contracts, where it is possible to representliigations, permissions and prohibitions of
the different signatories, as well as what are the penahiease of not fulfilment of their obliga-
tions and prohibitions. In such diagrams we are also ablepoesent absolute and relative timing
constrains. In this paper we consider a formal semantic€{0r Diagrams based on a network of
timed automata and we present several relations to cheatotigstency of a contract in terms of
realizability, to analyze whether an implementation $iatisthe requirements defined on its contract,
and to compare several implementations using the execetadigsions as criteria.

1 Introduction

In the software context, the teraontracthas traditionally been used as a metaphor to represenedmit
kinds of “agreements” between software elements at diftdeyels of abstraction. The first use of the
term in connection with software programming and design d@se by Meyer in the context of the
language Eiffel programming-by-contracisor design-by-contragt This notion of contracts basically
relies on the Hoare notion of pre and post-conditions anariamts. Though this paradigm has proved to
be useful for developing object oriented systems, it seeniste shortcomings for novel development
paradigms such as service-oriented computing and compbasad development. These new applica-
tions have a more involved interaction and therefore regamore sophisticated notion of contracts. As
a response, behavioural interfaces have been proposegttoeaicher properties than simple pre and
post-conditions[[5]. Here it is possible to express comgran the history of events, including causal-
ity properties. In the context of SOA, there are differermvig® contract specification languages, like
ebXML, WSLA, and WS-Agreement. These standards and spetiific languages suffer from one or
more of the following problems: They are restricted to leitat contracts, lack of formal semantics (so
it is difficult to reason about them), their treatment of flimeal behaviour is rather limited and the
sub-languages used to specify, for instance, securityti@ints are usually limited to small application-
specific domains. The lack of suitable languages for cotstiadhe context of SOA is a clear conclusion
of the survey([13] where a taxonomy is presented.

In [10] C-O Diagramswere introduced, a graphical representation not only fectebnic contracts
but also for the specification of any kind of normative texefWéervice composition behaviour, software
product lines engineering, requirements engineering, .C-O Diagramsallow the representation of
complex clauses describing the obligations, permissimmg prohibitions of different signatories (as de-
fined in deontic logic[12]), as well asparationsdescribing contractual clauses in case of not fulfillment
of obligations and prohibitions. BesidegS;O Diagramspermit to define real-time constraints. [n [9]
some of the satisfaction rules needed to check if a timedwatiin satisfies &-O Diagramspecification

G. J. Pace and A. P. Ravn:

Proceedings of Sixth Workshop on Formal Languages
and Analysis of Contract-Oriented Software (FLACOS’12)
EPTCS 94, 2012, pp. [=110, doi:10.4204/EPTCSI94.1

© G. Diaz, L. Llana, V. Valero, & J.A. Mateo
This work is licensed under the
Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.94.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Conformance Verification of C-O Diagrams

were defined. IN[11]C-O Diagramsare equipped with a formal semantics based on a transfamati
of these diagrams into a network of timed automata (NTA). @twtribution of this work pursues the
further development of our previous work. This time we wilttis on the development of different rela-
tions to check the consistency of contracts, to seek whatihanplementation conforms a given contract
and to compare several implementations. To achieve thisweaonsider a semantics in terms of NTAs
and we establish relations with the implementations alsttemrin terms of NTAs.

2 Related Work

The use of deontic logic for reasoning about contracts islyidpread in the literature since it was
proposed in([B] for modelling communication processes/8lrMarjanovic and Milosevic present their
initial ideas for formal modelling of e-contracts based @okic constraints and verification of deon-
tic consistency, including temporal constraints. [Ih [4]v@matori et al. go a step further providing
a mechanism to check whether business processes are camlia business contracts. They intro-
duce the logic FCL to reason about the contracts, based agaieontic logic. In[[7] Lomuscio et al.
provides another methodology to check whether service ositipns are compliant with e-contracts,
using WS-BPEL to specify both, all the possible behaviotiesagh service and the contractually correct
behaviours, translating these specifications into autersapported by the MCMAS model checker to
verify the behaviours automatically.

None of the previous works provides a visual model for thenitedn of contracts. However, there
are several works that define a meta-model for the specditati e-contracts which purpose is their
enactment or enforcement. Inl [2] Chiu et al. present a metdeinfor e-contract templates written
in UML, where a template consists of a set of contract clauwddbree different types: obligations,
permissions and prohibitions. These clauses are later edaipfo ECA rules for contract enforcement
purposes, but the templates do not include any kind of réparar recovery associated to the clauses.
In [6] Krishna et al. another meta-model based on entitgti@hship diagrams is proposed to generate
workflows supporting e-contract enactment. This meta-miodkides clauses, activities, parties and the
possibility of specifying exceptional behaviour, but thjgproach is not based on deontic logic and says
nothing about including real-time aspects natively.

3 C-O Diagrams Syntax and Semantics

We first introduce a motivation example to understand thgrdias in an easy way. Figure 1 consists of
three sub-figures, a) depicting a basic structure of a claunsk b) and c¢) depicting our running example.
This example consists in the payment and shipment of an itemqusly sold during an online auction.
Thus the action starts after the auction has finished, théttie bid placed by thduyeris the highest
one, then the activities concerning the payment and thership of the item start. First, tHauyerhas
three daysto perform the payment, which can be done by means of credit@maPayPal. After the
payment has been performed, g®ler hasfourteen daysto send the item to thbuyer. If the item is
not received within this period of time, tfaiction servicehasseven daydo refund the payment to the
buyerand can penalize tteellerin some way.

At first sight, the figures are top down hierarchical struesuwith several boxes and branches. In
Figure[1, we can observe several examples. At the top-left sale of this figure, Figurg 1-a, we can
observe the basic construction element called, also referred as proposition or clause. It is divided
into four fields. Theguard g specifies the conditions under which the contract clause beutaken into
account (boolean expression). Timae restrictiontr specifies the time frame during which the contract

G. Diaz, L. Llana, V. Valero, & J.A. Mateo 3

agent

g P R
tr Payment_Shipment 1
name i SEQ
a) Box structure ‘ ‘
R1 Buyer Seller
1 - [0. | —>10a [R
Refund_Penalty 6 Payment _ltem 2 Send_ltem 5
l AND OR
\ \
Auction Service Auction Service
O a, ‘ P as ‘ ‘ — 4, —— a,
Refund_Buyer 7
- Penalty_Seller 8 Credit_Card 3 Paypal 4
b) Reparation contract ¢) Main contract

Figure 1:C-O Diagramsexamples
clause must be satisfied (deadlines, timeouts, etc.). pfégositional conten®, on the centre, is the
main field of the box, and it is used to specify normative atpsuach as obligationg)), permissions
(P) and prohibitions), that are applied over actions, and/or the specificatidgheactions themselves.
The last field of these boxes, on the right-hand side, isgharationR. This reparation, if specified by
the contract clause, is a reference to another contracirthst be satisfied in case the main norm is not
satisfied (gorohibition is violated or arobligationis not fulfilled, there is no reparation fgermissiof,
considering the clause eventually satisfied if this repamds satisfied. Each box has also a hame at the
bottom part and an agent at the top part.

These are the basic boxes, which can be composed by usingrefimaments. Refinements are
classified into three types: joiningND-refinementsdisjunctive OR-refinementsind sequentiaBEQ-
refinement Joining refinements require that all the hanging propmsitishould be accomplished to
declare the upper proposition accomplished; on the contigsjunctive propositions only require one to
be accomplished; whereas, sequential propositions equift-to-right ordered sequential satisfaction
of every proposition to obtain the same result. In Figdre the root box, which only shows the name
and guardy; (this guard checks if the buyer is the auction winner) is dgoosed into two sub-clauses
via sequential composition, that is, first the one on theHeftd sidePaymentltem and, afterwards,
the one on the right hand sid8enditem The first one is thebligation (O) of payment with the
temporal restrictiont;, three days in this case, then this obligation is decompuesedn OR-refinement
into Clause 3and Clause 4composing the actions of paying by credit card or PayPal bgma®f an
OR-refinementOn the right-hand side we have thieligation (O) specified inClause § which has been
calledSendltem including the real-time constraitit 14 days and a reference to reparatitin

Since reparations are references to new contracts, indffirwe can see the diagram correspond-
ing to reparatiorR;. It has been calle®RefundPenalty including the real-time constraity, and it is
decomposed into two subclauses by means &MD-refinementThe subclause on the left corresponds
to theobligation (O) specified inClause 7 which has been calleRefundBuyer, and the subclause on
the right corresponds to theermission (P) specified inClause 8 which has been callelgenalty Seller
regarding the possibility of performing some kind of peratiion over the seller by th&uction Service

Thesyntax of C-O Diagramswas first presented in [10]. Next, we just present a brief idigtson of
the EBNF grammar followed in the diagrams:

C := (agentnameg,tr,O(C,),R)| C, = C(AndQO"|C(OrC)*|C(SeqQ™
(agentnameg,tr,P(Cyp), €) | C, = a|Cs(AndG)"[C3(OrCs)™[Cs(Seq@)”
(agentnameg,tr,F(C,),R) | Cs = (gnamegg,Cye)

(g,nameg,tr,Cy,) R = Cleg

4 Conformance Verification of C-O Diagrams

The C-O diagransemanticsis defined by using NTAd\etwork of Timed Automat#l] as semantic
objects. Here we omit this formal translation and the tecdirdefinitions can be found ih [1L1]. Instead,
we present an informal interpretation of the NTA behavidfighen transforming a C-O diagram into a
network of timed automata, the nodes of the generated atasmadecorated with the set of contractual
obligations, prohibitions and permissions that are eitth@ated or satisfied.

Definition 1 (Violation, Satisfaction and Permissions Sets) Let usidenshe set of contractual obliga-
tions and prohibitions CN ranged over cn, cn. standing for identifiers of obligations and prohibit®
and the set of contractual permissions CP ranged over cfp,.cp

Definition 2 (Decorated timed automaton)

A decorated timed automaton is a timed automatdmg, E, 1) (see [1]) where for each & N we have
defined the following sets(¥) C CN (the set of the obligationgolatedin n), Sn) C CN (the set of the
obligationssatisfiedin n), and Rn) C CP (the set of permissions granted in n).

Graphically, when we draw a timed automaton extended wikdhhree sets, we write under each
noden (between braces) its violation s€é{n) on the left, its satisfaction s&(n) on the centre and
its permission seP(n) on the right. These sets are initially empty, and they do haihge except in
two cases, a) when either a obligation or a prohibition idatexl or satisfied, b) when a permission is
performed.

Let us recall that the intuitive meaning of an NTA is the platatomposition of several timed au-
tomata. We consider a set of actiolST, in which we have the following actions:

e Aninternal actiont € ACT. e A synchronization actionm € ACT that
e Aninput actionm? € ACT. comes from a synchronization of an input ac-

i ? iom!
« An output actiorm! € ACT. tion m? and an output actiom!.

The semantics of timed automata is well knowh [1]. It is based timed labelled system, where
states are pairs= (n,v) wheren is a node of the automaton amds a valuation of the clocks. There are
two types of transition:

e timed transitiors—% ¢(d € R¥) e and action transitions—2+ §(a € ACT).

A Network of Timed AutomatéNTA) is then defined as a set of timed automata that run saneit
ously, using the same set of clocks, and synchronizing orcdhemon actions. Internal actions can be
executed by the corresponding automata independentlythaydvill be ranged over the lettegsb, . ..
whereas synchronization actions must be executed sinewitesty by two automata. Synchronization
actions are ranged over lettersn?,... and they come from the synchronization of two actiomsand
m?, executed from two different autonﬁta

The operational semantics of a network of timed automatah®afollowing transitions:

e A delay transition ofd time units requires that all the involved automata are ableetform this
delay individually.

e Autonomous action transitions that correspond to the ¢&eoiwf a single timed automaton.

e Synchronization transitions that require two automatagidgom two complementary actionsy
andm?, respectively.

1Timed transitions only change the valuation of clocks.
2|n the original definition the only internal actionisand synchronizations always yield internal actions.

G. Diaz, L. Llana, V. Valero, & J.A. Mateo 5

AUTOMATON A , t3<=8 Auction Service
a

{V13}{S13KP13}

t2<=15 geller

{VOHS9}P9} {V154{S15}{P15

(viiSIHP1y (VAHSAHP4} t2:=0 (v5)S5)P5)

AUTOMATON A |

as {V3){S3}P3}

Auction Service
my?

{VOXSOXPO} (VIHSTHP1} {V2){S2}{P2} {V4}S4){P4} {V5}{S5}{P5}

Figure 2: Automata for the Payme8hipment exampledg andA;

Definition 3 (Semantics of an NTA)
LetN=(Aq,,...,Ax) bean NTA. Atateof N is a tuples= (s, ...,), where gis a state of the automaton
A (fori=1,...,k). We have the following transitions:

e Timed transitions. If ¥1< j <k: s l>s’1 then: (sy,...,S) —% (S,,...,5,) with d € IR

e Autonomous transitions. 181 < j <k: ;-2 s; foracACT, a# ml and a m?, then:
a

(Sty--sSjse- %) — (St5-++,)5+)

e Synchronization transitionsI1 <i,j <k: s; % s, s M, g form?,m € ACT, then:
(-osSjs-esSyey) = (.18, ,...), assuming that § i, the other case is similar.

The complete semantics f@-O Diagramsn terms of NTAs translation can be found in[11]. Figure
shows the resulting NTA once these transformations arkeappver thePaymentShipmenexample.
This NTA consists of two automata running in parallel, tratNT Apg s = {Ag,A1}. AutomatonAg is
where the main part is translated and the starting pointisfekample. The main translated structures
we can observe here are the three kind of refinements andpgheation of a violated clause. Besides
these main structures, we can see how guards and time tiessiare translated.

In Ag, this contract starts with a SEQ-refinement of two clausasSawhich assemble in sequence
via the transition between nodes andng, that is, the end of clause 2 and the beginning of clause 5,
respectively. From nodegg, where clause 2 starts, we may reach eitlyeor n4, which correspond
to an OR-refinement representing the payment made eitherduljt card or paypal. Nodag only
captures termination in the event that that the time for #aent expires without performing any of
these actions. Notice that once the payment has been dodes(mpor ns) we move into nodey,
from which the “sending item action” clause 5 starts, whidnresponds to actioas. In this case we
have 14 time units. If this time expires and the client hasraoeived the item the reparation clause
is activated (nodenp). In this case we have an AND-refinement, so a second timemvation £;)
is created, which corresponds to the right-hand side pattieofAND-refinement (the left-hand side is
performed byAg). Both automata synchronize at their beginning and at teemination in order to be
executed simultaneously. The obligation to refund the mameaptured by action, in Ag, whereas the

6 Conformance Verification of C-O Diagrams

permission to penalize the seller is captured by adipm A;. Over-line actions label those transitions
enabled when the main action is not performed.

Guards are here translated as guards in the transitionsraaddstrictions are used to denote the
invariants of certain states and some guards in transjtiwhigeh determine whether a clause is satisfied
in time. In reference to the different violation, satisfantand permission sets, we will comment the
most significant ones, which correspond with the maximahgaixcept when a reparation is defined.
Violation setsv 6, V10 andV 13 consist of the violated clauses: either clause 3 or 4sel&uand clause
7, respectively. The satisfaction &t5 will consist of clauses 3 or 4 (depending on the paymengidam
either by credit card or paypal), and either clause 5 (if theihas been sent on time) or clause 7 (if the
clause 5 has been repaired). Finally, permissiofP&8tis either empty or clause 8 (if we have followed
the reparation and the permission to penalize the sellebd@s performed).

4 Conformance relations

In this section we define a set of conformance relations tabéish whether an implementation of a
contract conforms to the contract we want to satisfy. We eghlsider a semantic relation inspired in the
conformance testingelation given in[[14]. We take as starting point a normatieeument written in
terms of a C-O Diagram, which is then translated into a nétvedtimed automata. We also consider
an implementation | of this contract which is also providedia NTA, with at least the same actions we
had in the contract. We intend to define a black box conformaalation, which means that we do not
know how the implementation has been done, so we can onlyhasimformation about the actions it
performs.

Definition 4 A timed traceis a sequencéa;diayd; - --andy] € (ACT x IRT)*. We will use the symbols
t, t1, t, ty,... to denote traces. The empty trace is denotef].byhe concatenation of and % will be
denoted byqt-t,. We will say that t is a subtrace of, written t, < ty, if there is a trace t such that
to =1t -t.

Let N be an NTA, where we define tiraed computations dfl as follows:

.S$S

d —
. sg g fora€ ACT and de IR if there exist statei{ 511 .,,9,§ of N with I > 1 such that
di
s=>sl—>§l—>32—>$ 1—>§’ 1—>s—>q—>s’andd > 1<i< O
We define theet of timed traceef N astr(N) = {t | 3s: o= S}, beings the initial state of N.

The following definition extends the sets V, S and P to trabgsaccumulating the contents of the
respective sets V, S, P over the traversed nodes until regthé final node of the trace.

Definition 5 Let N= (Aq,...Ac) be an NTA and & tr(N), we define the sets of violation (denoted
V(N,t)), satisfaction (denotefi(N,t)), and permission (denotd®(N,t)) as follows:

o V(N,t) = {Urcick V(M) | 5= (Sh,---.8), § = (m,wi)}
e S(N,t) = {Ur<i<kS(M) |SO:> (Sps--»S)s § = (ni,vi)}

e P(N,t) = {Us<i<kP(M) | 9= (S1---58), § = (i, v)}
Whereg; is the initial state of N. We say that t isgpodtrace, denoted by good(N) if it is maximal,
vSe S(N,t): S# @, andW € V(N,t): V =2.

We say that t is @leantrace, denoted by ¢ clean(N), if vt' <t: V(N,t') ={2}.

G. Diaz, L. Llana, V. Valero, & J.A. Mateo 7

| Trace | Description | Nodes [V| S | P]|

to = [@4] 4 days without paying. (ng,np) | 2 %] %]

t; = [a13a38] Credit card payment in 3 days and thetinis,ng) | @ | 3,5 | @
item shipped in 8 days.

to = [y 3831534 8] Similar tot; but the item is not shipped. (ny3,n4) | 5 3 1%}

t3 = [ay3a315as2a56| || Similar tot, but with a penalization. | (n3,ng) | 5 3 8

ty = [ax2a315a44] Paypal payment in 2 days, item not re{nis,ns) | & | 4,7,5| &
ceived but refunded in 19 days.

ts = [ap2azl5ay4as1] || Similar toty but a penalization is made. (nis,n5) | @ | 4,7,5| 8

Table 1: Trace examples fOI T Apg s.

Comming back to our running exampler Apg s, let us analyse the following maximal traces of Table
[I. Thegoodtraces will bety, t4 andts since their violation sets are empty but not their satigfacsets.
From these traces onty corresponds to aleantrace since, andts have violated the shipment clause
5, however they have been recoveredRja

Definition 6 Let C be an NTA corresponding to a C-O diagram. We say that Qisistent if the
following conditions hold:

e clean(C)Ngood(C) # @. This means that there is a way to meet contracts without myadiny
violations.

e Ycne CN Jt € clean(C)Ngood(C) : 3S€ S(C,t): cne S. That is there is a way to meet all
obligations and prohibitions without making any violation

Our NT Apg s example satisfies both conditions since traces a good and cleantrace that meets
both obligations, the payment and the shipment.

As we have indicated previously, we assume that implementare given as networks of timed
automata. Implementations usually need to implement desagdion by making several simple actions.
For instance let us suppose that a contract specifies thatragpd can be done by credit card. When
implementing the payment procedure, several invisiblpsstike connecting with the bank or checking
the credit card should be performed. All these actions atecansidered in the specification of the
contract and they should not be taken into account. All wedrieethis case is the amount of time
required to perform these actions. Thus, these implement&taces may contain actions that are not
considered in the contract, so we needhitte these actions.

Definition 7 Let us consider ACT- ACT and te (ACT x IR")*. We consider the operatdfideact
defined as follows:

e hideacr([]) =]
° hideACT([ad]) [] hldeACT() foraec ACT, a;é T
[

e hideact([ad]-t) = d+ hideact(t) for a¢ ACT or a= 1, where the operato# adds d units of time
to the last action of t. Formally it is defined as follows:

—d+[=]
— d+([ady-t) = [a(dy +d)] -t

3A maximal trace is a trace that cannot be extended anymares if(N) butt - [ad] ¢ tr(N) for all ac ACT andd € IR*.

8 Conformance Verification of C-O Diagrams

Let us consider the following tradg = [a;3a52a32a34] belonging to a possible implementation of
our contract. The actiona; anda; are internal actions of the implementation (for instance shller
obtains the deliver company list related to the shipmentesid; and sends the shipment info to the
delivereraj). Therefore, the result dfideact(ts) = [a13a38], where the internal actions have been
omitted and the intermediate time delays are 2 +2 + 4 = 8.

Now, we have all the machinery needed to define our conforeneglation. We will consider that an
implementation satisfies a contract if a) there is at leastt@te that execute all the actions expressed in
the obligations in due time, and not any actions from the ipibbns; that is, satisfying all the obligations
and prohibitions expressed in the contract, and b) if at g & violation occurs, then it will be repaired
in the future. In our example, the ideal implementation sthdne able to “allow the user to at least pay
with either credit card or paypal in 3 days, and then, thessknd the item in time”. This ideal behavior
is represented by condition a), since it gathers all conhtvatgations and prohibitions. However we
should be most realistic and think that all systems are ptom®erors, then implementations can as well
fail in some occasions. But if they do, then they should bd#e & recover somehow. That is the idea
behind the second condition, that is, if a seller does nal Hemitem, he should at least refund the buyer.

Definition 8 Let us consider a consistent contract specification C andhgslementation I, we say that
| conforms C, written tonf C, iff

e For any cne CN there exists € tr(l) such thathideact(t) € clean(C) U good(C) and 3S
S(l,hideACT(t)) . cnes.

e If there exists € tr(l) and cne CN with3V € V(C, hideact(t)) : cne V, there exists'tsuch that
t-t'e tr(l) such thalhide/_\c‘r(t -t/) € tl’(C) andwV’ ¢ V(C, hideACT(t 't/)) . cn QV’.

Let us consider the following implementatiohs 1> and I3 wheretr(l1) = {t1,t2}, tr(l2) = {ta}
andtr(l3) = {t1,t4} of our running exampl®& T Apg s. The implementatiomy satisfies the first condition
sincet; is good and clean and satisfies all tme= CN, although it does not satisfies the second becguse
violates clause 5, which is never repaired. Thus implentiemi& does not conform the given contract.
Regarding td,, we have the opposite situation, here traceiolates the clause 5, but reparatiBa is
now applied to refund the buyer. Therefore this trace satidfie second condition but not the first one
because it does not includes all thec CN. Finally, implementatioris is the only one that conforms
the contract written aks conf NT Apg s, Since it includes; andt,, which fulfil both conditions.

We are now interested in a comparison of different implegons of a consistent contract, taking
into account the permissions allowed for each implemeoratiThis comparison will be based on the
permissions performed by an implementation in such a wayahamplementation will be considered
betterthan other if it is able to perform more permissions. In owsragple we can consider two imple-
mentations, one that after the seller refunds the buyea(isecthe item has not been sent), allows him to
penalize the seller; and other implementation, which dagslow penalizations. In this case, we will
say that the first one is better than the former one.

Definition 9 Let us consider a consistent contract specification C anditaglementationsiland b

such that] conf C and b conf C. We say thatilis better with respect to the permissions thanwiritten
I, <plyiff forany t € tr(l,) such thatV € V(C, hideact(t2)) : V = & there is a tracet € tr(l1) such that
W e V(C, hideACT(tl)) V=@ andforany R ¢ P(C, hide/_\CT(tl)) there exists pPc P(C, hide/_\c‘r(tz))

such that PC P,.

Let us consider two new implementatiohs s, wheretr(l4) = [t1,t4] andtr(ls) = [t1,ts5]. Bothly
andls conform toC, as they have at least one tratg fulfilling all the obligations and prohibitions, and
traced, for 14 andts for I5 violate a clause, but the corresponding reparation is pagd on time. That

G. Diaz, L. Llana, V. Valero, & J.A. Mateo 9

Seller

a‘S»data?

c.=
< Pav. G <3 c<14 c<14 c<14
c<3 ay Bﬁyer c<15 ggjier Seller Seller

cont<3Pay. G
Auct. S. By tai? Pay. C,?-}
l ? aé‘l—beg\n! Da?(:ont"“" a4-ack N
Bt cont:=0 ; {)

Figure 3: PaymenShipment implementation example.

cont++

implies that both4 andls conf NT Apgs. However, the permission set fty is empty, whereas falis
clause 8 is the permission set. ThBsC Ps, implying thatls <pls.

In Figure[3, an implementation of tHeaymenShipmentexamplelpg s is presented wherkgs =
{Ap,ArG,Asyg. Asysis the main automata where the main actions concerning todhgact are im-
plemented.Ap andApg implement the behaviors of a deliverer and a payment gatdvadly automata
present some doted lines to describe a set of internal adtha we abstract to simplify the example. All
the actions described in these two automata are synchtmmzzctions whose counterparts are defined
in the main automata. The deliverer automaton consistsreethctions: the first one is used to start
the deliverer process by receiving the item data and dgli@ddress, then, the second one and the third
are used to inform the seller whether the delivery has sdcegthin a time window of 10 days. The
payment gateway is in charge of performing two processemrgafy the buyers credit card and perform
the refund if needed. They are performed via actighs and actions;, where fail and ack actions
are used to communicate whether the operation has succeed oespectively.

Let us now analyze this implementation. The main answer ¢iptier is iflpgsconf NT Apgs. We
can observe that the above defined tracis obtained hiding the following tradg =[a}_;,,08] ;43
108 .0 a5 .8 a30], that is, t; = hideact(t]), andt] € tr(lpgs). As we have shown before;
satisfies the first condition. Regarding to the second cimmgihote that when a contract is broken it is
not necessary that the contract is always repaired, bubitldrexist at least one trace aIIowin.ifI' his
occurs in trace, which can be obtained hiding thee s tracety = [_jn¢o0 &) a2 1083158 peqi0
a; a4 a40] and substitutings, by &, that is, substituting the equivalent actions “paypal” payt for
a “credit card” payment. Thus, we show that the conformaetaion is held by our example, since it
fulfils both criteria.

5 Conclusions

In this paper we have used the formal semantics based on NN&tw/¢rk of Timed Automata) for nor-
mative contracts written in terms of C-O diagrams introduie[10] in order to define a conformance
relation between a contract and an implementation. We mireadiuced the notion afonsistentontracts

4Cont variable is used to force the refund for three timeshdfrefund is not feasible then a fail action is executed.

10 Conformance Verification of C-O Diagrams

on the basis on their corresponding NTA, as those NTAs thawab find final traces without violating
any clauses. Then, implementations of contracts are al#gssNWhich must satisfy all the obligations
and prohibitions, or in the event of a violation, implemédmt torresponding reparation. These imple-
mentations are said to be conforming to the contract. We aeepresented a first comparison relation
between implementations, on the basis of the permissidowed for each one. We intend to define a
set of implementation comparisons, taking into accountntimaber of clauses that have been violated,
or assigning a weight to some clauses, thus considering stamges as more important.

References

[1] R. Alur & D.L. Dill (1994): A Theory of Timed Automata heoretical Computer Sciend26(2), pp. 183—
235, d0i10.1016/0304-3975(94)90010-8.

[2] D. Chiu, S. Cheung & S. Till (2003)A Three-Layer Architecture for E-Contract EnforcementireaService
Environment Proceedings of the 36th Hawaii International Conferenc8ystem Sciences (HICSS-36p.
74-83,d0i10.1109/HICSS.2003.1174188.

[3] F. Dignum & H. Weigand (1995): Modelling Communication between Cooperative SystenBro-
ceedings of Advanced Information Systems Engineering SEA95) pp. 140-153, doi0.1007/
3-540-59498-1_243.

[4] G. Governatori, Z. Milosevic & S. Sadiq (2006 ompliance checking between business processes and
business contractsProceedings of the 10th IEEE Conference on Enterpriseibugéd Object Computing
pp. 221-232, d0oi:0.1109/EDOC . 2006 .22,

[5] J. Hatcliff, G.T. Leavens, k.R.M. Leino, P. Muller & M. Ranson (2009)Behavioral Interface Specification
Languages Technical Report CS-TR-09-01, School of EECS, Universit€entral Florida, doit0.1145/
2187671.2187678.

[6] P.R. Krishna, K. Karlapalem & A.R. Dani (2005jrom Contract to E-Contracts: Modeling and Enactment
Information Technology and Manageméf), pp. 363—387, dai0.1007/s10799-005-3901-z.

[7]1 A. Lomuscio, H. Qu & M. Solanki (2008)Towards verifying contract regulated service compositiéo-
ceedings of IEEE International Conference on Web Servil@®/6 2008) pp. 254-261, doi0.1109/
ICWS.2008.115.

[8] O. Marjanovic & Z. Milosevic (2001)Towards formal modeling of e-Contract®roceedings of 5th IEEE
International Enterprise Distributed Object Computingh€@sence pp. 59—-68, doit0.1109/EDOC.2001.
950423.

[9] E. Martinez, G. Diaz & M. E. Cambronero (201Qontractually Compliant Service Compositiol€SOC
2011 - The Ninth International Conference on Service Oeénfomputingpp. 636—644, doi.0.1007/
978-3-642-25535-9_50.

[10] E. Martinez, G. Diaz, M. E. Cambronero & G. Schneid&10): A Model for Visual Specification of e-
Contracts In: The 7th IEEE International Conference on Services ComgyiiBEE SCC’10) pp. 1-8,
doi;10.1109/8CC.2010.32.

[11] E. Martinez, G. Diaz, M. E. Cambronero & G. Schneid®¥12): Specification and Verification of Norma-
tive Specifications using C-O Diagranisttps://www.dsi.uclm.es/descargas/thecnicalreports/
DIAB-12-05-1/TSE11l.pdf.

[12] P. McNamara (2006)Deontic Logic In: Gabbay, D.M., Woods, J., eds.: Handbook of the History ofit,og
7, North-Holland Publishing, pp. 197-289, dd. 1016/S1874-5857 (06) 80029-4.

[13] J. C. Okika & A. P. Ravn (2008)Classification of SOA Contract Specification Languages 2008 IEEE
International Conference on Web Services (ICWS'@BEE Computer Society, pp. 433-440, doi: 1109/
ICWS.2008.36.

[14] J. Tretmans (1999)Testing Concurrent Systems: A Formal Approadm: CONCUR’'99, LNCS 1664
Springer, pp. 46—65, ddi0.1007/3-540-48320-9_6.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1109/HICSS.2003.1174188
http://dx.doi.org/10.1007/3-540-59498-1_243
http://dx.doi.org/10.1007/3-540-59498-1_243
http://dx.doi.org/10.1109/EDOC.2006.22
http://dx.doi.org/10.1145/2187671.2187678
http://dx.doi.org/10.1145/2187671.2187678
http://dx.doi.org/10.1007/s10799-005-3901-z
http://dx.doi.org/10.1109/ICWS.2008.115
http://dx.doi.org/10.1109/ICWS.2008.115
http://dx.doi.org/10.1109/EDOC.2001.950423
http://dx.doi.org/10.1109/EDOC.2001.950423
http://dx.doi.org/10.1007/978-3-642-25535-9_50
http://dx.doi.org/10.1007/978-3-642-25535-9_50
http://dx.doi.org/10.1109/SCC.2010.32
https://www.dsi.uclm.es/descargas/thecnicalreports/DIAB-12-05-1/TSE11.pdf
https://www.dsi.uclm.es/descargas/thecnicalreports/DIAB-12-05-1/TSE11.pdf
http://dx.doi.org/10.1016/S1874-5857(06)80029-4
http://dx.doi.org/10.1109/ICWS.2008.36
http://dx.doi.org/10.1109/ICWS.2008.36
http://dx.doi.org/10.1007/3-540-48320-9_6

	1 Introduction
	2 Related Work
	3 C-O Diagrams Syntax and Semantics
	4 Conformance relations
	5 Conclusions

