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Progress in the behavioral analysis of software produeslat the family level benefits from further
development of the underlying semantical theory. Here, vop@se a behavioral equivalence for
feature transition systems (FTS) generalizing branchigsignulation for labeled transition systems
(LTS). We prove that branching feature bisimulation for arsFof a family of products coincides

with branching bisimulation for the LTS projection of eatie individual products. For a restricted
notion of coherent branching feature bisimulation we ferthore present a minimization algorithm
and show its correctness. Although the minimization prabier coherent branching feature bisim-
ulation is shown to be intractable, application of the ailfpon in the setting of a small case study
results in a significant speed-up of model checking of bairal/properties.

1 Introduction

Notions of behavioral equivalence, like bisimulation, ypkn important role in the analysis of large
systems in general and thus of (software) product lines itiqodar. Abstractions based on behavioral
equivalences compress, via abstraction operations anithinaition algorithms, a model’'s state space
prior to verification. Subsequently, verification can beelanless time, using less memory.

Compared to single system verification, SPLE adds vartglab yet another dimension to the com-
plexity of behavioral analysis. In general, the number afgildle products of a product line is exponential
in the number of features. This calls for dedicated modedimg) analysis techniques that allow to specify
and reason about an entire product line at once. In this pe@eonsider the model of feature transition
systemsl[E,16], which facilitates efficient family-basedifieation. Dedicated techniques generally use
variability knowledge about valid feature configurationsdeduce results for products from a family
model, as opposed to enumerative product-based verificatiavhich every product is examined indi-
vidually. For example, in[7] behavioral pre-orders of FT8 given with respect to specific products to
define abstractions based on simulation quotients thaeped TL properties. We refer to [19] for an
overview of verification strategies in SPLE and the tradesbproduct-based vs. family-based analysis.

In [3/4] we applied tailored property preserving reducsibma product line modeled with mCRLZ [8]
and we verified by means of model checking a number of beha\yooperties of the product line. The
MCRL2 toolset provides specific support for reduction modadanching bisimulation [14]. This led
us to investigate a feature-oriented notion of branchirggrhilation inspired by the research reported
in [7] (which focuses on a notion of simulation). In this pgpe&e propose a definition of what is
coined branching feature bisimulation, extending the dedmin [14], and we seek to adapt the efficient
algorithm of [15] to compute, given an FTS, a minimal FTS tisdiranching feature bisimilar.

In our pursuit to transfer the results o1 [7] to the case ohbhing bisimulation, a number of issues
arises due to the presence of feature expressions, thoughsuah issue for FTS is that minimization in
the number of states is not the same as minimization in théeupf transitions, a situation that does not
occur with LTS. Our effort here is to reduce in the number afed. In order to make our minimization
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algorithm work, we restrict to so-called coherent rathemtlarbitrary branching feature bisimulation
relations. We will prove that our algorithm reduces an BI'® a minimal FTSSy,, for which there
exists a coherent branching feature bisimulation relafor$ andSmin. Moreover, no smaller FTS'
exists which is also coherent branching feature bisimil&: tHowever, as we will argue by a reduction of
graph coloring, the minimization problem is NP-completedoherent branching feature bisimulations
(and we suspect this is the case for branching feature bigiion as well). Still, as an evaluation of the
approach for arelatively small toy example illustrategrall a substantial reduction in computation time
is achieved for bisimulation-enhanced family-based aislgs compared to enumerative product-based
analysis. In particular, for properties involving a lindtaumber of features, verification time using the
family FTS is only a third to a quarter of the time needed tafyeall product LTS.

Behavioral equivalences also form the basis of conformantiens as used for model elaboration by
iterative refinement of partial behavioral models. In SPIhES allows to relate fully configured product
behavior to family models with optional behavior reflectprgduct variability. Examples are approaches
based on process algebral[20] and on modal transition sggtdmS) [1/2, 10]. In[[20], a so-called vari-
ant process algebra is introduced, which allows to modellyabehavior that subsumes the behavior
of all possible product variants. Special-purpose bisatioth relations then allow to compare variants
among each other and against the family. In SPLE, MTS are btieeanodels used to specify family
behavior encompassing all possible product behavioressmted by those LTS that are implementations
of the MTS (obtained by refinement of admissible behavion)J10], weak and strong refinement for
MTS as defined in [16] (based on weak and strong bisimuladoashown to be inadequate for applica-
tions in SPLE (mainly due to the lack of support for unobsklwactions and for preserving branching
behavior, respectively) and a novel notion of refinememiti®duced preserving the branching structure.
It moreover preserves properties expressed in 3-valuef weazalculus. However, its definition is not
operational and algorithms for conformance checking aonémce are thus infeasable.

The paper outline is as follows. Building on definitions anda#gorithm for branching bisimulation
of LTS reviewed in Sectionl2, we introduce in Sectidn 3 tha@amobf branching feature bisimulation
and show its soundness for branching bisimulation witheesf all products. The algorithm for min-
imizing modulo coherent branching feature bisimulatiogiigen in Sectiori 4, which also provides an
NP-completeness proof for the minimization problem. A dation of the approach, based on a toy
example of a product line of coffee/soup vending machingspsrted in Sectionl5. Finally, Sectibh 6
briefly wraps up with concluding remarks and future work.

2 Branching bisimulation for labeled transition systems

Strong bisimulation is a cornerstone of the theory of LT [but is often too fine a behavioral equiv-
alence for verification purposes. Application of its minzation algorithm typically reduces the system
under verification only in a limited way. Having this in mingarious weaker notions have been studied
in the literature[[11, 12]. In the context of model checkibganching bisimulation as proposed for LTS
by Van Glabbeek & Weijland enjoys a number of appealing prige [13]. We recall and illustrate
its definition, and discuss the outline of a minimizationaaithm that returns the smallest LTS that is
branching bisimilar to a given one. To this end, we fix an afjghaf actionsA, distinguish a symbol

T ¢ A, referred to as the silent action, andJet =AU {t}.

Definition 1. A labeled transition system is a tripfe= (S, —, s.) with set of states S, transition relation
— C Sx A; x S, and initial state,se S.
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(a) Forss €S, we write s= s'if In3sp--- 51 so=5A(Vi,1<i<n: s LI S)Ash=5s.

(b) A symmetric relation R Sx S is called a branching bisimulation relationVif,s,t € S,a € A;
such that Rs;t) and s ¢, it holds that Rs,f), R(s,t') and t = { @, 4 for somef,t’ € S.

(c) Two states.$ of $ are called branching bisimilar if B,t) for some branching bisimulation rela-
tion R. Notation gy t.

Note the notatior ﬂ t’ used in part (b) of this definition. Following[14], we haf/e(a—>> t’ if either

f % t ora = r andf =t/, an elegant trick to allow the transitia s to be matched by={=t, i.e.
by no transition fot in caseR(s,t).

In Figurd1 at the left-hand sids, andty are not branching bisimilar: Clearly statgeis not branching
bisimilar to state sinces; has nob-transition. But then, the transitidg = t, cannot be matched by
the transition sequenc® = LN s, because the intermediate statecannot be related to statg
as specifically required by the definition. However, fgrandyvg at the right-hand side, the transition
Vo BN v, can be matched byy = up LN Ug, Since in this casgy andu; are branching bisimilar. It is
noted thatp andvy, but alsosy andtg, are weakly bisimilar in the sense of Milnér [17].

@ ;

T a\b T a\b a b

W @& ® @ & G W W
a a b
to @) G

Figure 1: Two non-branching bisimilar states and two brangbisimilar states

An efficient minimization algorithm for branching bisimtitan is due to Groote & Vaandrager [15],
based on the partition refinement algorithm of Paige & Tafla). It involves the notions of a partition
of the set of states, and of a splitter: Consider a finite EFS(S, — ,s.) over the action se#;.

e Apartition of§ is a collectionB = { B; | i €| } of subsets oSthat disjointly coverss, i.e.{i¢; Bi =
S andBiNBj=wgif i # j, foralli, j € l. The elements of a partition are referred to as blocks.

e For a partitionB, blocksB,B’ € B, anda € A; we letpos,(B,B') = {seB|38cB3scB':s =
§% ¢}, andneg,(B,B) = {seB|VscBVSecB: (s%» § Vv (§59)}
e For blocksB, B’ of a partitionB, the blockB' is called a splitter oB for an actiona € A if both
pos, (B,B’) # @ andneg, (B,B') # &.
A simplified version of the algorithm of [15] for minimizatiomodulo branching bisimulation starts with
the trivial partitionB = {S} and iterates
while splitter B’ of block B € B for a € A; existsdo B := (B\{B}) U {pos,(B,B’), neg,(B,B’) } end

Thus, starting from the trivial partitiofiS}, having the complete set of statgas a single block, we keep
refining the partition based on a splitter. Clearly, the athm terminates for a finite LTS in at mokj
many steps. We refer to [15] for a proof of the following ressul
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Theorem 2. AssumeBin is the partition obtained upon termination after applyitg talgorithm to the
LTSS = (S, —, s.). Define the LTSmin = (Bmin, —min, B«) by letting BZ min B' if there exist s B,
s € B such that s% ¢ for B,B' € B, a € A; with BB’ or a # 1, and by choosing Bsuch that
S, € B,. ThenSyn is the smallest LTS that is branching bisimilar§o O

In the simplified algorithm sketched above, major part of¢beputation is spent on unfolding of the
relation =. The algorithm of[[15] reduces this by eliminatimecycles and by keeping track, per block,
of so-called bottom states. The complexity of the Groote &ndrager algorithm i®(mlogm+ m-n),
with n the number of states amithe number of transitions. Typically, for an LT8< n?. It is known
that branching bisimulation preserves the fragment of theahu-calculus consisting of CTLminus
the next operator [9]. Therefore, exploiting this fact imgtical situations, significant reduction of the
state space and corresponding speed-up of subsequerdatarifican be obtained by applying hiding of
action followed by the minimization algorithm for branchibisimulation.

In the sequel of this paper, we seek to apply the idea of bragdsisimulation (i.e. allowing silent
moves through bisimulation equivalent states but througllother) and its minimization techniques to
the setting of FTS, where not only actions but also featupgassions decorate the transitions.

3 Branching bisimulation for feature transition systems

We fix a finite non-empty set of features, a subsétC 27 of products, and again a sét including the
silent actiont. We letB(J) denote the set of boolean expressions dueWe refer to elements @&(F)

as feature expressions. For a prodeet P, we usex (P) to denote its characteristic formula. The notion
of a feature transition system (FTS) was proposedlin [6].

Definition 3. A feature transition system (FTS8)is a triple S = (S, 0, s.), with S the set of states,
0 : Sx Ar x S— B(J) the transition constraint function, and s S the initial state.

For states,s' € S an actiona € A; and a satisfiable feature expressipre B(JF), we writes o, o i
6(s,a,s) = . We say that a produ® € P satisfies a feature expressigne B(JF) if ¢ is valid when
the boolean variables corresponding to the featurd® afe assigned the valuaie and those not i
the valuefalse denoted by |~ ¢. The equivalence relationy onB(F) is given byg ~q  iff VP € P:
Po¢ <Pl . WeletB(F) =B(F)/~p. Foran FTSS = (S, 6,s.), we define the reachability
functionp : S— B(F) for S to be such that

VPeP: PEp(s) iff Indsy---sy3ar---on3Ps--- Yy
=S A(Vi,1<i<n:s_1 M SAPEW)AS =S
for all s€e S We note that, for the ease of presentation in this paperefiaition of an FTS above is
slightly more abstract compared to the original definitioreg in [6].
Next, we introduce a notion of branching feature bisimolatior FTS, generalizing the notion of
branching bisimulation given by Definition 1 for LTS.

Definition 4. LetS = (S 6, s.) and8' = (S, 6/, s,) be two FTS.
(@) For s € S, and satisfiabley € B(F), we write s= ¢ if InIs0,.... 3N, M’ S= SHA
Vi,l<i<n:s_1 M S AS = AN = Aicicn Ni- Furthermore, we write sml—W)> S in case

sﬂ—w>s’ora:r/\s:s’/\w:true.
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(b) A symmetric relation B Sx fBE(&") x S is called a branching feature bisimulation relation &if
forst € S,a € A; such that Rs, ¢, t) the so-called transfer condition holds:

av, g implies 3In3f,..., 631, ... t,3Ng, ..., Nn3Ws, ..., Wn3d1,..., 3P, ..., O):
vii<i<nit L g U9 v ARs ¢LE) ARE.6.Y) and
YPeP: PEOAY = PEVican MAUAG AP

(c) Two states.$ € S are called branching feature bisimilar with respecstd R(s, frue, t) for some
branching feature bisimulation R f&. Notation s~ t.

(d) A branching feature bisimulation relation R f8rand 8’ is called coherent if B, ¢,s') implies
p(s)=¢,forallseS,¢ € B(F), and $ € S. Notations ~cpt 8'.

The specific subset of coherent branching feature bisimouakatvill be used as a yardstick of comparison
in the minimization algorithm discussed in Secfidn 4. lineiy, the feature expressigu(s) captures all
products that can reach stateCoherency requires thgt does not exclude part of these products. So
the ‘products of' are not split byg, but treated as a coherent set of products.

Figurel2 depicts the general situation for the transfer 'rt'umrthere atransitios a‘—w> s is matched

by n transition sequences fromin total, viz.t LY ty M tjtot = fn m—w”)> t,. Moreover, for a

productP for which states admits the transition labelled, i.e. a product satisfying the constraipt
derived fromR as well as the feature expressignderived from the transition, it is required that state
provides a related transition sequence labetefbr this product as well. Thus, for somgl <i < n,

P meetsn; and ¢, thus can move from to f; andt/, while P is included by the constraing; for the
relation ons andf; and by the constrairg/ on s’ andt;.

aly

(algn) | (algn)

Figure 2: Transfer diagram for branching feature bisintyar

Figure[3 below shows an example of two FTS (witha@uinoves) at the left-hand side. At first sight
the relationR = { (so,frue,to), (s1, 1,t1), (S, P2,t1), (Ss,frue,tz) } may look like a branching feature

bisimulation. However, a closer inspection of the transiti; (@11 d)v(82/d) t, reveals that this

means that we need the formuls\ ((¢1 A ) V (92 A @) = 4 Atrueto hold fori = 1,2. However,
this only holds wherp; A ¢2 = (Y1 < (k); in that caseR is indeed a branching feature bisimulation.
Reversely, if a product meefs A ¢» A Y A — Y, there will be a transition far for that product, but not
for s, as shown by the two LTS at the right-hand side of Fidure 3. ¢teéar that with a transition from
statesy to states, but without a transition between sta@sandsz, on the one hand, and with a path from
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to to tp, on the other hand, the underlying LTS for the two FTS (andefioee the FTS themselves as we
shall see) cannot be bisimilar.

bl(¢1A Y1)V ($2A Yn)

Figure 3: Bisimilar FTS assumingy A ¢2 = (Y1 < ) and non-bisimilar LTS

For branching feature bisimulation we have a strict cowagpnce with branching bisimulation for all
products using the notion of a projection of an FTS. The ptmea results in an LTS.

Definition 5. Given an FTS = (S 6, s.) and a product Re P, the projectionSp ofS for the product P

is the LTSSp = (S, —p, S.), where s55p § if somey € B(F) exists such that s°% ¢ and PE y, for
s,§ € Sanda € A;.

We uses~p t to denote thas andt are branching bisimilar states for the projected ISES
Theorem 6. Let8 be an FTS with states s and t. It holds thatg t iff s~pt forall P € P.

Proof. SupposeR C Sx I@B(S’) x Sis a branching feature bisimulation relation wRs,frue,t). Pick
Pc P. DefineRp ={ (s,t') | 3¢: R(S,9,t') AP = ¢ }. We claim thatRp is a branching bisimulation
relation withRp(s,t). ClearlyRp is symmetric andRp(s,t), sinceR(s, frue,t) andP = true. In order to
verify the transfer condition foRp, supposeRp(s,t') ands’ Zsp s”. Pick, with appeal to the definitions

of Rp andSp, feature expressiorgs, (¢ such that ()R(s, §,t') andP = ¢, and (||)s’ Y, &' andP E .
SinceRis a branching feature bisimulation, we can fipd;, ni, ¢, ¢i and¢/, fori =1,...,n, such that

t/ £I> f\I M} tll/\ R(S[7 (ﬁia f:\I)a R(Slla ¢i/7 tIl) and P ': Vléién ni A LIJi N ¢i A ¢i/
fori=1,...,n. Choose such thatP = ni A s A ¢ A @/. Sincet’ = n g L2190

t|—> ,PENAY AP,
(a)

andR(s", ¢/,t/), we have by definition o$p andRe thatt’ = { —5p t” andRp(5",t/). Thus,Rp satisfies
the transfer condition, as was to be shown.

To prove the reverse implication, pick for eaBhe P, a branching bisimulation relatioRp such
thatRp(s,t). DefineRC Sx B(F) x SbyR={ (,9,t") | VP P: P ¢ < Rp(s,t) }. We verify that
Ris a branching feature bisimulation Cleaf(s, frue, t). In order to check the transfer condition fRy
supposeR(s, ¢,t') ands 2% &' Then it holds, for allP € P with P |= ¢, thatRp(s,t’). Moreover,
for all P € P with P = ¢, we haves %p ', Thus, for allP € P with P |= ¢ A, we can pickp, t,

andne, Y such thaP = np A P, t' 22 o {alde), tp andRp (S, fp) andRp (s, tp).

Supposg PP |P=oAY }={Pi,...,R}. Also, fori = .k, letfi,t/ andn;, g4 be shorthand
for fs,t andng, g, respectively. Sinck ):x( ), Rp(s’ t.)andRp(s” ), it holds thatR(s, @;, fi) and
R(s’, ¢/, 1) for q).,qbI € B(F) such thap(( ) = @i andx( ) = ¢/. We conclude that, far=1,... Kk, it

holds that’ 2L § %%, ¢ R(¢/,¢,6) andR(s", /,t/) while P|= ¢ A = P = Vicicn i A mp A,
which verifies the transfer condition f&: O
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The theorem asserts the soundness of branching featuneubasion for FTS with respect to branching
bisimulation for the projected LTS for all products. In thegsel, we propose an algorithm for mini-
mization of an FTS modulo branching feature bisimulatiod eampare, in a case study, verification of
properties against the minimized FTS to verification of griies against the minimized product LTS.

4 Minimization modulo coherent branching feature bisimulation

When minimizing an FTS we look for an FTSS' satisfyings ~¢ 8’ and such that it is the smallest in
‘size’. For branching bisimulation for LTS it is the casettadranching bisimilar LTS with the minimal
number of states also has the minimal number of transitiafisr(removal ofr-loops). Algorithms for
branching bisimulation reduction make use of this fact lnking for the unique LTS with the minimal
number of states. Unfortunately, this is not true for bramgtieature bisimulation, as is demonstrated
in Figure[4: The FTS andU are both branching feature bisimilar to F¥Sand both have the minimal
number of states. Howevaf, has twice as many transitions @s

551: a|true@ r\true@ a|true@ u
al-f a|f
J altrue altrue
el S LN LN C—
alf

Figure 4: Three branching feature bisimilar FTS

We see that the property of feature bisimulation that allmwsnerge multiple transitions with the same
label and different feature expressions into a single ttiansnow hinders us, since it also allows to split
transitions. To avoid this problem we restrictdoherentbisimulations (cf. Definitioi}4d). Thus, we

require that states & can only be related to states of the redu&tbr (supersets of) their reachability

set. Unfortunately, this recipe does not guarantee thanamal FTS is found, as Figufé 5 below shows,
but among all coherent branching feature bisimilar FTS dégorahm is able to find the smallest one,
see Theorern 12.

Figure 5: Minimal branching feature bisimilar vs. minimalherent branching feature bisimilar

In Figure[®, FTST is branching feature bisimilar to FT§ and has the minimal number of states and
transitions. However, when restricting to coherent brargfeature bisimulation relations, FTSis the
smallest FTS that can be obtained frénsuch thatS ~¢,s U. Note that the relatiolR with R(s;, f ,t1)
andR(s;, —f ,t,) is not coherent, since(s;) = true does not implyf nor —f. We will adapt the reduction
algorithm described in Sectidm 2 for minimization modulderent branching feature bisimulation.

Before describing the algorithm, we first show that the probbf coherent branching feature bisim-
ulation minimization is NP-hard by reducing the chromaticnioer problem to it: given a graph, what
is the minimum number of colors to color the nodes such thgcadt nodes have different colors? To
verify the construction, we need an auxiliary result.
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Lemma7. LetS = (S 6, 5) be an FTS with states s and t. IffRp(s)Ap(t), t) for a branching feature
bisimulation relation R, the8 ~q 8’ with states s and t related to a single stateSof

Proof. Let8’ = (S, 0/, s,) with S = (S\{s,t})U{r} for somer ¢ S with 6’(u,a,v) = 8(u,a,v) for u,ve
S,u,v#rand6'(u,ar) =0(uas)VvO(uat)foru#r, 8 (r,av)=0(sav)Vvo(,av), forv£r, and
0'(r,a,r) = Vqwe(st) 0(d,a,w), and finally withs, = s, if s, # s;t, ands, = r otherwise. Using thaR
is a branching feature bisimulation wiR(s, p(s) A p(t),t), one constructs a coherent branching feature
bisimulationR’ such thaR (s, p(s),r) andR/(t,p(t),r). O

Next we set the stage for a reduction of graph coloring to atidbranching feature bisimulation min-
imization. Consider an undirected gragh= (V,E) with nodes inV and edges ifE. Let A = {a},
F={fv|veV}andP={R |veV}. The FTSSg = (Sg, b, s1) of G is such thatss = {s1, S} U
{sy|veV } for distinct states; andsp, 6(s,a,v) = ey { ful (U,v) € G}V f, for all veV, and
0(v,a,s) = fy, and finally such thaf(s,a,s') = falsein all other cases.

Theorem 8. Let8(; be the minimal FTS that is coherent branching feature bisinto the FTSSg given
above. Then the number of statesS{nis equal to the chromatic number §fplus 2.

Proof. Let ' be a set of colors. Suppose V — I is a coloring ofG using all colors. Then the FTS
({s1,2}UT, 6y, s1), whereby(s1,a,C) = V)¢ 6(s1,8,%), 6/(C,a,%2) = Vyw)—c fuis coherent bran-
ching feature bisimilar t8¢ via the relatiorR such thaR(s, frue,s) for i = 1,2, andR(sy, p(su), y(u)).

Reversely, an FT8' that is coherent branching feature bisimilaSt9 can only identify states,, s,
for u,v € V. Hence such an FTS induces a coloring $orPick for each stats, a singles € S such
that R(s,, ¢,S) for a coherent branching feature bisimulatiBrrelating$ and§'. If statess, ands,
correspond to the same statesof there can be no edge betweeandv in §. For if (u,v) is an edge
in G, we haves; & u -3 s, ands; = v in the projection ofSg for the productp,, buts; 2 u -
ands; & v 2 s, in the projection o8¢ for the productp,.

It follows that the FTSS(; that is minimal coherent branching feature bisimila8¢ocorresponds to a
minimal coloring ofg. Moreover, the number of states different from the images ahds, corresponds
to the number of colors needed. O

Note how, in the proof above, the coherence conditioR(g ¢.s') thenp(s) = ¢’ enforces that for the
minimal FTSS8( the products that can reashin 8¢ are not split over multiple states 8};. From the
theorem we obtain the following result.

Corollary 9. Constructing a minimal coherent branching feature bistmfTS is NP-complete. O

Before we provide an algorithm for minimization of an FTS mlmdcoherent branching feature bisimu-
lation, we slightly generalize the notion of a partition @®d in Sectiofi]2, to allow a state to belong to
separate groups of products.

A collection B = { B; | i € | } of non-empty subsets of a s8tis called asemi-partitionof S if
(i) Uier Bi=S and (i) for j #i : Bj \ B # @. Thus,B coversSand noB; is strictly contained in ;.
Also, for a semi-partition its elements are referred tlgks We say that a semi-partitioB’ is a
refinement of a semi-partitioB if every block of B’ is a subset of a block 8. Likewise, we say that
B is coarser thaf®’. A semi-partitionB of Sinduces a relation-g on S(not necessarily an equivalence
relation), where two elements 8fare related iff they are included in the same blockBof
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Given an FTSS = (S 6, s.), we first do some preprocessing. We eliminate unreachadessand
strengthen the transition constraint with the reachabdandition for its source state:

S:={seS|p(s) #y false} and O(sa,d):=0(sa,s)Ap(s)

We define the sefl; of so-called featured labels b§s = { (a,¢) | Is,t3a: B(s,a,t) = YA Y %y
false}. For a semi-partitiorB of S, B,B’ € B and featured labdla, ) € A we let

non-neg, )(B,B’) = {s€B|YPeP, PE=p(sAY: Indsy, ..., 5n €BIS € B' Iy, ..., Yn, Y

S=sA(Vi,1<i<n:is_ MsAPhwi)Asq MS’AP):LIJ’},

and define its subsetos, y)(B,B') to include alls € non-neg, ,)(B,B') for which ¢ = p(s) and

S AW o for s € B, s € B' as above. Moreover, we defimeg, 4(B,B’) = B\ non-neg, ,(B,B").
We know for sure that two stateandt of a blockB are behaviorally different, & € pos, 4(B,B’) and

t € negq ¢ (B,B'). Therefore, we say th& is asplitter of B with respect tqa, ¢) if B# B ora # 1,
andposq ¢ (B,B'),negqq ) (B, B') # @ (meaning there is at least one state in plosset that must do
an actualr-step to reacl®’). If B is a semi-partition oSandB'’ is a splitter ofB with respect tqa, ¢),
then the semi-partitiorB’ is obtained fromB by replacing blockB by B; = non—negavw(B, B') and
B2 = B\ posq (B, B’). However, in the case th& or B, is a subset of another block in the partition
(apart fromB), it is not added to ensure th@t is a semi-partition.

The minimization algorithm starts from the trivial semirigon {S}, and keeps refining the semi-
partition until no splitters are left. This results in theacgest semi-partition, but still a block may
be covered completely by other blocks. Therefore, as pw&tgssing, we remove as many blocks as
possible from the semi-partition, while preserving the ispattition properties, to find the smallest semi-
partition (e.g. using an algorithm for the minimum set cqwarblem).

B :={S};
while a splitterB’ for a blockB with respect to a featured lab@t, ) existsdo
B :=B\{B};

if non-neg, 4(B,B’) C B" fornoB” € B then B := B U {non-neg, 4(B,B')} end;
if B\ posq,y)(B,B') € B” for noB” € B then B := B U {B\ pog, ¢ (B,B')} end
Bmin := smallest subset @& coveringS;

It is easy to see that the algorithm terminates: Note that afich iteration at least two states have been
permanently split from each other. Since there are less|8fapossible pairs of states B termination

will occur in at most|S? iterations. In the theorem below, we call a semi-partitiba stablepartition
with respect to a bloclB’ if for no block B and for no featured labél, ), B’ is a splitter ofB with
respect tq a, ). The semi-partitior€ is itself called stable i€ is stable with respect to all its blocks.

Lemma 10. For an FTSS = (S, 0, s.), Bmin Obtained from the algorithm is the smallest stable semi-
partition refining{S}.

Proof. We show by induction on the number of iterations of the athami that each stable partition
refines the current semi-partitidh Let C be a stable semi-partition. Clearly the statement holdisuily]
each semi-partition refindsS}. Suppose refines semi-partitio3 obtained after a number of iterations
and suppose a splitt®’ of a blockB exists with respect to a featured laljel, ). It suffices to show
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that any bloclC of € is included in a block of3’, the semi-partition obtained by splittifgy Pick a block
of B containingC. If this block is different fromB, we are done. So, suppoSeC B. We have to show
that eitheiC C non-neg, ,(B,B’) or C C B\ pog, (B, B').

Supposest € C with s € pos, ) (B,B') andt € neg, ¢(B,B'). We derive a contradiction. Pick a
productP € P such thaP |= (. Such a product exists by definition 4¢. Chooses, ..., s, €B,s € B,

Yr,...,Un, P € B(F)suchthay=s,5_1 M sforl<i<ngs M s, and moreoveP = ;, for

1<i<n,andP ¢’ LetCy,...,C,,C be the blocks o€ such thas € C; ands € C'. Note thaC; C B,
for 0 <i < n, andC’ C B'. Using the fact that is stable we can construct a sequetige..,tm € B,

t'eB, ¢1,....,0m,¢" € B(F) such thatty =t, ti_; ﬂ tfor1<is<m,t, M t’, and moreover

P = ¢i for 1<i<m, andP [= ¢’. This contradicts € neg, 4)(B,B’), and proves the induction step.
Finally, we observe thabn,, itself is a stable semi-partition that refingS}. O

Lemma 11. Let 8 = (S 6, s.) be an FTS, and’ = (S, ', s,) be an FTS such tha ~¢ 8’ by a
relation R. Then R defines a stable semi-partit®of S such that s-¢ t iff 3r € S: R(s,p(s),r) A

R(t, p(t),r).

Proof. We have to show that is stable indeed. Suppose that there are bl&Bs in € such thal®' is
a splitter ofB with respect to a featured labgd, /). This means there are stateandt in B such that
S€ PoSq,y)(B,B’) andt € neq, (B, B'). We pickP € P such thaP = p(s) A p(t) A . By definition

of the posset there exisk,...,sy € B, S € B, Y1,...,Un, ¢ € B(F) such thatsg =s, 5_1 LILN S

fori<i<n s, M s, and moreoveP |= i, for 1 <i < n, andP = ¢. Sinces, € B we have,

by construction of2, both R(sy, p(sn),r) andR(t, p(t),r) for suitabler € 8’. Therefore, there exists a
feature bisimulation relatio® on 8 such thatR (s,,p(s\) A p(t),t). Using the transfer condition of
this relation we can construct a sequetge. . ,tn € B, t' € B, ¢1,...,¢m, ¢’ € B(F) such thaty =t,

ti_1 m tiforl<i<mt, M t’, and moreoveP = ¢; for 1 <i < m, andP |= ¢’. This contradicts
t € negq ¢(B,B'), and proves that is stable. O

We are now in a position to prove the correctness of the madtion algorithm.

Theorem 12. Assume thaB is the partition obtained upon termination after applyirige talgorithm to
the FTSS = (S 0, s.). Define the FTSmin = (B, Omin, B,) by letting (i) Bmin(B,a,B) = V{ 6(s,a,9) |
seB,s € B } with BB or a # 1, and (ii) by choosing Bsuch that s B,. ThenSmj, is the smallest
FTS that is coherent branching feature bisimilar&o

Proof. By Lemmal10 we have tha&b, is the smallest stable semi-partition refinifig}. It suffices
to show, using Lemm@l 7, that a coherent branching featummdistion for 8 and Sy, exists. Since,
by Lemmd1ll we have that every coherent branching featuirddegion relation fromS to an FTSS’
induces a stable semi-partition ¢8}, implying thatSy, is indeed minimal. O

Thus, given an FTS, we continue to refine the trivial semi-partition until no raplitter can be found.
Splitting a block is done cautiously: (i) it must eliminatsglitter and (i) it must yield a semi-partition
again. The final semi-partition that is reached induces &\Jg], that is the smallest FTS that is coherent
branching feature bisimilar t8. The next section reports on a small case study using thimapip.
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5 Experimental evaluation

We extended the example SPL of a coffee vending machineidedan [1-4] with a soup component
running in parallel. The complete SPL consists of 18 featared 118 products and the FTS modeling it
contains 182 states and 691 transitions. The details oBtRlscan be found in Appendix]A. Basically,
each product contains the well-known beverage componehbtionally a soup component, and allows
the insertion of either euros or dollars (returned upon a&elnn either of its components. The user
chooses a beverage (sugared or not) among those offeredgacbffee, cappuccino only for euros) or
else a type of soup (at least one among chicken, tomato, pea)user must place a cup to get soup. A
cup detector is optional (mandatory for dollars). When @néssoup is only poured if a cup was placed,
else soup may be spilled. Placing a cup may need to be repéaiaddetected. A soup order may be
canceled until a cup is detected. Optionally, a sharedaimgimay ring after delivery (mandatory for
cappuccino), after which the user takes a cup (with a drirdoop) and can again insert money in either
component. Concrete features have an associated cosf@eedustract features) and the total cost of a
product, summing the costs of the features it includes, doeexceed the fixed upper bound of 35.

We used the mCRL2 toolset to verify the 12 properties listedppendix'A against this SPL, both
product-by-product and by using the FTS-based family eggralescribed in [3]4], and both with and
without branching (feature) bisimulation minimizationorRhe approach with bisimulation we applied
branching feature bisimulation to the FTS, resulting indumed FTS, which we projected to obtain the
reduced LTS for each product. The results are shown in Tabterlthe product-by-product approaches,
generating the projections for all products is includedhie tomputation time, and so is the time for
bisimulation reduction in case of the approaches with hiation. To even out effects caused by other
processes running whilst performing the experiments,aaiutation times are averaged over 5 runs.

Regarding the product-by-product approach, performisgriilation reduction for the product LTS
reduces the computation time by about 8%. For properfiyhi (SPL is deadlock-frigethe computation
time with bisimulation is significantly larger than for othgroperties. In this case abstraction does not
reduce the LTS. A similar observation holds for propertie@f a coffee is ordered, it is eventually
poured, 5a (f a beverage is ordered, then eventually it is canceled oupis takeh and 5b (f soup is
ordered, then eventually it is canceled, a cup is taken octiomer has bad lugkwhich are false, but
deemed true after applying bisimulation reduction. Thayesthat something eventually happens, which
is not true in reality since the two components are runningarallel, thus abstraction creates infinite
loops that allow postponing that something indefinitely. pAng bisimulation reduction causes these
loops to be abstracted from completely, making the progetiiue for the reduced system. However,
standard tricks, like the explicit signaling of the end ofale, could be applied to alleviate this problem.

Now consider the FTS-based family approach. Without apgijdisimulation reduction, the total
computation time increases by almost 50% with respect tptbauct-by-product approach. Hence, for
this SPL, FTS-based verification with mCRL2 is not beneficiaihpared to regular enumerative veri-
fication. However, if we apply bisimulation reduction, thine FTS-based computation times decrease
by >70%. Only property 2 still needs more computation time thmaté product-based approach (again
because abstraction is not beneficial for the verificatiblote that in case less actions are involved in a
property, it is possible to abstract from larger parts of fii&, implying faster verification. This effect
was much less in the product-by-product approach. Heneentre local a property, the more beneficial
it is to perform FTS-based family verification in combinatiith branching feature bisimulation reduc-
tion using mMCRL2. Obviously, this observation needs to bdiomed by experimenting with different
SPL, but based on this example the techniques proposedsipdper look rather promising.
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50) PRODUCFBY-PRODUCT FTS-BASED FAMILY APPROACH
SUWWITHOUT BISIMULATION [WITH BISIMULATION |WITHOUT BISIMULATION |WITH BISIMULATION
g" TIME (S) RESULT TIME (S) | RESULT | TIME (S) RESULT TIME (S) | RESULT
1 42.04 FALSE 38.18| TRUE 52.96 FALSE 13.60| TRUE
2 41.78 TRUE 41.65| TRUE 53.86 TRUE 53.69| TRUE
3a 42.32 TRUE 37.76| TRUE 70.57 TRUE 7.70| TRUE
3b 42.01 TRUE 37.78| TRUE 59.96 TRUE 7.98| TRUE
4a 40.62 TRUE 38.00| TRUE 24.18 TRUE 8.65| TRUE
4b 40.20 TRUE 37.88| TRUE 20.78 TRUE 10.68| TRUE
5a 42.38 FALSE 38.51| TRUE 66.08 FALSE 18.59| TRUE
5b 42.34 FALSE 38.09| TRUE 69.95 FALSE 14.92| TRUE
6 43.63 TRUE 39.17| TRUE 105.35 TRUE 29.72| TRUE
7a 42.45 TRUE 38.19| TRUE 71.07 TRUE 13.84| TRUE
7b 42.35 TRUE 38.04| TRUE 79.05 TRUE 9.48| TRUE
8 42.82 TRUE 39.09| TRUE 80.69 TRUE 20.47| TRUE
TOT| 504.94 462.34 754.50 209.32

Table 1: Experimental evaluation results (time in seconds)

6 Concluding remarks

We have defined a novel notion of branching feature bisiityldor FTS and an algorithm to minimize
an FTS modulo coherent branching feature bisimulations Thimplements and formalizes part of the
feature-oriented modular verification approach of SPL witbRL2 that we outlined ir_|3]4]. An initial
application of the minimization algorithm to a simplistiPSpromises significant verification speed-ups.

It remains to establish the subset of the madadalculus that is preserved by (coherent) branching
feature bisimulation, i.e. what properties are respectedur reduction technique. It is known that
branching bisimulation preserves mogaformula without the next operatar/[9]. Theoréin 6 may be used
to lift the result to branching feature bisimulation, if thepertyS = ¢ iff Sp = ¢ is to hold. We leave
this to future work. It would also be interesting to see whethe minimization algorithm’s complexity
can be reduced, possibly by lifting some optimizations ftbemGroote & Vaandrager algorithm for LTS
to our FTS setting, or split multiple blocks based on a sirsplétter.

Finally, we plan to evaluate our modular verification appgioan a more realistic SPL. By expanding
the SPL of a coffee vending machine to examples growing i si2 may see if the exponential blow-up
forecast by the NP-completeness result of Thedrem 8 cambedyin particular to observe at what point
reduction time outweighs the gain of family-based verifarat As noted by one of the reviewers, family-
based verification approaches perform better on larger imgleth in terms of states and variability),
whereas reduction techniques are difficult to apply on reaystrial models. We hope that the idea,
sketched in[[B], to exploit the inherent modular structufeSPL to guide the abstraction, will prove
fruitful in finding balance in this trade-off and help to comgwith automated support to reduce a system
given a property. For this it is useful to reconstruct theegipents reported i [7] and to compare the
performance gain. Also a study of the relationship of theopter proposed iri [7] to the equivalences
put forward here, is an interesting topic of research that imerease our understanding of the interplay
between variability and internal behaviour.
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A Example SPL

Here we provide the details of the example SPL used for therarpnts described in Sectibh 5. Itis an
extension of the coffee vending machine describedlih![1-i4] & soup component running in parallel
with the usual beverage component. It has the followingpligtinctional requirements:

e Each product contains a beverage component. Optionadly,eaboup component is present.

o Initially, either a euro must be inserted, exclusively far&pean products, or a dollar must be in-
serted, exclusively for Canadian products. The money candegted in either of the components.

e Optionally, money inserted in a component can be retrieved eancel button, after which money
can be inserted in this component anew.

e If money was inserted in the beverage component, the usetohasoose whether (s)he wants
sugar, by pressing one of two buttons, after which (s)he ebatsa beverage.

e The choice of beverage (coffee, tea, cappuccino) varigsdiiee must be offered by all products
whereas cappuccino may be offered solely by European ptaduc

e Optionally, a ringtone may be rung after delivering a begeraHowever, a ringtone must be rung
by all products offering cappuccino.

e After the beverage is taken, money can be inserted agairibdai»erage component.

¢ If money was inserted in the soup component, the user hasamseha type of soup (chicken,
tomato, pea). The types of soup offered vary, but at leastygeemust be offered by all products
with a soup component.

e The soup component does not contain cups to serve the souieimce, the user has to place a
cup to pour the soup in. Optionally, a cup detector may begniteis the soup component. It is
required that all Canadian products with a soup component@uipped with a cup detector.

e If cup detection is present, the chosen type of soup will dydelivered after a cup has been
detected by the soup component. However, the cup detectpfaihdo detect an already placed
cup, after which the user will have to place it again. If a edroption is available, the user may
cancel the order as long as no cup has been detected.

e If cup detection is not present, the soup will be deliveredhadiately after a type of soup was
chosen, regardless of whether a cup was placed. If no cuplaeedihere will be no soup to take.

e Optionally, a ringtone (shared with the beverage compgmaay be rung after delivering soup.

e If a cup was present, money can be inserted again in the sonpareent after the soup is taken.

These yield the attributed feature model in Fidure 6 and #abioral models in Figur€s 7 and 8.
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Figure 6: Feature model of family of coffee vending machines

In the attributed feature model, mandatory (core) feataresnarked by a closed bullet, optional features
by an open one. Exactly one of the featukeandD is selected, while at least one of the featl€&PS
andT Sis selected. As to cross-tree constraints, featBraadD exclude each other, featuRerequires
featureR, and the simultaneous selection of featubeandSCrequires featur&). The value of the cost
attribute of the concrete features is put inside a smalleciiice. costX) = 10). Finally, as an additional
constraint, we require that the total costs of all selectediures does not exceed the threshold 35.

pour sugar / W

pour sugar / W

insertBev(Euro) / E

cancelBev/ X

insertBev(Dollar) / D

skip /=R

take cup /M

Figure 7: FTS of beverage component
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The FTS of the beverage component contains 14 states anal@Ritvns and that of the soup component
contains 13 states and 28 transitions, for a total of 182statd 691 transitions in parallel composition.

bad luck /-U

take soup /M

cup present/ U

skip /-U

place cup /M

U skip /=R

ring /R
pour tomato / T 9

cup present/ U

4 P 9

=" pour chicken/ CS

chicken/CS

place cup /M

insertSoup(Dollar) / D
‘ U

cancelSoup/
pea/P

cup present/ U

cancelSoup / X

cancelSoup / X
place cup /M

U

Figure 8: FTS of soup component

As reported in Sectionl 5, we used the mCRL2 toolset to vefprbperties against this SPL. These
properties are listed next, together with their formalain the mCRL2 variant of the modgtcalculus.

1. If a coffee is ordered, then eventually coffee is pouféde . coffed (muX.[! pour_coffeéX)
2. The SPL is deadlock-fregtruex| (true) true
3a. A machine that accepts Euros does not accept Dollars:
[truex.(insertBeVEuro) || insertSoupEuro)).truex.(insertBeyDollar) || insertSougDollar))] false
3b. A machine that accepts Dollars does not accept Euros:
[truex.(insertBeyDollar) || insertSougDollar)).truex.(insertBeyEuro) || insertSougEuro))] false
4a. A cup can only be taken out of the beverage componentalieverage was ordered:
[(!coffee&& ! tea&& ! cappuccing = . take_cup false
4b. A cup can only be taken out of the soup component after s@aspordered:
[('tomato&& ! chicken&& ! pea) . take_soupfalse
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5a. If a beverage is ordered, then eventually the beveratpmiseled or a cup is taken out of the bev-
erage componenfttruex . (coffee|| tea|| cappuccing] (muX.[(! cancelBe&& ! take_cup]X)

5b. If soup is ordered, then eventually the soup is cancaledp is taken out of the soup component
or the customer has bad luck:
[truex . (tomato|| chicken|| ped) | (muX.[(! cancelSouk& ! take_soug®& ! bad_luck | X)

6. If the machine has a soup component, then a beverage cardérea without inserting more
money after soup was ordergdruex. (insertSougEuro) || insertSougDollar)) | (truex. (tomato||
chicken|| pea). (!insertBeyEuro) && ! insertBeyDollar)) « . (coffee|| tea|| cappuccing) true

7a. A beverage cannot be ordered without inserting more ynibraeprevious beverage order is still
pending:[truex.(coffee|| tea|| cappuccing.(linsertBeyDollar) &&! insertBeVEuro)) .(coffee||
tea|| cappuccing] false

7b. Soup cannot be ordered without inserting more moneyaéip srder is pendingtruex. (tomato||
chicken|| pea). (!insertSoupDollar) && ! insertSoupEuro)) «. (tomato|| chicken|| peg) | false

8. Inamachine with cup detection, soup can only be poured@étecting a cuptruesx.cup_present
[truex. (take_soup| bad_luckK. (! cup_present«. (pour_tomatd| pour_chicken| pour_peg] false
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