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Services are autonomous, self-describing, technologyralesoftware units that can be described,
published, discovered, and composed into software apjgitaat runtime. Designing software
services and composing services in order to form applicatar composite services requires ab-
stractions beyond those found in typical object-orienteaypamming languages. This paper ex-
plores service-oriented abstractions such as servicdataap discovery, and querying in an object-
oriented setting. We develop a formal model of adaptiveaihjeiented groups which offer services
to their environment. These groups fit directly into the abjeriented paradigm in the sense that
they can be dynamically created, they have an identity, laeyl¢an receive method calls. In contrast
to objects, groups are not used for structuring code. A geygorts its services through interfaces
and relies on objects to implement these services. Objeaygain or leave different groups. Groups
may dynamically export new interfaces, they support serdiscovery, and they can be queried at
runtime for the interfaces they support. We define an opmratisemantics and a static type system
for this model of adaptive object groups, and show that wgled programs do not cause method-
not-understood errors at runtime.

1 Introduction

Good software design often advocates a loose coupling leettree classes and objects making up a
system. Various mechanisms have been proposed to achisyittuding programming to interfaces,
object groups, and service-oriented abstractions sudrases discovery. By programming to interfaces,
client code can be written independently of the specificseashat implement a service, using interfaces
describing the services as types in the program. Objecipgrtmosely organize a collection of objects
that are capable of addressing a range of requests, refi¢letirstructure of real-world groups and social
organizations in which membership is dynamic![18]; e.ghssuiption groups, work groups, service
groups, access groups, location groups, etc. Servicewdiscallows suitable entities (such as objects)
that provide a desired service to be found dynamically, gdlyebased on a query on some kind of
interface. An advantage of designing software using thesehamisms is that the software is more
readily adaptable. In particular, the structure of the geocan change and new services can be provided
to replace old ones. The queries to discover objects aredbmsénterface rather than class, so the
software implementing the interface can be dynamicallyjaegm by newer, better versions, offering
improved services.

This paper explores service-oriented abstractions susbraike adaptation, discovery, and querying
in an object-oriented setting. Designing software sessiaed composing services in order to form
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2 A Type-Safe Model of Adaptive Object Groups

applications or composite services require abstracti@ysid those found in typical object-oriented
programming languages. To this end, we develop a formal hud@elaptive object-oriented groups that
also play the role of service providers for their environtnérhese groups can be dynamically created,
they have identity, and they can respond to methods calidpgously with objects in the object-oriented
paradigm. In contrast to objects, groups are not used farutixg code. A group exports its services
through interfaces and relies on objects to implement teesgces. From the perspective of client code,
groups may be used as if they were objects by programmingtéofaces. However, groups support
service-oriented abstractions not supported by objecatispatticular, groups may dynamically export
new interfaces, they support service discovery, and theypeagqueried at runtime for the interfaces they
support. Groups are loosely assembled from objects: abjaaty dynamically join or leave different
groups. In this paper we develop an operational semantidsaastatic type system for this adaptive
group model based on interfaces, interface queries, gramsb service discovery. The type system
ensures that well-typed programs do not cause methodru®rstood errors at runtime.

The paper is organized as follows. Sectidn 2 presents tlgudaye syntax and a small example.
A type and effect system for the language is proposed in @e@iand an operational semantics in
Sectior 4. Sectionl5 defines a runtime type system and shatvihthexecution of well-typed programs
is type-safe. Sectidd 6 discusses related work and Sédttoncludes the paper.

2 A Kernel Language for Adaptive Object Groups

We study an integration of service-oriented abstractiaraiobject-oriented setting by defining a kernel
object-oriented language with a Java-like syntax, in tigkesif Featherweight Java [14]. In contrast to
Featherweight Java, types are different from classessidahguage: interfaces describe services as sets
of method signatures and classes generate objects whidénmapt interfaces. By programming to inter-
faces, the client need not know how a service is implemeriedthis reason, the language has a notion
of group which dynamically connects interfaces to impletatons. Groups are first-class citizens; they
have identities and may be passed around. An object may dgablyrjoin a group and thereby add new
services to this group, extending the group’s supportezifaxtes. Objects may be part of several groups.
Both objects and groups may join and leave groups, thereyatmg their services between groups.
The kernel language considers concurrent objects whigraat by synchronous method calls. Con-
current activities are triggered by instantiating classéhk r un methods (similar to overriding the run
method of Java’s Thread class). This simple concurrencyefrisdelevant for service-oriented systems.

2.1 The Syntax

The syntax of the kernel language is given in Figure 1. A typi the kernel language is either a
basic type, an interface describing a service, or a groupteffaces. Aprogram Pconsists of a list
IF of interface declarations, a li€L of class declarations, and a main blogk X;s}. The main block
introduces a scope with local variabe$yped by the type3’, and a sequenceof program statements.
We conventionally denote ¥a list or set of the syntactic constructin this case, a program variable),
and furthermore we writ& X for the list of typed variable declaratioiis x1; ... ; T, X, where we assume
that the length of the two list§ andx is the same. The typeE are the basic typ8ool of Boolean
expressions, the empty interfadey, the names of the declared interfaces, and group ty@esup(I)
which state that a group supports thelset interfaces. The use of types is further detailed in Sed@io
including the subtyping relation and the type system.
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Interface declarations IFassociate a namewith a set of method signatures. These method signa-
tures may be inherited from other interfa¢es they may be declared directly 8g A methodsignature
Sgassociates a return ty@ewith a namem and method parametexswith declared type3'.

Class declarations Clhave the forncl ass C(T X)inpl enents | {T; X3;{T> Xz;s}; M} and asso-
ciates a class nan@to the services declared in the interfadesn C, these services are realized using
methods to manipulate the fields of typesT;. The constructor blocKT, X3;s} initializes the fields,
based on the actual values of the formal class paranmetétypesT. Remark that the constructor block
is executeagsynchronouslyConsequently, it can be used to trigger concurrent aigs/gtarting in a new
instance of a class. The methddshave a signatur8gand a method bodyT X; s;return X; } which
introduces acopewith local variables of typesT where the sequence of statemesitsexecuted, after
which the expressioais returned to the client.

The expressions ef the kernel language consist of Java-like expressionsefaling program vari-
ablesx, method callsx.m(X) where the actual method parameters are give,tgnd object creation
new C(X) where the actual constructor parameters are giver yethod calls are synchronous and in
contrast to Java all method calls are synchronized; i.allardlocks until a method returns and a callee
will only accept a remote call when it is idle. For simpligithe kernel language supports self-calls but
not re-entrance (which could be addressed using threattidsras in Featherweight Java [14]). In addi-
tion, we consider two expressions which are related to sewwriented softwareiewgr oup dynamically
creates a new, empty group which does not offer any sernvicietenvironmentService discovergnay
be localized to a named groypthe expressioacquire | i nyexcept X finds some groupg or objecto
such thag or o offers a service better thdan(in the sense of subtyping) and such thatr o is not in the
setx. If thei n y clause is omitted, then the service provider o may be found anywhere in the system.

Thestatements ef the kernel language include standard statements suth psassignmentg = g,
sequential compositios;; s, conditionals, andhi | e-loops. To simplify the kernel language, we keep
a flat representation of expressions; i.e., expressions lpeusssigned to program variables before they
can be used in other statements. Service interfaaegsdynamically exportedhrough a grouyy by the
expressiorxj oi ns y as I, which states that object or grovps used to implement the interfacem the
groupy. Consequentlyy will support the interfaceb afterx has joined the group. Objects and growups
may try to withdraw service interfacé$rom a groupy by the expressior| eaves yas | {s;1} el se {s;}.
Withdrawing interfaces from a group can lead to runtime piioes which need to be handled either by
the client or by the service provider. In our approach, theepion is handled on the server side; i.e.,
withdrawing interfaced from y only succeeds iff continues to offer all the interfaces bf exported
by other objects or groups. Thus, removals may not affectythe ofy. If the removal is success-
ful then branchs; is taken, otherwises, is taken. In addition, the language includes the statement
XsubtypeO 1y {si} el se {s;} which is used ta@uerya known groupx about its supported interfaces.
The statement works like a conditional and branches theuégecdepending on whether the query suc-
ceeds or not. Ik offers an interface better thdn the expanded knowledge of the groxfpecomes
available through the variabiein the scope of the statemersts If x does not offer an interface as good
asl, the brancls; is taken. Remark the introduction of a new name for the grosjgée the scope, which
ensures that the knowledge of the extended type is local.syByactic sugar, the variableneed not
appear in the surface syntax).

2.2 Example

We illustrate the dynamic organization of objects in grobgsan example of software which provides
text editing support (inspired by [22]). This software pd®s two interfacesspel | Checker allows
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Syntactic Categories. Definitions.
C:Class name P == TFCL{TXs}
| :Interface name T == Bool|Any|l|G oup(T)
T :Type name IF == interfacel extends I{Sg}
m: Method name CL == classCTxinplenents1 {Tx{T xs};M}
Sg = Tm(TX)
M = Sg{Tx sreturnx}
e = x|xm(X)|newC(X) newgroup|acquirel[inx except x
s u= skip|x=e|ss|if x{s} el se{s}|whil e x{s}

| xjoinsxasT|xleaves xasT {s} el se {s}
| xsubtypeOF Ix{s} el se {s}

Figure 1: Syntax of the kernel language. The type namegxlude interfaces namésandBool. Square
brackets [] denotes optional elements.

the spell-checking of a piece of text abdcti onary provides functionality to update the underlying
dictionary with new words, alternate spellings, etc. Agestn an underlying shared catalog of words,
these two interfaces need not share state and may be impkney different classes. Let us assume
that the overall system contains several versior@ of i onary, some of which may have an integrated
Spel | Checker. Consider a class implementing a text editor factory, wini@nages groups implement-
ing these two interfaces. The factory has two methedgeEdi t or dynamically assembles such soft-
ware into a text editor group am@pl aceDi ct i onary allows theDi cti onary to be dynamically replaced
in such a group. These methods may be defined as follows:

G oup(Spel | Checker, Di cti onary) makeEditor() {
G oup(D) editor; Spell Checker s; Dictionary d;
editor = newgroup;
d = acquire Dictionary except enptyset;
d subtypeOr Spel |l Checker ds {
ds joins editor as Dictionary, Spell Checker;
} else {
d joins editor as Dictionary;
s = new Spel | Checker();
s joins editor as Spell Checker;
}

return editor;

}

voi d repl aceDi cti onary(G oup(Spel | Checker, Di ctionary) editor, Dictionary nd){
Di ctionary od;
nd joins editor as Dictionary;
od = acquire Dictionary in editor except nd;
od | eaves editor as Dictionary {skip;} else {skip;};
return;

}

The methodrakeEdi t or acquires a top-level servigewhich exports the interfada ct i onary (since
there is na n-clause in theacqui r e-expression). Ifi also supports thepel | Checker interface, we let
d join the newly created grougdi t or asbothDi cti onary andSpel | Checker. Otherwised joins the
edi tor group only asi ctionary. In this case a newgpel | Checker object is created and added to
the group aspel | checker. Remark that we assumed the presence of sewecal onary services in
the overall system, otherwise the initidqui r e-expression may not succeed and execution could be



J. Bjark, D. Clarke, E. B. Johnsen & O. Owe 5

(T-CALL)

o (T-NEw)
(T-VAR) FrEx:T rEx:T
_ MEx:ptypesC) C=<I
ME=x:T(x) matchm, T,T')  retTypeT’,m) =T
M-newC(x): |1
Me=xmx):T
T-ACQUIRE T-SuB
(T-GrRouP) ( N ) (, )
M-y:Goup(S T<T Ttre:T
I - newgr oup : Gr oup(0) - -
racquirelinyexcept x:l M-e: T

Figure 2: The type system for expressions.

blocked at this point. The kernel language could be extebgiedmore robust version atqui r e which
uses branching (similar teubt ypef ); in fact, inside a groum, robustness may be obtained by first
checking for the existence of an interfdci g usingsubt ype and then binding to the object or group
implementingl in g usingacqui re.

The method epl aceDi cti onary will replace thebi cti onary service in a text editor group. First
we add the nevmi cti onary servicend to theedi t or group and then we fetch the old serviaein the
group by means of ascqui r e, where theexcept -clause is used to avoid binding to the new servit¢e
Finally the old servicend is removed a®i cti onary in the group by a eave statement. The example
illustrates group management by joining and leaving meshamas well as service discovery.

3 A Type and Effects System

The language distinguishes behavior from implementatipnsising an interface as a type which de-
scribes a service. Classes are not types in source progfaniass can implement a number of service
interfaces, so its instances can export these serviceietast| A program variable typed by an interface
can refer to an instance of any class which implements thetfate. A group typed b@& oup(l) ex-
ports the services described by thelset interfaces to clients, so a program variable of typeay refer

to the group ifl €. We denote byAny the “empty” interface, which extends no interface and desla
no method signatures. A service described by an interfageamasist of only some of the methods
defined in a class which implements the interface, so integfdead to a natural notion of hiding for
classes. In addition to the source program types used byrtigggmmer, class names are used to type
the self-reference hi s; i.e., a class name is used as an interface type which exalbiise methods
defined in the class.

Subtyping. The subtype relatior is defined as the transitive closure of the extends-relatiomter-
faces: ifl extends) andJ' < JorJ =J, thenl < J. Itis implicitly assumed that all interfaces extends
Any, so we letl < Any for all I. A group typeG- oup(S) is a subtype of if there is some) € Ssuch that

J <, andG oup(S) < Group(S) if for all J € S there is somé € Ssuch that < J. We extend the
source language subtype relation by letting a class be gmsilof all its implemented interfaces. The
reflexive closure of is denoted<.

Typing contexts. A typing contextl" binds variable names to types. [Mfis a typing contextx a
variable, and’ a type, we denote bgom(I") the set of names which are bound to typeE ifthe domain
of ') and byT (x) the type bound to in . Define theupdatel [x — T] of a typing context™ by
F[x— T](x) =T andl[x — T](y) = ['(y) if y # x. By extension, ifx andT denote lists, ..., X, and
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(T-SKiP) (T-ASSIGN) (T-RETURN) (T-CoMPOSITION)
-SKIP
F - ski K Mr-e:r(x M=s:ok(d) ToAERX:T FEs:ok(A1) Tolgk s :ok{Ay)
skip:o
P M-x=e:ok Frsreturnx:T Ikss:ok(A1oAy)
(T-CONDITIONAL) (T-WHILE)
F(x)=Bool Tksi:ok(A1) TFsp:ok(A2) I(x) =Bool Tk s:ok(A)
FEif x{s1}el se{s}:0k({A1NAL) I = whi | e x{s}: ok(A)
(T-LEAVE)
(T-JoIN)

r(x)<1 T(y)=Goup(S
MEsi:ok(A1) TEspiok(A2)
r=xleaves yasT {s;} el se {s}:0k({A1NAy)

locally) T(y)=Goup(S T (x)<T
I+xjoinsyas I:ok{y— G oup(Sul))

(T-INSPECT) (T-METHOD)
r(x)=Goup(S y¢domr) M=Tx=T,X =T
Fly— Goup(SU{I})]Fsi:0k(A1) T Fsy:ok{fy) MEsreturne:T(A)
r-xsubtyped Iy {si} el se {s}:0k(A1NAy) FET" m(TX{T’ ¥;sreturn x}:ok
(T-CLASS) (T-PROGRAM)
I [this+— C, Xz — T,] - M : ok Mx— T]+Fs:ok(A)
C<T Tthis—C,Xz+— To.Xg — T1,X5 — Ta] Fs: 0k (A) YCLeCL-T +CL: ok
Iclass C(T1 x1) i npl enents 1 {T; Xz;{T3 X3;s}; M} : ok I+=1F CL {T x;s}: 0k

Figure 3: The type and effect system for statements, metltaisses, and programs.

T1,. .., Th, we may writel’ [X— T for the typing context [x3 — T1]...[X, — Tp] andl" [Xg — T, %z +— T3]
for I'[Xg — T1][%z — T>|. For typing context$ ; andl,, we define; o, such thal 3 o[ (x) = Mp(X) if
x € dom2) andlMyoMa(X) = M1(X) if x¢& dom(T 7).

For typing context$ ; andl", we define thentersectionl 1Ny by F1NI2(X) =T if T is the best
type such thal'1(x) = T1, M2(X) = To, andTy < T and T, < T. In particular, we havé 1 NI 2(x) =
G oup(S NS if M1(x) =G oup(S) andlz(x) = G oup(S).

The Type and Effect System. Programs in the kernel language are analyzed using a typefteud
system (e.g./]2,19, 24]). The inference rules for expoessare given in Figuriel 2 and for statements,
methods, classes, and programs in Fifire 3.

Expressionsare typed by the rules in Figufé 2. LEtbe a typing context. A typing judgment
I e: T states that the expressieras the typd if the variables ire are typed according to. By T-
VAR, variables must be typed In Method calls to a methogh on a variablex are typed tdl if x has the
(interface) typ€l’ such that the typeE of the actual parametexgjive a match fomin T’ with parameter
typesT and the declared return type ofin T' is T. In T-NEw, new C has typel if the types of the
actual parameters to the class constructor can be typeeé tiettlared types of the formal parameters of
the class, by means of the auxiliary functiptypes and the class implemenitsexpressed b§ < 1. We
omit the definitions of the auxiliary functiomaatchandretTypehere, these are straightforward lookup
functions on the program'’s interface table which perfore itiatching and retrieve the return type of a
method in a class, respectively. Similanbtypesretrieves the types of the formal parameters to a class
in the program’s class table. By TR®UP, a new group has the empty group type (with no exported
interfaces). By T-AQUIRE, service discovery has the obvious type, if successful. preeise of the
rule is omitted if the statement has ne-clause. Rule T-8B captures subtyping in the type system.
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Statementsire typed by the rules in Figuré 3. LetandA be typing contexts. A typing judgment
I s: ok(A) expresses that the statemeris well-typed if the variables iis are typed according to
I and that the typing context for further analysis should balifrex] according to theffectA. Empty
effects are omitted in the presentation of the rules. Thmtypf statementski p andx = e are standard.
These judgments have no effects. The statemenirn X has a return type and is typed in the effect
of typing the statements of the method body. The use of sffemt be seen in rule TEMPOSITION,
where the second statement is type checked in the typingxiomiodified by the effect of analyzing the
first statement, and the effects are accumulated in the wsinal of the rule. Rules T-GNDITIONAL
and T-WHILE propagate effects from the subexpressions; in the caseQHNBITIONAL the resulting
effect is approximated by taking the intersection of the&# of the branches. By TeiN, when an
object joins a grouy and contributes interfacédoy, the effect is that the type gfis extended with the
interfaced . Note the requiremenobcal(y), which expresses thgtmust be a local variable in the scope
of the method being analyzed. (We omit the definition, whichdain a lookup in the class table of the
program). Without this restriction, a field could dynamigaxtend its type, resulting in an unsound
system; e.g., an assignmenie in a statically well-typed method could become unsoundeftipe of
f were extended. However extending the typef a local variable which copies the valuefofo a type
T and assigning the result back to a fieldis allowed, as’ would need to be of the extended type
andf would remain of typer as required by the other method. (For comparison, the neesédction
to local variables is handled differently in the query sta@tsubt ype , which introduces a fresh local
variable.) Rule T-EEAVE shows that leaving a group has no effect on the typing congext the effects
of the two branches are treated as for the conditional. RulesSPECTshows how the typing context is
extended with a new variablewhich extends the type of the grougor the scope of the branch. The
overall effect is again the intersection of the effects eftiivo branches.

Programs, classes, and methods are typed in the standardMettyods do not have effects, which
reflects that effects are constrained to local variablddénsethods. Likewise, classes and programs do
not have effects. (For simplicity, the standard type chaglif interface declarations is omitted in the
presentation.) The body of a class constructor and the mathad of a program may have the same
effects as the body of a method.

4 QOperational Semantics

The runtime syntax is given in Figuré 4. A runtime configwaten is either the empty configuration
€ or it consists of objectsbj and groupgyrp. Groupsgrp have an identityg and contain a setxport
of interfacesl associated with the objectsimplementing them. Objecigbj have an identityo, a state
o, and a staclp of processeproc. When an object has processes to execute, it executes ttesprat
the top of its stack. The stack grows with self-calls andrdtwriat method returns. The empty stack is
denoteddle. A stateog maps program variablesto their typesT and values/. A processproc can be
error or it has a local state and a sequencgr et ur n x; of statements to be executed. The expression
wai t (o,m) encodes dock, expressing that the object is waiting for the return valienethodm in
another objeco (or on an auxiliary self-call). Valuesinclude object and group names, and Booleans.
The operational semantics is given by rules in the style db $], reflecting small-step semantics.
Each rule describes one step in the execution of an objecicu@ent execution is given by standard SOS
context and concurrency rules (not shown here), and we asassociative and commutative matching
over configurations (as in rewriting logiCl[7]). Thus obge&xecute concurrently, with the following
exceptions: The rule for synchronous remote cali(C1) refers to both the caller and callee objects
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Syntactic Categories. Definitions.
g: Group name cn = g|grp|objjcn cn
0: Object name grp = g(expor)
export = {o0:1}|exportUexport
obj = o(o,p)
p == idle|proc|proc;p
proc = m{o]|sr}|error
g = x—=(T,v)|ooo
e = wait(om]...
sr = s|sreturnx;
v = o|g|true|false

Figure 4: The runtime syntax, extending the language syfotaexpressiong and statements

and therefore the two objects musinchronizeand the caller will be blocked by theit statement.
Furthermore rules involving an object and a group will lokk group in question, thereby disallowing
concurrent execution of other objects involving the sanoeigr This is crucial in the@iN and LEAVEL
rules forj oi ns andl eaves, which may actually modify the group.

We define the lookup of a program variablen a statec by o(x) = (T,v), with the projections
o' (x) =T andgV (x) = v. Thus, for a stater, g’ gives the associated mapping of program variables to
their types anar¥ the mapping of program variables to their values. TkerSule is standard and states
that a skip has no effect. The effect of assignment is dividtmtwo rules, AsSIGNL for local variables,
updatingl, and AssIGN2 for fields, updatinga. In the rule New-GROUP, a globally unique group
identifier is found byfresh(g). Then an empty group with this identifier is added to the caméton.
The two rules ©ND1 and GND2 handle the two cases of the conditional statement.

Method callsare handled by €L 1 for calls to other objects, AL 2 for self calls, and @LL 3 for
calls to groups. When a call is made to another objectAni, the called object must be in ddle
state. The caller blocks until the generatadlt statement can be executed. In et statement, the
callee and method name are recorded, which allows the ranfpe system to infer the proper type
of the return value from methouah in the proper class. Ldiind(m,C,v) denote the process resulting
from the activation of methodhin C, in which| maps the parameters ofto their declared types and
valuesv, and the local variables to their declared types and defalles. The callee gets the process
bind(m,C, (ac 1)V (y)), whereC is the class of the callee, pushed onto its process stacWith self
calls in CaLL 2, the process stack cannot be idle, butiat statement replaces the call statement and an
instance of the called method is pushed to the stack.An.@G, a call to a group is reduced to a call to a
group or an objecinsidethe callee which exports an appropriate interface to thamr®y appropriate
we mean that the called method is supported by the interfac@#lly, m € mtd(l)). RETURN1 handles
returns from remote calls. Here the blocking t statement is replaced by the returned value. Returns
from self calls are handled in a similar way by th& ®RRN2 rule. (Remark that the generalization
to concurrent objects with asynchronous calls and futwsesdraightforward as in_[6, 15] whereas the
extension to multi-threaded programs would require reagmtock as in[[14]).

The new statement is handled by theeM-OBJECT rule, wherefresh0/,C) asserts that' is a new
name in the global configuration such thleéassOf0’) = C. An object with this name is created. The
mappingatts(C,v) maps the declared fields of claSgo their declared types and default valugss to
C, and the class parameters to declared types and actuasvalbe procesait(C) corresponds to the
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init-block of C, which instantiates local variables to their declared $yged default values. The process
of the new object is the initial process of its class. Noté #mainit-block is executed independently from
the creator, so it may triggexctive behaviorfor instance, the init-block can call a run method.

The rule 1IN extends the knowledge of a group with the new interfaces frenobject’s perspective
and correspondingly extends thgportsset from the group’s perspective. Service discovery is leahd
by the ACQUIRE rule. Theacquire expression is replaced by a valuewhich is an object or group
identifier satisfying thé n andexcept clauses. If the n clause is omitted from the expression, then the
premise(ac|)V(y) = g is omitted from the rule. Note that this rule will block if noatching object or
group exists. This could be solved by either returningl (by means of a global check) or by adding
anel se branch similar to those in @RY1 and QUERY2. Within the kernel language, the existence of
a matching object or group inside a group can be checked tisinguery mechanisms.

Thel eaves statement is handled by the rulegAvel for a successful leave andshve2 for an
unsuccessful one. A group or objectmay leave a group successfully if the group provides the same
interface support without. To determine this, we use the functionf (export) which returns a set con-
taining the interfaces of all the pairséxport, removing redundant information. An entry is redundant if
a subtype of the entry is present in the set. The type of thepgoes not change by aaves statement
and hence the object does not need to update informatiort #imgroup. The branches or s, are
chosen depending on the success. The rulesR¥1 and QUERY2 handle the branching statement that
checks if a group exports a given interface. If the test sete¢hen a fresh variableis introduced and
is only visible ins;. The type of this variable is the union of what the currenteobplready knew about
the group and the new informatidn|f the test fails thes, branch is chosen by @QERY2.

The initial state.For a progranP = IF CL {T X;s}, we define the initial state to & e, main{x —
(T,defaul{T))|s, }) whereo is such thafresh(o, Main).

5 Type Safety

This section extends the type system of Sedtion 3 to runtonéigurations and shows that the execution
of well-typed programs remains well-typed.

5.1 Well-Typed Configurations

The extension of the type system to runtime configuratiorgivien in Figure 6. The typing context
I" stores the types of all constant values (object and grouptitéks) at runtime. By RTT-ONFIG, a
configuration is well-typed if all objects and groups arelvigbed. By RTT-GROUP, a group is well-
typed if all the objects which export interfaces through gineup implement these interfaces (checked
by RTT-ExPs and RTT-ExP). By RTT-OBJECT, an object is well-typed if its class is its typelinand

its state and stack are well-typed in the context of the tgbdise fields. Substitutions (the state of fields
and local variables) are checked by RTUES and RTT-%B. The stack is well-typed by RTT38ckK

if all its processes are well-typed by RTTREC; i.e., the state of local variables and the method bsrdy
are well-typed. Observe that due to the query-mechanisimedfinguage, the types of program variables
in two processes which stem from activations of the sameadethay differ at runtime. For this reason,
the typing context used for typing runtime configurationsra# rely on the statically declared types of
program variables. This explains why RT R&cextendd™ with thelocally stored typing information'l

to type checkY andsr. The effects of the static type system are not needed hetiegyaare reflected by
how the operational semantics updates this local typenmdtion. For consistency in the presentation,
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(AssIGNL) (ASSIGN2)
(NEW-GROUP)
(SkiP) x € dom(l) x ¢ dom(l)
. fresh(g)
oam(l [skipisryip) 1T =T (ach¥(y)=v  a(x)=T (acl)V(y)=v
o(a,m{l | x=newgr oup;sr};p)
— o(a,m{l | sr};p) o(a,m{l | x=y;sr};p) — o(a,m{l | x=y;sr};p) —

o(a,m{l[x+— (T,v)] | sr};p) o(ax— (T,v)],m{l | sr};p) —ol@amil [x=gisr}ip) g(0)

(ConD1) (CoND2) (WHILE)
(aol)V(x) —(aol)V (x) o(a,m{l | whi | e x {s;};sr};p)
olam{li f x{s1} el se {sp};sr};p) olam{l|if x {si} el se {s};sr};p) —olam{l |[if x{s;; whilex{si}}
— (o(a,m{l|sy;sr}; 0) — o(a,m{l|sz;sr};p) el se {skip} ;sr};p)
(CALL1) (CALL2) (CALL3)
(@aol)V(y)=0d classOfd’) =C (aol)V(y)=0 classOfo) =C (aoh)V(y)=g
pr = bind(m,C, (ac 1)V (y)) pr = bind(m,C, (acl)V (y)) v:l eexports me mtd(l)
o(a,m{l | x=ym(y);sr};p) o (&,idle) — o(a,m{l | x=y.m(y);sr};p) — o(a,m{l | x=y.m(y);sr}; p) g(exporty

o(a,m{l | x=wai t (0/,m);sr};p) d'(a,pr) o(a, pr;m{l | x=wai t (0,m);sr}; p) — o(a,m{l | x=v.m(y);sr};p) g(exporty

(RETURNL1) (RETURN2) (NEW-OBJECT)
(aoch)V(x)=v p=idle (aochV(x)=v fresh@,C)  pr = init(C)
o(a,m{l |[returnx};p) o(am{l [returnx}; a = atts(C, (aol)V (X))

d@,m{l'ly=wait (o,m);sr};p’) m'{l" | y=wai t (o,m);sr};p) o(a,m{l|x = new C(X);sr}; p)
—o(a,p) o@,m{l'|ly=v;sr};p’) —o(a,m{l' |y=v;sr};p) — o(a,m{l|x=0;sr};p) d(&,pr)
(Join) (ACQUIRE)

(@) (x)=v I(y)= (G oup(S),g)

ol)\V(y) = :J <1 ol)v
T =G oup(Sul) export$=J,{v:1}Uexports @)’ =g (v:)cexports I vé (@) (9

— — o(am{l |[x=acquire |l inyexcept X;sr};p) g(exporty
o(a,m{l|x j oi ns y as TI;sr};p) g(exporty

— o(am{lly > (T,g)]lst}:p) glexports) T otamil [x=visrip) glexpons

(LEAVEL) (LEAVE2)
(@h)V(y)=g (ach¥(x)=v (@h)V(y)=g (ach)V(x)=v
export$ = exports\ U, r{v: 1} intf(exporty = intf (exports) export$ = exports\ U, r{v:1} intf(exportg # intf (exports)
o(a,m{l|x | eaves yas I {s1} el se {s;};sr};p) g(exporty o(a,m{l|x | eaves yas I {s1} el se {s;};sr};p) g(exporty

— o(a,m{l|s1;sr}; p) g(exports) — o(a,m{l|sz;sr}; p) g(exporty
(QUERY1) (QUERY2)
y& domaol) aol(x)=(Goup(S),g) 0o :Jeexports JI<I (aochV(x)=g Group(intf (exportg) A1
o(a,m{l|x subt ypeCOf |y {s1} el se {sp};sr};p) o(a,m{l|x subtypeOf 1y {s1} el se {s};sr};p)
g(exporty g(exporty
— o(a,m{lly — (G oup(SU{l},g))]s1;sr}; p) g(exporty — o(a,m{l[sz;sr}; p) g(exporty

Figure 5: The operational semantics.
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(RTT-EMPTY) (RTT-IDLE) (RTT-WAIT) (RTT-DEF)

M-e:ok -idle:ok I ~wai t (o,m) : retTypéclassOfo), m) I+defaul{(T): T
(RTT-CONFIG) (RTT-GRoOUP) (RTT-EXP) (RTT-SuB) (RTT-SuBS)
M-cn:ok T[Hen ok I - exports: ['(g) leS T(o)=<I FEv:r(x) MN-a:ok TrFa:ok
Itcncr:ok I F g(exportg : ok FFo:l:Goup(S I=x—v:ok [+aod :ok

(RTT-OBJECT) (RTT-EXPS) (RTT-PrOC) (RTT-SrACK)
M=roa' TI’Fa’:ok I - exports: Gr oup(S) IM=rolT TI(thisy=C I - proc: ok
classOfo) =T (o) [+ p:ok I - exports : G oup(S) r"+1V:ok Tt sr:retTypdC,m) -p:ok
It+o(ap): ok I" - exportsJexports : G oup(S) I Em{l|sr;} : ok I+ proc;p : ok

Figure 6: The runtime type system.

the typing of fields is represented in the same way, althohgbe types are not altered by the execution.
The rules from the static type checking are reused as apatepr

5.2 Subject Reduction

The type system guarantees that the typietdsin an object never changes at runtime (in particular, re-
call the restrictiorlocal(y) in rule T-JoIN). This allows us to establish in Lemiia 1 from the static tgpin
of methods in well-typed programs that method binding, dcassful, results in a well-typed process at
runtime. To show that ther r or process cannot occur in the execution of well-typed progransuf-
fices to show that substitutions are always well-typed. Laf@rshows that this is the case for the initial
configuration and Lemnid 3 shows that one execution steprpessaintime well-typedness. Together,
these lemmas establish a subject reduction theorem foatlygibge, expressing that well-typedness is
preserved during the execution of well-typed programs anpgairticular that method binding always
succeeds. Heres denotes the reflexive and transitive closure of the redactitation— .

Lemma 1 Assume that a well-typed program has a class C which definexttzochm with formal para-
metersx of typeT and return type T. Let o be an object such that clagsOf C andl™ +o(a, p) : ok.
If M =v:T,thenl oa” - bindm,C,v) : T.

Lemma 2 Let P be a program such théit- P : ok and let cn be the initial state of P. Thé€n- cn: ok.
Lemma 3 If I cn: ok and ch— cn then there is &’ such that™ - cn' : ok andl” C I,

Theorem 1 (Subject reduction) LetT" - P and let cn be the initial runtime state of P. If éncn then
there is al’ such thaf’ +cn' : ok andl" C I’.

6 Related Work

Object orientation is well-suited for designing small snithich encapsulate state with behavior, but
does not directly address the organization of more compbdévare units with rich interfaces. Two
approaches to building flexible and adaptive complex saftvegstems involve, independently, object
groups and service discovery. Our work unifies these twocgmbres in a formal, type-safe setting.

The most common use of object groups is to provide replicadedices in order to offer better fault
tolerance. Communication to elements of a group is via iadti This idea originated in the Amoeba
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operating system [16]. The component model Jgroup/ARM &l@)pts this idea to provide autonomous
replication management using distributed object groups.this setting, members of a group main-
tain a replicated state for reasons of consistency. The @nEAactive object programming model [3]
supports abstractions for object groups, which enableggcommunication—via method call—and var-
ious means for synchronizing on the results of such methls] sach as wait-for-one and wait-for-all.
ProActive is formalized in Caromel and Henrio’s Theory okibuted Objects |4]. These notions of
group differ from ours in two respects. Firstly, in these ragghes communication with groups is via
multicast, whereas in our approach each message will beededi to exactly one object, and secondly,
in the formal theory, groups are fixed upon creation. Furtioee, there is no notion of service discovery
associated with groups.

Object groups have been investigated as a modularizatibfouwobjects which is complementary to
components. Groups meet the needs of organizing and desctite statics and dynamics of networks
of collaborating objects [18]; groups can have many threddsntrol, they support roles (or interfaces),
and objects may dynamically join and leave groups. Lea [1&¢nts a number of common usages for
groups and discusses their design possibilities, insficead CORBA. Groups have been used to provide
an abstraction akin to a notion of component. For exampl®racle Siebel 8.2 [8], groups are used as
units of deployment, units of monitoring, and units of cohtwhen deploying and operating components
on Siebel servers. Our approach abstracts from most of tdetads, though groups are treated as first
class entities in our calculus.

Another early work on groups is ActorSpaces [1], which camebActors with Linda’s pattern match-
ing facility, allowing both one-to-one communication, micést, and querying. Unlike our approach,
groups in ActorSpaces are intensional: all actors with #mesinterface belong to the same group. Fur-
thermore ActorSpaces support broadcast communicatiorgtoup, which has not been considered in
this paper as it would differentiate communication with doeot and with a group. Compared to our
paper, these works do not give a formalization of group biehar discuss typing.

Object groups have further been used for coordination magoFor example, CoLasS [9] is a coor-
dination model based on groups in which objects may join aatld groups. CoLaS goes beyond the
model in our paper by allowing very intrusive coordinatidmtessage delivery based on a coordinator
state. In our model, the groups don’t have any state beyomdttite of their objects. Similar to our
model, objects enroll to group roles (similar to interfgceésowever, unlike our model objects may leave
a group at any time, and the coordinator may access the $tpéetwipants. The model is implemented
in Smalltalk and neither formalization nor typing is dissed [9]. Concurrent object groups have also
been proposed to define collaborating objects with a simgésat of control in programming and model-
ing languages [15,23]. Concurrent object groups do not ltkargity and function as runtime restrictions
on concurrency rather than as a linguistic concept.

Microsoft's Component Object Model (COM) supports quegyancomponent to check whether it
supports a specific interface, similar to the query-medmardonsidered in this paper. A component in
COM may also have several interfaces, which are indeperafezaich other. In contrast to the model
presented in our paper, COM is not object-oriented and tkeefates of a component are stable (i.e., they
do not change). COM has proven difficult to formalize; Pucdkvelops\ M [22], a typedA -calculus
which addresses COM components in terms of their interfanes discusses extensions to the calculus
to capture subtyping, querying for interfaces, and agdiega

A wide range of service discovery mechanisms exist [13]. PheEgramming language Ambi-
entTalk [10] has built-in service discovery mechanismggdrated in an object-oriented language with
asynchronous method calls and futures. In contrast to odk,waambientTalk is an untyped language,
and lacks any compile time guarantees. Various works fosedhe notion of service discovery [17],
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but they often do so in a formalism quite far removed from tamdard setting in which a program using
service discovery would be written, namely, an objectrugd setting. For example, Fiadeiro et al.’s|[11]
model of service discovery and binding takes an algebraiogaaph-theoretic approach, but it lacks the
concise operational notion of service discovery formalize our model. No type system is presented
either.

Some systems work has been done that combines groups aid sbscovery mechanisms, such as
group-based service discovery mechanisms in mobile adetyeorks [5, 12]. In a sense our approach
provides language-based abstractions for a mechanisrthlikeexcept that ours also is tied to interface
types to ensure type soundness and includes a notion ofsgxelto filter matched services.

Our earlier work[[6] enabled objects to advertise and reirderfaces to which other objects could
bind, using a primitive service discovery mechanism. A grmechanism was also investigated as a way
of providing structure to the services. In that work sersiagre equated with single objects, whereas in
the present work a group service is a collection of objecoring their interfaces. In particular, this
means that the type of a group can change over time as it cansepport more functionality.

The key differences with most of the discussed works is taitodel in this paper remains within
the object-oriented approach, multiple groups may implerae advertised service in different ways, and
our formalism offers a transparent group-based serviaadésy mechanism with primitive exclusion
policies. Furthermore, our notion of groups has an impéadl dynamically changing interface.

7 Conclusion

The paper has proposed a formal model for adaptive servieated systems, based on a notion of
object-oriented groups. We develop a kernel object-cehanguage in which groups are first-class
citizens in the sense that they may play the role of objeats; a reference typed by an interface may
refer to an object or to a group. A main advantage is that ongaguobect several objects into a group,
thereby obtaining a rich interface reflecting a complexiserwhich can be seen as a single object from
the outside. Although objects in our language are resttititeexecuting one method activation at the
time, a group may serve many clients at the same time due éo gumcurrency.

In contrast to objects, groups may dynamically add supmoraih increasing number of interfaces.
The formation of groups is dynamiin andleaveprimitives in the kernel language allow the migration
of services provided by objects and inner groups as well tia@ upgrade, provided that interfaces
are not removed from a group. An object or group may be partéral groups at the same time. This
gives a very flexible notion of group.

Adaptive object groups are combined with service discobgmneans oicquireandsubtypeOfcon-
structs in the kernel language, which allow a programmeiidcosder services in an open and unknown
environment or in a known group, and to query interface stppioa given object or group. These
mechanisms are formalized in a general object-orientdthgebased on experiences from a prototype
Maude [7] implementation of the group and service discoyeimitives. The presented model provides
expressive mechanisms for adaptive services in the settiogject-oriented programming with modest
conceptual additions. We have developed an operationahrsirs and type and effects system for the
kernel language, and show the soundness of the approachrbgfeoptype-safety.

The combination of features proposed in this paper sugg¢fest®ur notion of a group can be made
into a powerful programming concept. The work presentechis paper may be further extended in
a number of directions. The overall goal of our work is to gtah integration of service-oriented
and object-oriented paradigms based on a formal foundatiorfuture work, we plan to extend the
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proposed kernel language to multi-thread concurrency amy $sn more detail how different usages of

object groups such as replication, resource, and acceapgy(eee, e.g., [18]) may be captured using
the proposed primitives. It is also interesting to studyititegration into the kernel language of more

service-oriented concepts such as for example error padipagand handling, as well as high-level group
management operations such as group aggregation.
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