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Services are autonomous, self-describing, technology-neutral software units that can be described,
published, discovered, and composed into software applications at runtime. Designing software
services and composing services in order to form applications or composite services requires ab-
stractions beyond those found in typical object-oriented programming languages. This paper ex-
plores service-oriented abstractions such as service adaptation, discovery, and querying in an object-
oriented setting. We develop a formal model of adaptive object-oriented groups which offer services
to their environment. These groups fit directly into the object-oriented paradigm in the sense that
they can be dynamically created, they have an identity, and they can receive method calls. In contrast
to objects, groups are not used for structuring code. A groupexports its services through interfaces
and relies on objects to implement these services. Objects may join or leave different groups. Groups
may dynamically export new interfaces, they support service discovery, and they can be queried at
runtime for the interfaces they support. We define an operational semantics and a static type system
for this model of adaptive object groups, and show that well-typed programs do not cause method-
not-understood errors at runtime.

1 Introduction

Good software design often advocates a loose coupling between the classes and objects making up a
system. Various mechanisms have been proposed to achieve this, including programming to interfaces,
object groups, and service-oriented abstractions such as service discovery. By programming to interfaces,
client code can be written independently of the specific classes that implement a service, using interfaces
describing the services as types in the program. Object groups loosely organize a collection of objects
that are capable of addressing a range of requests, reflecting the structure of real-world groups and social
organizations in which membership is dynamic [18]; e.g., subscription groups, work groups, service
groups, access groups, location groups, etc. Service discovery allows suitable entities (such as objects)
that provide a desired service to be found dynamically, generally based on a query on some kind of
interface. An advantage of designing software using these mechanisms is that the software is more
readily adaptable. In particular, the structure of the groups can change and new services can be provided
to replace old ones. The queries to discover objects are based on interface rather than class, so the
software implementing the interface can be dynamically replaced by newer, better versions, offering
improved services.

This paper explores service-oriented abstractions such asservice adaptation, discovery, and querying
in an object-oriented setting. Designing software services and composing services in order to form
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2 A Type-Safe Model of Adaptive Object Groups

applications or composite services require abstractions beyond those found in typical object-oriented
programming languages. To this end, we develop a formal model of adaptive object-oriented groups that
also play the role of service providers for their environment. These groups can be dynamically created,
they have identity, and they can respond to methods calls, analogously with objects in the object-oriented
paradigm. In contrast to objects, groups are not used for executing code. A group exports its services
through interfaces and relies on objects to implement theseservices. From the perspective of client code,
groups may be used as if they were objects by programming to interfaces. However, groups support
service-oriented abstractions not supported by objects. In particular, groups may dynamically export
new interfaces, they support service discovery, and they can be queried at runtime for the interfaces they
support. Groups are loosely assembled from objects: objects may dynamically join or leave different
groups. In this paper we develop an operational semantics and a static type system for this adaptive
group model based on interfaces, interface queries, groups, and service discovery. The type system
ensures that well-typed programs do not cause method-not-understood errors at runtime.

The paper is organized as follows. Section 2 presents the language syntax and a small example.
A type and effect system for the language is proposed in Section 3 and an operational semantics in
Section 4. Section 5 defines a runtime type system and shows that the execution of well-typed programs
is type-safe. Section 6 discusses related work and Section 7concludes the paper.

2 A Kernel Language for Adaptive Object Groups

We study an integration of service-oriented abstractions in an object-oriented setting by defining a kernel
object-oriented language with a Java-like syntax, in the style of Featherweight Java [14]. In contrast to
Featherweight Java, types are different from classes in this language: interfaces describe services as sets
of method signatures and classes generate objects which implement interfaces. By programming to inter-
faces, the client need not know how a service is implemented.For this reason, the language has a notion
of group which dynamically connects interfaces to implementations. Groups are first-class citizens; they
have identities and may be passed around. An object may dynamically join a group and thereby add new
services to this group, extending the group’s supported interfaces. Objects may be part of several groups.
Both objects and groups may join and leave groups, thereby migrating their services between groups.
The kernel language considers concurrent objects which interact by synchronous method calls. Con-
current activities are triggered by instantiating classeswith run methods (similar to overriding the run
method of Java’s Thread class). This simple concurrency model is relevant for service-oriented systems.

2.1 The Syntax

The syntax of the kernel language is given in Figure 1. A typeT in the kernel language is either a
basic type, an interface describing a service, or a group of interfaces. Aprogram Pconsists of a list
IF of interface declarations, a listCL of class declarations, and a main block{T x;s}. The main block
introduces a scope with local variablesx typed by the typesT, and a sequences of program statements.
We conventionally denote byx a list or set of the syntactic constructx (in this case, a program variable),
and furthermore we writeT x for the list of typed variable declarationsT1 x1; . . . ;Tn xn where we assume
that the length of the two listsT andx is the same. The typesT are the basic typeBool of Boolean
expressions, the empty interfaceAny, the namesI of the declared interfaces, and group typesGroup〈I〉
which state that a group supports the setI of interfaces. The use of types is further detailed in Section 3,
including the subtyping relation and the type system.



J. Bjørk, D. Clarke, E. B. Johnsen & O. Owe 3

Interface declarations IFassociate a nameI with a set of method signatures. These method signa-
tures may be inherited from other interfacesI or they may be declared directly asSg. A methodsignature
Sgassociates a return typeT with a namemand method parametersx with declared typesT.

Class declarations CLhave the formclass C(T x)implements I {T1 x1;{T2 x2;s}; M} and asso-
ciates a class nameC to the services declared in the interfacesI . In C, these services are realized using
methods to manipulate the fieldsx1 of typesT1. The constructor block{T2 x2;s} initializes the fields,
based on the actual values of the formal class parametersx of typesT. Remark that the constructor block
is executedasynchronously. Consequently, it can be used to trigger concurrent activities starting in a new
instance of a class. The methodsM have a signatureSgand a method body{T x; s;return x; } which
introduces ascopewith local variablesx of typesT where the sequence of statementss is executed, after
which the expressione is returned to the client.

Theexpressions eof the kernel language consist of Java-like expressions forreading program vari-
ablesx, method callsx.m(x) where the actual method parameters are given byx, and object creation
new C(x) where the actual constructor parameters are given byx. Method calls are synchronous and in
contrast to Java all method calls are synchronized; i.e., a caller blocks until a method returns and a callee
will only accept a remote call when it is idle. For simplicity, the kernel language supports self-calls but
not re-entrance (which could be addressed using thread identities as in Featherweight Java [14]). In addi-
tion, we consider two expressions which are related to service-oriented software:newgroup dynamically
creates a new, empty group which does not offer any services to the environment.Service discoverymay
be localized to a named groupy: the expressionacquire I in y except x finds some groupg or objecto
such thatg or o offers a service better thanI (in the sense of subtyping) and such thatg or o is not in the
setx. If the in y clause is omitted, then the service providerg or o may be found anywhere in the system.

Thestatements sof the kernel language include standard statements such asskip, assignmentsx= e,
sequential compositions1;s2, conditionals, andwhile-loops. To simplify the kernel language, we keep
a flat representation of expressions; i.e., expressions must be assigned to program variables before they
can be used in other statements. Service interfacesI aredynamically exportedthrough a groupy by the
expressionx joins y as I , which states that object or groupx is used to implement the interfacesI in the
groupy. Consequently,y will support the interfacesI afterx has joined the group. Objects and groupsx
may try to withdraw service interfacesI from a groupy by the expressionx leaves y as I {s1} else {s2}.
Withdrawing interfaces from a group can lead to runtime exceptions which need to be handled either by
the client or by the service provider. In our approach, the exception is handled on the server side; i.e.,
withdrawing interfacesI from y only succeeds ify continues to offer all the interfaces ofI , exported
by other objects or groups. Thus, removals may not affect thetype of y. If the removal is success-
ful then branchs1 is taken, otherwises2 is taken. In addition, the language includes the statement
x subtypeOf I y {s1} else {s2} which is used toquerya known groupx about its supported interfaces.
The statement works like a conditional and branches the execution depending on whether the query suc-
ceeds or not. Ifx offers an interface better thanI , the expanded knowledge of the groupx becomes
available through the variabley in the scope of the statementss1. If x does not offer an interface as good
asI , the branchs2 is taken. Remark the introduction of a new name for the group inside the scope, which
ensures that the knowledge of the extended type is local. (Bysyntactic sugar, the variabley need not
appear in the surface syntax).

2.2 Example

We illustrate the dynamic organization of objects in groupsby an example of software which provides
text editing support (inspired by [22]). This software provides two interfaces:SpellChecker allows
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Syntactic Categories.

C :Class name

I : Interface name

T :Type name

m:Method name

Definitions.

P ::= IF CL {T x; s}

T ::= Bool |Any | I |Group〈I〉

IF ::= interface I extends I {Sg}

CL ::= class C(T x)implements I {T x;{T x;s}; M}

Sg ::= T m ([T x])

M ::= Sg {T x; s;return x; }

e ::= x|x.m(x) |new C(x) |newgroup |acquire I [in x] except x

s ::= skip |x= e|s;s|if x {s} else{s} |while x{s}

| x joins x as I |x leaves x as I {s} else {s}

| x subtypeOf I x {s} else {s}

Figure 1: Syntax of the kernel language. The type namesT include interfaces namesI andBool. Square
brackets [] denotes optional elements.

the spell-checking of a piece of text andDictionary provides functionality to update the underlying
dictionary with new words, alternate spellings, etc. Apartfrom an underlying shared catalog of words,
these two interfaces need not share state and may be implemented by different classes. Let us assume
that the overall system contains several versions ofDictionary, some of which may have an integrated
SpellChecker. Consider a class implementing a text editor factory, whichmanages groups implement-
ing these two interfaces. The factory has two methods:makeEditor dynamically assembles such soft-
ware into a text editor group andreplaceDictionary allows theDictionary to be dynamically replaced
in such a group. These methods may be defined as follows:

Group〈SpellChecker,Dictionary〉 makeEditor() {
Group〈 /0〉 editor; SpellChecker s; Dictionary d;
editor = newgroup;
d = acquire Dictionary except emptyset;
d subtypeOf SpellChecker ds {

ds joins editor as Dictionary, SpellChecker;
} else {

d joins editor as Dictionary;
s = new SpellChecker();
s joins editor as SpellChecker;

}
return editor;

}

void replaceDictionary(Group〈SpellChecker,Dictionary〉 editor, Dictionary nd){
Dictionary od;
nd joins editor as Dictionary;
od = acquire Dictionary in editor except nd;
od leaves editor as Dictionary {skip;} else {skip;};
return;

}

The methodmakeEditor acquires a top-level serviced which exports the interfaceDictionary (since
there is noin-clause in theacquire-expression). Ifd also supports theSpellChecker interface, we let
d join the newly created groupeditor asboth Dictionary andSpellChecker. Otherwised joins the
editor group only asDictionary. In this case a newSpellChecker object is created and added to
the group asSpellChecker. Remark that we assumed the presence of severalDictionary services in
the overall system, otherwise the initialacquire-expression may not succeed and execution could be
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(T-VAR)

Γ ⊢ x : Γ(x)

(T-CALL )

Γ ⊢ x : T ′ Γ ⊢ x : T

match(m,T,T ′) retType(T ′,m) = T

Γ ⊢ x.m(x) : T

(T-NEW)

Γ ⊢ x : ptypes(C) C≺ I

Γ ⊢ new C(x) : I

(T-GROUP)

Γ ⊢ newgroup : Group〈 /0〉

(T-ACQUIRE)

Γ ⊢ y : Group〈S〉

Γ ⊢ acquire I in y except x : I

(T-SUB)

T ≺ T ′ Γ ⊢ e : T

Γ ⊢ e : T ′

Figure 2: The type system for expressions.

blocked at this point. The kernel language could be extendedby a more robust version ofacquire which
uses branching (similar tosubtypeOf); in fact, inside a groupg, robustness may be obtained by first
checking for the existence of an interfaceI in g usingsubtypeOf and then binding to the object or group
implementingI in g usingacquire.

The methodreplaceDictionary will replace theDictionary service in a text editor group. First
we add the newDictionary servicend to theeditor group and then we fetch the old serviceod in the
group by means of anacquire, where theexcept-clause is used to avoid binding to the new servicend.
Finally the old serviceod is removed asDictionary in the group by aleave statement. The example
illustrates group management by joining and leaving mechanisms as well as service discovery.

3 A Type and Effects System

The language distinguishes behavior from implementationsby using an interface as a type which de-
scribes a service. Classes are not types in source programs.A class can implement a number of service
interfaces, so its instances can export these services to clients. A program variable typed by an interface
can refer to an instance of any class which implements that interface. A group typed byGroup〈I 〉 ex-
ports the services described by the setI of interfaces to clients, so a program variable of typeI may refer
to the group ifI ∈ I . We denote byAny the “empty” interface, which extends no interface and declares
no method signatures. A service described by an interface may consist of only some of the methods
defined in a class which implements the interface, so interfaces lead to a natural notion of hiding for
classes. In addition to the source program types used by the programmer, class names are used to type
the self-referencethis; i.e., a class name is used as an interface type which exportsall the methods
defined in the class.

Subtyping. The subtype relation≺ is defined as the transitive closure of the extends-relationon inter-
faces: ifI extendsJ′ andJ′ ≺ J or J′ = J, thenI ≺ J. It is implicitly assumed that all interfaces extends
Any, so we letI ≺ Any for all I . A group typeGroup〈S〉 is a subtype ofI if there is someJ∈ Ssuch that
J ≺ I , andGroup〈S〉 ≺ Group〈S′〉 if for all J ∈ S′ there is someI ∈ Ssuch thatI ≺ J. We extend the
source language subtype relation by letting a class be a subtype of all its implemented interfaces. The
reflexive closure of≺ is denoted�.

Typing contexts. A typing contextΓ binds variable names to types. IfΓ is a typing context,x a
variable, andT a type, we denote bydom(Γ) the set of names which are bound to types inΓ (the domain
of Γ) and byΓ(x) the type bound tox in Γ. Define theupdateΓ[x 7→ T] of a typing contextΓ by
Γ[x 7→ T](x) = T andΓ[x 7→ T](y) = Γ(y) if y 6= x. By extension, ifx andT denote listsx1, . . . ,xn and
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(T-SKIP)

Γ ⊢ skip : ok

(T-ASSIGN)

Γ ⊢ e : Γ(x)
Γ ⊢ x= e : ok

(T-RETURN)

Γ ⊢ s : ok〈∆〉 Γ◦∆ ⊢ x : T

Γ ⊢ s;return x : T

(T-COMPOSITION)

Γ ⊢ s : ok〈∆1〉 Γ◦∆1 ⊢ s′ : ok〈∆2〉

Γ ⊢ s;s′ : ok〈∆1 ◦∆2〉

(T-CONDITIONAL )

Γ(x) = Bool Γ ⊢ s1 : ok〈∆1〉 Γ ⊢ s2 : ok〈∆2〉

Γ ⊢ if x{s1}else{s2} : ok〈∆1∩∆2〉

(T-WHILE)

Γ(x) = Bool Γ ⊢ s : ok〈∆〉
Γ ⊢ while x{s} : ok〈∆〉

(T-JOIN)

local(y) Γ(y) = Group〈S〉 Γ(x)≺ I

Γ ⊢ x joins y as I : ok〈y 7→ Group〈S∪ I〉〉

(T-LEAVE)

Γ(x)≺ I Γ(y) = Group〈S〉

Γ ⊢ s1 : ok〈∆1〉 Γ ⊢ s2 : ok〈∆2〉

Γ ⊢ x leaves y as I {s1} else {s2} : ok〈∆1∩∆2〉

(T-INSPECT)

Γ(x) = Group〈S〉 y 6∈ dom(Γ)
Γ[y 7→ Group〈S∪{I}〉] ⊢ s1 : ok〈∆1〉 Γ ⊢ s2 : ok〈∆2〉

Γ ⊢ x subtypeOf I y {s1} else {s2} : ok〈∆1∩∆2〉

(T-METHOD)

Γ′ = Γ[x 7→ T,x′ 7→ T ′]

Γ′ ⊢ s;return e : T ′′〈∆〉

Γ ⊢ T ′′ m (T x){T ′ x′;s;return x} : ok

(T-CLASS)

Γ[this 7→C,x2 7→ T2] ⊢ M : ok

C≺ I Γ[this 7→C,x2 7→ T2.x1 7→ T1,x3 7→ T3] ⊢ s : ok〈∆〉

Γ ⊢ class C(T1 x1) implements I {T2 x2;{T3 x3;s};M} : ok

(T-PROGRAM)

Γ[x 7→ T] ⊢ s : ok〈∆〉
∀CL∈CL ·Γ ⊢CL : ok

Γ ⊢ IF CL {T x;s} : ok

Figure 3: The type and effect system for statements, methods, classes, and programs.

T1, . . . ,Tn, we may writeΓ[x 7→ T] for the typing contextΓ[x1 7→ T1] . . . [xn 7→ Tn] andΓ[x1 7→ T1,x2 7→ T2]
for Γ[x1 7→ T1][x2 7→ T2]. For typing contextsΓ1 andΓ2, we defineΓ1◦Γ2 such thatΓ1◦Γ2(x) = Γ2(x) if
x∈ dom(Γ2) andΓ1◦Γ2(x) = Γ1(x) if x 6∈ dom(Γ2).

For typing contextsΓ1 andΓ2, we define theintersectionΓ1∩Γ2 by Γ1∩Γ2(x) = T if T is the best
type such thatΓ1(x) = T1, Γ2(x) = T2, andT1 � T andT2 � T. In particular, we haveΓ1 ∩Γ2(x) =
Group〈S1∩S2〉 if Γ1(x) = Group〈S1〉 andΓ2(x) = Group〈S2〉.

The Type and Effect System. Programs in the kernel language are analyzed using a type andeffect
system (e.g., [2, 19, 24]). The inference rules for expressions are given in Figure 2 and for statements,
methods, classes, and programs in Figure 3.

Expressionsare typed by the rules in Figure 2. LetΓ be a typing context. A typing judgment
Γ ⊢ e : T states that the expressione has the typeT if the variables ine are typed according toΓ. By T-
VAR, variables must be typed inΓ. Method calls to a methodmon a variablex are typed toT if x has the
(interface) typeT ′ such that the typesT of the actual parametersx give a match form in T ′ with parameter
typesT and the declared return type ofm in T ′ is T. In T-NEW, new C has typeI if the types of the
actual parameters to the class constructor can be typed to the declared types of the formal parameters of
the class, by means of the auxiliary functionptypes, and the class implementsI , expressed byC≺ I . We
omit the definitions of the auxiliary functionsmatchandretTypehere, these are straightforward lookup
functions on the program’s interface table which perform the matching and retrieve the return type of a
method in a class, respectively. Similarly,ptypesretrieves the types of the formal parameters to a class
in the program’s class table. By T-GROUP, a new group has the empty group type (with no exported
interfaces). By T-ACQUIRE, service discovery has the obvious type, if successful. Thepremise of the
rule is omitted if the statement has noin-clause. Rule T-SUB captures subtyping in the type system.
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Statementsare typed by the rules in Figure 3. LetΓ and∆ be typing contexts. A typing judgment
Γ ⊢ s : ok〈∆〉 expresses that the statements is well-typed if the variables ins are typed according to
Γ and that the typing context for further analysis should be modified according to theeffect∆. Empty
effects are omitted in the presentation of the rules. The typing of statementsskip andx= eare standard.
These judgments have no effects. The statementreturn x has a return type and is typed in the effect
of typing the statements of the method body. The use of effects can be seen in rule T-COMPOSITION,
where the second statement is type checked in the typing context modified by the effect of analyzing the
first statement, and the effects are accumulated in the conclusion of the rule. Rules T-CONDITIONAL

and T-WHILE propagate effects from the subexpressions; in the case of T-CONDITIONAL the resulting
effect is approximated by taking the intersection of the effects of the branches. By T-JOIN, when an
object joins a groupy and contributes interfacesI to y, the effect is that the type ofy is extended with the
interfacesI . Note the requirementlocal(y), which expresses thaty must be a local variable in the scope
of the method being analyzed. (We omit the definition, which is again a lookup in the class table of the
program). Without this restriction, a field could dynamically extend its type, resulting in an unsound
system; e.g., an assignmentf=e in a statically well-typed method could become unsound if the type of
f were extended. However extending the typeT of a local variable which copies the value off to a type
T’ and assigning the result back to a fieldf’ is allowed, asf’ would need to be of the extended typeT’

andf would remain of typeT as required by the other method. (For comparison, the neededrestriction
to local variables is handled differently in the query statementsubtypeOf, which introduces a fresh local
variable.) Rule T-LEAVE shows that leaving a group has no effect on the typing context, and the effects
of the two branches are treated as for the conditional. Rule T-INSPECTshows how the typing context is
extended with a new variabley which extends the type of the groupx for the scope of the branchs1. The
overall effect is again the intersection of the effects of the two branches.

Programs, classes, and methods are typed in the standard way. Methods do not have effects, which
reflects that effects are constrained to local variables inside methods. Likewise, classes and programs do
not have effects. (For simplicity, the standard type checking of interface declarations is omitted in the
presentation.) The body of a class constructor and the main method of a program may have the same
effects as the body of a method.

4 Operational Semantics

The runtime syntax is given in Figure 4. A runtime configuration cn is either the empty configuration
ε or it consists of objectsobj and groupsgrp. Groupsgrp have an identityg and contain a setexport
of interfacesI associated with the objectso implementing them. Objectsobj have an identityo, a state
σ , and a stackρ of processesproc. When an object has processes to execute, it executes the process at
the top of its stack. The stack grows with self-calls and shrinks at method returns. The empty stack is
denotedidle. A stateσ maps program variablesx to their typesT and valuesv. A processproc can be
error or it has a local stateσ and a sequences;return x; of statements to be executed. The expression
wait(o,m) encodes alock, expressing that the object is waiting for the return value of methodm in
another objecto (or on an auxiliary self-call). Valuesv include object and group names, and Booleans.

The operational semantics is given by rules in the style of SOS [21], reflecting small-step semantics.
Each rule describes one step in the execution of an object. Concurrent execution is given by standard SOS
context and concurrency rules (not shown here), and we assume associative and commutative matching
over configurations (as in rewriting logic [7]). Thus objects execute concurrently, with the following
exceptions: The rule for synchronous remote call (CALL 1) refers to both the caller and callee objects
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Syntactic Categories.

g:Group name

o:Object name

Definitions.

cn ::= ε |grp |obj |cn cn

grp ::= g(export)

export ::= {o : I} |export∪export

obj ::= o(σ ,ρ)

ρ ::= idle |proc|proc;ρ

proc ::= m{σ |sr} |error

σ ::= x 7→ 〈T,v〉 |σ ◦σ

e ::= wait(o,m) | . . .

sr ::= s|s;return x;

v ::= o|g| true| false

Figure 4: The runtime syntax, extending the language syntaxfor expressionseand statementss.

and therefore the two objects mustsynchronizeand the caller will be blocked by thewait statement.
Furthermore rules involving an object and a group will lock the group in question, thereby disallowing
concurrent execution of other objects involving the same group. This is crucial in the JOIN and LEAVE1
rules forjoins andleaves, which may actually modify the group.

We define the lookup of a program variablex in a stateσ by σ(x) = 〈T,v〉, with the projections
σT(x) = T andσV(x) = v. Thus, for a stateσ , σT gives the associated mapping of program variables to
their types andσV the mapping of program variables to their values. The SKIP rule is standard and states
that a skip has no effect. The effect of assignment is dividedinto two rules, ASSIGN1 for local variables,
updating l , and ASSIGN2 for fields, updatinga. In the rule NEW-GROUP, a globally unique group
identifier is found byfresh(g). Then an empty group with this identifier is added to the configuration.
The two rules COND1 and COND2 handle the two cases of the conditional statement.

Method callsare handled by CALL 1 for calls to other objects, CALL 2 for self calls, and CALL 3 for
calls to groups. When a call is made to another object in CALL 1, the called object must be in anidle
state. The caller blocks until the generatedwait statement can be executed. In thewait statement, the
callee and method name are recorded, which allows the runtime type system to infer the proper type
of the return value from methodm in the proper class. Letbind(m,C,v) denote the process resulting
from the activation of methodm in C, in which l maps the parameters ofm to their declared types and
valuesv, and the local variables to their declared types and defaultvalues. The callee gets the process
bind(m,C,(a◦ l)V(y)), whereC is the class of the callee, pushed onto its process stackρ . With self
calls in CALL 2, the process stack cannot be idle, but await statement replaces the call statement and an
instance of the called method is pushed to the stack. In CALL 3, a call to a group is reduced to a call to a
group or an objectinsidethe callee which exports an appropriate interface to the group. By appropriate
we mean that the called method is supported by the interface (formally, m∈ mtd(I)). RETURN1 handles
returns from remote calls. Here the blockingwait statement is replaced by the returned value. Returns
from self calls are handled in a similar way by the RETURN2 rule. (Remark that the generalization
to concurrent objects with asynchronous calls and futures is straightforward as in [6, 15] whereas the
extension to multi-threaded programs would require re-entrant lock as in [14]).

Thenew statement is handled by the NEW-OBJECT rule, wherefresh(o′,C) asserts thato′ is a new
name in the global configuration such thatclassOf(o′) = C. An object with this name is created. The
mappingatts(C,v) maps the declared fields of classC to their declared types and default values,this to
C, and the class parameters to declared types and actual values. The processinit(C) corresponds to the
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init-block ofC, which instantiates local variables to their declared types and default values. The process
of the new object is the initial process of its class. Note that an init-block is executed independently from
the creator, so it may triggeractive behavior; for instance, the init-block can call a run method.

The rule JOIN extends the knowledge of a group with the new interfaces fromthe object’s perspective
and correspondingly extends theexportsset from the group’s perspective. Service discovery is handled
by the ACQUIRE rule. Theacquire expression is replaced by a valuev, which is an object or group
identifier satisfying thein andexcept clauses. If thein clause is omitted from the expression, then the
premise(a◦ l)V(y) = g is omitted from the rule. Note that this rule will block if no matching object or
group exists. This could be solved by either returningnull (by means of a global check) or by adding
anelse branch similar to those in QUERY1 and QUERY2. Within the kernel language, the existence of
a matching object or group inside a group can be checked usingthe query mechanisms.

The leaves statement is handled by the rules LEAVE1 for a successful leave and LEAVE2 for an
unsuccessful one. A group or objectx may leave a group successfully if the group provides the same
interface support withoutx. To determine this, we use the functionintf (export) which returns a set con-
taining the interfaces of all the pairs inexport, removing redundant information. An entry is redundant if
a subtype of the entry is present in the set. The type of the group does not change by aleaves statement
and hence the object does not need to update information about the group. The branchess1 or s2 are
chosen depending on the success. The rules QUERY1 and QUERY2 handle the branching statement that
checks if a group exports a given interface. If the test succeeds then a fresh variabley is introduced and
is only visible ins1. The type of this variable is the union of what the current object already knew about
the group and the new informationI . If the test fails thes2 branch is chosen by QUERY2.

The initial state.For a programP= IF CL {T x;s}, we define the initial state to beo(ε ,main{x 7→
〈T,default(T)〉|s;}) whereo is such thatfresh(o,Main).

5 Type Safety

This section extends the type system of Section 3 to runtime configurations and shows that the execution
of well-typed programs remains well-typed.

5.1 Well-Typed Configurations

The extension of the type system to runtime configurations isgiven in Figure 6. The typing context
Γ stores the types of all constant values (object and group identities) at runtime. By RTT-CONFIG, a
configuration is well-typed if all objects and groups are well-typed. By RTT-GROUP, a group is well-
typed if all the objects which export interfaces through thegroup implement these interfaces (checked
by RTT-EXPS and RTT-EXP). By RTT-OBJECT, an object is well-typed if its class is its type inΓ and
its state and stack are well-typed in the context of the typesof the fields. Substitutions (the state of fields
and local variables) are checked by RTT-SUBS and RTT-SUB. The stack is well-typed by RTT-STACK

if all its processes are well-typed by RTT-PROC; i.e., the state of local variables and the method bodysr
are well-typed. Observe that due to the query-mechanism of the language, the types of program variables
in two processes which stem from activations of the same method, may differ at runtime. For this reason,
the typing context used for typing runtime configurations cannot rely on the statically declared types of
program variables. This explains why RTT-PROCextendsΓ with thelocally stored typing information lT

to type checklV andsr. The effects of the static type system are not needed here, asthey are reflected by
how the operational semantics updates this local type information. For consistency in the presentation,
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(SKIP)

o(a,m{l | skip;sr};ρ)

→ o(a,m{l | sr};ρ)

(ASSIGN1)

x∈ dom(l)

lT (x) = T (a◦ l)V (y) = v

o(a,m{l | x= y;sr};ρ)→

o(a,m{l [x 7→ 〈T,v〉] | sr};ρ)

(ASSIGN2)

x /∈ dom(l)

aT(x) = T (a◦ l)V (y) = v

o(a,m{l | x= y;sr};ρ)→

o(a[x 7→ 〈T,v〉],m{l | sr};ρ)

(NEW-GROUP)

fresh(g)

o(a,m{l | x= newgroup;sr};ρ)

→ o(a,m{l | x= g;sr};ρ) g( /0)

(COND1)

(a◦ l)V (x)

o(a,m{l |if x {s1} else {s2};sr};ρ)

→ (o(a,m{l |s1;sr};ρ)

(COND2)

¬(a◦ l)V (x)

o(a,m{l |if x {s1} else {s2};sr};ρ)

→ o(a,m{l |s2;sr};ρ)

(WHILE)

o(a,m{l | while x {s1};sr};ρ)

→ o(a,m{l | if x {s1 ; while x {s1}}

else {skip} ;sr};ρ)

(CALL 1)

(a◦ l)V (y) = o′ classOf(o′) =C

pr = bind(m,C,(a◦ l)V (y))

o(a,m{l | x= y.m(y);sr};ρ) o′(a′, idle)→

o(a,m{l | x= wait(o′,m);sr};ρ) o′(a′, pr)

(CALL 2)

(a◦ l)V (y) = o classOf(o) =C

pr = bind(m,C,(a◦ l)V (y))

o(a,m{l | x= y.m(y);sr};ρ)→

o(a, pr;m{l | x= wait(o,m);sr};ρ)

(CALL 3)

(a◦ l)V (y) = g

v : I ∈ exports m∈ mtd(I)

o(a,m{l | x= y.m(y);sr};ρ) g(exports)

→ o(a,m{l | x= v.m(y);sr};ρ) g(exports)

(RETURN1)

(a◦ l)V (x) = v ρ = idle

o(a,m{l | return x;};ρ)

o′(a′,m′{l ′ | y= wait(o,m);sr};ρ ′)

→ o(a,ρ) o′(a′,m′{l ′ | y= v;sr};ρ ′)

(RETURN2)

(a◦ l)V (x) = v

o(a,m{l | return x;};

m′{l ′ | y= wait(o,m);sr};ρ)

→ o(a,m′{l ′ | y= v;sr};ρ)

(NEW-OBJECT)

fresh(o′,C) pr = init(C)

a′ = atts(C,(a◦ l)V (x))

o(a,m{l |x = new C(x);sr};ρ)

→ o(a,m{l |x = o′;sr};ρ) o′(a′,pr)

(JOIN)

(a◦ l)V (x) = v l(y) = 〈Group〈S〉,g〉

T = Group〈S∪ I〉 exports′ =
⋃

I∈I{v : I}∪exports

o(a,m{l |x joins y as I ;sr};ρ) g(exports)

→ o(a,m{l [y 7→ 〈T,g〉]|sr};ρ) g(exports′)

(ACQUIRE)

(a◦ l)V (y) = g (v : J) ∈ exports J≺ I v /∈ (a◦ l)V (x̄)

o(a,m{l | x= acquire I in y except x̄;sr};ρ) g(exports)

→ o(a,m{l | x= v;sr};ρ) g(exports)

(LEAVE1)

(a◦ l)V (y) = g (a◦ l)V (x) = v

exports′ = exports\
⋃

I∈I{v : I} intf (exports) = intf (exports′)

o(a,m{l |x leaves y as I {s1} else {s2};sr};ρ) g(exports)

→ o(a,m{l |s1;sr};ρ) g(exports′)

(LEAVE2)

(a◦ l)V (y) = g (a◦ l)V (x) = v

exports′ = exports\
⋃

I∈I{v : I} intf (exports) 6= intf (exports′)

o(a,m{l |x leaves y as I {s1} else {s2};sr};ρ) g(exports)

→ o(a,m{l |s2;sr};ρ) g(exports)

(QUERY1)

y 6∈ dom(a◦ l) a◦ l(x) = 〈Group〈S〉,g〉 o′ : J ∈ exports J≺ I

o(a,m{l |x subtypeOf I y {s1} else {s2};sr};ρ)

g(exports)

→ o(a,m{l [y 7→ 〈Group〈S∪{I},g〉〉]|s1;sr};ρ) g(exports)

(QUERY2)

(a◦ l)V (x) = g Group〈intf (exports)〉 6≺ I

o(a,m{l |x subtypeOf I y {s1} else {s2};sr};ρ)

g(exports)

→ o(a,m{l |s2;sr};ρ) g(exports)

Figure 5: The operational semantics.
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(RTT-EMPTY)

Γ ⊢ ε : ok

(RTT-IDLE)

Γ ⊢ idle : ok

(RTT-WAIT )

Γ ⊢ wait(o,m) : retType(classOf(o),m)

(RTT-DEF)

Γ ⊢ default(T) : T

(RTT-CONFIG)

Γ ⊢ cn : ok Γ ⊢ cn′ : ok

Γ ⊢ cn cn′ : ok

(RTT-GROUP)

Γ ⊢ exports: Γ(g)
Γ ⊢ g(exports) : ok

(RTT-EXP)

I ∈ S Γ(o)≺ I

Γ ⊢ o : I : Group〈S〉

(RTT-SUB)

Γ ⊢ v : Γ(x)
Γ ⊢ x 7→ v : ok

(RTT-SUBS)

Γ ⊢ a : ok Γ ⊢ a′ : ok

Γ ⊢ a◦a′ : ok

(RTT-OBJECT)

Γ′ = Γ◦aT Γ′ ⊢ aV : ok

classOf(o) = Γ(o) Γ′ ⊢ ρ : ok

Γ ⊢ o(a,ρ) : ok

(RTT-EXPS)

Γ ⊢ exports: Group〈S〉

Γ ⊢ exports′ : Group〈S〉

Γ ⊢ exports∪exports′ : Group〈S〉

(RTT-PROC)

Γ′ = Γ◦ lT Γ(this) =C

Γ′ ⊢ lV : ok Γ′ ⊢ sr : retType(C,m)

Γ ⊢ m{l |sr;} : ok

(RTT-STACK)

Γ ⊢ proc : ok

Γ ⊢ ρ : ok

Γ ⊢ proc;ρ : ok

Figure 6: The runtime type system.

the typing of fields is represented in the same way, although these types are not altered by the execution.
The rules from the static type checking are reused as appropriate.

5.2 Subject Reduction

The type system guarantees that the type offieldsin an object never changes at runtime (in particular, re-
call the restrictionlocal(y) in rule T-JOIN). This allows us to establish in Lemma 1 from the static typing
of methods in well-typed programs that method binding, if successful, results in a well-typed process at
runtime. To show that theerror process cannot occur in the execution of well-typed programs, it suf-
fices to show that substitutions are always well-typed. Lemma 2 shows that this is the case for the initial
configuration and Lemma 3 shows that one execution step preserves runtime well-typedness. Together,
these lemmas establish a subject reduction theorem for the language, expressing that well-typedness is
preserved during the execution of well-typed programs and in particular that method binding always
succeeds. Here,

∗
→ denotes the reflexive and transitive closure of the reduction relation→.

Lemma 1 Assume that a well-typed program has a class C which defines a method m with formal para-
metersx of typeT and return type T. Let o be an object such that classOf(o) =C andΓ ⊢ o(a,ρ) : ok.
If Γ ⊢ v : T, thenΓ◦aT ⊢ bind(m,C,v) : T.

Lemma 2 Let P be a program such thatΓ ⊢ P : ok and let cn be the initial state of P. ThenΓ ⊢ cn : ok.

Lemma 3 If Γ ⊢ cn : ok and cn→ cn′ then there is aΓ′ such thatΓ′ ⊢ cn′ : ok andΓ ⊆ Γ′.

Theorem 1 (Subject reduction) Let Γ ⊢ P and let cn be the initial runtime state of P. If cn
∗
→ cn′ then

there is aΓ′ such thatΓ′ ⊢ cn′ : ok andΓ ⊆ Γ′.

6 Related Work

Object orientation is well-suited for designing small units which encapsulate state with behavior, but
does not directly address the organization of more complex software units with rich interfaces. Two
approaches to building flexible and adaptive complex software systems involve, independently, object
groups and service discovery. Our work unifies these two approaches in a formal, type-safe setting.

The most common use of object groups is to provide replicatedservices in order to offer better fault
tolerance. Communication to elements of a group is via multicast. This idea originated in the Amoeba
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operating system [16]. The component model Jgroup/ARM [20]adopts this idea to provide autonomous
replication management using distributed object groups. In this setting, members of a group main-
tain a replicated state for reasons of consistency. The ProActive active object programming model [3]
supports abstractions for object groups, which enable group communication—via method call—and var-
ious means for synchronizing on the results of such method calls, such as wait-for-one and wait-for-all.
ProActive is formalized in Caromel and Henrio’s Theory of Distributed Objects [4]. These notions of
group differ from ours in two respects. Firstly, in these approaches communication with groups is via
multicast, whereas in our approach each message will be delivered to exactly one object, and secondly,
in the formal theory, groups are fixed upon creation. Furthermore, there is no notion of service discovery
associated with groups.

Object groups have been investigated as a modularization unit for objects which is complementary to
components. Groups meet the needs of organizing and describing the statics and dynamics of networks
of collaborating objects [18]; groups can have many threadsof control, they support roles (or interfaces),
and objects may dynamically join and leave groups. Lea [18] presents a number of common usages for
groups and discusses their design possibilities, inspiredfrom CORBA. Groups have been used to provide
an abstraction akin to a notion of component. For example, inOracle Siebel 8.2 [8], groups are used as
units of deployment, units of monitoring, and units of control when deploying and operating components
on Siebel servers. Our approach abstracts from most of thesedetails, though groups are treated as first
class entities in our calculus.

Another early work on groups is ActorSpaces [1], which combine Actors with Linda’s pattern match-
ing facility, allowing both one-to-one communication, multicast, and querying. Unlike our approach,
groups in ActorSpaces are intensional: all actors with the same interface belong to the same group. Fur-
thermore ActorSpaces support broadcast communication to agroup, which has not been considered in
this paper as it would differentiate communication with an object and with a group. Compared to our
paper, these works do not give a formalization of group behavior or discuss typing.

Object groups have further been used for coordination purposes. For example, CoLaS [9] is a coor-
dination model based on groups in which objects may join and leave groups. CoLaS goes beyond the
model in our paper by allowing very intrusive coordination of message delivery based on a coordinator
state. In our model, the groups don’t have any state beyond the state of their objects. Similar to our
model, objects enroll to group roles (similar to interfaces). However, unlike our model objects may leave
a group at any time, and the coordinator may access the state of participants. The model is implemented
in Smalltalk and neither formalization nor typing is discussed [9]. Concurrent object groups have also
been proposed to define collaborating objects with a single thread of control in programming and model-
ing languages [15,23]. Concurrent object groups do not haveidentity and function as runtime restrictions
on concurrency rather than as a linguistic concept.

Microsoft’s Component Object Model (COM) supports querying a component to check whether it
supports a specific interface, similar to the query-mechanism considered in this paper. A component in
COM may also have several interfaces, which are independentof each other. In contrast to the model
presented in our paper, COM is not object-oriented and the interfaces of a component are stable (i.e., they
do not change). COM has proven difficult to formalize; Pucella developsλCOM [22], a typedλ -calculus
which addresses COM components in terms of their interfaces, and discusses extensions to the calculus
to capture subtyping, querying for interfaces, and aggregation.

A wide range of service discovery mechanisms exist [13]. Theprogramming language Ambi-
entTalk [10] has built-in service discovery mechanisms, integrated in an object-oriented language with
asynchronous method calls and futures. In contrast to our work, AmbientTalk is an untyped language,
and lacks any compile time guarantees. Various works formalise the notion of service discovery [17],



J. Bjørk, D. Clarke, E. B. Johnsen & O. Owe 13

but they often do so in a formalism quite far removed from the standard setting in which a program using
service discovery would be written, namely, an object-oriented setting. For example, Fiadeiro et al.’s [11]
model of service discovery and binding takes an algebraic and graph-theoretic approach, but it lacks the
concise operational notion of service discovery formalized in our model. No type system is presented
either.

Some systems work has been done that combines groups and service discovery mechanisms, such as
group-based service discovery mechanisms in mobile ad-hocnetworks [5, 12]. In a sense our approach
provides language-based abstractions for a mechanism likethis, except that ours also is tied to interface
types to ensure type soundness and includes a notion of exclusion to filter matched services.

Our earlier work [6] enabled objects to advertise and retract interfaces to which other objects could
bind, using a primitive service discovery mechanism. A group mechanism was also investigated as a way
of providing structure to the services. In that work services were equated with single objects, whereas in
the present work a group service is a collection of objects exporting their interfaces. In particular, this
means that the type of a group can change over time as it comes to support more functionality.

The key differences with most of the discussed works is that the model in this paper remains within
the object-oriented approach, multiple groups may implement an advertised service in different ways, and
our formalism offers a transparent group-based service discovery mechanism with primitive exclusion
policies. Furthermore, our notion of groups has an implicitand dynamically changing interface.

7 Conclusion

The paper has proposed a formal model for adaptive service-oriented systems, based on a notion of
object-oriented groups. We develop a kernel object-oriented language in which groups are first-class
citizens in the sense that they may play the role of objects; i.e., a reference typed by an interface may
refer to an object or to a group. A main advantage is that one may collect several objects into a group,
thereby obtaining a rich interface reflecting a complex service, which can be seen as a single object from
the outside. Although objects in our language are restricted to executing one method activation at the
time, a group may serve many clients at the same time due to inner concurrency.

In contrast to objects, groups may dynamically add support for an increasing number of interfaces.
The formation of groups is dynamic;join andleaveprimitives in the kernel language allow the migration
of services provided by objects and inner groups as well as software upgrade, provided that interfaces
are not removed from a group. An object or group may be part of several groups at the same time. This
gives a very flexible notion of group.

Adaptive object groups are combined with service discoveryby means ofacquireandsubtypeOfcon-
structs in the kernel language, which allow a programmer to discover services in an open and unknown
environment or in a known group, and to query interface support of a given object or group. These
mechanisms are formalized in a general object-oriented setting, based on experiences from a prototype
Maude [7] implementation of the group and service discoveryprimitives. The presented model provides
expressive mechanisms for adaptive services in the settingof object-oriented programming with modest
conceptual additions. We have developed an operational semantics and type and effects system for the
kernel language, and show the soundness of the approach by a proof of type-safety.

The combination of features proposed in this paper suggeststhat our notion of a group can be made
into a powerful programming concept. The work presented in this paper may be further extended in
a number of directions. The overall goal of our work is to study an integration of service-oriented
and object-oriented paradigms based on a formal foundation. In future work, we plan to extend the
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proposed kernel language to multi-thread concurrency and study in more detail how different usages of
object groups such as replication, resource, and access groups (see, e.g., [18]) may be captured using
the proposed primitives. It is also interesting to study theintegration into the kernel language of more
service-oriented concepts such as for example error propagation and handling, as well as high-level group
management operations such as group aggregation.
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