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This paper proposes a way to effectively compare the potential of processes to causeconflict. In discrete
event systems theory, two concurrent systems are said to be in conflict if they can get trapped in a situ-
ation where they are both waiting or running endlessly, forever unable to complete their common task.
Theconflict preorderis a process-algebraic pre-congruence that compares two processes based on their
possible conflicts in combination with other processes. This paper improves on previous theoretical
descriptions of the conflict preorder by introducingless conflicting pairsas a concrete state-based char-
acterisation. Based on this characterisation, an effective algorithm is presented to determine whether
two processes are related according to the conflict preorder.

1 Introduction

A key question in process algebra is how processes can be composed and compared [4, 6]. An under-
standing of what makes processes equivalent is important for several applications, ranging from com-
parison and minimisation in model checking to program construction using abstraction and refinement.
Several equivalence relations have been studied, most notably observation equivalence[12], failures
equivalence[7], and trace equivalence[7]. Each equivalence has its own properties, making it suitable
for particular applications and verification tasks [6].

This paper focuses onconflict equivalence, which compares processes based on which other pro-
cesses they can come into conflict [3, 14] with. Two processesare in conflict, if they can reach a state
from which termination is no longer possible. This can be because ofdeadlockwhere neither process is
capable of doing anything, orlivelockwhere the system continues to run without ever terminating.

It is difficult to reason about conflicts in a modular way. If two processes are free from conflict
individually, they may well be involved in a conflict when running together, and vice versa [18]. This
makes it difficult to apply most methods of abstraction common in model checking [1] to verify systems
to be free from conflict, and standard process-algebraic equivalences [6] are not applicable either.

Conflict equivalence is introduced in [11] as the best possible process equivalence to reason compo-
sitionally about conflicts. Conflict equivalence is coarserthan observation equivalence [12] and different
from failures and trace equivalence [7]. The process-algebraic theory most closely related to conflict
equivalence isfair testing [2, 13, 15]. The essential difference between conflict equivalence and fair
testing lies in the capability to compare processes that exhibit blocking behaviour, as expressed by the
set of certain conflicts[9, 10, 11].

In [5, 16, 17], various conflict-preserving rewrite rules are used to simplify processes and check
whether or not large systems of concurrent finite-state automata are free from conflict. While of good
use in practice, the rewrite rules are incomplete, and it remains an open question how processes can be
normalised or compared for conflict equivalence.

This paper improves on previous results about conflict equivalence and the associated conflict pre-
order [11], and fair testing [15], by providing a state-based characterisation of the conflict preorder. It
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proposesless conflicting pairsas a more concrete way to compare processes for their conflicting be-
haviour than the abstract test-based characterisation using nonconflicting completionsin [11] and the
refusal treesof [15]. Less conflicting pairs give a means to directly compare processes based on their
reachable state sets, which leads to an alternative algorithm to test the conflict preorder. While still linear
exponential, this algorithm is simpler and has better time complexity than the decision procedure for fair
testing [15].

In the following, Section 2 briefly reviews the needed terminology of languages, automata, and
conflict equivalence. Then Section 3 introduces less conflicting pairs and shows how they can be used
to describe certain conflicts and the conflict preorder. Afterwards, Section 4 proposes an algorithm to
calculate less conflicting pairs for finite-state automata,and Section 5 adds some concluding remarks.

2 Preliminaries

2.1 Languages and Automata

Event sequences and languages are a simple means to describeprocess behaviours. Their basic building
blocks areevents, which are taken from a finitealphabetΣ. Two special events are used, thesilent eventτ
and thetermination eventω . These are never included in an alphabetΣ unless mentioned explicitly.

Σ∗ denotes the set of all finitetracesof the formσ1σ2 · · ·σn of events fromΣ, including theempty
traceε . Thelengthof traces is denoted by|s|. A subsetL ⊆ Σ∗ is called alanguage. Theconcatenation
of two tracess, t ∈ Σ∗ is written asst, and a traces is called aprefixof t, writtens⊑ t, if t = sufor some
traceu. A languageL ⊆ Σ∗ is prefix-closed, if s∈ L andr ⊑ s impliesr ∈ L.

In this paper, process behaviour is modelled using nondeterministic labelled transitions systemsor
automata A= 〈Σ,Q,→,Q◦〉, whereΣ is a finite alphabet ofevents, Q is a set ofstates, →⊆ Q× (Σ∪
{τ ,ω})×Q is thestate transition relation, andQ◦ ⊆ Q is the set ofinitial states. The automatonA is
calledfinite-stateif its state setQ is finite.

The transition relation is written in infix notationx
σ
→ y, and is extended to traces by lettingx

ε
→ x

for all x ∈ Q, andx
sσ
→ y if x

s
→ z

σ
→ y for somez∈ Q. The transition relation must satisfy the additional

requirement that, wheneverx
ω
→ y, there does not exist any outgoing transition fromy. The automatonA

is calleddeterministicif |Q◦| ≤ 1 and the transition relation contains no transitions labelled τ , and if
x

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2.

To support silent transitions,x
s
⇒ y, with s∈ (Σ∪{ω})∗, denotes the existence of a tracet ∈ (Σ∪

{ω ,τ})∗ such thatx
t
→ y, ands is obtained fromt by deleting allτ events. For a state setX ⊆ Q and

a statey∈ Q, the expressionX
s
⇒ y denotes the existence ofx ∈ X such thatx

s
⇒ y, andA

s
⇒ y means

thatQ◦ s
⇒ y. Furthermore,x ⇒ y denotes the existence of a tracessuch thatx

s
⇒ y, andx

s
⇒ denotes the

existence of a statey ∈ Q such thatx
s
⇒ y. For a state, state set, or automatonX, the languageand the

marked languageare

L(X) = {s∈ (Σ∪{ω})∗ | X s
⇒} and Lω(X) = L(X)∩Σ∗ω . (1)

Every prefix-closed languageL is recognised by an automatonA such thatL(A) = L, but only regular
languages are recognised by a finite-state automaton [8].

When two automata are running in parallel, lock-step synchronisation in the style of [7] is used. The
synchronous compositionof A= 〈ΣA,QA,→A,Q

◦
A〉 andB= 〈ΣB,QB,→B,Q

◦
B〉 is

A‖B= 〈ΣA∪ΣB,QA×QB,→,Q◦
A×Q◦

B〉 (2)
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Figure 1: Examples of blocking and nonblocking automata.

where
(xA,xB)

σ
→ (yA,yB) if σ ∈ (ΣA∩ΣB)∪{ω}, xA

σ
→A yA, andxB

σ
→B yB ;

(xA,xB)
σ
→ (yA,xB) if σ ∈ (ΣA\ΣB)∪{τ} andxA

σ
→A yA ;

(xA,xB)
σ
→ (xA,yB) if σ ∈ (ΣB\ΣA)∪{τ} andxB

σ
→B yB .

In synchronous composition, shared events (includingω) must be executed by all automata together,
while events used by only one of the composed automata and silent (τ) events are executed independently.

2.2 Conflict Equivalence

The key liveness property in supervisory control theory [14] is the nonblockingproperty. Given an
automatonA, it is desirable that every trace inL(A) can be completed to a trace inLω(A), otherwiseA
may become unable to terminate. A process that may become unable to terminate is calledblocking.
This concept becomes more interesting when multiple processes are running in parallel—in this case the
termconflictingis used instead.

Definition 1. An automatonA= 〈Σ,Q,→,Q◦〉 is nonblockingif for every statex ∈ Q, Q◦ ⇒ x implies
thatLω(x) 6= /0. OtherwiseA is blocking. Two automataA andBarenonconflictingif A‖B is nonblocking,
otherwise they areconflicting.

Example 1. AutomatonA0 in Figure 1 is nonblocking, as it is always possible to reach state a2 and
terminate. AutomatonB0 on the other hand is blocking, because it can enter stateb3 after execution of
αβ , from where it is no longer possible to reach a state where thetermination eventω is enabled.

For an automaton to be nonblocking, it is enough that a terminal statecan be reached fromevery
reachable state. There is no requirement for termination tobe guaranteed. For example, automatonA0

in Figure 1 is nonblocking despite the presence of a possiblyinfinite loop of α-transitions in statea0.
Nonblocking is also different from “may”-testing [15], which only requires the possibility of termination
from the initial state. The testing semantics most similar to nonblocking is “should”-testing, which is
also known asfair testing[15].

To reason about nonblocking in a compositional way, the notion ofconflict equivalenceis developed
in [11]. According to process-algebraic testing theory, two automata are considered as equivalent if they
both respond in the same way to all tests of a certain type [4].For conflict equivalence, atest is an
arbitrary automaton, and theresponseis the observation whether or not the test is conflicting withthe
automaton in question.

Definition 2. Let A andB be two automata.A is less conflictingthanB, written A.conf B, if, for every
automatonT, if B‖T is nonblocking thenA‖T also is nonblocking.A andB areconflict equivalent,
A≃conf B, if A.conf B andB.conf A.

Example 2. Consider automataA1 andB1 in Figure 2.A1 is not less conflicting thanB1, sinceA1‖T1 is
blocking whileB1‖T1 is nonblocking. This is becauseA1‖T1 can enter the blocking state(a2,q1) after
executing ofα , whereas after executingα in B1, it eventually becomes possible to continue using either
theβ - or γ-transition ofT1. It can also be shown thatB1 .conf A1 does not hold.
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Figure 2: Two automata that are not conflict equivalent.

The properties of the conflict preorder.conf and of conflict equivalence and their relationship to other
process-algebraic relations are studied in [11]. It is enough to consider deterministic tests in Definition 2,
and conflict equivalence is is the coarsest possible congruence with respect to synchronous composition
that respects blocking, making it an ideal equivalence for use in compositional verification [5, 17].

2.3 The Set of Certain Conflicts

Every automaton can be associated with a language ofcertain conflicts, which plays an important role in
conflict semantics [9].

Definition 3. For an automatonA= 〈Σ,Q,→,Q◦〉, write

Conf(A) = {s∈ Σ∗ | For every automatonT such thatT
s
⇒, A‖T is blocking} ; (3)

NConf(A) = {s∈ Σ∗ | There exists an automatonT such thatT
s
⇒ andA‖T is nonblocking} . (4)

Conf(A) is the set ofcertain conflictsof A. It contains all traces that, when possible in the environ-
ment, necessarily cause blocking. Its complementNConf(A) is the most general behaviour of processes
that are to be nonconflicting withA. If A is nonblocking, thenConf(A) = /0 andNConf(A) = Σ∗, be-
cause in this caseA‖U is nonblocking, whereU is a deterministic automaton such thatLω(U) = Σ∗ω .
The set of certain conflicts becomes more interesting for blocking automata.

Example 3. Consider again automatonB0 in Figure 1. Clearlyαβ ∈ Conf(B0) asB0 can enter the
deadlock stateb3 by executingαβ , and therefore every testT that can executeαβ is conflicting withB0.
But alsoα ∈Conf(B0), becauseB0 can enter stateb2 by executingα , from where the only possibility
to terminate is by executingβω . So any test that can executeα also needs to be able to executeαβ if it
is to be nonconflicting withB0; but such a test is conflicting withB0 as explained above. It can be shown
thatConf(B0) = αΣ∗.

The set of certain conflicts is introduced in [9], and its properties and its relationship to conflict
equivalence are studied in [11]. Even if an automaton is nondeterministic, its set of certain conflicts is a
language, but as shown in Example 3, it is not necessarily a subset of the languageL(A) of its automaton.
If a traces is a trace of certain conflicts, then so is any extensionst. An algorithm to compute the set of
certain conflicts for a given finite-state automaton is presented in [10].

Certain conflicts constitute the main difference between conflict equivalence andfair testing [15].
In fair testing, processes are not allowed to synchronise onthe termination eventω , so termination is
determined solely by the test. This can be expressed as conflict equivalence by requiring thatω be
enabled in all states of the automata compared [11].

Conversely, it is possible to factor out certain conflicts from any given automaton, by redirecting all
traces of certain conflicts to a single state [9, 10]. For example, automatonB0 in Figure 1 can be replaced
by the conflict equivalent automatonB′

0, which uses the single deadlock state⊥. Two automataA andB
are conflict equivalent if and only if their normalised formsA′ andB′ are fair testing equivalent. The
decision procedure for fair testing [15] can be used to test the conflict preorder, and vice versa.
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Figure 3: Two automata that are conflict equivalent.

3 Characterising the Conflict Preorder

This section is concerned about characterising two automata A andB as conflict equivalent, or charac-
terisingA as less conflicting thanB, in a state-based way. First, 3.1 explains the crucial properties of
conflict equivalence using examples.Less conflicting pairsare introduced in 3.2, and they are used to
characterise certain conflicts in 3.3 and the conflict preorder in 3.4.

3.1 Understanding Conflict Equivalence

Every reachable state of an automatonA carries anonblocking requirement(also known as anoncon-
flicting completion[11]) that needs to be satisfied by tests that are to be nonconflicting with A. For
example, ifA

s
⇒ xA, then every testT that can executes needs to be able to continue with at least one

tracet ∈ Lω(xA), or T is conflicting withA. An automatonA is less conflicting than another automatonB,
if every nonblocking requirement associated withA also is a nonblocking requirement associated withB.

Example 4. Consider again automataA1 andB1 in Figure 2. They have the same marked languages.
Thus, if the initial statea0 of A1 is blocking in combination with some testT, then so is the initial
stateb0 of B1. But this is not the case whenA1 ‖T enters a state(a1,xT) after execution ofα . Statea1

requiresxT to be capable of performing at least one trace from the language Lω(a1) = (αα)∗βω +
(αα)∗αγω , whereas the statesb1 andb2, which can both be entered after executingα , require a trace
from the languageα∗βω andα∗γω , respectively. Both of these languages contain traces outside of the
languageLω(a1). AutomatonT1 in Figure 2 is in conflict withA1 but not withB1.

In general, it is not enough to compare only the marked languages of states reached by equal traces.
Not every nonblocking requirements is a marked language of some state of its automaton. The following
example shows one of the problems.

Example 5. Consider automataA2 andB2 in Figure 3. The marked language of the initial state ofA2

is Lω(a0) = αα+ω , while the marked languages of the two states inB2 that can be entered initially are
Lω(b0) = α∗ω andLω(b1) = α+ω . Although the marked languages are different, for any automatonT, if
B2‖T is nonblocking, thenA2‖T must also be nonblocking. IfT is to be nonconflicting in combination
with B2, sinceB2 may initially enter stateb1, there must be the possibility to continue with eventα .
However, after executingα , automatonB2 may again silently enter stateb1, which means thatα must
be possible again. This is enough to ensure thatA2 ‖T is nonblocking. Using this argument, it can be
shown thatA2 andB2 are conflict equivalent.

3.2 Less Conflicting Pairs

In order to compare two nondeterministic automata according to conflicts, it is necessary to identify sets
of states the two automata may reach under the same input. This is done using the well-knownsubset
construction[8]. To capture termination, the usual powerset state spaceis extended by a special stateω
entered only after termination.
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Definition 4. Thedeterministic state spaceof automatonA= 〈Σ,Q,→,Q◦〉 is

Qdet
A = 2Q ∪{ω} , (5)

and thedeterministic transition functionδ det
A : Qdet× (Σ∪{ω})→ Qdet for A is defined as

δ det
A (X,σ) =

{

ω , if σ = ω andX
ω
⇒;

{y∈ Q | X
σ
⇒ y}, otherwise.

(6)

The deterministic transition functionδ det
A is extended to tracess∈ Σ∗ ∪ Σ∗ω in the standard way.

Note thatδ det
A (X,s) is defined for every traces∈ Σ∗∪Σ∗ω ; if none of the states inX accepts the traces,

this is indicated byδ det
A (X,s) = /0. This is also true for termination: ifω is enabled in some state inX,

thenδ det
A (X,ω) = ω , otherwiseδ det

A (X,ω) = /0.
In order to compare two automataA andB with respect to possible conflicts,pairs of state sets of the

subset construction ofA andB need to be considered. Therefore, the deterministic transition function is
also applied to pairsX = (XA,XB) of state setsXA ⊆ QA andXB ⊆ QB,

δ det
A,B(X,s) = δ det

A,B(XA,XB,s) = (δ det
A (XA,s),δ det

B (XB,s)) . (7)

To determine whetherA .conf B, it is necessary to check all statesxA ∈ QA against matching state
setsXB ⊆ QB and determine whether all possible conflicts ofxA are also present inXB. For example,
when automatonA2 in Figure 3 is in statea1, thenB2 may be inb0 or b1. In statea1, at least one of
the traces inα+ω needs to be enabled to avert blocking, and the same requirement to avert blocking is
seen in stateb1. When statea1 is entered with some testT, blocking occurs if none of the traces inα+ω
is enabled, and such a testT is also blocking when combined with a system that may be inb0 or b1.
Therefore,a1 is considered in the following asless conflicting(LC ) than{b0,b1}.

It cannot always be determined directly whether a statexA ∈ QA is less conflicting than a state set
XB ⊆ QB. In some cases, it is necessary also to consider the deterministic successors ofxA and XB.
Therefore, the following definition considers pairs(XA,XB) of state sets.

Definition 5. Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata. The setLC(A,B)⊆Qdet

A ×
Qdet

B of less conflicting pairsfor A andB is inductively defined by

LC0(A,B) = {ω}×Qdet
B ∪ {(XA,XB) | XB ⊆ QB and there existsxB ∈ XB with Lω(xB) = /0} ; (8)

LCn+1(A,B) = {(XA,XB) | there existsxB ∈ XB such that for allt ∈ Σ∗, if xB
tω
⇒ then there

existsr ⊑ tω such thatδ det
A,B(XA,XB, r) ∈ LC i(A,B) for somei ≤ n} ;

(9)

LC(A,B) =
⋃

n≥0

LCn(A,B) . (10)

Remark 1. If (XA,XB) /∈ LC(A,B), then according to (9), for every statexB ∈ XB, there existst ∈ Σ∗

such thatxB
tω
⇒, andδ det(XA,XB, r) /∈ LC(A,B) for all prefixesr ⊑ tω .

The idea of Definition 5 is to classify a pair(XA,XB) as less conflicting, if the marked language
of XA is a nonconflicting completion[11] for the process with initial statesXB. That is, every test that
is nonconflicting in combination with each of the states inXB can terminate with at least one trace from
the marked language ofXA. Or conversely, every test that cannot terminate using any of the traces in the
marked language ofXA also is conflicting withXB (see Lemma 1 below).
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The first state setXA of a pair(XA,XB) is just used to represent alanguageof possible completions.
If state setsXA andYA have the same languages, then all pairs(XA,XB) and (YA,XB) have exactly the
same less conflicting status. For the second state setXB on the other hand, the complete nondeterministic
behaviour is relevant.

A pair (ω ,XB) is considered as “less conflicting” (8), since termination has already been achieved
in A. If XB contains a statexB such thatLω(xB) = /0, then(XA,XB) also is less conflicting (8), because con-
flict is guaranteed inXB. For other pairs(XA,XB), it must be checked whetherXB contains a requirement
to avert blocking matching that given by the language ofXA (9).
Example 6. Consider again automataA0 andB0 in Figure 1. It holds that({a0},{b0}) ∈ LC1(A0,B0).
There are three ways to terminate fromb0, by executingω or αβω or ααβω . All three traces are
possible ina0, each taking the pair({a0},{b0}) to the deterministic successor(ω ,ω) ∈ LC0(A0,B0).
This is enough to confirm that (9) is satisfied.

On the other hand,({a0},{b2}) /∈ LC1(A0,B0). From statea0, blocking occurs with a testT that

can only executeβω , but this test is nonblocking withb2. It holds thatb2
βω
→, where traceβω has the

prefixesε , β , andβω , but δ det
A0,B0

({a0},{b2},ε) = ({a0},{b2}) /∈ LC0(A0,B0), δ det
A0,B0

({a0},{b2},β ) =
( /0,{b4}) /∈ LC0(A0,B0), andδ det

A0,B0
({a0},{b2},βω) = ( /0,ω) /∈ LC0(A0,B0). Therefore, (9) is not satis-

fied and({a0},{b2}) /∈ LC1(A0,B0). It can also be shown that({a0},{b2}) /∈ LC(A0,B0).
For alevel-1 less conflicting pair(XA,XB) ∈ LC1(A,B), if XB does not contain blocking states, then

there must exist a statexB ∈ XB such thatLω(xB)⊆ Lω(XA). This is not the case for every less conflicting
pair, as some nonblocking requirements are only implicitlycontained in the automaton. To show that
(XA,XB) is a less conflicting pair, it is enough to find a state inxB ∈ XB that can cover an initial segment
of Lω(XA), as long as a less conflicting pair of alower levelis reached afterwards.
Example 7. Consider again automataA2 andB2 in Figure 3. By definition,(ω ,ω) ∈ LC0(A2,B2), and
following from this,({a1},{b0,b1}) ∈ LC1(A2,B2), because the marked language ofa1 is α+ω , which
also is the marked language ofb1.

Now consider the pair({a0},{b0,b1}). Statea0 has the marked languageαα+ω , i.e., to avert block-
ing from a0, a test must be able to execute at least one of the traces inαα+ω . Although this language is
not directly associated with any state inB2, the nonblocking requirement is implicitly present in stateb1.
If blocking is to be averted from stateb1, eventα must be possible. After executingα , stateb0 is entered,
from where it is always possible to silently return to stateb1 with marked languageα+ω . Therefore, in
order to avert blocking from stateb1, it is necessary to executeα and afterwards be able to terminate
using one of the traces inα+ω . This amounts to the implicit nonblocking requirement to execute a trace
from αα+ω in stateb1.

Therefore({a0},{b0,b1}) /∈ LC1(A2,B2), but ({a0},{b0,b1}) ∈ LC2(A2,B2) according to (9): ev-
ery trace that leads to a terminal state from stateb1 has the prefixα , andδ det

A2,B2
({a0},{b0,b1},α) =

({a1},{b0,b1}) ∈ LC1(A2,B2).
As shown in the example, some nonblocking requirements haveto be constructed using a saturation

operation that combines two previously found nonblocking requirements. The leveln of a less conflicting
pair (XA,XB) ∈ LCn(A,B) represents the nesting depth of applications of this saturation operation.

The following two lemmas relate the state-based definition of less conflicting pairs to possible tests
and thus to the conflict preorder. A pair(XA,XB) is a less conflicting pair, if every testT such that
Lω(XA)∩Lω(T) = /0 also is conflicting withXB.
Lemma 1. Let A= 〈Σ,QA,→A,Q

◦
A〉, B= 〈Σ,QB,→B,Q

◦
B〉, andT = 〈Σ,QT ,→T ,Q

◦
T〉 be automata, and

let xT ∈QT be a (possibly unreachable) state. For every less conflicting pair(XA,XB)∈ LC(A,B), at least
one of the following conditions holds.
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(i) XA = ω , or XA ⊆ QA and there existsxA ∈ XA such thatLω(xA,xT) 6= /0.

(ii) There exist statesxB ∈ XB, yB ∈ QB, andyT ∈ QT such that(xB,xT)⇒ (yB,yT) andLω(yB,yT) = /0.

(Here and in the following, notationLω(xA,xT) is abused to be a shorthand forLω((xA,xT)).)

Proof. As (XA,XB) is a less conflicting pair, it holds that(XA,XB) ∈ LCn(A,B) for somen ∈ N0. The
claim is shown by induction onn.

If (XA,XB) ∈ LC0(A,B) then by (8) it holds thatXA = ω , or XB ⊆ QB and there existsxB ∈ XB such
that Lω(xB) = /0. In the first case (i) holds, and in the second case (ii) holds as(xB,xT)

ε
→ (xB,xT) and

Lω(xB,xT) = Lω(xB)∩Lω(xT) = /0.
Now assume the claim holds for alli ≤ n, i.e., for all (XA,XB) ∈ LC i(A,B), one of the conditions

(i) or (ii) holds, and consider(XA,XB) ∈ LCn+1(A,B). By (9), there existsxB ∈ XB such that for all

t ∈ Σ∗, if xB
tω
⇒ then there exists a prefixr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈ LC i(A,B) for somei ≤ n. If

Lω(xB,xT) = /0, (ii) follows immediately as(xB,xT)
ε
→ (xB,xT). Therefore assume thatLω(xB,xT) 6= /0,

i.e., there existst ∈ Σ∗ such that(xB,xT)
tω
⇒. ThenxB

tω
⇒, so there existsr ⊑ tω such thatδ det

A,B(XA,XB, r)∈

LC i(A,B) for somei ≤ n. As r ⊑ tω andxT
tω
⇒, it also holds thatxT

r
⇒ yT for someyT ∈ QT . Let

δ det
A,B(XA,XB, r) = (YA,YB). By inductive assumption, (i) or (ii) holds for(YA,YB) ∈ LC i(A,B) andyT .

(i) In this case, eitherYA = ω , orYA ⊆ QA and there existsyA ∈YA andu∈ Σ∗ such that(yA,yT)
uω
⇒. If

YA = ω , thenδ det
A (XA, r) =YA = ω and according to Definition 4 there existsrA ∈ Σ∗ such thatr = rAω ,

and there exist statesxA ∈ XA andyA ∈ QA such thatxA
rA⇒ yA

ω
⇒, i.e.,(xA,xT)

rAω
=⇒. If there existsyA ∈YA

andu∈ Σ∗ such that(yA,yT)
uω
⇒, then sinceδ det

A (XA, r) =YA, there existsxA ∈ XA such thatxA
r
⇒ yA, i.e.,

(xA,xT)
r
⇒ (yA,yT)

uω
⇒. In both cases, (i) holds for(XA,XB) andxT .

(ii) If there exists a stateyB ∈ YB such that(yB,yT) ⇒ (zB,zT) whereLω(zB,zT) = /0, then since
δ det

B (XB, r) = YB, there existsxB ∈ XB such thatxB
r
⇒ yB, which implies(xB,xT)

r
⇒ (yB,yT) ⇒ (zB,zT)

with Lω(zB,zT) = /0. Thus, (ii) holds for(XA,XB) andxT .

Conversely, if a pair of state sets isnot a less conflicting pair forA andB, then this pair gives rise to
a test automaton to show thatA is not less conflicting thanB. This test exhibits blocking behaviour in
combination withA but not withB.

Lemma 2. LetA= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata. For every pairX = (XA,XB) /∈

LC(A,B), there exists a deterministic automatonTX = 〈Σ,QT ,→T ,{x◦T}〉 such that both the following
conditions hold.

(i) For all statesxA ∈ XA, it holds thatLω(xA,x
◦
T) = /0.

(ii) For all statesxB ∈ XB, yB ∈ QB, yT ∈ QT such that(xB,x
◦
T)⇒ (yB,yT), it holds thatLω(yB,yT) 6= /0.

Proof. Construct the deterministic automatonTX = 〈Σ,QT ,→T ,{x◦T}〉 such that

L(TX) = {s∈ Σ∗∪Σ∗ω | δ det
A,B(X, r) /∈ LC(A,B) for all r ⊑ s} . (11)

This language is prefix-closed by construction and nonemptybecauseX /∈ LC(A,B). Therefore,TX is a
well-defined automaton.

(i) Let xA ∈ XA. If xA
tω
⇒ for somet ∈ Σ∗, thenδ det

A,B(X, tω) = (ω ,YB) ∈ LC0(A,B) ⊆ LC(A,B) for

someYB ∈ Qdet
B by Definition 4 and 5. It follows from (11) thattω /∈ L(TX), and thus(xA,x◦T)

tω
⇒ does

not hold. Sincet ∈ Σ∗ was chosen arbitrarily, it follows thatLω(xA,x
◦
T) = /0.
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(ii) Let xB ∈ XB, yB ∈ QB, yT ∈ QT , ands∈ Σ∗ such that(xB,x
◦
T)

s
⇒ (yB,yT). Clearly s∈ L(TX),

and by (11) it follows thatδ det
A,B(X, r) /∈ LC(A,B) for all prefixesr ⊑ s. Let δ det

A,B(X,s) = Y. ThenY /∈

LC(A,B), so there exists a tracet ∈ Σ∗ such thatyB
tω
⇒ and for allr ⊑ t it holds thatδ det

A,B(Y, r) /∈ LC(A,B)

(see Remark 1). ThusxB
s
⇒ yB

tω
⇒ and for all prefixesu⊑ stω , it holds thatδ det

A,B(X,u) /∈ LC(A,B). Then

stω ∈ L(TX) according to (11), and sinceTX is deterministic, it follows thatyT
tω
⇒. Therefore,(yB,yT)

tω
⇒,

i.e.,Lω(yB,yT) 6= /0.

3.3 Less Conflicting Pairs and Certain Conflicts

Less conflicting pairs can be used to characterise the set ofcertain conflictsof an automaton as defined
in 2.3. This shows the close link between the conflict preorder and the set of certain conflicts. If a
pair ( /0,XB) is a less conflicting pair then, since termination is impossible from /0, conflict must be also
present inXB. In this case, every trace leading toXB must be a trace of certain conflicts. This observation
leads to the following alternative characterisation of theset of certain conflicts.

Theorem 3. The set of certain conflicts ofB= 〈Σ,Q,→,Q◦〉 can also be written as

Conf(B) = {s∈ Σ∗ | ( /0,δ det
B (Q◦, r)) ∈ LC(O,B) for some prefixr ⊑ s} , (12)

whereO= 〈Σ, /0, /0, /0〉 stands for the empty automaton.

Proof. First lets∈ Σ∗ such that( /0,δ det
B (Q◦, r)) ∈ LC(O,B) for somer ⊑ s, and letT = 〈Σ,QT ,→T ,Q

◦
T〉

be an automaton such thatT
s
⇒. It is to be shown thatB‖T is blocking. SinceT

s
⇒ andr ⊑ s, it holds

that T
r
⇒ xT for some statexT ∈ QT . Since( /0,δ det

B (Q◦, r)) ∈ LC(O,B), either (i) or (ii) in Lemma 1
holds. However, (i) is impossible as the first state set of thepair is empty, so (ii) must be true. Thus, there
exists a statex∈ δ det

B (Q◦, r) such that(x,xT)⇒ (y,yT) whereLω(y,yT) = /0. ThenB‖T is blocking as
B‖T

r
⇒ (x,xT)⇒ (y,yT).

Conversely, lets∈ Σ∗ such that( /0,δ det
B (Q◦, r)) /∈ LC(O,B) for every prefixr ⊑ s. It is to be shown

thats∈NConf(B). Consider the deterministic automatonT such that

L(T) = {t ∈ Σ∗ | ( /0,δ det
B (Q◦, r)) /∈ LC(O,B) for all r ⊑ t } . (13)

T is a well-defined automaton asL(T) is prefix-closed by construction. It remains to be shown that

B‖T is nonblocking. LetB‖T
t
⇒ (x,xT ). Thent ∈ L(T), and by definition ofT (13), it holds that

( /0,δ det
B (Q◦, t)) /∈ LC(O,B), and the same holds for all prefixes oft. Also x∈ δ det

B (Q◦, t), so there exists

a traceu∈ Σ∗ such thatx
uω
⇒, and for every prefixr ⊑ uω , it holds thatδ det

O,B( /0,δ det
B (Q◦, t), r) /∈ LC(O,B)

(see Remark 1). By definition (13), it follows thattuω ∈ L(T), and sinceT is deterministic alsoxT
uω
⇒.

Therefore,B‖T
t
⇒ (x,xT)

uω
⇒, i.e.,B‖T is nonblocking.

The result of Theorem 3 shows how less conflicting pairs generalise certain conflicts for the case
when two automata are compared, and in combination with the algorithm in Section 4, less conflicting
pairs lead to an alternative presentation of the algorithm [10] to compute the set of certain conflicts.

3.4 Testing the Conflict Preorder

Given the less conflicting pairs for two automataA andB, it is possible to determine whetherA.conf B.
AutomatonA is less conflicting thanB if every testT that is nonconflicting in combination withB also is
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nonconflicting withA. To check this condition, it is enough to consider tracesB‖T
s
⇒ (xB,xT), and check

whether termination is also possible for every statexA of A such thatA‖T
s
⇒ (xA,xT). This amounts to

checking whether({xA},XB) ∈ LC(A,B) whenA
s
⇒ xA andδ det

B (Q◦
B,s) = XB.

However, this condition does not apply to traces of certain conflicts. If s∈ Conf(B), then every
test T that can executes is in conflict with B. In this case,A can still be less conflicting thanB, no
matter whetherA can or cannot execute the traces and terminate afterwards. This observation leads to
the following result.

Theorem 4. Let A = 〈Σ,QA,→A,Q
◦
A〉 andB = 〈Σ,QB,→B,Q

◦
B〉 be two automata.A is less conflicting

thanB if and only if for all s∈NConf(B) and allxA ∈ QA such thatA
s
⇒ xA it holds that({xA},XB) ∈

LC(A,B), whereδ det
B (Q◦

B,s) = XB.

Proof. First assume that for alls∈NConf(B) and allxA ∈QA such thatA
s
⇒ xA it holds that({xA},XB)∈

LC(A,B), whereδ det
B (Q◦

B,s) = XB. Let T = 〈Σ,QT ,→T ,Q
◦
T〉 such thatB‖T is nonblocking, and assume

that A‖T
s
⇒ (xA,xT). SinceB‖T is nonblocking andT

s
⇒, it follows thats∈ NConf(B). Therefore

by assumption({xA},XB) ∈ LC(A,B), so (i) or (ii) in Lemma 1 must be true. However, (ii) cannot hold,
because for allxB ∈ XB = δ det

B (Q◦,s) it holds thatB‖T
s
⇒ (xB,xT), and sinceB‖T is nonblocking, there

cannot exist any state(yB,yT) such that(xB,xT) ⇒ (yB,yT) andLω(yB,yT) = /0. Thus, (i) must be true,
and this means thatLω(xA,xT) 6= /0. SinceT ands such thatA‖T

s
⇒ (xA,xT) were chosen arbitrarily, it

follows thatA.conf B.
Second assume that there existss∈NConf(B) andxA ∈ QA such thatA

s
⇒ xA andX = ({xA},XB) /∈

LC(A,B), whereXB = δ det
B (Q◦

B,s). Let NB = 〈Σ,QN,→N,{x◦N}〉 be a deterministic recogniser of the lan-
guageNConf(B), and letTX = 〈Σ,QT ,→T ,{x◦T}〉 be the deterministic automaton that exists according
to Lemma 2. Sinces∈NConf(B), there exists a unique statexs∈QN such thatNB

s
→ xs. Then construct

the automaton
T = 〈Σ,QN ∪̇QT ,→N ∪→T ∪{(xs,τ ,x◦T)},{x◦N}〉 . (14)

Clearly,A‖T
s
⇒ (xA,xs)

τ
→ (xA,x

◦
T), andLω(xA,x

◦
T) = /0 by Lemma 2 (i). Thus,A‖T is blocking.

On the other hand,B‖T is nonblocking. To see this, considerB‖T
t
⇒ (yB,yT). If yT ∈ QN, then

it follows from the fact thatB‖NB is nonblocking [11] that there existsu ∈ Σ∗ such that(yB,yT)
uω
⇒.

OtherwiseyT ∈ QT , which means thatt = suandT
s
→ xs

τ
→ x◦T

u
→ yT . Also sinceB

t
⇒ yB, it follows that

yB ∈ δ det
B (Q◦

B, t) = δ det(Q◦
B,su) = δ det

B (δ det
B (Q◦

B,s),u) = δ det
B (XB,u), i.e., there existsxB ∈ XB such that

xB
u
⇒ yB. Thus(xB,x

◦
T)

u
⇒ (yB,yT), and by Lemma 2 (ii), it holds thatLω(yB,yT) 6= /0.

Thus,A‖T is blocking andB‖T is nonblocking, soA.conf B cannot hold.

Example 8. Consider again automataA0 andB0 in Figure 1. Recall thatConf(B0) = αΣ∗ from Ex-
ample 3, so the only state inA0 that can be reached by a traces /∈ Conf(B0) is a0. Therefore, it is
enough to check the pair({a0},{b0}) according to Theorem 4, and it has been shown in Example 6 that
({a0},{b0}) ∈ LC1(A0,B0). It follows thatA0 .conf B0. This conclusion is made despite the fact that
({a0},{b2}) /∈ LC(A0,B0), because({a0},{b2}) is only reachable by tracesαn ∈Conf(B0), n≥ 2.

When using Theorem 4 to determine whether an automatonA is less conflicting than some blocking
automatonB, the set of certain conflicts ofB must be known first. This can be achieved using Theorem 3,
which makes it possible to classify state sets in the subset construction ofB as certain conflicts. If a state
setXB ⊆ QB is found to represent certain conflicts, i.e.,( /0,XB) ∈ LC(O,B) according to Theorem 3, then
(XA,XB)∈ LC(A,B) for every state setXA⊆QA. Successors reached only from such pairs are also certain
conflicts ofB and should not be considered when testing whetherA.conf B according to Theorem 4.
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LC(A1,B1) : LC(A2,B2) :

α

α

α

α

ω

ω
(ω ,ω)

( /0,ω)

β

β

γ

γ

β ,γ
({a0},{b0}) ({a1,a2},{b1,b2})

({a3},{b3})

({a1},{b1,b2}) ({a2},{b1,b2})

( /0,{b3})

α
ααα

ωω ωω

(ω ,ω)( /0,ω)

({a0},{b0,b1}) ({a1},{b0,b1}) ({a1,a2},{b0,b1})

({a2},{b0,b1})

Figure 4: Less conflicting pairs for the automata pairs in Figure 2 and 3.

Example 9. Consider again automataA1 andB1 in Figure 2. ComposingA1 with a deterministic version
of B1 results in the following four pairs of states inA1 and sets of states inB1 that should be tested
according to Theorem 4 to determine whetherA1 .conf B1:

({a0},{b0}) ({a1},{b1,b2}) ({a2},{b1,b2}) ({a3},{b3}) . (15)

All four pairs need to be considered asB1 is nonblocking and thusConf(B1) = /0.
The graph to the left in Figure 4 shows these four pairs and their deterministic successors. The four

pairs (15) are marked as initial states, and the arrows in thegraph represent the deterministic transition
function. Although the deterministic transition functionis defined for all state set pairs and events, arrows
to ( /0, /0) are suppressed for clarity of presentation.

The following less conflicting pairs to compareA1 to B1 are determined from the graph:

(ω ,ω) ∈ LC0(A1,B1) ; (16)

({a0},{b0}), ({a1,a2},{b1,b2}), ({a3},{b3}) ∈ LC1(A1,B1) . (17)

For example,({a1,a2},{b1,b2}) ∈ LC1(A1,B1), because all the ways to reach termination from stateb1,
i.e., all traces inLω(b1) = α∗βω take the pair({a1,a2},{b1,b2}) to (ω ,ω) ∈ LC0(A1,B1). No further
pairs are found inLC2(A1,B1), so LC(A1,B1) consists only of the pairs listed above. For example,
({a1},{b1,b2}) /∈ LC2(A1,B1), because the tracesαβω ∈ Lω(b1) and γω ∈ Lω(b2) do not have any
prefixes that reach a pair inLC1(A1,B1).

As ({a1},{b1,b2}) /∈ LC(A1,B1), it follows from Theorem 4 thatA1 is not less conflicting thanB1.

Example 10. Consider again automataA2 and B2 in Figure 3. Again note thatConf(B2) = /0. By
composingA2 with a deterministic version ofB2, it becomes clear that the only pairs that need to be
tested to determine whetherA2 .conf B2 according to Theorem 4 are({a0},{b0,b1}) reached afterε ,
({a1},{b0,b1}) reached afterα+, and({a2},{b0,b1}) reached afterαα+.

The graph with these pairs and their deterministic successors is shown to the right in Figure 4, with
the three crucial pairs marked as initial. The following less conflicting pairs are discovered (see Exam-
ple 7):

(ω ,ω) ∈ LC0(A2,B2) ; (18)

({a1}, {b0,b1}), ({a1,a2},{b0,b1}), ({a2},{b0,b1}) ∈ LC1(A2,B2) ; (19)

({a0},{b0,b1}) ∈ LC2(A2,B2) . (20)

As the three crucial pairs are all inLC(A2,B2), it follows from Theorem 4 thatA2 .conf B2.
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The result of Theorem 4 is related to the decision procedure for fair testing [15]. The fair testing
decision procedure starts by composing the automatonA with a determinised form ofB, which gives
rise to the same state set combinations that need to be considered as in Theorem 4. From this point
on, the two methods differ. The fair testing decision procedure annotates each state of the synchronous
product ofA and the determinised form ofB with automata representing the associated refusal trees,
and searches for matching automata (or more precisely, for matchingproductive subautomata) within
these annotations. The method based on less conflicting pairs avoids some of the resulting complexity by
performing the complete decision on the flat state space of the synchronous product of the determinised
forms ofA andB.

4 Algorithm to Compute Less Conflicting Pairs

This section proposes a method to effectively compute the less conflicting pairs for two given finite-state
automataA andB. This is done in a nested iteration. Assuming that the setLCn(A,B) is already known,
the setLCn+1(A,B) is computed in a secondary iteration based onmore conflicting triples.

Definition 6. Let A = 〈Σ,QA,→A,Q
◦
A〉 and B = 〈Σ,QB,→B,Q

◦
B〉 be automata. The setMCn(A,B) ⊆

Qdet
A ×Qdet

B ×QB of nth level more conflicting triplesfor A andB is defined inductively as follows.

MCn
0(A,B) = {( /0,ω ,xB) | xB ∈ QB} ; (21)

MCn
m+1(A,B) = {(XA,XB,xB) | (XA,XB) /∈ LCn(A,B) andxB ∈XB and there exists(YA,YB,yB)∈

MCn
m(A,B) andσ ∈ Σ such thatδ det

A,B(XA,XB,σ) = (YA,YB) andxB
σ
⇒ yB } ;

(22)

MCn(A,B) =
⋃

m≥0

MCn
m(A,B) . (23)

For a pair(XA,XB) to be a less conflicting pair, according to Definition 5 there must be a statexB ∈XB

such that every trace that takesxB to termination inB has a prefix that leads to another less conflicting
pair. A triple (XA,XB,xB) is considered “more conflicting” if(XA,XB) is not yet known to be a less
conflicting pair, and the statexB ∈XB cannot be used to confirm the above property. Therefore, Lemma 5
shows that a triple(XA,XB,xB) is nth-level “more conflicting” if and only if the statexB ∈ XB can reach
termination without passing through a pair inLCn.

If (XA,XB,xB) is “more conflicting” for allxB ∈ XB, then the pair(XA,XB) cannot be a less conflicting
pair. Otherwise, if there exists at least one statexB ∈ XB such that(XA,XB,xB) is not “more conflicting”,
then(XA,XB) is added to set of less conflicting pairs in the next iteration. Theorem 6 below confirms the
correctness of this approach.

Lemma 5. Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata, letn∈N0 and(XA,XB,xB) ∈

Qdet
A ×Qdet

B ×QB. The following statements are equivalent.

(i) (XA,XB,xB) ∈ MCn(A,B);

(ii) There exists a traces∈ Σ∗ω ∪{ε} such thatδ det
A,B(XA,XB,s) = ( /0,ω) andxB

s
⇒, andδ det

A,B(XA,XB, r) /∈
LCn(A,B) for all prefixesr ⊑ s.

Proof. First let (XA,XB,xB) ∈ MCn(A,B), i.e., (XA,XB,xB) ∈ MCn
m(A,B) for somem∈ N0. It is shown

by induction onm that (ii) holds.
In the base case,m= 0, and by definition(XA,XB,xB) ∈ MCn

0(A,B) means that(XA,XB) = ( /0,ω).
Then considers= ε , and noteδ det

A,B(XA,XB,ε) = (XA,XB) = ( /0,ω) andxB
ε
⇒. Clearlyr ⊑ ε impliesr = ε ,

andδ det
A,B(XA,XB,ε) = ( /0,ω) /∈ LC(A,B)⊇ LCn(A,B) by Lemma 1.
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(ω ,ω ,bω )( /0,ω ,bω )

({a0},{b0,b1},b0) ({a1},{b0,b1},b0)

({a1,a2},{b0,b1},b0)

({a2},{b0,b1},b0)

({a0},{b0,b1},b1) ({a1},{b0,b1},b1) ({a1,a2},{b0,b1},b1)({a2},{b0,b1},b1)

Figure 5: Calculating more conflicting triples for automataA2 andB2 in Figure 3.

Now consider(XA,XB,xB) ∈ MCn
m+1(A,B). It follows from Definition 6 that(XA,XB) /∈ LCn(A,B)

andxB ∈XB, and there exists(YA,YB,yB)∈MCn
m(A,B) andσ ∈ Σ such thatδ det

A,B(XA,XB,σ)= (YA,YB) and

xB
σ
⇒ yB. By inductive assumption, there exists a traces∈Σ∗ω∪{ε} such thatδ det

A,B(YA,YB,s)= ( /0,ω) and

yB
s
⇒, and for allr ⊑ s it holds thatδ det

A,B(YA,YB, r) /∈ LCn(A,B). Thenδ det
A,B(XA,XB,σs) = δ det

A,B(YA,YB,s) =

( /0,ω) andxB
σ
⇒ yB

s
⇒, and for allr ⊑ σs it holds thatδ det

A,B(XA,XB, r) /∈ LCn(A,B).

Conversely, lets∈ Σ∗ω ∪{ε} such that (ii) holds. This means thatδ det
A,B(XA,XB,s) = ( /0,ω) andxB

s
⇒,

and δ det
A,B(XA,XB, r) /∈ LCn(A,B) for all r ⊑ s. It is shown by induction onm= |s| that (XA,XB,xB) ∈

MCn
m(A,B).
In the base case,m= 0 ands= ε , it holds by definition that(XA,XB) = δ det

A,B(XA,XB,ε) = ( /0,ω) ∈
MCn

0(A,B).
Now let s = σ t such that|t| = m, and δ det

A,B(XA,XB,s) = ( /0,ω) and xB
s
⇒, and δ det

A,B(XA,XB, r) /∈

LCn(A,B) for all prefixesr ⊑ s. Write δ det
A,B(XA,XB,σ) = (YA,YB) and xB

σ
⇒ yB

t
⇒. ThenyB

t
⇒ and

δ det
A,B(YA,YB, t) = δ det

A,B(XA,XB,σ t) = δ det
A,B(XA,XB,s) = ( /0,ω) andδ det

A,B(YA,YB, r) /∈ LCn(A,B) for all r ⊑ t.
Then(YA,YB,yB)∈MCn

m(A,B) by inductive assumption, and by Definition 6 it follows that(XA,XB,xB)∈
MCn

m+1(A,B).

Theorem 6. Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata, and letn∈N0. Then

LCn+1(A,B) = {(XA,XB) ∈ Qdet
A ×Qdet

B | (XA,XB,xB) /∈ MCn(A,B) for somexB ∈ XB} . (24)

Proof. Let (XA,XB) ∈ LCn+1(A,B). Then by Definition 5, there existsxB ∈ XB such that for allt ∈ Σ∗

such thatxB
tω
⇒, there existsr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈ LC i(A,B) for somei ≤ n. Equivalently,

this means that there does not exist a tracet ∈ Σ∗ such thatxB
tω
⇒ and for all prefixesr ⊑ tω it holds that

δ det
A,B(XA,XB, r) /∈ LCn(A,B). Then(XA,XB,xB) /∈ MCn(A,B) because otherwise such a trace would exist

by Lemma 5.
Conversely, letxB ∈ XB such that(XA,XB,xB) /∈ MCn(A,B). To check the condition in Defini-

tion 5 (9), considert ∈ Σ∗ such thatxB
tω
⇒. Then clearlyδ det

B (XB, tω) = ω . By Definition 4, it holds
that eitherδ det

A (XA, tω) = ω or δ det
A (XA, tω) = /0. If δ det

A (XA, tω) = ω , thenδ det
A,B(XA,XB, tω) = (ω ,ω) ∈

LC0(A,B). Otherwiseδ det
A (XA, tω) = /0 and thusδ det

A,B(XA,XB, tω) = ( /0,ω), and by Lemma 5 there must
existr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈ LCn(A,B) as otherwise(XA,XB,xB) ∈ MCn(A,B). In both cases,

δ det
A,B(XA,XB, r) ∈ LC i(A,B) for somer ⊑ tω andi ≤ n. Sincet ∈ Σ∗ with xB

tω
⇒ was chosen arbitrarily, it

follows from Definition 5 (9) that(XA,XB) ∈ LCn+1(A,B).

Example 11. Figure 5 shows a graph representing the more conflicting triples to check whetherA2 .conf

B2 in Figure 3. The arrows in the graph represent the deterministic transition function in combination
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with the transition relation ofB2. An arrow(XA,XB,xB)
σ
→ (YA,YB,yB) indicates thatδ det

A2,B2
(XA,XB,σ) =

(YA,YB) andxB
σ
⇒ yB.

In the first iteration to computeMC0(A2,B2), first the triple( /0,ω ,bω ) is added toMC0
0(A2,B2).

Next, the triples({a0},{b0,b1},b0) and({a1},{b0,b1},b0) are added toMC0
1(A2,B2) as they can im-

mediately reach( /0,ω ,bω ). Finally, ({a0},{b0,b1},b1) is also added toMC0
2(A2,B2) as it reaches

({a1},{b0,b1},b0) ∈ MC0
1(A2,B2). No further triples are found to be inMC0

3(A2,B2). Therefore,
({a1},{b0,b1},b1) /∈ MC0(A2,B2), so it follows from Theorem 6 that({a1},{b0,b1}) ∈ LC1(A2,B2),
and likewise({a1,a2},{b0,b1}), ({a2},{b0,b1}) ∈ LC1(A2,B2).

In the next iteration to computeMC1(A2,B2), note that({a1},{b0,b1},b0) /∈ MC1
1(A2,B2) because

({a1},{b0,b1}) ∈ LC1(A2,B2). Still, ({a0},{b0,b1},b0) ∈ MC1
1(A2,B2) because of the transition to

( /0,ω ,bω ) ∈ MC1
0(A2,B2), but ({a0},{b0,b1},b1) /∈ MC1

2(A2,B2) because now({a1},{b0,b1},b0) /∈
MC1

1(A2,B2). Accordingly, the pair({a0},{b0,b1}) is added toLC2(A2,B2).
In a final iteration to computeMC2(A2,B2), only one more conflicting triple is found,( /0,ω ,bω ) ∈

MC2
0(A2,B2). No further pairs are added inLC3(A2,B2). At this point, the iteration terminates, having

found exactly the four less conflicting pairs given in Example 10, (19) and (20).

To determine whether an automatonA is less conflicting than automatonB, it is first needed to
determine the set of certain conflicts ofB, and then to find all the state-set pairs forA andB that are
reachable from a pair like({xA},XB) associated with some trace that is not a certain conflict ofB. The
more conflicting triples can be constructed as they are discovered during the backwards search from the
terminal states.

The complexity of each iteration of the more conflicting triples computation is determined by the
number of arrows in the graph, which is bounded by|Σ| · |QB|

2 ·2|QA| ·2|QB|, because the powerset transi-
tions are deterministic, which is not the case for the transitions ofB. Each iteration except the last adds
at least one less conflicting pair, so the number of iterations is bounded by 2|QA| ·2|QB|. The complexity
of this loop dominates all other tasks of the computation. Therefore, the worst-case time complexity to
determine whetherA.conf B using less conflicting pairs is

O(|Σ| · |QB|
2 ·4|QA| ·4|QB|) = O(|Σ| · |QB|

2 ·22|QA|+2|QB|) . (25)

This shows that the conflict preorder can be tested in linear exponential time, as it is the case for the fair
testing preorder. Yet, the complexity (25) is better than the time complexity of the decision procedure
for fair testing, which isO(|QA| · |QB| ·23|QA|+5|QB|) [15].

5 Conclusions

Less conflicting pairs provide a concrete state-based meansto characterise the extent by which one pro-
cess is or is not less conflicting than another. The characterisation generalises and includes previous
results about certain conflicts, and it gives rise to a directway to test the conflict preorder and the related
fair testing preorder by inspecting sets of reachable states. Based on the characterisation, an effective
algorithm is presented to test whether a finite-state automaton is less conflicting than another. The al-
gorithm, while still linear exponential, has better time complexity than the previously known decision
procedure for fair testing.

In the future, the authors would like to apply the theoretic results of this paper to compute abstrac-
tions and improve the performance of compositional model checking algorithms. The more thorough
understanding of the conflict preorder will make it possibleto better simplify processes with respect to
conflict equivalence and other related liveness properties.
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