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Space and movement through space play an important role in many collective adaptive systems
(CAS). CAS consist of multiple components interacting to achieve some goal in a system or en-
vironment that can change over time. When these components operate in space, then their behaviour
can be affected by where they are located in that space. Examples include the possibility of commu-
nication between two components located at different points, and rates of movement of a component
that may be affected by location. The CARMA language and its associated software tools can be used
to model such systems. In particular, a graphical editor for CARMA allows for the specification of
spatial structure and generation of templates that can be used in a CARMA model with space. We
demonstrate the use of this tool to experiment with a model of pedestrian movement over a network
of paths.

1 Introduction

Collective adaptive systems consist of multiple components or agents that interact collaboratively on
common goals, and compete to achieve individual goals. They are characterised by the fact that each
component does not have a global view of the whole system but rather has local information on which
to act. These systems are called collective because of the interaction of many components, and adaptive
because they respond to changes in the environment in which they operate. They are often characterised
as having emergent behaviour, that is behaviour which cannot be predicted in advance by considering the
individual components in isolation from each other. Modelling of CAS is crucial because it is difficult
to understand the behaviour of the overall system just by inspecting the behaviour of the components.
Modelling allows us to experiment with the system before implementation and deployment. This paper
considers the CARMA language which has been developed specifically for the modelling of CAS [12]
with a particular focus on smart city concerns such as smart transport and smart energy grids.

The use of local versus global above suggests that space may play an important role in CAS. While
this is not necessarily true of all CAS since the distinction between local and global may be logical or
virtual rather than physical, it is true for many CAS, and hence this is an important part of understanding
their behaviour. This paper focusses on a spatial example and illustrates how CARMA can be used to
model this example.

We consider the example of pedestrians moving over a network of paths. This could be a specific
part of a city, a pedestrianised network of lanes, or paths through a large park. The defining feature of our
example is that there are essentially two groups of pedestrians that start on opposite sides of the network
who wish to traverse the paths to get to the side opposite to where they started. This scenario could arise
in a city where there are two train stations on opposite sides of the central business district serving the
eastern and the western suburbs of the city, and a number of people who commute from the west work
close to the east station and vice versa. During rush hour in the morning and afternoon, people want to
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traverse the park or lanes as fast as possible so that they are not late, and we wish to investigate what
features enable these pedestrians to pass through the network efficiently. If there are multiple paths, it
would seem in advance that it makes sense to use some paths for one direction and other paths for the
other direction. This raises the question of what routing or information such as signs is sufficient for the
two groups of pedestrians to separate out onto different paths. This paper presents an initial investigation
into the modelling of this scenario, and we demonstrate how this can be achieved using CARMA, its
Eclipse Plug-In and its Graphical Eclipse Plug-in, considering different possibilities for the network.

The paper starts with a brief discussion of the CARMA language before describing the modelling
of the scenario in more detail and presentation of our experiments and results from various networks,
followed by conclusions and discussion of future work.

2 CARMA

The CARMA process calculus has been developed specifically for the modelling of collective adaptive
systems and a full description of the language can be found in [12]. Here, we give a brief outline. A
CARMA model consists of a collective N and the environment E in which it operates, using the syntax
N in E . A collective is either a component C or collectives in parallel N ‖ N. Each component is either
null, 0, or a combination of behaviour described by a process P and a store of attributes γ , denoted
by (P,γ). We use function notation to denote store access, thus if γ = {x 7→ v} then γ(x) = v.

Prefix, constants, choice and parallel composition can be expressed in the standard manner by defin-
ing P appropriately. Additionally, there is the nil process which does nothing, the kill process which
results in the component being removed from the collective, and the option of prefixing a process with a
predicate [π]P, in which case the process P can only proceed if the predicate π evaluates to true using the
values of the attributes in the component’s store γ . To improve readability we sometimes parenthesise
the process expression P, writing this term as [π](P). The meaning is unchanged.

Process prefixes are rich and permit actions that provide value-passing unicast and broadcast com-
munication using predicates on the attributes in the store of the sending and receiving component. Com-
munication between components will only take place if the predicates evaluate to true. The value false
indicates that no communication partner is needed. Furthermore, attribute values can be updated (prob-
abilistically) on completion of an action.

Unicast communication is blocking; the sender cannot output values unless there is a matching input
action which can be performed by another component. In contrast, broadcast is not blocking, and we can
use a specific form with a constant false predicate (written as⊥ here) to allow components to act without
interaction with other components, as seen in the example to follow.

The syntax of a non-blocking broadcast on name α is α?[π]〈~v〉σ where π is a predicate which must
be satisfied by all processes wishing to receive this broadcast. The vector ~v is a vector of values to be
communicated; this vector may be empty. The suffix σ is an update of variables in the local store of a
component. A component refers to its local store with the prefix my (similar to this in Java) so an update
to store the value of x as the new value of my.x is written as {my.x← x}. As an example, the prefix
process term move?i j[⊥]〈〉{my.x← i,my.y← j}.Ped broadcasts that it is performing a movei j activity,
updates its local x and y values, and continues as the process Ped.

The environment contains both the global store and an evolution rule which returns a tuple of four
functions (µp,µw,µr,µu) known as the evaluation context. Communication between sender s and re-
ceiver r on activity α has both an associated probability (determined by µp) and a weight (determined
by µw). These functions depend on activity α and both the attribute values of the sender (in the store γs)
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and the attribute values of the receiver (in the store γr). The activity rate however depends on only the
attribute values in the store of the sender (γs); the attribute values of the receiver do not affect the rate
at which a communication activity is performed. Thus the first three functions in the evaluation context
determine probabilities, weights and rates that supply quantitative information about the behaviour of
actions. The fourth function µu performs global updates, either of the attributes in the global store or
of the collective by adding new components. These updates include the usual initialisation of variables,
incrementing counters, or accumulating totals.

The operational semantics of CARMA are defined in FUTS style [3] and define for each model a
time-inhomogeneous continuous-time Markov chain (ICTMC). The behaviour of these ICTMCs can be
simulated and the CARMA Eclipse Plug-in provides this functionality. The software tools for processing
CARMA models are available from http://quanticol.sourceforge.net. More information about
the QUANTICOL project which created these tools is available from http://www.quanticol.eu.

3 Automatic code generation

The CARMA Graphical Editor allows the user to specify the structure of movement in a CAS model by
laying out graphical symbols on a plane [15]. The editor generates CARMA code from the graph which
the user has defined. In addition to normal attributes, CARMA components which are defined in this way
have a set of distinguished attributes to specify their current location in space.

Each CARMA component in the model may further have its mobility restricted to a given set of paths
through the graph defined by the user. Paths in this context are subgraphs of the user-defined graph
consisting of a set of uniform vertices connected by directed, coloured edges. At any given time in the
system’s evolution, the location attributes of a component instance must be equal to the location of one
of the nodes belonging to the subgraph where that component is restricted. A component can change
its location attributes only if there exists a path from its current node to the new node, and if this path
belongs to the subgraph where the mobility of this component is restricted.

In CARMA, functions are used for storing the information about each subgraph’s topology. Compo-
nent actions query these functions during the execution of their predicates, and can modify the compo-
nent’s location attributes accordingly, in the update block. For each node which can be accessed by a
particular component type, a movement action must be included in the component’s behaviour. If the
node can be accessed by a component in more than one state, the action must be specified separately for
each state. In systems with complex mobility restriction graphs, topology-defining functions, as well as
component behaviour blocks may require a large number of lines of code. This code is automatically
generated by the CARMA Graphical Editor, freeing the modeller from the task of manually producing
this CARMA model code.

4 Pedestrian model

The CARMA model is illustrated in Figures 1 and 2. It assumes that there are two types of pedestrians,
A and B, and that P and Q are variables of type pedestrian. The two Arrival components generate
pedestrians at two different locations (on opposite sides of the graph), and the pedestrians move from
their origin side to the opposite side. Once a pedestrian has reached its goal, the count for that type of
pedestrian is incremented and the time taken for traversal is added to the total time so that the average
traversal time can be calculated for each pedestrian type.
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Store of Pedestrian component:

P pedestrian type — an enumeration with values A and B
x current x coordinate
y current y coordinate

stime time of arrival

Behaviour of Pedestrian component:

Ped def
= ∑(i, j)∈V

[
ExistsPath(P,x,y, i, j)

](
move?i j[⊥]〈〉{my.x← i,my.y← j}.Ped

)
+
[
AtGoal(P,x,y)

](
fin?[⊥]〈〉.nil

)
Initial state of Pedestrian component: Ped

Store of Arrival component:

P pedestrian type

Behaviour of Arrival component:

Arr def
= arrive?[⊥]〈〉.Arr

Initial state of Arrival component: Arr

Figure 1: The Pedestrian and Arrival components

The model is parameterised by a number of functions that capture the graph information and are
generated automatically as described above.

• ExistsPath(P,x,y, i, j) is a Boolean function that determines if an edge exists between a pedes-
trian’s current position and another node in the graph, hence a move?i j action can only occur when
such an edge exists.

• AtGoal(P,x,y) is a Boolean function that checks if the pedestrian has reached its goal, hence fin?

can only occur once the destination has been reached. After this the pedestrian does not move any
more.

• ArrivalRate(P) determines the arrival rate for each type of pedestrian.

• Startx(P) and Starty(P) define the initial location of a new pedestrian depending on its type.

A function that is not directly related to the graph structure is MoveRate(P,x,y, i, j, . . .) which determines
the rate of movement along a particular edge, and can take additional parameters that can affect this
rate such as the current count of other pedestrians of the same or different type. We use the following
definition that uses the numbers of pedestrians of the other type at the target node to reduce the movement
rate.

MoveRate(P,x,y, i, j,Ai j,Bi j) =

{
moveA/(Bi j +1) if P = A
moveB/(Ai j +1) if P = B

where Ai j are the number of A pedestrians at the target node and Bi j are the number of B pedestrians at
the target node, and moveQ is a basic movement rate for each pedestrian type.
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Constants:
V set of coordinate pairs representing nodes in the graph

Measures:
averageP average time for traversal by pedestrians of type P

Global store:
countP number of P pedestrians to complete traversal
totalP total time for all completed P pedestrian traversals

Evolution rule functions:
µp(γs,γr,α) = 1
µw(γs,γr,α) = 1

µr(γs,α) =


ArrivalRate

(
γs(P)

)
if α = arrive?

MoveRate
(
γs(P),γs(x),γs(y), i, j, . . .

)
if α = move?i j

λfast otherwise

µu(γs,α) =



{}
,
(
Pedestrian,{P← γs(P),x← Startx(γs(P)),y← Starty(γs(P)),stime← now}

)
if α = arrive?{

countγs(P)← countγs(P)+1, totalγs(P)← totalγs(P)+(now− γs(stime))
}
,0

if α = fin?{}
,0 otherwise

Collective:

PedAB def
=

(
Arrival,{P 7→ A}

)
‖
(
Arrival,{P 7→ B}

)
Figure 2: Environment and collective

Figure 2 specifies the four functions (µp,µw,µr,µu) known as the evaluation context. Probabilities
and weights on activities are not used in this model so the µp and µw functions are trivially constant
functions.

5 Model instances

Four instances of this CARMA model are shown in Figure 3. These show instantiations of the general
CARMA model from the previous section with increasing size and shape complexity. The central repeat-
ing features of the path network are the cross-bars in the centre of the network. In the simplest instance
we have only one cross-bar and we describe this instance as having height 1 and width 1, representing
it as instance 1× 1. As the cross-bar structure is repeated we have instances 1× 2, 2× 1, and 2× 2,
depending where the additional structure is added into the network.

An increase in the width of the network has the obvious consequence that journeys across the network
take longer. An increase in the height of the network has the consequence that pedestrians are offered
an increased choice of routes, with the implicit consequence that individual paths are less congested
(because there are more of them on offer). The edges are equally long and thus the time to traverse them
is the same under comparable conditions.

In each instance of the network of paths there are two sub-networks which restrain the movement of
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1×1 1×2

2×1 2×2

Figure 3: Four model instances of increasing size and complexity.

the pedestrians of type A and type B. Pedestrians of type A are restricted to the red sub-network and must
cross the network from left to right. Pedestrians of type B are restricted to the blue sub-network and must
cross the network from right to left. The networks illustrated in Figure 3 are symmetric but this is of no
particular significance and it would pose no difficulty to work with networks which were not symmetric.

These graphs were drawn in the CARMA Graphical Editor and CARMA code was generated from it,
including all necessary instances of the ExistsPath, AtGoal, and ArrivalRate functions and applications
of these in predicate guards on processes.

6 Analysis and results

We analysed our CARMA model using the CARMA Eclipse Plugin [12]. The CARMA Eclipse Plugin pro-
vides a helpful syntax-aware editor for the CARMA Specification Language, implemented in the XText
editor framework. The CARMA Specification Language provides a wrapper around the CARMA process
calculus adding non-essential (but useful) features such as data types and data structures, functions, and
the ability to specify real-valued measures of interest over the model. In some modelling languages
measures of interest or Markov reward structures are defined externally to the model but in CARMA and
languages such as CASPA [10], PRISM [11] and ProPPA [6], the specification of measures of interest
and reward structures is included in the modelling language itself.

Given a CARMA specification, the CARMA Eclipse Plug-in compiles the model into a set of Java
classes which are linked with the CARMA simulator classes to provide a custom simulator for this model.
The compiled Java code is executed to compute the measures of interest from an ensemble of simulation
runs. The CARMA simulator uses a kinetic Monte-Carlo algorithm to select the next simulation event to
fire and draws from the appropriate weighted random number distribution to determine the duration of
the event. The simulation state is updated as specified by the event which was fired and the simulation
proceeds forward until a pre-specified simulation stop time is reached.



N. Zoń, V. Galpin and S. Gilmore 49

The measure functions defined by the modeller are passed into the simulation environment and pro-
vide a view onto the raw simulation results at intervals which are specified by the modeller. The Apache
Commons Math Library is used within the Plug-in to perform statistical analysis of the data. The Simula-
tion Laboratory View provided by the CARMA Eclipse Plug-in acts as an electronic laboratory notebook,
recording details of the simulation studies which have been performed.

The CARMA Eclipse Plugin and the CARMA Graphical Editor are available from the SourceForge
website at http://quanticol.sourceforge.net. After installation they can be kept up-to-date using
the standard mechanism in Eclipse to check for updates.

6.1 Design of experiments

We designed a suite of experiments to explore the behaviour of the model. To provide a baseline for
average travel time we investigated the travel time in the presence of only one type of pedestrian (thereby
giving a model which has no congestion). Thereafter we investigated the models with congestion in
the presence or absence of pedestrian routing. When routing is present, only one starting route has a
non-zero rate, and the non-zero rate is assigned in order to direct pedestrians away from each other.

We used the CARMA Graphical Editor to automatically create CARMA code models. Fig. 4 shows
how the number of lines of CARMA code grows with model structure complexity.

Model Nodes Connections LoC

1x1 6 8 208
1x2 8 12 248
1x3 10 16 288
2x1 8 13 258
2x2 11 20 328
2x3 14 27 398
3x1 10 18 308
3x2 14 28 408
3x3 18 38 508

Figure 4: The number of lines of CARMA code per model structure. Left, for small values of width and
height. Right, for larger values of width and height.

6.2 Analysis

The results from our experiments are presented in Figure 5. We have three results (no congestion, routing,
and no routing) for each of the four model instances considered (1× 1, 1× 2, 2× 1, and 2× 2). An
inspection of the results shows that, unsurprisingly, for any structure the best average travel times are
obtained when there is no congestion in the network. As anticipated, networks with greater height have
lower average travel times because they have greater capacity, due to the inclusion of additional routes
(thus 2×1 results are better than 1×1 results, and 2×2 results are better than 1×2 results).

Finally, we see that routing is always advantageous, especially so in the case of narrow networks
where congestion in experienced most (i.e. in the 1×1 structure and the 1×2 structure).

http://quanticol.sourceforge.net


50 Modelling movement for collective adaptive systems

Figure 5: Average travel time results from the experiments on structure and network usage.

7 Related work

The CARMA language provides high-level language constructs for describing communicating processes.
The language has a stochastic semantics expressed in terms of continuous-time Markov chains. The
language contains some features which are familiar from languages such as Bio-PEPA [2], PRISM [11]
and the Attributed π-calculus [8]. In this section we compare CARMA to these established modelling
languages and highlight differences in approach between them.

Each of the languages considered here has the potential to be used to model stochastic systems with
mobile populations of individuals but language design decisions, the choice of language features, and
underlying analysis mechanisms can make one of the languages better-suited for a particular modelling
problem than the others. As examples of modelled systems, Bio-PEPA has been used to model scenarios
where safe movement of people is an important factor in systems including emergency egress [13] and
crowd formation and movement [1]. PRISM has been used to model dynamic power management con-
trollers [14] and human-in-the-loop UAV mission planning [4]. The Attributed π-calculus has been used
to model spatial movement in phototaxis [8], and cooperative protein binding in gene regulation [9].
CARMA has been used to model a number of spatial CAS including carpooling [15], taxi movement [7]
and ambulance deployment [5].

Inter-process communication in CARMA is attribute-based; communication partners are determined
dynamically as the model evolves through state-to-state transitions. Communication in the Attributed π-
calculus is similarly dynamic. In contrast, the communication partners of Bio-PEPA and PRISM com-
ponents are determined statically, and do not change as state-to-state transitions occur. Additionally,
CARMA and the Attributed π-calculus support value-passing communication whereas the Bio-PEPA and
PRISM languages do not.

The primary analysis method for CARMA models is simulation. This is also the case for Bio-
PEPA and the Attributed π-calculus whereas analysis of PRISM models is typically through probabilistic
model-checking.

The CARMA language and the PRISM language are explicitly-typed. Types such as boolean, integer
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and real are ascribed to variables in the language by the modeller, or inferred by the language type-
checker. In contrast, types in Bio-PEPA and the Attributed π calculus are implicit. Explicitly-typed
languages can make the modeller’s intentions more obvious, when, for example, expecting to receive an
initial integer value instead of a real value.

CARMA provides guarded process definitions (used in a similar way to the guarded commands found
in the PRISM language; the Attributed π-calculus does not support these directly; Bio-PEPA has no
boolean expressions at all). Guarded process definitions allow declarative descriptions of the relation-
ships between locations in a network and we have used this description mechanism comprehensively
here.

In common with PRISM, CARMA provides strong support for encapsulation, with variable declara-
tions being local to an enclosing structure (in PRISM this is a module, whereas in CARMA it is a com-
ponent). A structuring mechanism such as this is not found in Bio-PEPA or the Attributed π-calculus
where declarations of rate functions, channel names, process definitions or species definitions have global
scope.

Differently from the other languages considered here, CARMA treats location and space as an aspect
of a model which can be described separately from the detailed model dynamics. Through the provision
of a graphical editor for CARMA, space, location, and connectivity can be treated separately from logic,
communication, and synchronisation. This separation of concerns may make it easier to maintain a
model of a system when the spatial structure of the system changes.

8 Conclusions and future work

We have demonstrated a simple model of pedestrian movement over a number of different graphs, to
illustrate the modelling of spatial aspects of CAS. The CARMA Graphical Editor allowed us to auto-
matically generate the CARMA code for different networks which simplified the task, and allowed our
pedestrian components to be generic in nature. Our initial experiments have considered situations with
and without congestion as well as with and without explicit routing of pedestrians as they enter the
network.

There are many directions for future work. For example, another group of pedestrians could also be
introduced, namely, tourists, and the focus would be on efficient traversal of the network during afternoon
rush hours when commuters want to get home quickly and tourists wish to sightsee, and hence move
slowly. We are also interested in identifying when the model shows emergent behaviour, in the sense that
different groups of pedestrian use different paths through the network in response to environmental cues
such as information about congestion or routing suggestions (rather than explicit routing).

Acknowledgements: This work is supported by the EU project QUANTICOL, 600708. We thank the
anonymous reviewers for many helpful comments which encouraged us to improve the paper.
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