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The theory of finitely supported algebraic structures represents a reformulation of Zermelo-Fraenkel

set theory in which every construction is finitely supported according to the action of a group of

permutations of some basic elements named atoms. In this paper we study the properties of finitely

supported sets that contain infinite uniformly supported subsets, as well as the properties of finitely

supported sets that do not contain infinite uniformly supported subsets. For classical atomic sets, we

study whether they contain or not infinite uniformly supported subsets.

1 Finitely Supported Sets

Finitely supported mathematics [1] is dealing with the set theory foundations for the finitely supported

structures. Finitely supported structures are related to the recent development of the Fraenkel-Mostowski

axiomatic set theory working with ‘nominal sets’ and dealing with binding and fresh names in computer

science [9], but also to the theory of admissible sets of Barwise [4], in particular to the theory of heredi-

tary finite sets. Fraenkel-Mostowski set theory (FM) represents an axiomatization of the Fraenkel Basic

Model for the Zermelo-Fraenkel set theory with atoms (ZFA), a model used originally to prove the inde-

pendence of the axiom of choice and other axioms of set theory with atoms. Nominal sets are actually a

Zermelo-Fraenkel set theory (ZF) alternative to the non-standard Fraenkel-Mostowski set theory whose

axioms are the ZFA axioms together with a new axiom of finite support claiming that any set-theoretical

construction has to be finitely supported modulo a canonical hierarchically defined permutation action),

since nominal sets are defined by involving group actions over standard ZF sets, without being necessary

to modify the ZF axioms of extensionality or foundation. A nominal set is defined as a usual Zermelo-

Fraenkel set endowed with a group action of the group of (finitary) permutations over a certain fixed

countable ZF set A of basic elements whose internal structure is ignored (called atoms), satisfying also

a finite support requirement. This finite support requirement states that for any element in a nominal

set there should exist a finite set of atoms such that any permutation fixing pointwise this set of atoms

also leaves the element invariant under the related group action. By now, nominal sets were used to

study the binding, scope, freshness and renaming in programming languages and related formal systems.

The inductively defined finitely supported sets (that are finitely supported elements in the powerset of

a nominal set) involving the name-abstraction together with Cartesian product and disjoint union can

encode formal syntax modulo renaming of bound variables. In this way, the standard theory of algebraic

data types can be extended to include signatures involving binding operators. In particular, there exists

an associated notion of structural recursion for defining syntax-manipulating functions and a notion of
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proof by structural induction. Certain generalizations of nominal sets are involved in the study of au-

tomata, programming languages or Turing machines over infinite alphabets; for this, a relaxed notion of

finiteness called ‘orbit finiteness’ was defined; it means ‘having a finite number of orbits (equivalence

classes) under a certain group action’ [6]. Fraenkel-Mostowski generalized set theory (FMG) was intro-

duced in [7] and generalizes both the size of atoms and the size of support from the FM set theory. More

exactly, it is presented a generalization of the FM sets by replacing ‘finite support’ with ‘well-orderable

(at least countable) support’ and by considering an uncountable set of atoms. Notions such as abstraction

and freshness quantifier Nin the FM set theory have also been extended into the new framework. In

this sense, in FMG Na.p(a) for a predicate p means that p holds for all atoms except a well-orderable

subset of atoms, while in FM Na.p(a) means that p holds for all atoms except a finite subset of atoms.

This approach allows binding of infinitely many names in syntax instead of only finitely many names.

A very recent work describing a general framework for reasoning about syntax with bindings is [5]; it

overlaps the nominal sets framework, but also provides significant distinctions. In this paper, the authors

employed functors for modelling the presence of variables instead of sets with atoms. Furthermore, the

authors are able to remove the finite support restriction and to accept terms that are infinitely branching,

terms having infinite depth, or both. Unlike nominal sets theory where atoms can only be manipulated

via bijections, the functors described in [5] distinguish between binding variables (managed via bijec-

tions) and free variables (managed via possibly non-bijective functions); these functors allow the authors

to apply not only swappings or permutations, but also arbitrary substitutions.

Finitely supported mathematics (shortly, FSM) is focused on the foundations of set theory (rather

than on applications in computer science). In order to describe FSM as a theory of finitely supported

algebraic structures, we refer to the theory of nominal sets (with the mention that the requirement re-

garding the countability of A is irrelevant). We call these sets invariant sets, using the motivation of

Tarski regarding logicality (more precisely, a logical notion is defined by Tarski as one that is invariant

under the permutations of the universe of discourse). FSM is actually represented by finitely supported

subsets of invariant sets together with finitely supported internal algebraic operations or with finitely

supported relations (that should be finitely supported as subsets in the Cartesian product of two invariant

sets). There is no major technical difference between ‘FSM’ and ‘nominal’ (related to basic definitions),

but conceptually the nominal approach is related to computer science, while FSM deals with the foun-

dations of mathematics (and experimental sciences) by studying the consistency and inconsistency of

various results within the framework of the atomic sets. Our goal is not to re-brand the nominal frame-

work (whose value we certainly recognize), but to provide a collection of set theoretical results regarding

foundations of finitely supported structures.

FSM contains both the family of ‘non-atomic’ (i.e., ordinary) ZF sets which are proved to be trivial

FSM sets (i.e., their elements are left unchanged under the effect of the canonical permutation action)

and the family of ‘atomic’ sets (i.e., sets that contain at least an atom somewhere in their structure) with

finite supports (hierarchically constructed from the empty set and the fixed ZF set A of atoms). One

task is to analyze whether a classical ZF result (obtained in the framework of non-atomic sets) can be

adequately reformulated by replacing ‘non-atomic ZF element/set/structure’ with ‘atomic and finitely

supported element/set/structure’ in order to be valid also for atomic sets with finite supports.

Note that the FSM sets is not closed under ZF subsets constructions, meaning that there exist subsets

of FSM sets that fail to be finitely supported (for example the simultaneously ZF infinite and coinfinite

subsets of the set A). Thus, for proving results in FSM we cannot use related results from the ZF

framework without reformulating them with respect to the finite support requirement. Furthermore, not

even the translation of the results from a non-atomic framework into an atomic framework (such as

Zermelo Fraenkel set theory with atoms obtained by weakening ZF axiom of extensionality) is an easy
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task. Results from ZF may lose their validity when reformulating them in Zermelo Fraenkel set theory

with atoms. For example, it is known that multiple choice principle and Kurepa’s maximal antichain

principle are both equivalent to the axiom of choice in ZF. However, Jech proved in [8] that multiple

choice principle is valid in the Fraenkel Second Model, while the axiom of choice fails in this model.

Furthermore, Kurepa’s maximal antichain principle is valid in the Fraenkel Basic Model, while the axiom

of choice fails in this model. This means that the following two statements that are valid in ZF, namely

‘Kurepa’s principle implies axiom of choice’ and ‘Multiple choice principle implies axiom of choice’ fail

in Zermelo Fraenkel set theory with atoms.

A proof of an FSM result should be internally consistent in FSM and not retrieved from ZF, that

is it should involve only finitely supported constructions (even in the intermediate steps). The meta-

theoretical techniques for the translation of a result from non-atomic structures to atomic structures are

based on a refinement of the finite support principle from [9], a refinement called ‘S-finite supports

principle’ claiming that for any finite set S of atoms, anything that is definable in higher-order logic from

S-supported structures by using S-supported constructions is also S-supported. The formal involvement

of the S-finite support principles actually implies a hierarchical constructive method for defining the

support of a structure by employing, step-by-step, the supports of the substructures of a related structure.

2 Preliminary Results

A finite set is a set of the form {x1, . . . ,xn}. Consider a fixed ZF infinite set A of elements that can

be checked only for equality. The elements of A are called ’atoms’ by analogy with the models of the

classic ZFA set theory given by Fraenkel and Mostowski. A transposition is a function (ab) : A → A

that interchanges only a and b. A (finitary) permutation of A in FSM is a bijection of A generated by

composing finitely many transpositions. We denote by SA the group of all (finitary) permutations of A.

According to Proposition 2.6 in [1], a bijection on A is finitely supported if and only if it is a (finitary)

permutation of A. Thus, (finitary) permutations are simply called permutations.

Definition 2.1

1. Let X be a ZF set. An SA-action on X is a group action · of SA on X. An SA-set is a pair (X , ·),
where X is a ZF set, and · is an SA-action on X.

2. Let (X , ·) be an SA-set. We say that S ⊂ A supports x whenever for each π ∈ Fix(S) we have

π · x = x, where Fix(S) = {π |π(a) = a,∀a ∈ S}. The least finite set (w.r.t. the inclusion relation)

supporting x (which exists according to [1]) is called the support of x and is denoted by supp(x).
An empty supported element is called equivariant.

3. Let (X , ·) be an SA-set. We say that X is an invariant set if for each x ∈ X there exists a finite set

Sx ⊂ A which supports x.

Proposition 2.2 [1, 9] Let (X , ·) and (Y,⋄) be SA-sets.

1. The set A of atoms is an invariant set with the SA-action · : SA ×A → A defined by π ·a := π(a) for

all π ∈ SA and a ∈ A. Furthermore, supp(a) = {a} for each a ∈ A.

2. Let π ∈ SA. If x∈X is finitely supported, then π ·x is finitely supported and supp(π ·x) = {π(u) |u ∈
supp(x)} := π(supp(x)).

3. The Cartesian product X ×Y is also an SA-set with the SA-action ⊗ : SA × (X ×Y ) → (X ×Y )
defined by π ⊗ (x,y) = (π · x,π ⋄ y) for all π ∈ SA and all x ∈ X, y ∈ Y . If (X , ·) and (Y,⋄) are

invariant sets, then (X ×Y,⊗) is also an invariant set.
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4. The powerset ℘(X) = {Z |Z ⊆ X} is also an SA-set with the SA-action ⋆ : SA ×℘(X) →℘(X)
defined by π ⋆ Z := {π · z |z ∈ Z} for all π ∈ SA, and all Z ⊆ X. For each invariant set (X , ·),
we denote by ℘f s(X) the set of elements in ℘(X) which are finitely supported according to the

action ⋆ . (℘f s(X),⋆|℘f s(X)) is an invariant set.

5. The finite powerset of X denoted by ℘f in(X) = {Y ⊆ X |Y finite} and the cofinite powerset of X

denoted by ℘co f in(X) = {Y ⊆ X |X \Y finite} are both SA-sets with the SA-action ⋆ defined as in

the previous item (2). If X is an invariant set, then both ℘f in(X) and ℘co f in(X) are invariant sets.

6. We have ℘f s(A) =℘f in(A)∪℘co f in(A). If X ∈℘f in(A), then supp(X) = X.

If X ∈℘co f in(A), then supp(X) = A\X.

7. The disjoint union of X and Y defined by X +Y = {(0,x) |x ∈ X}∪{(1,y) |y ∈Y} is an SA-set with

the SA-action ⋆ : SA×(X+Y )→ (X+Y ) defined by π ⋆z=(0,π ·x) if z=(0,x) and π ⋆z=(1,π ⋄y)
if z = (1,y). If (X , ·) and (Y,⋄) are invariant sets, then (X +Y,⋆) is also an invariant set.

8. Any ordinary (non-atomic) ZF-set X (such as N,Z,Q or R for example) is an invariant set with

the single possible SA-action · : SA ×X → X defined by π · x := x for all π ∈ SA and x ∈ X.

Definition 2.3

1. Let (X , ·) be an SA-set. A subset Z of X is called finitely supported if and only if Z ∈℘f s(X). A

subset Z of X is uniformly supported if all the elements of Z are supported by the same set S (and

so Z is itself supported by S).

2. Let (X , ·) be a finitely supported subset of an SA- set (Y, ·). A subset Z of Y is called finitely

supported subset of X (and we denote this by Z ∈℘f s(X)) if and only if Z ∈℘f s(Y ) and Z ⊆ X.

Similarly, we say that a uniformly supported subset of Y contained in X is a uniformly supported

subset of X.

From Definition 2.1, a subset Z of an invariant set (X , ·) is finitely supported by a set S ⊆ A if and

only if π ⋆ Z ⊆ Z for all π ∈ Fix(S), i.e. if and only if π · z ∈ Z for all π ∈ SA and all z ∈ Z. This is

because any permutation of atoms should have finite order, and so the relation π ⋆Z ⊆ Z is equivalent to

π ⋆Z = Z.

Due to Proposition 2.2(2), whenever X is a finitely supported subset of an invariant set Y , the uniform

powerset of X denoted by ℘us(X) = {Z⊆X |Z uniformly supported} is a subset of ℘f s(Y ) supported by

supp(X). This is because, whenever Z ⊆ X is uniformly supported by S and π ∈ Fix(supp(X)), we have

π ⋆Z ⊆ π ⋆X =X and π ⋆Z is uniformly supported by π(S). Similarly, ℘f in(X) and℘co f in(X) are subsets

of ℘f s(Y ) supported by supp(X). We consider that /0, being a finite subset of X , belongs to ℘us(X).

Definition 2.4 Let X and Y be invariant sets.

1. A function f : X →Y is finitely supported if f ∈℘f s(X ×Y).

2. Let Z be a finitely supported subset of X and T a finitely supported subset of Y . A function f : Z → T

is finitely supported if f ∈℘f s(X ×Y ). The set of all finitely supported functions from Z to T is

denoted by T Z
f s.

Proposition 2.5 [1, 9] Let (X , ·) and (Y,⋄) be two invariant sets.

1. Y X (i.e. the set of all functions from X to Y ) is an SA-set with the SA-action ⋆̃ : SA ×Y X → Y X

defined by (π ⋆̃ f )(x) = π ⋄ ( f (π−1 · x)) for all π ∈ SA, f ∈ Y X and x ∈ X. A function f : X → Y is

finitely supported (in the sense of Definition 2.4) if and only if it is finitely supported with respect

the permutation action ⋆̃.
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2. Let Z be a finitely supported subset of X and T a finitely supported subset of Y . A function f : Z → T

is supported by a finite set S ⊆ A if and only if for all x ∈ Z and all π ∈ Fix(S) we have π · x ∈ Z,

π ⋄ f (x) ∈ T and f (π · x) = π ⋄ f (x).

3 FSM Uniformly Infinite Sets

Definition 3.1 Let X be a finitely supported subset of an invariant set Y . X is called FSM uniformly

infinite if there exists an infinite, uniformly supported subset of X. Otherwise, we call X FSM non-

uniformly infinite.

Theorem 3.2 Let X be a finitely supported subset of an invariant set (Y, ·) such that X is not FSM

uniformly infinite. Then the set ℘us(X) is not FSM uniformly infinite.

Proof. Suppose, by contradiction, that the set ℘us(X) contains an infinite subset F such that all the

elements of F are different and supported by the same finite set S. By convention, without assuming that

i 7→ Xi is finitely supported, we understand F as F = (Xi)i∈I with the properties that Xi 6= X j whenever

i 6= j and supp(Xi)⊆ S for all i ∈ I. Let us fix an arbitrary j ∈ I. We prove that supp(X j) = ∪
x∈X j

supp(x).

Indeed, since X j is uniformly supported, there exists a finite subset of atoms T such that T supports

every x ∈ X j, i.e. supp(x) ⊆ T for all x ∈ X j. Thus, ∪{supp(x) |x ∈ X j} ⊆ T . Clearly, supp(X j) ⊆
∪{supp(x) |x ∈ X j}. Conversely, let a ∈ ∪{supp(x) |x ∈ X j}. Thus, there exists x0 ∈ X j such that a ∈
supp(x0). Let b be an atom such that b /∈ supp(X j) and b /∈ T . Such an atom exists because A is

infinite, while supp(X j) and T are both finite. We prove by contradiction that (b a) · x0 /∈ X j. Indeed,

suppose that (b a) · x0 = y ∈ X j. Since a ∈ supp(x0), by Proposition 2.2(2), we have b = (b a)(a) ∈
(b a)(supp(x0)) = supp((b a) · x0) = supp(y). Since supp(y) ⊆ T , we get b ∈ T : a contradiction!

Therefore, (b a)⋆X j 6= X j, where ⋆ is the canonical SA-action on ℘(Y ). Since b /∈ supp(X j), we prove by

contradiction that a∈ supp(X j). Indeed, suppose that a /∈ supp(X j). We have that (b a)∈Fix(supp(X j)).
Since supp(X j) supports X j, it follows that (b a)⋆X j = X j which is a contradiction. Thus, a ∈ supp(X j)
and so supp(X j) = ∪

x∈X j

supp(x).

Therefore, because supp(X j) ⊆ S, X j has the property that supp(x) ⊆ S for all x ∈ X j. Since j has

been arbitrarily chosen from I, it follows that ∪
i∈I

Xi is an uniformly supported subset of X (all its elements

being supported by S). Furthermore, ∪
i∈I

Xi is infinite since the family (Xi)i∈I is infinite and Xi 6= X j

whenever i 6= j. This contradicts the hypothesis.

Theorem 3.3 Let X be a finitely supported subset of an invariant set (Y, ·) such that X is not FSM

uniformly infinite. Then the set ℘f in(X) is not FSM uniformly infinite.

Proof. We always have that ℘f in(X) ⊆℘us(X) because any finite subset of X of form {x1, . . . ,xn} is

uniformly supported by supp(x1)∪ . . .∪ supp(xn). Since ℘us(X) does not contain an infinite uniformly

supported subset, it follows that neither ℘f in(X) contains an infinite uniformly supported subset.

Theorem 3.4 Let X be a finitely supported subset of an invariant set (Y, ·).

1. If X is not FSM uniformly infinite, then any finitely supported order-preserving (with respect to the

inclusion relation) function f : ℘us(X)→℘us(X) has a least fixed point supported by supp( f )∪
supp(X).

2. If X is not FSM uniformly infinite, then any finitely supported order-preserving (with respect to the

inclusion relation) function f :℘f in(X)→℘f in(X) has a least fixed point supported by supp( f )∪
supp(X).
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Proof. Let f :℘us(X)→℘us(X) be a finitely supported order-preserving function. Firstly, since ℘us(X)
is a subset of ℘f s(Y ) supported by supp(X), we have π ⋆ /0,π−1 ⋆ /0 ∈℘us(X) for any permutation π ∈
Fix(supp(X)). Thus, /0 ⊆ π ⋆ /0 and /0 ⊆ π−1⋆ /0. Since the relation ⊆ on℘us(X) is supported by supp(X),
we get π ⋆ /0 ⊆ π ⋆ (π−1 ⋆ /0) = (π ◦π−1) ⋆ /0 = /0, and so /0 = π · /0 which means that /0 is an element in

℘us(X) supported by supp(X). Actually, /0 belongs to ℘f in(X) that is a subset of ℘us(X).
Since /0 ⊆ f ( /0) and f is order-preserving, we can define the ascending sequence /0 ⊆ f ( /0)⊆ f 2( /0)⊆

. . . ⊆ f n( /0) ⊆ . . ., where f n( /0) = f ( f n−1( /0)) and f 0( /0) = /0. We prove by induction that ( f n( /0))n∈N is

uniformly supported by supp( f )∪ supp(X), namely supp( f n( /0))⊆ supp( f )∪ supp(X) for each n ∈N.

We have supp( f 0( /0)) = supp( /0) ⊆ supp(X) ⊆ supp( f )∪ supp(X). Let us assume that supp( f n( /0)) ⊆
supp( f )∪ supp(X) for some n ∈ N. We have to prove that supp( f n+1( /0)) ⊆ supp( f )∪ supp(X). Let

π ∈ Fix(supp( f )∪ supp(X)). From the inductive hypothesis, we have π ∈ Fix(supp( f n( /0))) and so π ⋆
f n( /0) = f n( /0). Since π fixes supp( f ) pointwise, according to Proposition 2.5, we have π ⋆ f n+1( /0) = π ⋆
f ( f n( /0)) = f (π ⋆ f n( /0)) = f ( f n( /0)) = f n+1( /0). Therefore, ( f n( /0))n∈N ⊆℘us(X) is uniformly supported

by supp( f )∪ supp(X). Thus, according to Theorem 3.2, ( f n( /0))n∈N should be finite, and so there exists

n0 ∈ N such that f n( /0) = f n0( /0) for all n ≥ n0. Thus, f ( f n0( /0)) = f n0+1( /0) = f n0( /0), and so f n0( /0) is a

fixed point of f . It is supported by supp( f )∪ supp(X), and obviously it is the least one.

2. A similar argument allows us to prove the second item of the proposition. This time Theorem 3.3

is used to prove that the uniformly supported ascending family ( f n( /0))n∈N ⊆℘f in(X) is finite, and so it

is stationary.

Theorem 3.5 Let X be a finitely supported subset of an invariant set (Y, ·).

1. If X is not FSM uniformly infinite and f :℘us(X)→℘us(X) is finitely supported with the property

that Z ⊆ f (Z) for all Z ∈℘us(X), then for each Z ∈℘us(X) there exists some m ∈ N such that

f m(Z) is a fixed point of f .

2. If X is not FSM uniformly infinite and f :℘f in(X)→℘f in(X) is finitely supported with the property

that Z ⊆ f (Z) for all Z ∈℘f in(X), then for each Z ∈℘f in(X) there exists some m ∈ N such that

f m(Z) is a fixed point of f .

Proof. 1. Let us fix an arbitrary element Z ∈℘us(X). We consider the ascending (via sets inclusion)

sequence (Zn)n∈N which has the first term Z0 = Z and the general term Zn+1 = f (Zn) for all n ∈ N. We

prove by induction that supp(Zn) ⊆ supp( f )∪ supp(Z)∪ supp(X) for all n ∈ N. Clearly, supp(Z0) =
supp(Z) ⊆ supp( f ) ∪ supp(Z)∪ supp(X). Assume that supp(Zk) ⊆ supp( f ) ∪ supp(Z) ∪ supp(X).
Let π ∈ Fix(supp( f )∪ supp(Z)∪ supp(X)). Thus, π ·Zk = Zk according to the inductive hypothesis.

According to Proposition 2.5, because π fixes supp( f ) pointwise, supp( f ) supports f and ℘us(X) is

supported by supp(X), we get π ⋆Zk+1 = π ⋆ f (Zk) = f (π ⋆Zk) = f (Zk) = Zk+1. Since supp(Zk+1) is

the least set supporting Zk+1, we obtain supp(Zk+1)⊆ supp( f )∪ supp(Z)∪ supp(X). Thus, (Zn)n∈N ⊆
℘us(X) is uniformly supported by supp( f )∪supp(Z)∪supp(X), and so (Zn)n∈N must be finite according

to Theorem 3.2. Since by hypothesis we have Z0 ⊆ Z1 ⊆ . . . ⊆ Zn ⊆ . . ., there should exist m ∈ N such

that Zm = Zm+1, i.e. f m(Z) = f m+1(Z) = f ( f m(Z)), and so the result follows.

2. A similar argument allows us to prove the second item of this theorem. Theorem 3.3 is used

to prove that the uniformly supported ascending family ( f n(Z))n∈N ⊆ ℘f in(X) is finite, and so it is

stationary for every Z ∈℘f in(X).
For self-mappings on ℘f in(A) we have the following stronger property.

Proposition 3.6 Let f : ℘f in(A) →℘f in(A) be a finitely supported function with the property that Z ⊆
f (Z) for all Z ∈℘f in(A). There are infinitely many fixed points of f , namely the finite subsets of A

containing all the elements of supp( f ).
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Proof. Let Z ∈℘f in(A). Since the support of a finite subset of atoms coincides with the related subset,

we have supp(Z) = Z and supp( f (Z)) = f (Z). According to Proposition 2.5, for any permutation

π ∈ Fix(supp( f )∪ supp(Z)) = Fix(supp( f )∪ Z), we have π ⋆ f (Z) = f (π ⋆ Z) = f (Z) which means

supp( f )∪ Z supports f (Z), that is, f (Z) = supp( f (Z)) ⊆ supp( f )∪ Z (claim 1). Since we also have

Z ⊆ f (Z), we get Z \ supp( f ) ⊆ f (Z) \ supp( f ) ⊆ Z \ supp( f ), that is, Z \ supp( f ) = f (Z) \ supp( f )
(claim 2). If supp( f ) = /0, the result follows obviously. Let supp( f ) = {a1, . . . ,an}. According to

(claim 1), we have supp( f ) ⊆ f (supp( f )) ⊆ supp( f ), and so f (supp( f )) = supp( f ). If Z has the form

Z = {a1, . . . ,an,b1, . . . ,bm} with b1, . . . ,bm ∈ A \ supp( f ), m ≥ 1, we should have by hypothesis that

a1, . . . ,an ∈ f (Z), and by (claim 2) f (Z) \ supp( f ) = {b1, . . . ,bm}. Since no other elements different

from a1, . . . ,an are in supp( f ), from (claim 1) we get f (Z) = {a1, . . . ,an,b1, . . . ,bm}.

Theorem 3.7 The following properties of FSM uniformly infinite sets hold.

1. Let X be an infinite, finitely supported subset of an invariant set Y . Then the sets ℘f s(℘f in(X))
and ℘f s(Tf in(X)) are FSM uniformly infinite.

2. Let X be an infinite, finitely supported subset of an invariant set Y . Then the set ℘f s(℘f s(X)) is

FSM uniformly infinite.

3. Let X and Y be two finitely supported subsets of an invariant set Z. If neither X nor Y is FSM

uniformly infinite, then X ×Y is not FSM uniformly infinite.

4. Let X and Y be two finitely supported subsets of an invariant set Z. If neither X nor Y is FSM

uniformly infinite, then X +Y is not FSM uniformly infinite.

Proof. 1. Obviously, ℘f in(X) is a finitely supported subset of the invariant set ℘f s(Y ), supported by

supp(X). This is because whenever Z is an element of ℘f in(X) (i.e. whenever Z is a finite subset

of X ) and π fixes supp(X) pointwise, we have that π ⋆ Z is also a finite subset of X . The family

℘f s(℘f in(X)) represents the family of those subsets of ℘f in(X) which are finitely supported as sub-

sets of the invariant set ℘f s(Y ) in the sense of Definition 2.3. As above, according to Proposition 2.2,

we have that ℘f s(℘f in(X)) is a finitely supported subset of the invariant set ℘f s(℘f s(Y )), supported by

supp(℘f in(X))⊆ supp(X).

Let Xi be the set of all i-sized subsets from X , i.e. Xi = {Z ⊆X | |Z|= i}. Since X is infinite, it follows

that each Xi, i ≥ 1 is non-empty. Obviously, we have that any i-sized subset {x1, . . . ,xi} of X is finitely

supported (as a subset of Y ) by supp(x1)∪ . . .∪ supp(xi). Therefore, Xi ⊆℘f in(X) and Xi ⊆℘f s(Y ) for

all i ∈ N. Since · is a group action, the image of an i-sized subset of X under an arbitrary permutation is

an i-sized subset of Y . However, any permutation of atoms that fixes supp(X) pointwise also leaves X

invariant, and so for any permutation π ∈ Fix(supp(X)) we have that π ⋆ Z is an i-sized subset of X

whenever Z is an i-sized subset of X . Thus, each Xi is a subset of ℘f in(X) finitely supported by supp(X),
and so Xi ∈℘f s(℘f in(X)). The family (Xi)i∈N is infinite and uniformly supported.

If we consider Yi the set of all i-sized injective tuples formed by elements of X , we have that each Yi

is a subset of Tf in(X) supported by supp(X), and the family (Yi)i∈N is an infinite, uniformly supported,

subset of ℘f s(Tf in(X)).

2. The proof is actually the same as in the above item since every Xi ∈℘f s(℘f s(X)).

3. Suppose, by contradiction, that X ×Y is FSM uniformly infinite. Thus, there exists an infinite

injective family ((xi,yi))i∈I ⊆ X ×Y and a finite S ⊆ A with the property that supp((xi,yi)) ⊆ S for all

i ∈ I (1). Fix some j ∈ I. We claim that supp((x j,y j)) = supp(x j)∪ supp(y j). Let U = (x j,y j), and

S = supp(x j)∪ supp(y j). Obviously, S supports U . Indeed, let us consider π ∈ Fix(S). We have that

π ∈Fix(supp(x j)) and also π ∈ Fix(supp(y j)) Therefore, π ·x j = x j and π ·y j = y j, and so π ⊗(x j,y j) =



A. Alexandru and G. Ciobanu 127

(π · x j,π · y j) = (x j,y j), where ⊗ represent the SA action on X ×Y described in Proposition 2.2. Thus,

supp(U)⊆ S. It remains to prove that S ⊆ supp(U). Fix π ∈ Fix(supp(U)). Since supp(U) supports U ,

we have π⊗(x j,y j)= (x j,y j), and so (π ·x j,π ·y j)= (x j,y j), from which we get π ·x j = x j and π ·y j = y j.

Thus, supp(x j)⊆ supp(U) and supp(y j)⊆ supp(U). Hence S = supp(x j)∪ supp(y j)⊆ supp(U).
According to relation (1) we obtain, supp(xi)∪ supp(yi)⊆ S for all i ∈ I. Thus, supp(xi)⊆ S for all

i ∈ I and supp(yi)⊆ S for all i ∈ I (2). Since the family ((xi,yi))i∈I is infinite and injective, then at least

one of the uniformly supported families (xi)i∈I and (yi)i∈I is infinite, a contradiction.

4. Suppose, by contradiction, that X +Y is FSM uniformly infinite. Thus, there exists an infinite

injective family (zi)i∈I ⊆ X ×Y and a finite S ⊆ A such that supp(zi) ⊆ S for all i ∈ I. According to the

construction of the disjoint union of two SA-sets (see Proposition 2.2), there should exist an infinite family

of (zi)i of form ((0,x j))x j∈X which is uniformly supported by S, or an infinite family of form ((1,yk))yk∈Y

which is uniformly supported by S. Since 0 and 1 are constants, this means there should exist at least

an infinite uniformly supported family of elements from X , or an infinite uniformly supported family of

elements from Y , a contradiction.

The following result represents a significant extension of Theorem 2 in [3] since we are able to prove

that ℘f s(A)
A
f s does not contain an infinite uniformly supported subset (an so, neither one of its subsets

such as SA or AA
f s does not contain an infinite uniformly supported subset).

Theorem 3.8 All the sets presented below are FSM non-uniformly infinite (i.e. none of them contains

infinite uniformly supported subsets).

1. The invariant set A of atoms.

2. The powerset ℘f s(A) of the set of atoms.

3. The set Tf in(A) of all finite injective tuples of atoms.

4. The invariant set of all finitely supported functions f : A →℘f s(A).

5. The invariant set AA
f s of all finitely supported functions from A to A.

6. The invariant set of all finitely supported functions f : A → An, where n ∈ N and An is the n-times

Cartesian product of A.

7. The invariant set of all finitely supported functions f : A → Tf in(A).

8. The sets ℘f in(A), ℘co f in(A), ℘f in(℘f s(A)), or ℘f in(A
A
f s).

9. Any construction of finite powersets of the following forms ℘f in(. . .℘f in(A)), ℘f in(. . .℘f in(A
A
f s)),

or ℘f in(. . .℘f in(℘f s(A))).

10. Every finite Cartesian combination between the set A, ℘f in(A), ℘co f in(A), ℘f s(A) and AA
f s.

11. The disjoint unions A+AA
f s, A+℘f s(A), ℘f s(A)+AA

f s and A+℘f s(A)+AA
f s and all finite disjoint

unions between A, AA
f s and ℘f s(A).

Proof. 1. A does not contain an infinite uniformly supported subset since for any finite set S ⊆ A there

are at most |S| atoms supported by S, namely the elements of S.

2. ℘f s(A) does not contain an infinite uniformly supported subset since for any finite set S ⊆ A there

are at most 2|S|+1 subsets of A supported by a certain finite set S ⊆ A, namely the subsets of S and the

supersets of A\S.

3. Tf in(A) does not contain an infinite uniformly supported subset because the finite injective tuples

of atoms supported by a finite set S are only those injective tuples formed by elements of S, being at most

1+A1
|S|+A2

|S|+ . . .+A
|S|
|S| such tuples, where Ak

n = n(n−1) . . . (n− k+1).
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4. We prove that ℘f s(A)
A
f s does not contain infinite uniformly supported subsets.

We remark that if S = {s1, . . . ,sn} is a finite subset of an invariant set (X , ·) containing no infinite

uniformly supported subset, then XS
f s does not contain an infinite uniformly supported subset. For this we

claim that there is an injection ϕ from XS
f s into X |S| defined by: if f ∈XS

f s, then ϕ( f ) = ( f (s1), . . . , f (sn));

if π fixes supp(s1)∪ . . .∪ supp(sn) pointwise, then ϕ(π ⋆̃ f ) = ((π ⋆̃ f )(s1), . . . ,(π ⋆̃ f )(sn)) = (π · f (π−1 ·
s1), . . . ,π · f (π−1 · sn)) = (π · f (s1), . . . ,π · f (sn)) = π ⊗ϕ( f ) for all f ∈ XS

f s, where ⊗ is the SA-action

on X |S|, and ⋆̃ is the canonical action on XS
f s. Therefore ϕ is finitely supported. Obviously, X |S| does not

contain an infinite uniformly supported subset; otherwise X should contain itself an infinite uniformly

supported subset.

Let us fix n ∈ N. Assume, by contradiction, that there exist infinitely many functions g : A →℘n(A)
(where ℘n(A) is the invariant set of all n-sized subsets of A) supported by the same finite set S′ ⊆ A. Each

S′-supported function g : A →℘n(A) can be uniquely decomposed into two S′-supported functions g|S′

and g|A\S′ (this follows since both S′ and A\S′ are supported by S′). Since there exist only finitely many

functions from S′ to ℘n(A) supported by S′, there should exist infinitely many functions g : (A \ S′) →
℘n(A) supported by S′. For such a function g, let us fix an element a ∈ A\S′. For each π fixing S′∪{a}
pointwise we have π ⋆ g(a) = g(π(a)) = g(a) which means that g(a) is supported by S′ ∪{a}. Since

g(a) is an n-sized (i.e. finite) subset of atoms, we have g(a) = supp(g(a)) ⊆ S′ ∪{a}. We distinguish

two cases. In the first case, g(a) = {a,x2, . . . ,xn} with x2, . . . ,xn ∈ S′. Let b be an arbitrary element

from A \ S′, and so (ab) fixes S′ pointwise, which means g(b) = g((ab)(a)) = (ab) ⋆ g(a) = (ab) ⋆
{a,x2, . . . ,xn} = {(ab)(a),(ab)(x2), . . . ,(ab)(xn)} = {b,x2, . . . ,xn}. Thus, only the choice of x2, . . . ,xn

provides the distinction between g’s. Since S′ is finite, {x2, . . . ,xn} can be selected in Cn−1
|S′| ways if

|S′| ≥ n−1, or in 0 ways otherwise. In the second case we have g(a) = {x1, . . . ,xn} with x1, . . . ,xn ∈ S′.

For all b ∈ A\S we have that (ab) fixes S′ pointwise, and so g(b) = g((ab)(a)) = (ab)⋆g(a) = (ab)⋆
{x1, . . . ,xn}= {x1, . . . ,xn}. Since S′ is finite, {x1, . . . ,xn} can be selected in Cn

|S′| ways if |S′| ≥ n, or in 0

ways otherwise. In both cases, g’s can be defined only in finitely many ways.

We proved that there exist at most finitely many functions from A to ℘n(A) supported by the same set

of atoms. Let us assume by contradiction that℘f in(A)
A contains an infinite S-uniformly supported subset.

If f : A →℘f in(A) is a function supported by S, then we have | f (a)| = |(ab) ⋆ f (a)| = | f ((ab)(a))| =
| f (b)| for all a,b /∈ S. As above, each S-supported function f : A →℘f in(A) is uniquely decomposed into

two S-supported functions f |S and f |A\S. However f (A\S)⊆℘n(A) for some n ∈N. We also know that

there are at most finitely many S-supported functions from S to ℘f in(A). Furthermore, there exist at most

finitely many S-supported functions from A\S to ℘n(A) for each fixed n ∈ N. Therefore, it should exist

an infinite subset M ⊆ N such that we have at least one S-supported function f : A \S →℘k(A) for any

k ∈ M. Fix a ∈ A\S. For each of the above f ’s (that form an S-uniformly supported family F ) we have

that f (a)’s form an uniformly supported family (by S∪{a}) of ℘f in(A). If S∪{a} has l elements, there

exists a fixed m ∈ M with m > l. However, f (a) for a function f : A\S →℘m(A) from F , which is an

m-sized subset of atoms cannot be supported by S∪{a} whose cardinality is less than m. Therefore, the

set of all f (a)’s cannot be infinite and uniformly supported.

Since there exists the empty supported bijection X 7→ A \X from ℘f in(A) onto ℘co f in(A), we also

have that there exist at most finitely many S-supported functions from A to ℘co f in(A). Assume, by

contradiction, that ℘f s(A)
A contains an infinite S-uniformly supported subset. If h : A →℘f s(A) is a

function supported by S, then consider h(a) =X for some a∈A\S. For b∈A\S we have h(b) = (ab)⋆X ,

which means h(A \ S) is formed only by finite subsets of atoms if X is finite, and h(A \ S) is formed

only by cofinite subsets of atoms if X is cofinite. However, we have at most finitely many S-supported

functions from S to ℘f s(A). Furthermore, we have at most finitely many S-supported functions from
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A \ S to ℘f in(A), and at most finitely many S-supported functions from A \ S to ℘co f in(A). We get a

contradiction, and we conclude that ℘f s(A)
A
f s does not contain an infinite uniformly supported subset.

5. There is an equivariant injection from AA
f s into ℘f s(A)

A
f s, and the result is immediate.

6. There is an equivariant bijection between (An)A
f s and (AA

f s)
n defined as below. If f : A → An is

a finitely supported function with f (a) = (a1, . . . ,an), we associate to f the Cartesian pair ( f1, . . . , fn)
where for each i ∈ N, fi : A → A is defined by fi(a) = ai for all a ∈ A. Since AA

f s does not contain an

infinite uniformly supported subset, neither (AA
f s)

n contains an infinite uniformly supported subset.

7. Assume by contradiction that Tf in(A)
A contains an infinite S-uniformly supported subset. If f :

A → Tf in(A) is a function supported by S, then consider f (a) = x for some a /∈ S. For b /∈ S we have that

(ab) fixes S pointwise, and so f (b) = f ((ab)(a)) = (ab)⊗ f (a) = (ab)⊗x which means | f (a)|= | f (b)|
for all a,b /∈ S. Each S-supported function f : A → Tf in(A) can be uniquely decomposed into two S-

supported functions f |S and f |A\S. However f (A \S) ⊆ A′n for some n ∈ N, where A′n is the set of all

injective n-tuples of A. We have at most finitely many S-supported functions from S to Tf in(A) (since

Tf in(A)
S cannot contain an infinite uniformly supported subset; otherwise Tf in(A) would itself contain an

infinite uniformly supported subset). Since A′n is a subset of An and A \ S is a subset of A, we have at

most finitely many S-supported functions from A\S to A′n for each fixed n ∈N. Therefore, there should

exist an infinite subset M ⊆N such that we have at least one S-supported function g : A\S → A′k for any

k ∈ M. Fix a ∈ A\S. For each of the above g’s (that form an S-supported family F ) we have that g(a)’s
form an uniformly supported family (by S∪{a}) of Tf in(A), which is also infinite because tuples having

different cardinalities are different and M is infinite. We thus obtained a contradiction.

Items 8,9,10,11 follow from the above items involving Theorem 3.7

Remark 3.9 Despite of Theorem 3.8(3), it is worth noting that the set T δ
f in(A) = ∪

n∈N
An of all finite tuples

of atoms (not necessarily injective) is FSM uniformly infinite. This follows as below. Fix a ∈ A and i ∈N.

We consider the tuple xi = (a, . . . ,a) ∈ Ai. Clearly, xi is supported by {a} for each i ∈ N, and so (xn)n∈N

is a uniformly supported subset of T δ
f in(A).

Theorem 3.10

1. Let X be a finitely supported subset of an invariant set. If X is not FSM uniformly infinite, then

each finitely supported injective mapping f : X → X should be surjective.

2. Let X be a finitely supported subset of an invariant set. If ℘f s(X) is not FSM uniformly infinite,

then each finitely supported surjective mapping f : X → X should be injective. The converse does

not hold since every finitely supported surjective mapping f :℘f in(A)→℘f in(A) is also injective,

while ℘f s(℘f in(A)) is FSM uniformly infinite.

Proof. 1. Assume, by contradiction, that f : X → X is a finitely supported injection with the property that

Im( f )(X . This means that there exists x0 ∈X such that x0 /∈ Im( f ). We can form a sequence of elements

from X which has the first term x0 and the general term xn+1 = f (xn) for all n ∈ N. Since x0 /∈ Im( f ) it

follows that x0 6= f (x0). Since f is injective and x0 /∈ Im( f ), by induction we obtain that f n(x0) 6= f m(x0)
for all n,m ∈N with n 6= m. Furthermore, xn+1 is supported by supp( f )∪ supp(xn) for all n ∈N. Indeed,

let π ∈Fix(supp( f )∪supp(xn)). According to Proposition 2.5, π ·xn+1 = π · f (xn) = f (π ·xn) = f (xn) =
xn+1. Since supp(xn+1) is the least set supporting xn+1, we obtain supp(xn+1)⊆ supp( f )∪ supp(xn) for

all n ∈N. By induction, we have supp(xn)⊆ supp( f )∪supp(x0) for all n∈N. Thus, all xn are supported

by the same set of atoms supp( f )∪ supp(x0), which means the family (xn)n∈N is infinite and uniformly

supported, contradicting the hypothesis.
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2. Let f : X → X be a finitely supported surjection. Since f is surjective, we can define the function

g : ℘f s(X) →℘f s(X) by g(Y ) = f−1(Y ) for all Y ∈℘f s(X) which is finitely supported by supp( f )∪
supp(X) (according to the S-finite support principle) and injective. Alternatively, we can provide a direct

proof that g is finitely supported. Let Y be an arbitrary element from ℘f s(X). We claim that f−1(Y ) ∈
℘f s(X). Let π fix supp( f ) ∪ supp(Y )∪ supp(X) pointwise, and y ∈ f−1(Y ). This means f (y) ∈ Y .

Since π fixes supp( f ) pointwise and supp( f ) supports f , we have f (π · y) = π · f (y) ∈ π ⋆Y = Y , and

so π · y ∈ f−1(Y ). Therefore, f−1(Y ) is finitely supported, and so the function g is well defined. We

claim that g is supported by supp( f ) ∪ supp(X). Let π fix supp( f ) ∪ supp(X) pointwise. For any

arbitrary Y ∈℘f s(X) we get π ⋆Y ∈℘f s(X) and π ⋆ g(Y ) ∈℘f s(X). Furthermore, π−1 fixes supp( f )
pointwise, and so f (π−1 · x) = π−1 · f (x) for all x ∈ X . For any arbitrary Y ∈ ℘f s(X), we have that

z ∈ g(π ⋆Y ) = f−1(π ⋆Y ) ⇔ f (z) ∈ π ⋆Y ⇔ π−1 · f (z) ∈ Y ⇔ f (π−1 · z) ∈ Y ⇔ π−1 · z ∈ f−1(Y ) ⇔
z ∈ π ⋆ f−1(Y ) = π ⋆ g(Y ). If follows that g(π ⋆Y ) = π ⋆ g(Y ) for all Y ∈℘f s(X), and so g is finitely

supported. Now, since ℘f s(X) is not FSM uniformly infinite, it follows from item 1 that g is surjective.

Now let us consider two elements a,b ∈ X such that f (a) = f (b). We prove by contradiction that

a = b. Suppose that a 6= b. Let us consider Y = {a} and Z = {b}. Obviously, Y,Z ∈℘f s(X). Since g is

surjective, for Y and Z there is Y1,Z1 ∈℘f s(X) such that f−1(Y1) = g(Y1) =Y and f−1(Z1) = g(Z1) = Z.

We know that f (Y )∩ f (Z) = { f (a)}. Thus, f (a) ∈ f (Y ) = f ( f−1(Y1)) ⊆ Y1. Similarly, f (a) = f (b) ∈
f (Z) = f ( f−1(Z1)) ⊆ Z1, and so f (a) ∈ Y1 ∩Z1. Thus, a ∈ f−1(Y1 ∩Z1) = f−1(Y1)∩ f−1(Z1) = Y ∩Z.

However, since we assumed that a 6= b, we have that Y ∩ Z = /0, which represents a contradiction. It

follows that a = b, and so f is injective.

In order to prove the invalidity of the reverse implication, we prove that any finitely supported sur-

jective mapping f : ℘f in(A)→℘f in(A) is also injective, while ℘f s(℘f in(A)) is FSM uniformly infinite

(since it contains an infinite uniformly supported countable subset (Xn)n∈N where, for any n∈N, Xn is de-

fined as the equivariant set of all n-sized subsets of atoms). Let us consider a finitely supported surjection

f : ℘f in(A)→℘f in(A). Let X ∈℘f in(A). Then supp(X) = X and supp( f (X)) = f (X). Since supp( f )
supports f and supp(X) supports X , for any π fixing pointwise supp( f )∪ supp(X) = supp( f )∪X we

have π ⋆ f (X)= f (π ⋆X)= f (X) which means supp( f )∪X supports f (X), that is f (X)= supp( f (X))⊆
supp( f )∪X (claim 1).

For a fixed m ≥ 1, let us fix m (arbitrarily chosen) atoms b1, . . . ,bm ∈ A \ supp( f ). Let us con-

sider U = {{a1, . . . ,an,b1, . . . ,bm}|a1, . . . ,an ∈ supp( f ),n ≥ 1} ∪ {{b1, . . . ,bm}}. The set U is fi-

nite since supp( f ) is finite and b1, . . . ,bm ∈ A \ supp( f ) are fixed. Let us consider Y ∈ U , that is

Y \supp( f ) = {b1, . . . ,bm}. There exists Z ∈℘f in(A) such that f (Z) =Y . According to (claim 1), Z must

be either of form Z = {c1, . . . ,ck,bi1 , . . . ,bil} with c1, . . . ,ck ∈ supp( f ) and bi1 , . . . ,bil ∈ A\supp( f ) or of

form Z = {bi1 , . . . ,bil} with bi1 , . . . ,bil ∈ A\supp( f ). In both cases we have {b1, . . . ,bm} ⊆ {bi1 , . . . ,bil}.

We should prove that l = m. Assume, by contradiction, that there exists bi j
with j ∈ {1, . . . , l} such

that bi j
/∈ {b1, . . . ,bm}. Then (bi j

b1) ⋆ Z = Z since both bi j
,b1 ∈ Z and Z is a finite subset of A (bi j

and b1 are interchanged in Z under the effect of the transposition (bi j
b1), while the other atoms be-

longing to Z are left unchanged, meaning that the whole Z is left invariant under ⋆). Furthermore, since

bi j
,b1 /∈ supp( f ) we have that (bi j

b1) fixes supp( f ) pointwise, and, because supp( f ) supports f , we

get f (Z) = f ((bi j
b1)⋆Z) = (bi j

b1)⋆ f (Z) which is a contradiction because b1 ∈ f (Z) while bi j
/∈ f (Z).

Thus, {bi1 , . . . ,bil}= {b1, . . . ,bm}, and so Z ∈ U . Therefore, U ⊆ f (U ) which means |U | ≤ | f (U )|.
However, since f is a function and U is finite, we get | f (U )| ≤ |U |. We obtain |U | = | f (U )| and,

because U is finite with U ⊆ f (U ), we get U = f (U ) (claim 2) which means that f |U : U → U is

surjective. Since U is finite, f |U should be injective, i.e. f (U1) 6= f (U2) whenever U1,U2 ∈ U with

U1 6=U2 (claim 3).

Whenever d1, . . . ,dv ∈ A \ supp( f ) with{d1, . . . ,dv} 6= {b1, . . . ,bm}, v ≥ 1, and considering V =
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{{a1, . . . ,an,d1, . . . ,dv}|a1, . . . ,an ∈ supp( f ),n ≥ 1}∪ {{d1, . . . ,dv}}, we conclude that U and V are

disjoint. Whenever U1 ∈U and V1 ∈V we have f (U1)∈U and f (V1)∈ V by using the same arguments

used to prove (claim 2), and so f (U1) 6= f (V1) (claim 4). If T = {{a1, . . . ,an}|a1, . . . ,an ∈ supp( f )}
and Y ∈ T , then there is T ′ ∈℘f in(A) such that Y = f (T ′). Similarly as in (claim 2), we should have

T ′ ∈ T . Otherwise, if T ′ belongs to some V considered above, i.e. if T ′ contains an element outside

supp( f ), we get the contradiction Y = f (T ′) ∈ V ) and so T ⊆ f (T ) from which T = f (T ) since

T is finite (using similar arguments as those involved to prove (claim 3) from U ⊆ f (U )). Thus,

f |T : T → T is surjective. Since T is finite, f |T should be also injective, namely f (T1) 6= f (T2)
whenever T1,T2 ∈ T with T1 6= T2 (claim 5). The case supp( f ) = /0 is contained in the above analysis; it

leads to f ( /0) = /0 and f (X) = X for all X ∈℘f in(A). We also have f (T1) 6= f (V1) whenever T1 ∈ T and

V1 ∈ V since f (T1) ∈ T , f (V1) ∈ V and T and V are disjoint (claim 6). Since b1, . . . ,bm and d1, . . . ,dv

were arbitrarily chosen from A \ supp( f ), the injectivity of f leads from the claims (3), (4), (5) and (6)

covering all the possible cases for two different finite subsets of atoms and comparison of the values of f

over the related subsets of atoms.

Theorem 3.10 (related to Theorem 2 in [3]) allows us to establish a strong result generalizing the

approach in [3] by claiming that a finitely supported mapping f : ℘f in(A)→℘f in(A) is injective if and

only if it is surjective.

Theorem 3.11 Let X be a finitely supported subset of an invariant set (Z, ·). If X contains an infinite,

finitely supported, totally ordered subset, then it is FSM uniformly infinite.

Proof. Assume that X contains an infinite, finitely supported, totally ordered subset (Y,≤). We claim

that Y is uniformly supported by supp(≤)∪ supp(Y ). Let π be a permutation fixing supp(≤)∪ supp(Y )
pointwise and let y ∈ Y an arbitrary element. Since π fixes supp(Y ) pointwise and supp(Y ) supports Y ,

we obtain that π ·y ∈Y , and so we should have either y < π ·y, or y = π ·y, or π ·y < y. If y < π ·y, then,

because π fixes supp(≤) pointwise and because the mapping z 7→ π · z is bijective from Y to π ⋆Y , we

get y < π · y < π2 · y < .. . < πn · y for all n ∈ N. However, since any permutation of atoms interchanges

only finitely many atoms, it has a finite order in the group SA, and so there is m ∈ N such that πm = Id

(where Id is the identity on A). This means πm · y = y, and so we get y < y which is a contradiction.

Similarly, the assumption π ·y < y, leads to the relation πn ·y < .. . < π ·y < y for all n ∈N which is also

a contradiction since π has finite order. Therefore, π · y = y, and because y was arbitrary chosen form Y ,

Y should be a uniformly supported infinite subset of X .

Definition 3.12

• Two FSM sets X and Y are FSM equipollent if there exists a finitely supported bijection f : X →Y .

• The FSM cardinality of X is defined as the equivalence class of all FSM sets equipollent to X, and

is denoted by |X |.

According to Definition 3.12 for two FSM sets X and Y , we have |X |= |Y | if and only if there exists a

finitely supported bijection f : X →Y . On the family of cardinalities we can define the relations:

• ≤ by: |X | ≤ |Y | if and only if there is a finitely supported injective (one-to-one) mapping f : X →Y .

• ≤∗ by: |X | ≤∗ |Y | if and only if there is a finitely supported surjective (onto) mapping f : Y → X .

By using Theorem 4.5 and Theorem 4.6 from [2], we can present the following result.

Theorem 3.13

1. The relation ≤ is equivariant, reflexive, anti-symmetric and transitive, but it is not total.
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2. The relation ≤∗ is equivariant, reflexive and transitive, but it is not anti-symmetric, nor total.

Theorem 3.14 Let X be a finitely supported subset of an invariant set (Y, ·)

1. If |X |= |X ×X |, then |X |= 2|X |. The converse does not hold.

2. If |X |= 2|X |, then X is FSM uniformly infinite. The converse does not hold.

Proof. 1. Fix two elements x1,x2 ∈ X with x1 6= x2. We can define an injection f : X ×{0,1} →

X ×X by f (u) =

{
(x,x1) for u = (x,0)
(x,x2) for u = (x,1)

. Clearly, by checking the condition in Proposition 2.5 and

using Proposition 2.2, we have that f is supported by supp(X)∪ supp(x1)∪ supp(x2) (since {0,1} is

necessarily a trivial invariant set), and so |X ×{0,1}| ≤ |X ×X |. Thus, |X ×{0,1}| ≤ |X |. Obviously,

there is an injection i : X → X ×{0,1} defined by i(x) = (x,0) for all x ∈ X which is supported by

supp(X). According to Theorem 3.13, we get 2|X |= |X ×{0,1}| = |X |.

Let us consider Z =N×A. We make the remark that |N×N|= |N| by considering the equivariant in-

jection h :N×N→N defined by h(m,n) = 2m3n and using Theorem 3.13. Similarly, |{0,1}×N|= |N| by

considering the equivariant injection h′ :N×{0,1}→N defined by h′(n,0) = 2n and h′(n,1) = 3n and us-

ing Theorem 3.13. We have 2|Z|= 2|N||A|= |N||A|= |Z|. However, we prove that |Z×Z| 6= |Z|. Assume

the contrary, and so we have |N×(A×A)|= |N×A×N×A|= |N×A|. Thus, there is a finitely supported

injection g : A×A → N×A, and so there is a finitely supported surjection f : N×A → A×A defined as

f (y) =

{
g−1(y), if y ∈ Im(g)
x0, if y /∈ Im(g)

where x0 is a fixed element in A×A. Let us consider three different

atoms a,b,c /∈ supp( f ). There exists (i,x) ∈N×A such that f (i,x) = (a,b). Since (ab) ∈ Fix(supp( f ))
and N is trivial invariant set, we have f (i,(ab)(x)) = (ab) f (i,x) = (ab)(a,b) = ((ab)(a),(ab)(b)) =
(b,a). We should have x= a or x= b, otherwise f is not a function. Assume without losing the generality

that x = a, which means f (i,a) = (a,b). Therefore f (i,b) = f (i,(ab)(a)) = (ab) f (i,a) = (ab)(a,b) =
(b,a). Similarly, since (ac),(bc) ∈ Fix(supp( f )), we have f (i,c) = f (i,(ac)(a)) = (ac) f (i,a) =
(ac)(a,b) = (c,b) and f (i,b) = f (i,(bc)(c)) = (bc) f (i,c) = (bc)(c,b) = (b,c). But f (i,b) = (b,a)
contradicting the functionality of f .

2. Let us consider an element y1 belonging to an invariant set (whose action is also denoted by ·)
with y1 /∈ X (such an element can be a non-empty element in ℘f s(X) \X , for instance). Fix y2 ∈ X .

One can define a mapping f : X ∪{y1} → X ×{0,1} by f (x) =

{
(x,0) for x ∈ X

(y2,1) for x = y1
. Clearly, f is

injective and it is supported by S = supp(X)∪ supp(y1)∪ supp(y2) because for all π fixing S pointwise

we have f (π · x) = π · f (x) for all x ∈ X ∪ {y1}. Therefore, |X ∪ {y1}| ≤ |X ×{0,1}| = |X |, and so

there is a finitely supported injection g : X ∪{y1} → X . The mapping h : X → X defined by h(x) = g(x)
is injective, supported by supp(g)∪ supp(X), and g(y1) ∈ X \ h(X), which means h is not surjective.

According to Theorem 3.10(1), X should be FSM uniformly infinite.

Let us denote Z = A∪N. Since A and N are disjoint, we have that Z is an invariant set. Clearly, Z

is FSM uniformly infinite. Assume, by contradiction, that |Z| = 2|Z|, that is |A∪N| = |A+A+N| =
|({0,1}×A)∪N|. Thus, there is a finitely supported injection f ′ : ({0,1}×A)∪N→ A∪N, and so there

exists a finitely supported injection f : ({0,1}×A) → A∪N. We prove that whenever ϕ : A → A∪N

is finitely supported and injective, we have ϕ(a) ∈ A for a /∈ supp(ϕ). Let us assume by contradiction

that there is a /∈ supp(ϕ) such that ϕ(a) ∈ N. Since supp(ϕ) is finite, there exists b /∈ supp(ϕ), b 6= a.

Thus, (ab) fixes supp(ϕ) pointwise, and so ϕ(b) = ϕ((ab)(a)) = (ab) ⋄ϕ(a) = ϕ(a) since (N,⋄) is a

trivial invariant set. This contradicts the injectivity of ϕ . We can consider the mappings ϕ1,ϕ2 : A →
A∪N defined by ϕ1(a) = f (0,a) for all a ∈ A and ϕ2(a) = f (1,a) for all a ∈ A, that are injective and
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supported by supp( f ). Therefore, f ({0}×A) = ϕ1(A) contains at most finitely many element from N,

and f ({1} ×A) = ϕ2(A) also contains at most finitely many element from N. Thus, f is an injection

from ({0,1}×A) to A∪T where T is a finite subset of N. It follows that f ({0}×A) contains an infinite

finitely supported subset of atoms U , and f ({1}×A) contains an infinite finitely supported subset of

atoms V . Since f is injective, it follows that U and V are infinite disjoint finitely supported subsets of A,

which contradicts the fact that any subset of A is either finite or cofinite.

4 Conclusion

The newly developed theory of finitely supported sets allows the computational study of structures which

are very large, possibly infinite, but containing enough symmetries such that they can be clearly/concisely

represented and manipulated. Uniformly supported sets are particularly of interest because they involve

boundedness properties of supports, meaning that the support of each element in an uniformly supported

set is contained in the same finite set of atoms. In this way, all the individuals in an infinite uniformly

supported family can be characterized by involving only finitely many characteristics.

In this paper we described FSM uniformly infinite sets that are finitely supported sets containing

infinite, uniformly supported subsets. Firstly we proved that the finite powerset and the uniform pow-

erset of a set that is FSM uniformly finite is also FSM non-uniformly infinite (Theorem 3.2 and Theo-

rem 3.3). Finitely supported order-preserving self-mappings on the finite powerset and, respectively,

on the uniform powerset of a set that is FSM non-uniformly infinite have least fixed points (Theo-

rem 3.4). This is an important extension of Tarski’s fixed point theorem for complete lattices that is

specific to FSM; generally, order-preserving functions on finite powersets do not have fixed points since

the finite powersets are not complete lattices. Particularly, finitely supported order-preserving mappings

f : ℘f in(A)→℘f in(A), finitely supported order-preserving mappings f : ℘f in(℘f s(A))→℘f in(℘f s(A))
and finitely supported order-preserving mappings f : ℘f in(A

A
f s) → ℘f in(A

A
f s) should have least fixed

points that are supported by supp( f ) in each case. Another fixed point property is described in The-

orem 3.5. Particularly, finitely supported progressive (inflationary) self-mappings defined on ℘f in(A)
have infinitely many fixed points as proved in Proposition 3.6. We can also prove that any finitely sup-

ported, strict order-preserving, self-mapping f on ℘f in(A) has infinitely many fixed points (namely all

the sets X \ supp( f ) with X ∈℘f in(A)).

Operations with FSM uniformly (in)finite sets are presented in Theorem 3.7. We were able to prove

that A, ℘f s(A), Tf in(A), ℘f in(℘f s(A)), AA
f s, ℘f in(A

A
f s), (A

n)A
f s (for a fixed n ∈ N), Tf in(A)

A
f s and ℘f s(A)

A
f s

are FSM non-uniformly infinite, while ℘f s(℘f in(A)) and T δ
f in(A) are FSM uniformly infinite. Connec-

tions between FSM uniformly non-infinity and injectivity/surjectivity of self-mappings on FSM sets are

presented in Theorem 3.10. One can easily remark that a finitely supported function f : A → A is injec-

tive if and only if it is surjective. Furthermore, any finitely supported injection f : ℘f s(A)→℘f s(A) is

also surjective, any finitely supported injection f : ℘f in(℘f s(A))→℘f in(℘f s(A)) is also surjective, and

any finitely supported injection f : AA
f s → AA

f s is also surjective. These results generalize/extend related

results presented in Theorem 2 of [3]. In Theorem 3.11 we proved that a finitely supported subset of an

invariant set containing an infinite, finitely supported, totally ordered subset is FSM uniformly infinite.

Finally, we connected the concept of being FSM uniformly infinite with cardinality properties of form

|X |= |X ×X | and |X |= 2|X |, respectively (Theorem 3.14).

The case study presented in this paper can be significantly extended by presenting several other

definitions of infinity (Dedekind type, Mostowski type, Tarski type and Kuratowski type), and then

comparing them in the framework of atomic finitely supported sets. This is the topic of a future paper.



134 Finitely Supported Sets Containing Infinite Uniformly Supported Subsets

References

[1] A. Alexandru, G. Ciobanu (2016): Finitely Supported Mathematics: An Introduction. Springer.

doi:10.1007/978-3-319-42282-4

[2] A. Alexandru, G. Ciobanu (2019): On the foundations of finitely supported sets. Journal of Multiple-Valued

Logic and Soft Computing 32(5-6), pp. 541–564.

[3] A. Alexandru, G. Ciobanu (2019): Properties of the Atoms in Finitely Supported Structures. Archive for

Mathematical Logic. Accepted. doi:10.1007/s00153-019-00684-9.

[4] J. Barwise (1975): Admissible Sets and Structures: An Approach to Definability Theory. Perspectives in

Mathematical Logic vol.7, Springer. doi:10.2307/2271957.

[5] J.C. Blanchette, L. Gheri, A. Popescu, D. Traytel (2019): Bindings as Bounded Natural Functors. In: POPL

2019, pp. 22:1-22:34. doi:10.1145/3290335.

[6] M. Bojanczyk, B. Klin, S. Lasota (2011): Automata with Group Actions. In: 26th Symposium on Logic in

Computer Science, LICS 2011, pp. 355–364. doi:10.1109/LICS.2011.48.

[7] M.J. Gabbay (2007): A General Mathematics of Names. Information and Computation 205, pp. 982–1011.

doi:10.1016/j.ic.2006.10.010.

[8] T.J. Jech (1973): The Axiom of Choice. Studies in Logic and the Foundations of Mathematics, North-Holland.

[9] A.M. Pitts (2013): Nominal Sets Names and Symmetry in Computer Science. Cambridge University Press.

doi:10.1017/CBO9781139084673.

http://dx.doi.org/10.1007/978-3-319-42282-4
http://dx.doi.org/10.1007/s00153-019-00684-9
http://dx.doi.org/10.2307/2271957
http://dx.doi.org/10.1145/3290335
http://dx.doi.org/10.1109/LICS.2011.48
http://dx.doi.org/10.1016/j.ic.2006.10.010
http://dx.doi.org/10.1017/CBO9781139084673

	1 Finitely Supported Sets
	2 Preliminary Results
	3 FSM Uniformly Infinite Sets
	4 Conclusion

