
S.-W. Lin and L. Petrucci (Eds.): 2nd French Singaporean
Workshop on Formal Methods and Applications
EPTCS 156, 2014, pp. 45–51, doi:10.4204/EPTCS.156.8

c© Asankhaya Sharma
This work is licensed under the
Creative Commons Attribution License.

Verified Subtyping with Traits and Mixins

Asankhaya Sharma
Department of Computer Science

National Univeristy of Singapore

asankhs@comp.nus.edu.sg

Traits allow decomposing programs into smaller parts and mixins are a form of composition that
resemble multiple inheritance. Unfortunately, in the presence of traits, programming languages like
Scala give up on subtyping relation between objects. In thispaper, we present a method to check
subtyping between objects based on entailment in separation logic. We implement our method as a
domain specific language in Scala and apply it on the Scala standard library. We have verified that
67% of mixins used in the Scala standard library do indeed conform to subtyping between the traits
that are used to build them.

1 Introduction

Traits [8] have been recognized as a mechanism to support finegrained reuse in programming. Sev-
eral programming languages (Scala, Fortress, Ruby, etc.) support the use of traits in some form or
other. Traits and mixins provide support for code reuse and composition that goes beyond classes and
inheritance in object oriented programs. In addition, object oriented (OO) programs themselves are no-
toriously hard to verify in a modular fashion. Recently [4, 11, 6] separation logic based approach has
yielded success in verification of object oriented programs. This include support for verifying inheritance
and behavior subtyping, in conformance with OO paradigm. Inthis paper, we extend the work done on
verification of OO programs in separation logic to verify subtyping with traits and mixins.

Below we consider an example that illustrates the problem ofsubtyping with traits and mixins. The
ICell trait captures an object with an integer value that can be accessed withget andset methods. The
BICell trait provides a basic implementation forICell, while theDoubleandInc traits extend theICell
trait by doubling and incrementing the integer value respectively.

trait ICell {
def get() : Int
def set(x : Int)}

trait BICell extendsICell {
private var x : Int = 0
def get()
{ x }

def set(x : Int)
{ this.x= x }

}

trait DoubleextendsICell {
abstract override defset(x : Int)
{ super.set(2∗x)}

}
trait Inc extendsICell {
abstract override defset(x : Int)
{super.set(x+1)}

}

These traits are used in the following class mixins. The integer value field of the objects ofOddICell
mixin is always odd, while the value is even for objects ofEvenICellmixin.

class OddICell extends BICell with Incwith Double
class EvenICellextends BICell with Doublewith Inc

http://dx.doi.org/10.4204/EPTCS.156.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

46 Verified Subtyping with Traits and Mixins

In the presence of traits, the type system of Scala is not strong enough to distinguish between accepted
uses of the traits. This can be illustrated by the following example.

def m (c : BICell with Inc with Double) : Int = {c.get}
val oic= newOddICell
val eic= newEvenICell
m(oic) //Valid
m(eic) //Valid

The methodm can be called with an object of both mixinsEvenICellandOddICell, even though
the expected object (c) type is a supertype ofOddICell and notEvenICell. Thus, the type system in
Scala cannot distinguish between the two calls made to method m as it does not check for subtyping
between the objects. The key contribution of this paper is topresent a method for checking subtyping
in the presence of traits and mixins in Scala. In section 2, wepresent an approach based on entailment
in separation logic to verify subtyping. In section 3, we present a domain specific language which is
embedded in Scala and can support verified subtyping with traits and mixins. We apply our technique to
the mixin class hierarchies in the Scala standard library and verify subtyping in 67% of the traits as shown
in section 4. Our complete development including the sourcecode of the domain specific language and
all examples are available on-line at the following URL.

http://loris-7.ddns.comp.nus.edu.sg/ ˜ project/SLEEKDSL/

2 Verified Subtyping

We consider a core language based on [4] for formalizing our approach. As shown in figure 1, to simplify
the presentation we focus only on type information for traits and mixins while ignoring all other features
in our core language. We also assume that all classes are partof mixin compositions and only traits are
used to create mixins. Since, existing approaches [4] can handle class based single inheritance, we focus
only on mixin compositions in this paper. The rest of the constructs in the core language are related
to predicates (Φ) in separation logic. Each trait (and mixin)C can be represented by a corresponding
predicateC〈v∗〉.

mixin ::= class C[extends C1] [with C2]
∗

pred ::= C〈v∗〉 ≡ Φ [inv π]
Φ ::=

∨
(∃w∗·κ∧π)∗

κ ::= emp |C〈v∗〉 | κ1∗κ2

π ::= α | π1∧π2 α ::= β | ¬β
β ::= v1=v2 | v=null | a≤0 | a=0
a ::= k | k×v | a1+a2

Figure 1: Core Language for Traits and Mixins

Predicates based on separation logic are sufficient to specify mixins because of class linearization in
Scala [10]. After class linearization a mixin class composition (unlike multiple inheritance) has a single
linear hierarchy. In the case of our running example, the mixins give rise to the following linearizations:

http://loris-7.ddns.comp.nus.edu.sg/~project/SLEEKDSL/

Asankhaya Sharma 47

OddICell← Double← Inc← BICell
OddICell〈this〉 ≡ BICell〈this,v〉 ∗ Inc〈v,v1〉 ∗Double〈v1,null〉
EvenICell← Inc← Double← BICell
EvenICell〈this〉 ≡ BICell〈this,v〉 ∗Double〈v,v1〉 ∗ Inc〈v1,null〉

A mixin class composition can be treated as a single inheritance hierarchy based on the linearization
and thus, subtyping between the mixins can be decided by checking the entailment based on separation
logic predicates. In case of our running example, the call tomethodm is valid withoic object but not the
eic object as the following entailments show.

OddICell〈oic〉 ⊢ BICell〈c,v〉 ∗ Inc〈v,v1〉 ∗Double〈v1,null〉 Valid
EvenICell〈eic〉 ⊢ BICell〈c,v〉 ∗ Inc〈v,v1〉 ∗Double〈v1,null〉 Invalid

We now show how the problem of checking subtyping between objects belonging to two different mixins
is reduced to an entailment between the corresponding predicates in separation logic. This entailment
can be checked with the help of existing solvers for separation logic (like SLEEK [3]). The entailment
rule for checking subtyping with traits and mixins is given in figure 2. An object of mixinC is a subtype
of mixin D when the entailment between their corresponding predicates in separation logic is valid.

[ENT−Subtype−Check]
class C[extends C1] [with C2]

∗

class D[extends D1] [with D2]
∗

C1〈this,v1〉[∗C2〈v1,v2〉]
∗ ⊢D1〈this,u1〉[∗D2〈u1,u2〉]

∗

C<: D

Figure 2: Checking Subtyping with Entailment

Entailment checking in separation logic can be used to decide subtyping with traits and mixins. But
in order to integrate subtyping support inside Scala we facesome engineering challenges. In particular,
it is too restrictive and infeasible to do this kind of checking for all the mixins. This requires support
for selective subtyping as all mixins will not satisfy the subtype relation. In order to provide the pro-
grammer the choice of checking subtyping usage in their methods we have implemented an embedded
domain specific language (DSL) in Scala. This DSL uses the SLEEK entailment checker for checking
the validity of entailments in separation logic. In the nextsection we describe the SLEEK DSL and how
it is integrated in Scala.

3 Implementation with SLEEK DSL

Our proposal is based on embedding a domain specific language(SLEEK DSL) in Scala. As shown
in figure 3, a Scala library (SLEEK lib) interfaces directly with the external application - the SLEEK
entailment prover. In addition, we extend Scala with a DSL (SLEEK DSL) which makes use of the Scala
library to provide the entailment checking feature inside Scala programs. Further, for using with the
Scala interpreter we provide an interactive mode (SLEEK inter) which uses the SLEEK DSL and library
to enable interactive entailment proving. Thus, the implementation of the verified subtyping in Scala
with SLEEK has three main components:

48 Verified Subtyping with Traits and Mixins

Figure 3: Overview of SLEEK DSL

− a Scala library that supports all SLEEK interactions

− a domain specific language (DSL) implemented in Scala that models the SLEEK input language.
With this DSL we get for free embedded type checking in Scala.

− a helper library designed for the Scala interpreter. The library runs SLEEK in interactive mode in
the background to provide seamless integration with Scala.

In short, the SLEEK library provides basic functionality for constructing Scala objects representing
separation logic formulas. The entailment checking methodis in fact the actual front-end for SLEEK.
It takes two Scala objects representing separation logic formulas, translates them to the SLEEK input
language and invokes SLEEK. The result and the possible residue is captured and parsed using the Scala
parser combinator library to extract the Scala representation. To facilitate a better syntax for writing
formulas and support for richer interplay with the Scala types we present a domain specific language,
SLEEK DSL implemented on top of the Scala library. We will outline the SLEEK DSL by presenting
how an entailment checking can be encoded in our DSL.

3.1 SLEEK DSL

As an example consider the following entailment check between two separation logic formulas defined
using SLEEK DSL.

val r = x::node〈 ,null〉 ⊢ x::ll〈m〉 && m===1

It encodes an entailment between two formulas, one describing a single heap node, an instance of a
data structure callednode. The second formula describes a state in which x is the root pointer of for a
data structure described by thell predicate. This predicate abstracts a linked list of size m.

SLEEK DSL relies on the functions defined in the SLEEK Libraryto create new easy to use operators
that provide a more user friendly syntax. A special operator, the double colon (::) is used to describe the
points-to relation commonly used for heap nodes. It also provides the usual arithmetic (e.g.+,−) and
boolean (e.g. &&,||, ===, ! ==, ⊢) operators to help in constructing the separation logic formula. The
notation used in the DSL is similar to the one used for SLEEK in[3]. The use of a DSL allows easy
intermixing of SLEEK formulas with other Scala types. We useimplicit conversions between types (e.g.
from scala.Int to formula[IntSort]) to make it even easier to use these formulas in Scala programs.

Furthermore, our library provides a definition for theisValid method in the formula class. In order
to check the validity of the above entailment it is sufficientto call r.isValid which feeds the entailment
to SLEEK and converts the result back into ascala.Booleanfor use as a conditional. Implicit methods
provide an easy mechanism to convert from one type of object to the desired type. This enables the

Asankhaya Sharma 49

support for a SLEEK like syntax within Scala. Formulas allowfor a variety of types for the parameters
used (such asx andm). In the Scala library these types are grouped under the following type hierarchy.

sealed traitTop
trait BoolSort extendsTop
trait IntSort extendsTop
trait BagSort extendsTop
trait ShapeSortextendsTop
trait Bottom extendsBoolSort

with IntSort with BagSort with ShapeSort

This trait allows the embedding of the types used in the separation logic formula as Scala types. By
defining the various operators using these types, soft type checking for SLEEK formulas is automatically
ensured by the underlying Scala type system. The benefit of using a DSL is that it provides a simpler
syntax and familiar look and feel for the user of the library.The formula represented by the DSL is also
much more concise.

The SLEEK DSL allows programmers to verify entailments written in separation logic. In addition,
programmers can use the DSL to encode subtyping check as an entailment check in separation logic as
described in section 2.

3.2 SLEEK Interactive Mode

The Scala runtime provides a good interpreter for rapid prototyping which can be used from the command
line. Similarly, SLEEK also has an interactive mode in whichit accepts commands and gives the results
back to command line. In order to make SLEEK’s interactive mode available to the Scala interpreter,
we provide a helper library that hides the extra intricaciesincurred by using SLEEK interactively. The
benefit of using the interactive mode is that the user defined predicates and data types will not be defined
again with each call toisValid method. This makes the interactive mode of SLEEK DSL faster when
compared to calling the same function from the basic SLEEK library.

Our implementation for verified subtyping integrates into Scala as an API (SLEEK library), as a
language (SLEEK DSL) and as an interpreter (SLEEK Interactive mode). This provides programmers
the ability to use our procedure in different ways as desired.

4 Experiments

We have used SLEEK DSL to verify subtyping of mixin compositions from the Scala standard library. To
the best of our knowledge this it the first such study of subtyping in Scala. The following table presents
the results. The first column is the name of the class hierarchy. The second column lists the total number
of mixins in the hierarchy, while the third column gives the number of mixins for which we can verify
that the subtyping relation holds. The last column gives thepercentage of mixins with subtyping.

Class Hierarchy Total Num of Mixins Mixins with Subtyping Percentage
Exceptions 11 11 100

Maths 5 4 80
Parser Combinator 6 6 100

Collections 27 12 44
Total 49 33 67

50 Verified Subtyping with Traits and Mixins

As an example of mixin hierarchy whose subtyping relations are verified consider the following which
represents the maths library in Scala. The only mixin which breaks the subtyping relation is PartialOrdering.
Rest of the mixins can be verified to respect the expected subtyping. Thus we have verified that subtyping
holds for 4 out of 5 mixins that are part of math class hierarchy.

Equiv is SUPERTYPE of PartialOrdering
PartialOrdering is NOT SUPERTYPE of Ordering

Ordering is SUPERTYPE of Numeric
Numeric is SUPERTYPE of Integral
Numeric is SUPERTYPE of Fractional

5 Related Work

The work that comes closest to our method for checking subtyping is the work of Bierman et.al [2], they
provide a mechanism to use SMT solvers for deciding subtyping in a first order functional language. On
the other hand, we use SLEEK an entailment checker for separation logic to decide subtyping between
traits and mixins. SMT solvers have also been used [1] for verifying typing constraints. Similar to our
implementation of SLEEK DSL, theScalaZ3 proposal of Köksal et. al [9] integrates the Z3 SMT solver
into Scala. Although the integration is similar, the two solvers have different focuses: Z3 is a general
SMT solver, while SLEEK is a prover for separation logic.

Another line of work is on specification and verification of traits and mixins. Damiani et. al explore
trait verification in [5]. They observe the need for multiplespecifications and introduce the concept of
proof outline. They support a trait based language with limited composition - symmetric sum of traits and
trait alteration. Our work does not directly address the issue of trait verification but checking subtyping
is essential part of OO verification using separation logic [4]. We believe that dynamic specifications
of [4] along with verified subtyping can be used to verify traits and mixins. Behavior subtyping is a
stronger notion of subtyping between objects. The approachof lazy behavioral subtyping [7] can support
incremental verification of classes in presence of multipleinheritance. However, this is overly restrictive
for mixin compositions in Scala and our method provides a more flexible support for subtyping in Scala.

6 Conclusions

In this paper, we presented a method to enable verified subtyping in Scala. Our method is based on
a reduction to entailment checking in separation logic. We implemented a domain specific language
(SLEEK DSL) in Scala to enable programmers to check subtyping in their programs. Using SLEEK
DSL we carried out a study of the Scala standard library and verified that 67% of the mixins were
composed of traits that are in a subtyping relation.

Acknowledgements

We thank Shengyi Wang for his prompt and useful feedback on the paper. Cristian Gherghina and Chin
Wei Ngan provided valuable comments and suggestions on an early presentation of this work.

Asankhaya Sharma 51

References

[1] Michael Backes, Cătălin Hriţcu & Thorsten Tarrach (2011): Automatically verifying typing constraints for
a data processing language. In: Certified Programs and Proofs, Springer, pp. 296–313, doi:10.1007/
978-3-642-25379-9_22 .

[2] Gavin M. Bierman, Andrew D. Gordon, Cătălin Hriţcu & David Langworthy (2010):Semantic Subtyping
with an SMT Solver. ICFP ’10, pp. 105–116, doi:10.1145/1863543.1863560 .

[3] Wei-Ngan Chin, Cristina David & Cristian Gherghina (2011): A HIP and SLEEK verification system. In:
SPLASH, pp. 9–10, doi:10.1145/2048147.2048152 .

[4] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen & Shengchao Qin (2008):Enhancing modular OO verifi-
cation with separation logic. In: POPL, pp. 87–99, doi:10.1145/1328438.1328452 .

[5] Ferruccio Damiani, Johan Dovland, Einar Broch Johnsen &Ina Schaefer (2011):Verifying traits: a proof
system for fine-grained reuse. In: FTfJP, pp. 8:1–8:6, doi:10.1145/2076674.2076682 .

[6] Dino Distefano & Matthew J. Parkinson (2008):jStar: towards practical verification for java. In: OOPSLA,
pp. 213–226, doi:10.1145/1449764.1449782 .

[7] Johan Dovland, Einar Broch Johnsen, Olaf Owe & Martin Steffen (2011):Incremental reasoning with lazy
behavioral subtyping for multiple inheritance. Sci. Comput. Program., doi:10.1016/j.scico.2010.
09.006 .

[8] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts & Andrew P. Black (2006):Traits: A
mechanism for fine-grained reuse. ACM Trans. Program. Lang. Syst.28(2), pp. 331–388, doi:10.1145/
1119479.1119483 .

[9] Ali Sinan Köksal, Viktor Kuncak & Philippe Suter (2011): Scala to the power of Z3: integrating SMT and
programming. In: CADE, pp. 400–406, doi:10.1007/978-3-642-22438-6_30 .

[10] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet, Burak Emir, Sean
McDirmid, Stphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon & Matthias
Zenger (2006):An Overview of the Scala Programming Language. Technical Report, EPFL.

[11] Matthew J. Parkinson & Gavin M. Bierman (2008):Separation logic, abstraction and inheritance. In: POPL,
pp. 75–86, doi:10.1145/1328438.1328451 .

http://dx.doi.org/10.1007/978-3-642-25379-9_22
http://dx.doi.org/10.1007/978-3-642-25379-9_22
http://dx.doi.org/10.1145/1863543.1863560
http://dx.doi.org/10.1145/2048147.2048152
http://dx.doi.org/10.1145/1328438.1328452
http://dx.doi.org/10.1145/2076674.2076682
http://dx.doi.org/10.1145/1449764.1449782
http://dx.doi.org/10.1016/j.scico.2010.09.006
http://dx.doi.org/10.1016/j.scico.2010.09.006
http://dx.doi.org/10.1145/1119479.1119483
http://dx.doi.org/10.1145/1119479.1119483
http://dx.doi.org/10.1007/978-3-642-22438-6_30
http://dx.doi.org/10.1145/1328438.1328451

	1 Introduction
	2 Verified Subtyping
	3 Implementation with SLEEK DSL
	3.1 SLEEK DSL
	3.2 SLEEK Interactive Mode

	4 Experiments
	5 Related Work
	6 Conclusions

