
C. Artho and P.C. Ölveczky (Eds.): FTSCS 2012
EPTCS 105, 2012, pp. 22–38, doi:10.4204/EPTCS.105.3

Generating Property-Directed Potential Invariants By
Backward Analysis

Adrien Champion
Onera, The French Aerospace Lab

Toulouse, France
Rockwell Collins France

Blagnac, France
adrien.champion@onera.fr

Rémi Delmas
Onera, The French Aerospace Lab

Toulouse, France
remi.delmas@onera.fr

Michael Dierkes
Rockwell Collins France

Blagnac, France
mdierkes@rockwellcollins.com

This paper addresses the issue of lemma generation in a k-induction-based formal analysis of tran-
sition systems, in the linear real/integer arithmetic fragment. A backward analysis, powered by
quantifier elimination, is used to output preimages of the negation of the proof objective, viewed as
unauthorized states, or gray states. Two heuristics are proposed to take advantage of this source of
information. First, a thorough exploration of the possible partitionings of the gray state space dis-
covers new relations between state variables, representing potential invariants. Second, an inexact
exploration regroups and over-approximates disjoint areas of the gray state space, also to discover
new relations between state variables. k-induction is used to isolate the invariants and check if they
strengthen the proof objective. These heuristics can be used on the first preimage of the backward
exploration, and each time a new one is output, refining the information on the gray states. In our
context of critical avionics embedded systems, we show that our approach is able to outperform other
academic or commercial tools on examples of interest in our application field. The method is intro-
duced and motivated through two main examples, one of which was provided by Rockwell Collins,
in a collaborative formal verification framework.

1 Introduction

The recent DO-178C and its formal methods supplement DO-333 published by RTCA1 acknowledge
the use of formal methods for the verification and validation of safety critical flight control software and
allow their use in development processes. Successful examples of industrial scale formal methods ap-
plications exist, such as the verification by Astrée [4] of the run-time safety of the Airbus A380 flight
control software C code. However, the verification of general functional properties at model level, i.e.
on Lustre [7] or MATLAB Simulink c© programs, from which the embedded code is generated, still re-
quires expert human intervention to succeed on common avionics software design patterns, preventing
industrial designers from using formal verification on a larger scale. Formal verification at model level is
important, since it helps raising the confidence in the correctness of the design at early stages of the de-
velopment process. Also, the formal properties and lemmas discovered at model level can be forwarded
to the generated code, in order to facilitate the final design verification and its acceptance by certification
authorities [12]. Our work addresses some of the issues encountered when attempting formal verification
of properties of synchronous data flow models written in Lustre. We propose a property-directed lemma
generation approach, together with a prototype implementation. The proposed approach aims at reducing
the amount of human intervention usually needed to achieve k-induction proofs, possibly using abstract

1http://www.rtca.org/

http://dx.doi.org/10.4204/EPTCS.105.3
http://www.rtca.org/

A. Champion, R. Delmas, M. Dierkes 23

PITCH

SPEED

ORDER

SMON

SMON

SMON

VOTE

VOTE

VOTE

LAW

LAW

LAW

VOTE

VOTE

VOTE

AMON

AMON

AMON

RCF

RCF

RCF

ACT

Figure 1: Shuffled, triple channel architecture

interpretation technique in cooperation. Briefly outlined, the approach consists first in an abstract inter-
pretation pass to discover coarse bounds on the numerical state variables of the system; a k-induction
engine and our lemma generation techniques are then ran in parallel to search for potential invariants in
order to strengthen the property. We insist on the fact that the primary goal of the proposed method is
discovering missing information needed to prove properties the verification of which is either very ex-
pensive or impossible with currently available methods and tools, rather than improving the performance
of the verification of properties which are already relatively easily provable.

The paper is structured as follows: Section 2 describes the embedded software architectures targeted
by our work. Related work and tools are discussed in Section 3 before notations and vocabulary are
given in Section 4. A description of the underlying k-induction engine assumed in this paper follows
in Section 5. We introduce and motivate our approach in Section 6 and detail the lemma generation
techniques in Section 7. The proposed approach is then illustrated on a reconfiguration logic example
and on Rockwell Collins industrial triplex sensor voter in Section 8. Implementation is briefly discussed
in Section 9, before concluding in Section 10.

2 Fault Tolerant Avionics Architectures

We consider embedded reactive software functions which contribute to the safe operation of as-
semblies of hardware sensors, networked computers, actuators, moving surfaces, etc. called functional
chains. A functional chain can for instance be in charge of "controlling the aircraft pitch angle", and must
meet both qualitative and quantitative safety requirements depending on the effects of its failure. Effects
are ranked from MIN (minor effect) to CAT (catastrophic effect, with casualties). For instance, the fail-
ure of a pitch control function is ranked CAT, and the function shall be robust to at least a double failure
and have an average failure rate of at most 10−9 per flight hour. In order to meet these requirements,
engineers must introduce hardware and software redundancy and implement several fault detection and
reconfiguration mechanisms in software.

A frequently encountered architectural design pattern, triplication with shuffle, is depicted in Fig. 1.
It allows to recover from single failures and to detect double failures. Data sources, data processing hard-
ware and functions are triplicated to obtain three channels. The actuator is not replicated. Data is locally
monitored right after acquisition/production, but is also broadcast across channels to be checked using
triplex voting functions, in order to detect complex error situations. Last, in each channel, depending
on the fault state of the channel and the observable behavior of other channels, the reconfiguration logic
decides whether the channel in question must take control of the actuator or on the contrary mute itself.
Being healthy for a channel means that no fault has occurred for a sufficient amount of consecutive time
steps to become confirmed.

Previous work by our team addresses the formal verification of control laws numerical stability [24],
yet ensuring proper behavior of voting functions and reconfiguration logic as introduced here is equally
important, for these building blocks and design patterns are ubiquitous in fault tolerant avionics soft-

24 Property-Directed Lemmas By Backward Analysis

ware. For the voting logic, we focus on BIBO properties, “bounded input implies bounded output”, the
verification of which is detailed in Section 8.2. For reconfiguration logic, which makes an extensive use
of integer timers and discrete logic, we focus on bounded liveness properties such as “assuming at most
two sensor, network or CPU faults, the actuator must never remain idle for more than N consecutive time
units”, the verification of which is addressed in Section 8.1.

3 Related Work and Tools

In this section we review the state of the art of verification tools relevant in our application domain,
i.e., of currently available tools and techniques allowing to address synchronous data flow models written
in Lustre. We distinguish two main families of verification approaches.

First, approaches based on abstract interpretation (AI [9]). The tool NBac [15] for instance allows
to analyze properties of Lustre models by using a combination of forward and backward fixpoint com-
putation using AI. AI tends to need expert tuning for the choice of abstract domains, partitioning, etc.
to behave correctly on the systems we consider. NBac proposes a heuristic selection of AI parameter
tuning, which dynamically refines domains and partitionings to try to obtain a better precision without
falling in a combinatorial blowup.

Second, the family of k-induction [25] based approaches, with the commercial tool Scade Design
Verifier2, or the academic tool Kind [17]. Kind is the most recently introduced tool, and wraps the k-
induction core in an automatic counter example guided abstraction refinement loop whereas the Scade
Design Verifier does not. k-induction is an exact technique, in which little or no abstraction is performed
(the concrete semantics of the program is analyzed). Experiments show that it does not scale up out of
the box on the systems encountered in our application field. Proving proof obligations on such systems
often requires to unroll the system’s transition relation to the reoccurrence diameter of the model which
can be very large in practice (hundred or thousands of transitions). For such proof obligations, which
are either k-inductive for a k too large to be reached in practice, or even non-inductive at all, numerical
lemmas are needed to help better characterize the reachable state space and facilitate the inductive step
of the reasoning.

In order to address this common issue with k-induction, automatic lemma generation techniques
have been studied. Two main approaches can be distinguished. First, property agnostic approaches, such
as [16], in which template formulas are instantiated in a brute force manner on combinations of the sys-
tem state variables to obtain a set of potential invariants. They are then analyzed alongside the PO using
the main k-induction engine. Second, property directed approaches, such as [6, 5], in which the negation
of root states of counterexamples are used as strengthening lemmas, with or without generalization, or
are used to guide template instantiation. Also worth mentioning, interpolation [18] yields very inter-
esting results in lemma generation but unfortunately to our knowledge no interpolation tool analyzing
Lustre code exists.

We consider a lemma generation pass successful when the generated potential invariants allow to
prove the original proof objective with a k-induction run with a small k. Once the right lemmas are
found, the proof can be easily re-run and checked by third party k-induction tools, an important criterion
for industrials and certification organisms. As we will see in the rest of the paper, the lemma generation
approach proposed in this paper takes inspiration from all the aforementioned techniques : while some-
how brute force in its exploration of the gray state space partitionings, our approach discovers relevant
lemmas thanks to its property-directed nature.

2http://www.esterel-technologies.com/products/scade-suite/add-on-modules/design-verifier

http://www.esterel-technologies.com/products/scade-suite/add-on-modules/design-verifier

A. Champion, R. Delmas, M. Dierkes 25

4 Notations

Let us now define several notions used throughout this paper. First, a transition system is represented
as a tuple 〈v,D, I(v),T (v,v′)〉 where v is a vector of state variables, D specifies the domain of each state
variable, either boolean, integer or real valued, I is the initial state predicate, and T is the transition
predicate in which v′ represents next state variables. The logic used to express predicates is Linear
Integer or Real Arithmetic with Booleans. The usual notions of trace semantics and reachability are
used. Given a formula PO(v) representing a Proof Objective (PO), we say that the PO holds if no state
s such that ¬PO(s) can be reached from I through repeated application of T . Lustre or Scade programs
can be cast into this representation using adequate compilers.

An atom is a Boolean or its negation, or a linear equality or inequality in LRA or LIA. A polyhedron
is a conjunction of atoms. More precisely, we will say polyhedron for not necessarily closed polyhedron,
meaning that we do not impose restrictions on the form of the inequalities besides linearity. The convex
hull of two polyhedra p1 and p2 is the smallest polyhedron such that it contains p1 and p2. We will say
that the convex hull h of two polyhedra p1 and p2 is exact if and only if h = p1∪ p2, and call it the Exact
Convex Hull (or ECH) of p1 and p2 if it exists. For the sake of clarity, convex hulls that are not necessarily
exact will be called Inexact Convex Hulls (or ICH). Note that for integer variables, the uniqueness of the
convex hull is not guaranteed if non-integer values for the coefficients are not forbidden. We ban them
in the rest of this paper; in our implementation, it is prevented by the type system. Still, there are several
ways to represent the same inequality, e.g. n > 0 and n ≥ 1. Despite their difference in representation,
these polyhedra enclose the same (integer) points geometrically speaking, so this does not hinder our
approach. Convex hull comparison in this paper does not rely on their syntax nor semantics, but rather
on the source of the hull, i.e. the original polyhedra used to create them. This will be discussed in
Section 7 during the explanation of our main contribution, the hullification algorithm.

5 Proofs by Temporal Induction

The Stuff framework provides an SMT-based k-induction module. Performing a k-induction analysis
of a potential state invariant P on a transition system 〈I,T 〉 consists in checking the satisfiability of the
Basek(I,T,P) and Stepk(T,P) formulas, defined in (1), for increasing values of k, starting from a user
specified k > 1.

Basek(I,T,P)≡
Initial state︷︸︸︷

I(s0) ∧

trace of k-1 transitions︷ ︸︸ ︷∧
i∈[0,k−2]

T (si,si+1)∧

P falsified on some state︷ ︸︸ ︷∨
i∈[0,k−1]

¬P(si)

Stepk(T,P)≡
∧

i∈[0,k−1]

T (si,si+1)︸ ︷︷ ︸
trace of k transitions

∧
∧

i∈[0,k−1]

P(si)︸ ︷︷ ︸
P satisfied on first k states

∧ ¬P(sk)︸ ︷︷ ︸
P falsified by last state

(1)

The base and step instances are analysed, until either a base model has been found, in which case
the proof objective is falsified, a user specified upper bound for k has been reached for base and step, in
which case the status of the proof objective is still undefined, or a k value has been discovered so that
both formulas are unsatisfiable, which proves the validity of the objective.

In addition, this k-induction engine allows, for any n, to partition a given set of proof objectives
P = {Pj}, viewed as a conjunction P =

∧
j Pj, in three maximal subsets Fn, Un and Vn, such that:

26 Property-Directed Lemmas By Backward Analysis

• elements P ∈ Fn are such that Basen(I,T,P) is satisfiable: they are Falsified;

• elements P ∈Un are such that Basen(I,T,P) is unsatisfiable and Stepn(T,P) is satisfiable: they are
Undefined because neither falsifiable nor n-inductive;

• elements of Vn are such that Basen(I,T,
∧

P∈Vn
P) is unsatisfiable and Stepn(T,

∧
P∈Vn

P) is unsatis-
fiable: they are mutually n-inductive, i.e. Valid on the transition system.

6 Approach Overview: Backward Exploration and Hull Computation

Our lemma generation heuristic builds on a backward property-directed reachability analysis. We
use Quantifier Elimination (QE [19, 22, 3]) to compute successive preimages of the negation of the PO,
in the spirit of [21, 10]. In our approach, the states characterized by the preimages are generated in a
way such that (i) they satisfy the PO and (ii) from them, it is possible to reach a state violating the PO
if certain transitions are taken. Such states will be referred to as gray states. This can be achieved by
calculating the preimages as follows:

preimage1 = QE(s′,PO(s)∧T (s,s′)∧¬PO(s′))

preimagei = QE(s′,PO(s)∧T (s,s′)∧preimagei−1[s′/s]) (for i > 1)
(2)

where QE(~v,F) returns a quantifier-free formula equisatisfiable to ∃~v, F and such that FV (QE(v,F)) =
FV (F) \ v. The preimages themselves are assumed to be in DNF, by using [19] as a QE engine for
instance.

From these preimages we extract information using two search heuristics introduced and motivated in
the rest of this section and detailled in Section 7. These heuristics run in parallel, alongside the backward
analysis computing the next preimage and a k-induction engine. The backward analysis is not run to a
fixed point before proceeding further, it is rather meant to probe the gray state space around the negation
of the PO, and feeding the potential lemma generation with the preimages as soon as they are produced.

To extract information out of the preimages, at any point of the backward exploration, their dis-
junction is considered: it represents the gray states found so far as a union of polyhedra. The main
idea underlying the potential lemma generation is to explore the ways in which those polyhedra can be
grouped using convex hull calculation, thus discovering linear relations over state variables representing
boundaries between convex regions of the gray state space. Since these convex boundaries enclose unau-
thorized states, they are negated before being sent to our k-induction engine to check their validity and
try to stenghten the PO.

The PO is successfully strengthened by a set of lemmas when the set Vk of valid POs, produced by
the k-induction analysis detailled in Section 5, contains the main PO at the end of a run. If the original
PO is not strengthened by the potential invariants extracted from the currently available preimages, a
new preimage is calculated, bringing more information. Yet, when the PO is strengthened and proved
valid, it can be the case that not all elements of the valid subset Vk are needed to entail the original PO. A
minimization pass inspects them one by one, discarding l 6= PO from Vk if

∧
(V \ l) remains k-inductive,

to obtain a relatively small and readable set of lemmas.
Note that, in the backward exploration, the choice of which variables to eliminate by QE and which

to keep is important. Eliminating the next state variables and keeping the current state variables is not
satisfactory in the general case, as on large scale systems, many state variables might not be relevant
for the PO under investigation, and might hinder the performance of the convex hull calculation or k-
induction. Therefore, the only state variables that are not eliminated are the ones found in the cone of

A. Champion, R. Delmas, M. Dierkes 27

influence of the PO, in their current state version. In particular, the system inputs are eliminated since
they do not provide more information from a backward analysis point of view.

x

y

0 1 2 3 4
0

1

2

3

s1 s2

s3

s4

s5

(a) ECH on integers

x

y

0 1 2 3 4
0

1

2

s1 s2

(b) ECH on Reals

Figure 2: New relations with hulls

Before going into the details of the po-
tential lemma generation algorithm, let us il-
lustrate how computing ICHs and ECHs can
actually make new numerical relations ap-
pear, using the examples given in Figure 2a
and Figure 2b.

In Figure 2a, the gray state space of a
system with two integer state variables is
represented. States are represented as dots,
polyhedron s1 contains three states, polyhe-
dra s3 and s5 only contain one state etc.

Computing exact convex hulls over these base polyhedra in the LIA fragment yields (at least) two
new borders, i.e. potential relational invariants, pictured as dashed lines. An example of merging order
is to merge s1 with s2, s3 with s4, {s1,s2} with {s3,s4}, and {s1,s2,s3,s4} with s5 (1).

On a system with real valued state variables however, as shown in Figure 2b, the only case in which
we will discover a new border by computing exact convex hulls is when one is the limit of another, as
illustrated on Figure 2b. Here s1 is made of 0≤ x, 0≤ y≤ 2 and y+ x−4 < 0; s2 is made of 0≤ y≤ 2
and y+x−4 = 0, so the resulting hull will be 0≤ x, 0≤ y≤ 2 and y+x−4≤ 0. The information learned
this way has little chance of strengthening the PO.

As will be seen in the next sections, when trying to discover new relations, ECH-based techniques
work best for integer valued systems, while ICH can be beneficial for both real or integer valued systems.

6.1 A First Example

x

y

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

(1)(2)

Figure 3: ECH calculation on the double counter

We consider a simple example called the dou-
ble counter3 with two integer state variables x and
y and three boolean inputs a, b and c. Variables x
and y are initialized to 0, and are both incremented
by one when a is true or keep their current value
when a is false. The variable x is reset if b∨ c is
true, and saturates at nx. The variable y is reset
when c is true and saturates at ny, hence y can-
not be reset without resetting x, and nx > ny. The
proof objective is x = nx⇒ y = ny. Here is a pos-
sible transition relation for such a system:

T (s,s′) =
(
if (b∨ c) then x′ = 0 else if (a∧ x < nx) then x′ = x+1 else x′ = x

)
∧

(
if (c) then y′ = 0 else if (a∧ y < ny) then y′ = y+1 else y′ = y

)
.

Let us see now how the proposed approach performs on this system when fixing nx = 10 and ny =
6 for instance. First, using the abstract interpretation tool presented in [23], bounds on x and y are
easily discovered: 0 ≤ x ≤ nx = 10 and 0 ≤ y ≤ ny = 6, yet the PO cannot be proved with AI without
further manual intervention. So, using these range properties once k-induction has confirmed them, we
start the backward property-directed analysis, which outputs a first preimage: x = 9 ∧ 0 ≤ y < 5 (1).

3Code available at http://www.onera.fr/staff-en/adrien-champion/.

http://www.onera.fr/staff-en/adrien-champion/

28 Property-Directed Lemmas By Backward Analysis

(a) Two inputs voter, first preimage (b) Two inputs voter with ICH

Figure 4: Simple voting logic.

Unsurprisingly, it is too weak to conclude, i.e. its negation is not k-inductive for a small k. The next
preimage is x = 8 ∧ 0 ≤ y < 4 ∨ x = 9 ∧ 0 ≤ y < 5 (2) which does not allow to conclude either for
the same reason. Instead of iterating until a fixed point is found, consider the graph on Figure 3. It
shows the two first preimages as dashed lines which seem to suggest a relation between x and y, pictured
as a bold line. This relation can be made explicit by calculating the convex hull of the disjunction
of the first two preimages – since this particular system can stutter, it is the same as (2). This yields
8≤ x≤ 9 ∧ 0≤ y < x−4. Note that this convex hull is an ECH, since both x and y are integers. The four
inequalities are negated – they characterize gray states – and are sent to the k-induction engine. Potential
invariants ¬8≤ x, ¬x≤ 9 and ¬0≤ y are falsified, and the PO in conjunction with lemma ¬y < x−4 is
found to be 1-inductive.

In fact, this PO could also be proved correct by k-induction given the bounds found by AI only, by
unrolling the transition relation to the reoccurrence diameter of the system. In practice, even on such
a simple system it is not possible for large values of nx and ny (hundreds or thousands of transitions).
The performance of our technique on the other hand is not sensitive to the actual value of numerical
constants: it will always derive the strengthening lemma from the first two preimages. Obviously, the
time needed to compute the preimages is not impacted by changing the constants values either.
For more complex systems with preimages made of more than two polyhedra, simply merging them in
arbitrary order using convex hull calculation is not robust since the resulting convex hulls would depend
on the merging order, and interesting polyhedra could be missed. This idea of an exhaustive enumeration
of the intermediary ECHs that can appear when merging a set of polyhedra is explored in Section 7.1.

6.2 A Second Example

Let us now consider briefly a two input, real valued voting logic system derived from the Rockwell
Collins triplex voter. We will not discuss the system itself since the triplex voter is detailled in Sec-
tion 8.2. It simply allows us to represent graphically the state space in a plan. The PO here is that two
of the state variables, Equalization1 and Equalization2, range between −0.4 and 0.4. Figure 4 depicts
the corresponding square. On Figure 4a we can see the first preimage calculated by our backward reach-
ability analysis as black triangles, and the strengthening lemmas found by hand in [11] transposed to the
two input system as a gray octagon. Calculating ECH on this first preimage does not allow to conclude.

A more relevant approach would be to calculate ICH. Yet, since the ICH of all the preimage polyhedra
is the [−0.4,0.4]2 square, we need to be more subtle and introduce a criterion for ICH to be actually
computed between two polyhedra: they have to intersect. Intersection can be checked by a simple

A. Champion, R. Delmas, M. Dierkes 29

satisfiability test performed using a SMT solver. This check allows us to identify overlapping areas of
the gray state space and to over-approximate them, while not merging disjoint areas in the gray state
space explored so far. This approximation obtained through ICH resembles widening techniques used
in abstract interpretation [9] in the sense that it allows to jump forward in the analysis iterations, yet it
differs in the sense that, contrary to widening, it does not ensure termination. The only goal here is to
generate potential invariants for the PO, and Figure 4 shows that the ICH yields exactly the dual, in the
[−0.4,0.4]2 square, of the octagon invariant found by hand in [11]. This second idea of using ICHs to
perform overapproximations will be discussed in Section 7.4.

7 Generating Potential Lemmas Through Hull Computation

We now detail two heuristics which use the preimages output by the backward analysis. The first
one follows the example from Section 6.1 and consists in a thorough, exact exploration of the parti-
tionings of the gray state space. After explaining the basic algorithm in Section 7.1, optimizations are
developed in Section 7.2. A small example illustrates the method in Section 7.3. The second heuris-
tic over-approximates areas of the gray state space in the spirit of the discussion in Section 6.2, and is
discussed in Section 7.4. Both aim at discovering new relations between the state variables which once
negated become potential invariants. Figure 6 provides a high level view of the different components and
the way they interact internally and with the exterior.

7.1 Hullification Algorithm

The algorithm presented in this section, called hullification, calculates all the convex hulls that can
be created by iterating the convex hull calculation on a given set of polyhedra, called the source poly-
hedra. In this algorithm we will calculate ECH as opposed to ICH to avoid both losing precision in the
process and the potential combinatorial blow up – ICH are used in a different approach in Section 7.4.
The difficulty here is to not miss any of the ECH that can be possibly calculated from the source poly-
hedra. Indeed, back to the example on Figure 2a the merging order (1) misses the ECH of s2 and s5
(represented as a dotted line), and consequently the potential relational lemma y≤−x+4, which could
have strengthened the PO.

Imperative and slightly object-oriented pseudo-code is provided on Algorithm 1. The purpose of
generatorSetMemory is related to optimizations, discussed in Section 7.2. Please note that for the sake
of clarity, the function called on line 20 is detailed separately on Algorithm 2. The hullification algorithm
iterates on a set of pairs called the generatorSet: the first component of each of these pairs is a convex
hull called the pivot. The second one is a set of convex hulls the pivot will be tried to be exactly merged
with, called the pivot seeds. Note that since the ECHs are calculated by merging polyhedra two by two,
our hullification algorithm cannot find convex hulls that require to merge more than two polyhedra at the
same time to be exact.
The generatorSet is initialized such that for any couple (i, j) such that 0 ≤ i ≤ n and i < j ≤ n, pi is
a pivot and p j is one of its seeds, line 3. A newgeneratorSet is initialized with the same pivots as the
generatorSet but without any seeds (line 8). At each iteration (line 6), a first loop enumerates the pairs
of pivot and seeds of the generation set (line 9). Embedded in the first one, a second loop iterates on
the seeds (line 11) and tries to calculate the ECH of the pivot and the seed (line 14) as described in
Section 4. If the exact merge was successful, the new ECH is added to the seeds of the pivots of the
newGeneratorSet (line 20, detailled below) and as a new pivot with no seeds. Once the elements of the

30 Property-Directed Lemmas By Backward Analysis

Algorithm 1 Hullification Algorithm:
hulli f ication({pi|0≤ i≤ n}).
1: generatorSetMemory = {{pi}|0≤ i≤ n}
2: sourceMap = {pi→{pi}|0≤ i≤ n}
3: generatorSet = {(pi,Si)|0≤ i≤ n∧Si = {pk|i < k ≤ n}}
4: generatorSetMemory = generatorSetMemory∪{{pi, p j}|0≤ i≤ n, i < j ≤ n}
5: f ixedPoint = false
6: while (¬fixedPoint) do
7: f ixedPoint = true
8: newGeneratorSet = {(pi,{})|∃S,(pi,S) ∈ generatorSet}
9: for all ((pivot,seeds) ∈ generatorSet) do

10: sourcePivot = sourceMap.get(pivot)
11: for all (seed ∈ seeds) do
12: sourceSeed = sourceMap.get(seed)
13: source = sourcePivot ∪ sourceSeed
14: hull = computeHull(pivot,seed)
15: newGeneratorSet.update(pivot,newGeneratorSet.get(pivot)− seed)
16: if (hull 6= false) then
17: f ixedPoint = false
18: sourceMap.add(hull→ source)
19: newGeneratorSet =
20: updateGenSet(hull,source, pivot,seed,newGeneratorSet)
21: end if
22: end for
23: end for
24: generatorSet = newGeneratorSet
25: // Communication.
26: end while
27: return {pi|∃S,(pi,S) ∈ generatorSet}

Algorithm 2 Updating the newGeneratorSet:
updateGenSet(hull,source,newGeneratorSet).
1: result = {}
2: for all ((pivotAux,seedsAux) ∈ newGeneratorSet) do
3: sourceAux = sourceMap.get(pivotAux)
4: shallAdd = (sourceAux∪ source) 6∈ generatorSetMemory &&
5: (sourceAux 6⊂ source)
6: if (shallAdd) then
7: result.update((pivotAux,seedsAux∪{hull}))
8: generatorSetMemory.add(sourceAux∪ source)
9: else

10: result.add((pivot,seeds))
11: end if
12: end for
13: result.add((hull,{}))
14: return result

generatorSet have all been inspected and if new ECH(s) have been found, a new iteration begins with the
newGeneratorSet. When no new convex hulls are discovered during an iteration, the algorithm returns
all the ECHs found so far (line 27).

7.2 Optimizing Hullification

The hullification algorithm is highly combinatorial, and this section presents optimizations that im-
prove its scalability.

In the hullification algorithm, the number of merge attemps increases dramatically depending on the
number of elements added in the generatorSet at each iteration. With hullification as is, in many cases,

A. Champion, R. Delmas, M. Dierkes 31

elements of this set can be redundant, in the sense that the new hulls derived from them, if any, would
be the same even though the elements are different. The key idea to reducing redundancy is to keep a
link between any ECH calculated and the source polyhedra merged to create it, thereafter called the ECH
source, and use this information to skip redundant ECH calculation attempts.

Consider for example Figure 5a. If we already tried to merge the ECH of source {s1,s2,s3} with the
one of source {s4,s5} then it is not necessary to consider trying to merge say the ECH of source {s3,s4}
with the one of source {s1,s2,s5}. The result would be the same, i.e. the same ECH or a failure to merge
the convex hulls exactly (the same ECH here). Note that since we are generating all the existing ECHs
from the source polyhedra, this case happens every time an ECH can be calculated by merging its source
in strictly more than one order, that is to say very often. More generally, we do not want to attempt
merges of different hulls deriving from the same set of source polyhedra.

s1 s2

s3

s4

s5

(a) Square example

s1 s2s3

s4 s5

(b) Hat example

Figure 5: Hullification redundancy issues

Another source of redundancy is that, when a seed
is added to a pivot during the generatorSet update,
it represents a potential merge of the union of the
pivot source and the seed source. Even if this merge
has not yet been considered, a potential merge of the
same source might have already been added to the
generatorSet through a different seed added to a dif-
ferent pivot. In this case we do not want the seed to
be added. So, in order to prevent redundant elements
from being added to the generatorSet, we introduce a memory called generatorSetMemory, and con-
trol how new hulls are added to the newGeneratorSet. For a new hull to be added to a pivot as a seed,
source(pivot)∪source(hull) 6∈ generatorSetMemory must hold (Algorithm 2 line 4); if the hull is indeed
added to the seeds of the pivot, then generatorSetMemory+= source(pivot)∪source(hull) (Algorithm 2
line 8). Informally, this memory contains the sources of all the potential merges added to the generator
set. This ensures that the merge of a source will never be considered more than once, and that the merges
we did not consider were not reachable by successive pair-wise ECH calculation.

Also, we forbid adding a seed to a pivot’s seeds if the source of the latter is a subset of the former,
since the result would necessarily be the seed itself (we call this (1)). Another improvement deals with
when hullification interacts with the the rest of the framework. Since our goal is to generate potential
invariants, we do not need to wait for the hullification algorithm to terminate to communicate the potential
invariants already found so far. They are therefore communicated, typically to k-induction, after each
big iteration of the algorithm (loop on Algorithm 1 line 25). This has the added benefit of launching
k-induction on smaller potential invariant sets.

There is a drawback in comparing hulls using their sources: assume that two of the input (source)
polyhedra pi and p j are such that pi⇒ p j. Then the exact merge of pi and p j succeeds and yields the hull
of source {pi, p j}, which is really p j. As a consequence, the pivots of the generatorSet are redundant, as
are their seeds and in the end the merge attempts. To avoid this, we first check the set of input polyhedra
and discard redundant ones.

Last but not least, merges are also memorized in between calls to the algorithm so that we do not call
the merge algorithm when considering two polyhedra we already merged during a previous call. Since
hullification is called on the ever-growing disjunction of all preimages found so far, each new disjunction
contains the previous one and this represents a significant improvement.

In the next subsection we illustrate hullification on a small example before introducing another po-
tential invariant generation algorithm in Section 7.4. Hullification will be illustrated on a reconfiguration
logic system in Section 8.1

32 Property-Directed Lemmas By Backward Analysis

7.3 Hullification Example

Let us now unroll the algorithm on a simple example depicted on Figure 5b. For the sake of con-
cision a source {s1,s2, · · · ,sn} will be written 12 · · ·n. We write generator sets in the following fashion:
{(pivot, [seeds])}.
With this convention, the initial generatorSet is {(1, [2,3,4,5]),(2, [3,4,5]),(3, [4,5]),(4, [5]),(5, [])}.
The newGeneratorSet for the first big step iteration trace is as follows:

1, [] 2, [] 3, [] 4, [] 5, []
1, [] 2, [13] 3, [] 4, [13] 5, [13] 13, []
1, [] 2, [13] 3, [] 4, [13,23] 5, [13,23] 13, [] 23, []
1, [45] 2, [13,45] 3, [45] 4, [13,23] 5, [13,23] 13, [45] 23, [45] 45, []

At first newGeneratorSet is the same as generatorSet without seeds (first line of the trace). We first
consider 1 as a pivot. The merge of 1 and 3 works while the other ones fail, leading to the second line of
the trace. Note that 13 is not added to 1 nor 3 since 1 ⊆ 13 and 3 ⊆ 13 by (1). With this pivot we add
three sources to the generatorSetMemory: 213, 413 and 513 (2). The next pivot is 2 which is merged
with 3 while the merges with the other seeds fail. After the newGeneratorSet update we obtain the third
line of the trace. Note that 23 is not added to the seeds of 1 since source 213 has already been added
to the generatorSetMemory at (2) so 23∪ 1 ∈ generatorSetMemory. Similarily, it is not added to the
seeds of 13 either. Next pivot 3 cannot be merged with any of its seeds. Pivot 4 can be merged with 5
producing the fourth line of the generator trace. A new big step iteration begins during which 2 will be
merged with 13 and 3 with 45 while all the other merges will fail. At the beginning of the third big step
iteration the generatorSet is

{(1, [345]),(2, [345]),(3, []),(4, [123]),(5, [123]),

(13, [345]),(23, [345]),(45, [123]),(123, [345]),(345, [])}.

No new hull is found and the algorithm detects that a fixed point has been reached.

7.4 Another Way to Generate Potential Invariants: ICHs

As mentioned before in Section 7.1, ECH calculation cannot do much for real state variables. We
therefore propose a second approach based on Inexact Convex Hull (ICH) calculation modulo intersec-
tion as mentioned in Section 6.2, simply called ICH calculation in the rest of this paper. That is, two
polyhedra will be inexactly merged if and only if their intersection is not empty. This regroups areas of
the gray state space that are not disjoint and over-approximates them to make new numerical relations
appear. An efficient way to check for intersection is to check the satisfiability of the conjunction of the
constraints describing the two polyhedra using an SMT solver. Note that this technique is also of interest
in the integer case.

For a given set of polyhedra more ICHs than ECHs can be created, in practice often a lot more. The
hullification algorithm using ICHs thus tends to choke. We propose the following algorithm, only briefly
described for the sake of concision.
Select a pivot in the input polyhedra set and try to find an ICH with the other ones. If an ICH with
another polyhedra (source) exists, both the pivot and the source are discarded, and the ICH becomes the
new pivot. Once all the merges have been tried, the pivot is put aside and a new pivot is selected in the
remaining polyhedra set. When the algorithm runs out of polyhedra, it starts again on the polyhedra put
aside if at least one new hull was found. If not, a fixed point has been reached and the algorithm stops.

A. Champion, R. Delmas, M. Dierkes 33

HullQe

Fi(s,s′) = PO(s)∧ invs(s)∧T (s,s′)∧ invs(s′)∧¬PO(s′) if i = 1
PO(s)∧ invs(s)∧T (s,s′)∧ invs(s′)∧Gi−1(s′) if i > 1

HullQe QE

ICH

ECH

Atom
extraction

and
negation

k-induction

Discarded

Contains PO Done

Gi

Fi(s,s′)

∨
Gi

∨
Gi

inexact hulls

exact hulls

atoms
U (retried on next iteration)

F

Vinvariants

Figure 6: High level sequential description

Although the intermediary ICHs computed in this algorithm depends on the order in which the pivots
are selected and merged with the other polyhedra, its result does not. Indeed, the fact that two polyhedra
have a non-empty intersection will stay true even if one or both of them are merged with other polyhedra.
This result, as depicted in Section 6.2, is an over-approximation of disjoint areas of the gray state space.

In practice, both the ECH based hullification and the ICH calculation heuristics run in parallel, and
the sets of potential invariants they output are merged before being sent to the k-induction. This allows us
to combine the precision of ECHs with the over-approximation effect of ICHs. A high level view of our
approach is available on Figure 6. The next section will present two examples taken from a functional
chain as presented in Section 2 each illustrating the ideas introduced in this section: a reconfiguration
logic system and a voting logic system.

8 Applications

In this section we discuss the results of the proposed approach on two real world examples: a recon-
figuration logic and the triplex voter of Rockwell Collins.

8.1 Reconfiguration Logic

Distributed reconfiguration logic as presented in Section 2 would be best described as a distributed
priority mechanism. In each redundant channel, the reconfiguration logic comes last and monitors the
warning flags raised by the monitoring logic implemented earlier in the data flow. Integer timers and
latches are used to confirm warnings over a number of consecutive time steps and trigger a reconfigura-
tion. The duration of the various confirmations can vary from a few steps to hundreds or thousands of
steps and are tuned by system designers to be not overly sensitive to transient perturbations, which would
unnecessarily trigger reconfigurations of otherwise healthy channels, while being fast enough to ensure
safety. Assuming at most two sensors, network or CPU faults, the following generic property is expected
to hold for the reconfiguration mechanism: “No unhealthy channel shall be in control for more than N
steps”. This property can be decomposed and instantiated per channel. However, a property such as “No
more than one channel shall be in command at any time”, or “The actuator must never stay idle for more
than m4 steps” are more challenging because they cover all three channels simultaneously and drag many
state variables in their cone of influence. For instance, the formal verification of the second property is
done by assembling a model of the distributed system and by using the synchronous observer technique
as shown in Figure 7. The observer uses a timer and is coded so that its output becomes true as soon as

34 Property-Directed Lemmas By Backward Analysis

MON

MON

MON

RCF

RCF

RCF

+ ACT

Observer
OK

Figure 7: Reconfiguration subsystem with observer.

the absence of control of the actuator has been confirmed for the requested amount of m4 consecutive
steps. The proof objective on the system/observer composition is to show that the output of this observer
can never be true.

The timer logic found in this system is similar to that of the toy example developed in Section 6.1,
and instantiated several times, indeed a channel becoming corrupt triggers several timers with different
bounds, running into each other or in parallel. Let us now see how hullification performs on this system.
The first preimage does not contain enough information, since hullification generates no potential lemma
which either strengthens the PO or is k-inductive by itself. The union of the first and second preim-
ages however allows hullification to generate about 200 potential invariants. Once they are negated,
k-induction invalidates most of them and indicates the PO was found (1-)inductive conjoined with about
50 lemmas after about 30 seconds of computation.

After the minimization phase described in Section 6, it turns out that only three lemmas are required.
If we call timeri the integer variable used to count the time channel i is not in command for 1 ≤ i ≤ 3,
and timero the timer used by the observer, the lemmas are: ¬(timero− timeri ≥ m4−mi− 1) where
1≤ i≤ 3. These lemmas are found no matter the values of the mi for 1≤ i≤ 4. We insist on the interest
of hullification here. Merging polyhedra in some single arbitrary order is too coarse and the resulting
hull cannot strengthen the PO, whereas the thorough exploration generates useful lemmas.

The reconfiguration logic was also analyzed using NBac, Scade Design Verifier and Tinelli’s Kind.
NBac did not succeed in proving the property after 1 hour of computation. Both the Scade Design Verifier
and Kind kept on incrementing the induction depth without finding a proof after 30 minutes of run time.

The invariant generation of Kind was also run on this system, and yielded a number of small theo-
rems, but obviously not property directed and unfortunately not sufficient to strengthen the PO and prove
it.

In conclusion, the proposed combination of backward analysis, hullification and k-induction allows
us to complete a proof in a few seconds on a widely used avionics design pattern, where other state of
the art tools fail. In addition, we see two very interesting points worth highlighting about hullification:
(i) The PO is made (1-)inductive, implying the proof can easily and quickly be re-run and checked by
any existing induction tool; (ii) the time needed to complete the proof does not depend on the numerical
values of the system –about thirty seconds on a decent machine in practice for this system4. This is very
important for critical embedded systems manufacturers as point (i) means that the proofs are trustwor-
thy, both for the industrials themselves and the certification organisms. On the other hand, point (ii)
implies that strengthening lemmas can be very quickly generated for similar design patterns with altered
numerical values, easing the integration of formal verification in the development process. Indeed, it

4Using our prototype implementation in Scala.

A. Champion, R. Delmas, M. Dierkes 35

avoids the need for an expert to manually transpose the lemmas on the new system, as can be the case
for complicated and resource/time consuming proofs.

8.2 The Triplex Voter

Let us now turn to the Rockwell Collins triplex sensor voter, an industrial example of voting logic
as introduced in Section 2, implementing redundancy management for three sensor input values. This
voter does not compute an average value, but uses the middleValue(x,y,z) function, which returns the
input value, bounded by the minimum and the maximum input values (i.e. z if y < z < x). Other voter
algorithms which use a (possibly weighted) average value are more sensitive to one of the input values
being out of the normal bounds. The values considered for voting are equalized by subtracting equaliza-
tion values from the inputs. The following recursive equations describe the behaviour of the voter with
X ∈ {A,B,C}:

EqualizationX0 = 0.0
EqualizedXt = InputXt −EqualizationXt

EqualizationXt+1 = 0.9∗EqualizationXt+
0.05∗ (InputXt +((EqualizationXt −VoterOut putt)−Centeringt))

Centeringt = middleValue(EqualizationAt ,EqualizationBt ,
EqualizationCt)

VoterOut putt = middleValue(EqualizedAt ,EqualizedBt ,EqualizedCt)

The role of the equalization values is to compensate offset errors of the sensors, assuming that the middle
value gives the most accurate measurement.

We are interested in proving Bounded-Input Bounded-Output (BIBO) stability of the voter, which
is a fundamental requirement for filtering and signal processing systems, ensuring that the system out-
put cannot grow indefinitely as long as the system input stays within a certain range. In general, it is
necessary to identify and prove auxiliary system invariants in order to prove BIBO stability.

So, we want to prove the stability of the system, i.e. we want to prove that the voter output is
bounded as long as the input values differ by at most the maximal authorized deviation MaxDev from
the true value of the measured physical quantity represented by the variable TrueValue. In our analysis,
we fixed the maximal sensor deviation to 0.2, a value that domain experts gave us as typical value in
practical applications. It is staightforward to prove that the system is stable if the equalization values are
bounded.

When applied to Rockwell Collins triplex sensor voter, our prototype implementation manages to
prove the PO in less than 10 seconds by discovering that −0.9≤ ∑

3
i=1 Equalizationi ≤ 0.9 is a strength-

ening lemma, using ICH calculation. Again, the time taken to complete the proof does not depend on
the system numerical constants, and the strengthened PO is (1-)inductive. We insist on the importance
of these characteristics for both industrials and certification organisms: the proof is trustworthy and can
be redone easily for similar, slightly altered designs.

The stability of the system without fault detection nor reset was already proven in [11], but the
necessary lemmas had to be found by hand after the Scade Design Verifier, Kind as well as Astrée
(which was run on C-Code generated from the Lustre source) failed at automatically verifying the BIBO
property.

36 Property-Directed Lemmas By Backward Analysis

9 Framework and Implementation

Our actor oriented collaborative verification framework [8] called Stuff is composed of several ele-
ments: the k-induction engine, the abstract interpreter, the backward analysis, ICH calculation and ECH
hullification. They can all evolve in parallel and communicate.

Stuff is written in Scala except for the abstract interpreter, written in OCaml. We implemented
the backward analysis and the two heuristics presented in this paper using the QE algorithm from [19]
modified to handle integers or reals whith booleans. The underlying projections of [19] are performed
by the Parma Polyhedra Library [1], also used for convex hull computation. Stuff can use any SMT
lib 2.0 [2] compliant solver thanks to the Assumptio5 actor oriented SMT solver wrapper. In practice,
the backward analysis and the heuristics use Microsoft Research Z3 [20] and MathSat 5 [14] by the
University of Trento.

A run of the framework in the default configuration begins by a preprocessing phase using abstract
interpretation with intervals as abstract domains in order to infer bounds on the state variables. This
provides an over-approximation of the reachable state space which once verified by k-induction is propa-
gated to all the other elements of the framework. The rest of the analysis follows the approach discussed
in Section 6 with the backward analysis feeding preimages to both ECH hullification and ICH calcula-
tion. They in turn feed potential invariants to the k-induction engine which detects real invariants and
check if they strengthen the property as described in Section 6. In this setting, even if our approach does
not consider the initial states, it benefits from the over-approximation of the AI preprocessing phase,
which takes into account the initial states but not the PO. The AI results also enhance the quality of the
output and the overall performance of the incremental k-induction engine.

10 Conclusion

In this paper, the authors presented two automatic and property directed lemma generation heuristics,
which operate on preimages of the negation of the proof objective obtained by a backward exploration,
itself powered by quantifier elimination.

The first heuristic originality lies in the thorough exploration of a set of possible convex partitionings
of the gray state space by exact convex hull calculations. This exploration, called hullification, is per-
formed incrementally, as soon as new preimages containing new information about the gray state space,
are computed by the backward analysis. As illustrated on the reconfiguration logic example, the blowup
inherent to the exploration of the partitionings is avoided thanks to the optimizations discussed in this
paper and far outperforms other available tools.

The second heuristic over-approximates disjoint areas of the gray state space by accepting inexact
hulls when the candidate polyhedra intersect. It performs very well in the Rockwell Collins Triplex
Sensor Voter experiments, allowing to conclude a proof none of the other state of the art tools could
conclude.

These results, obtained with the prototype implementation of the proposed method, are of interest
in our application field. Indeed, they allow to discover strengthening lemmas, in reasonable time, for
essential safety properties of widely used fault tolerance design patterns at model level, a task which
has proved difficult to achieve using other techniques such as AI or k-induction with manual analysis of
failed proofs.

5https://cavale.enseeiht.fr/redmine/projects/assumptio

https://cavale.enseeiht.fr/redmine/projects/assumptio

A. Champion, R. Delmas, M. Dierkes 37

Future work include further reflexion on systems mixing integers and reals and on heuristics us-
ing preimages from the backward analysis. Also, the authors think that when hullification cannot find
strengthening lemmas, it can still provide interesting starting points for template based techniques and
experiments have been started in this direction. Outside of the proposed approach, the authors believe in
a multi method approach and will continue to experiment in this direction: work on an implementation
of PDR [5, 13] adapted to numerical systems is in progress. It was observed that PDR is able to discover
range lemmas similar to those found using interval based AI, while being able to conclude inductive
proofs, and the cooperation of hullification and PDR is being studied. The long term goal is to refine and
bridge the verification techniques developed for precise parts of the functional chains (voting, reconfig-
uration logic and numerical stability for control laws) to obtain a methodology and tool support suitable
for end-to-end verification of avionics software at model level.

References

[1] R. Bagnara, P. M. Hill & E. Zaffanella (2008): The Parma Polyhedra Library: Toward a Complete Set
of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems. Science
of Computer Programming 72(1–2), pp. 3–21. Available at http://doi.acm.org/10.1016/j.scico.
2007.08.001.

[2] C. Barrett, A. Stump, C. Tinelli, S. Boehme, D. Cok, D. Deharbe, B. Dutertre, P. Fontaine, V. Ganesh,
A. Griggio, J. Grundy, P. Jackson, A. Oliveras, S. Krstić, M. Moskal, L. de Moura, R Sebastiani, T. D. Cok &
J. Hoenicke (2010): C.: The SMT-LIB Standard: Version 2.0. Available at http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.190.4897.

[3] N. Bjørner (2010): Linear Quantifier Elimination as an Abstract Decision Procedure. In J"urgen Giesl &
Reiner H"ahnle, editors: Automated Reasoning, Lecture Notes in Computer Science 6173, Springer Berlin /
Heidelberg, pp. 316–330. Available at http://dx.doi.org/10.1007/978-3-642-14203-1_27.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux & X. Rival (2003): A
Static Analyzer for Large Safety-Critical Software. In: Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (PLDI’03), ACM Press, San Diego, California, USA,
pp. 196–207. Available at http://dx.doi.org/10.1145/781131.781153.

[5] A. R. Bradley (2011): SAT-Based Model Checking without Unrolling. In: VMCAI, pp. 70–87. Available at
http://dx.doi.org/10.1007/978-3-642-18275-4_7.

[6] A. R. Bradley & Z. Manna (2006): Verification Constraint Problems with Strengthening. In: ICTAC, pp.
35–49. Available at http://dx.doi.org/10.1007/11921240_3.

[7] P. Caspi, D. Pilaud, N. Halbwachs & J. Plaice (1987): Lustre: A Declarative Language for Programming
Synchronous Systems. In: POPL, pp. 178–188. Available at http://doi.acm.org/10.1145/41625.
41641.

[8] A. Champion, R. Delmas, P.L. Garoche & P. Roux (2011): Towards Cooperation of Formal Methods for the
Analysis of Critical Control Systems. In: SAE Int. J. Aerosp., pp. 850–858. Available at http://dx.doi.
org/10.4271/2011-01-2558.

[9] P. Cousot & R. Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In: POPL, pp. 238–252. Available at
http://doi.acm.org/10.1145/512950.512973.

[10] Werner Damm, Stefan Disch, Hardi Hungar, Swen Jacobs, Jun Pang, Florian Pigorsch, Christoph Scholl,
Uwe Waldmann & Boris Wirtz (2007): Exact State Set Representations in the Verification of Linear Hybr id
Systems with Large Discrete State Space. In: ATVA, pp. 425–440. Available at http://dx.doi.org/10.
1007/978-3-540-75596-8_30.

http://doi.acm.org/10.1016/j.scico.2007.08.001
http://doi.acm.org/10.1016/j.scico.2007.08.001
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.190.4897
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.190.4897
http://dx.doi.org/10.1007/978-3-642-14203-1_27
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1007/978-3-642-18275-4_7
http://dx.doi.org/10.1007/11921240_3
http://doi.acm.org/10.1145/41625.41641
http://doi.acm.org/10.1145/41625.41641
http://dx.doi.org/10.4271/2011-01-2558
http://dx.doi.org/10.4271/2011-01-2558
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.1007/978-3-540-75596-8_30
http://dx.doi.org/10.1007/978-3-540-75596-8_30

38 Property-Directed Lemmas By Backward Analysis

[11] M. Dierkes (2011): Formal Analysis of a Triplex Sensor Voter in an Industrial Context. In G. Salaün &
B. Schätz, editors: Proceedings of the 16th edition of FMICS, LNCS 6959, Springer, pp. 102–116. Available
at http://dx.doi.org/10.1007/978-3-642-24431-5_9.

[12] M. Dierkes & D. Kästner (2012): Transferring Stability Proof Obligations from Model Level to Code Level.
Available at http://www.erts2012.org/Site/0P2RUC89/5C-1.pdf.

[13] N. Een, A. Mishchenko & R. Brayton (2011): Efficient Implementation of Property Directed Reachability.
Available at http://dl.acm.org/citation.cfm?id=2157675.

[14] A. Griggio (2012): A Practical Approach to Satisfiability Modulo Linear Integer Arithmetic. JSAT 8, pp.
1–27. Available at http://jsat.ewi.tudelft.nl/content/volume8/JSAT8_1_Griggio.pdf.

[15] B. Jeannet (2003): Dynamic Partitioning in Linear Relation Analysis: Application to the Verification of
Reactive Systems. Formal Methods in System Design 23(1), pp. 5–37. Available at http://dx.doi.org/
10.1023/A:1024480913162.

[16] T. Kahsai, Y. Ge & C. Tinelli (2011): Instantiation-Based Invariant Discovery. In M. Bobaru, K. Havelun-
dand G. Holzmann & R. Joshi, editors: Proceedings of the 3rd NASA Formal Methods Symposium
(Pasadena, CA, USA), Lecture Notes in Computer Science 6617, Springer, pp. 192–207. Available at
http://dl.acm.org/citation.cfm?id=1986326.

[17] T. Kahsai & C. Tinelli (2011): PKind: A parallel k-induction based model checker. In: PDMC, pp. 55–62.
Available at http://dx.doi.org/10.4204/EPTCS.72.6.

[18] Kenneth L. McMillan (2008): Quantified Invariant Generation Using an Interpolating Saturation Prover. In:
TACAS, pp. 413–427. Available at http://dx.doi.org/10.1007/978-3-540-78800-3_31.

[19] D. Monniaux (2008): A Quantifier Elimination Algorithm for Linear Real Arithmetic. In: LPAR, pp. 243–
257. Available at http://dx.doi.org/10.1007/978-3-540-89439-1_18.

[20] L. M. de Moura & N. Bjørner (2008): Z3: An Efficient SMT Solver. In: TACAS, pp. 337–340. Available at
http://dx.doi.org/10.1007/978-3-540-78800-3_24.

[21] L. M. de Moura, H. Rueß & M. Sorea (2003): Bounded Model Checking and Induction: From Refutation to
Verification (Extended Abstract, Category A). In: CAV, pp. 14–26. Available at http://doi.acm.org/10.
1007/978-3-540-45069-6_2.

[22] T. Nipkow (2010): Linear Quantifier Elimination. J. Autom. Reasoning 45(2), pp. 189–212. Available at
http://dx.doi.org/10.1007/s10817-010-9183-0.

[23] P. Roux, R. Delmas & P.L. Garoche (2010): SMT-AI: an Abstract Interpreter as Oracle for k-induction. Electr.
Notes Theor. Comput. Sci. 267(2). Available at http://dx.doi.org/10.1016/j.entcs.2010.09.018.

[24] P. Roux, R. Jobredeaux, P.L. Garoche & E. Féron (2012): A generic ellipsoid abstract domain for linear
time invariant systems. In: Proceedings of the 15th ACM international conference on Hybrid Systems:
Computation and Control, pp. 105–114. Available at http://doi.acm.org/10.1145/2185632.2185651.

[25] M. Sheeran, S. Singh & G. Stålmarck (2000): Checking Safety Properties Using Induction and a SAT-Solver.
In: FMCAD, pp. 108–125. Available at http://dx.doi.org/10.1007/3-540-40922-X_8.

http://dx.doi.org/10.1007/978-3-642-24431-5_9
http://www.erts2012.org/Site/0P2RUC89/5C-1.pdf
http://dl.acm.org/citation.cfm?id=2157675
http://jsat.ewi.tudelft.nl/content/volume8/JSAT8_1_Griggio.pdf
http://dx.doi.org/10.1023/A:1024480913162
http://dx.doi.org/10.1023/A:1024480913162
http://dl.acm.org/citation.cfm?id=1986326
http://dx.doi.org/10.4204/EPTCS.72.6
http://dx.doi.org/10.1007/978-3-540-78800-3_31
http://dx.doi.org/10.1007/978-3-540-89439-1_18
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://doi.acm.org/10.1007/978-3-540-45069-6_2
http://doi.acm.org/10.1007/978-3-540-45069-6_2
http://dx.doi.org/10.1007/s10817-010-9183-0
http://dx.doi.org/10.1016/j.entcs.2010.09.018
http://doi.acm.org/10.1145/2185632.2185651
http://dx.doi.org/10.1007/3-540-40922-X_8

	1 Introduction
	2 Fault Tolerant Avionics Architectures
	3 Related Work and Tools
	4 Notations
	5 Proofs by Temporal Induction
	6 Approach Overview: Backward Exploration and Hull Computation
	6.1 A First Example
	6.2 A Second Example

	7 Generating Potential Lemmas Through Hull Computation
	7.1 Hullification Algorithm
	7.2 Optimizing Hullification
	7.3 Hullification Example
	7.4 Another Way to Generate Potential Invariants: ICHs

	8 Applications
	8.1 Reconfiguration Logic
	8.2 The Triplex Voter

	9 Framework and Implementation
	10 Conclusion

