A Formal Model For Real-Time Parallel Computation

Peter Hui Satish Chikkagoudar

Pacific Northwest National Laboratory
Washington, USA

peter.hui@pnnl.gov satish.chikkagoudar@pnnl.gov

The imposition of real-time constraints on a parallel cotmguenvironment— specifically high-
performance, cluster-computing systems— introducesiatyasf challenges with respect to the for-
mal verification of the system’s timing properties. In thager, we briefly motivate the need for such
a system, and we introduce an automaton-based method formérg such formal verification. We
define the concept of a consistent parallel timing systenybgith system consisting of a set of timed
automata (specifically, timed Biichi automata as well amadivariant of standard finite automata),
intended to model the timing properties of a well-behavedHiene parallel system. Finally, we give
a brief case study to demonstrate the concepts in the pameratel matrix multiplication kernel
which operates within provable upper time bounds. We gieealgorithm used, a corresponding
consistent parallel timing system, and empirical resuitsasng that the system operates under the
specified timing constraints.

1 Introduction

Real-time computing has traditionally been consideredelgrin the context of single-processor and
embedded systems, and indeed, the terms real-time corgpatitbedded systems, and control systems
are often mentioned in closely related contexts. Howeeatd-time computing in the context of multin-
ode systems, specifically high-performance, cluster-cgimg systems, remains relatively unexplored.
It can be argued that one reason for the relative dearth df imdhis area is the lack of scenarios to date
which would require such a system. Previously [11, 12], weehmotivated the emerging need for such
an infrastructure, giving a specific scenario related toy generation North American electrical grid.
In that work, we described the changes and challenges iroilwergrid driving the need for much higher
levels ofcomputational resourceer power grid operations. To briefly summarize (and to pidevsome
motivational context for the current work), many of thesenpaitations— particularly floating-point in-
tensive simulations and optimization calculations ([2839,[10])—can be more effectively done in a
centralized manner, and the amount and scale of such daséinsaged by some [11, 12] to be on the
order of terabytes per day of streaming sensor data (e.gsoPMeasurement Units (PMUS)), with the
need to analyze the data within a strict cyclical window (g\80ms), presumably with the aid of high-
performance, parallel computing infrastructures. Witls th mind, the current work is part of a larger
research effort at Pacific Northwest National Laboratoryiead at developing the necessary infrastruc-
ture to support an HPC cluster environment capable of psimgsast amounts of streaming sensor data
under hard real-time constraints.

While verifying the timing properties of a more traditior(@.g. embedded) real-time system poses
complex questions in its own right, imposing real-time ¢omiats on a parallel (cluster) computing
environment introduces an entirely new set of challengése®n in these more traditional environments.
For example, in addition to standard real-time concepth asworst-case execution tinfg/CET), real-
time parallel computation introduces the necessity of iclamsg worst case transmission timghen

C. Artho and P.COlveczky (Eds.): FTSCS 2012
EPTCS 105, 2012, pp. 39955, 0i:10.4204/EPTCS.105.4

http://dx.doi.org/10.4204/EPTCS.105.4

40 Formal Model for RT Parallel Computation

communicating over the network between nodes, as well asgbd to ensure that timing properties of
one process do not invalidate those of the entire paraltelgss as a whole.

These are but two examples of the many questions which mustidiressed in a real-time parallel
computing system; certainly there are many more questtans ¢an be addressed in a single paper. To
this end, we introduce a simple, event driven, automataeéasodel of computation intended to model
the timing properties of a specific class of parallel proggafdamely, we consider SPMD (Single Pro-
gram, Multiple Data), parent-child type programs, in patduse in practice, many parallel programs—
including many prototypical MPI-based [13,/15] programsa# into this category. We give an exam-
ple of such a program in Sectiéh 3. This model is typified byekistence of a cyclienasteror parent
process, and a set of noncyatikild or slaveprocesses amongst which work is divided. With this charac-
terization, a very natural correspondence emerges betthegrocesses and the automata which model
them: the cycligoarentprocess is very naturally modeled by @rautomaton, and thehild processes by
a standard finite automaton. Our main contribution of thiggpathen, is twofold: first, a formal method
of modeling the respective processes in this manner, contpthese into a single hybrid system of par-
allel automata, and secondly, a simple case study demuongtapractical application of this system.
We should note that the notion of parallel finite automataoisennew one; variants have been studied
before (e.g.[[6, 14]). We take the novel approach of combitimedvariants ([1/5]) of finite automata
into a single hybrid model which captures the timing prapesrof the various component processes of a
parallel system.

The rest of the paper proceeds as follows: Sedtion 2 defireautomaton models used by our
system: Timed Finite Automata in Sectibn]2.1, Timed Biichtdknata in Sectioh 2.2, and a hybrid
system combining these two models in Secfiod 2.3. Setliioiveés g case study in the form of an
example real-time matrix multiplication kernel, running @ small, four-node real-time parallel cluster.
Sectior 4 concludes.

2 Formalisms

In this section, we give formal definitions for the machinasgd in our hybrid system of automata. The
definitions given in Sectioris 2.1 ahd 2.2 are not riew [1]. H@wgt is still important that we state their
definitions here, as they are used later on, in Se€tidn 2.3.

2.1 Timed Finite Automata

In this section, we define a simple timed extension of traddl finite state automata and the words they
accept. We will use these in later sections to model the timpioperties of child processes in a real-time
cluster system.

Timed stringstake the form(o, 1), whereo is a string of symbols, and is a monotonically in-
creasing sequence of reals (timestampgXenotes the timestamp at which symilogloccurs. We also
use the notatiorioy, 7x) to denote a particular symbol/timestamp pair. For instatioe timed string
((abo),(1,10,11)) is equivalent to the sequenca,1)(b,10)(c,11), and both represent the case where
‘a’ occurs at time 1, ‘b’ at time 10, and ‘c’ at time 11.

Correspondingly, we extend traditional finite automatantdude a set ofimers which impose tem-
poral restrictions along state transitions. A timer carifiiggalized along a transition, setting its value
to 0 when the transition is taken, and it canusedalong a transition, indicating that the transition can
only be taken if the value of the timer satisfies the specif@taint. Formally, we associate with each

P. Hui & S. Chikkagoudar 41

automaton a set of timer variabl&sand following the nomenclature of[1], anterpretationv for this
set of timers is an assignment of a real value to each of ther$imT. We writev[T — 0] to denote the
interpretationv with the value of timefT reset to 0. Clock constraints consist of conjunctions ofenpp
bounds:

Definition 1. For a setT of clock variables, the set(X) of clock constraintg is defined inductively as

X =(T<c)?| XsA X2

where Tis a clock iT and c is a constant ilR+.

While this definition may seem overly restrictive comparedome other treatments (e.@! [1]), we
believe it to be acceptable in this early work for a couplesaisons. First, while simple, this sole syntactic
form remains expressive enough to capture an interestmgtnivial set of use cases (e.g. Section 3).
Secondly, the timing analysis in subsequent sections opéper becomes rather complex, even when
timers are limited to this single form. Restricting the syain this manner simplifies this analysis to a
more manageable level. We leave more complex formulatioddfze corresponding analysis for future
work.

Definition 2 (Timed Finite Automaton (TFA))A Timed Finite Automaton (TFA) is a tuple

(z,Q,50:,T,3,y,n)

, where

2 is a finite alphabet,

Q is afinite set of states,

se Qs the start state,

gs € Q is the accepting state,

Tis a set of clocks,

e 0 C Qx Qx Xis the state transition relation,
e yCox 2T is the clock initialization relation, and
e N C & x X(T) is the constraint relation.

Atuple(q;,q;,0) € o indicates that a symbai yields a transition from state; ¢o state g, subject to the
restrictions specified by the timer constraintsjinA tuple(q;,qj, 0, {T1, ..., Ta}) € yindicates that on the
transition on symbot from g to g;, all of the specified timers are to be initializedQoFinally, a tuple

(gi,9j,0,X(T)) € n indicates that the transition oa from g to g; can only be taken if the constraint
X(T) evaluates to true under the current timer interpretation.

Example 3. The following TFA accepts the timed languddeb‘c, 1;...1) | Tn — 71 < 10} (i.e., the set
of all strings consisting of an ‘a’, followed by an arbitranpumber of ‘b’s, followed by a ‘c’, such that
the elapsed time between the first and last symbols is noegran 10 time units). The start state is
denoted with a dashed circle, and the accepting state withudle line.

a0
11 07) @

S=/ T=0 “AT<10)

42 Formal Model for RT Parallel Computation

Paths and runs are defined in the standard way:

Definition 4 (Path) LetA be a TFA with state set Q and transition relatién Then(qg, ..., q,) is apath
overA if, forall 1<i<n,30.(q,q1,0) € 0.

Definition 5 (Run) A runr of a TFA(Z, Q, qo,qf,f, d,y,n) over a timed word g, 1), is a sequence of
the form

O
r: (Go, Vo) — (G, V1) 2 (G, V2) = ... 2% (Gn, Vi)
n 7] 3 Tn

satisfying the following requirements:
e Initialization: vo(k) = 0,vke T
e Consecution: For all &> 0:

- 83 (0,0+1,0),
— (Vi—1+ T — 1i_1) satisfiesx;, wheren > (gi—1,0;, Gi, Xi), and
— Vi=(Vi_1+T—T_1)[T+ 0, VT T, wherey 3 (,q;, 0, T)

ris anacceptingun if g, = qs.

A TFA A acceptsa timed strings = (0, 11...Ty) if there is an accepting run sfoverA, andt, — 11
is called theduration of the string.

Note (Well-Formedness)We introduce a restriction on how timers can be used in a Tikds defining
what it means for a TFA to bevell-formed Namely, we restrict timers to be used only once along a
path; this is to simplify somewhat the timing analysis insgguent sections. In particular, we say that a
TFAA is well-formed if, for all pairs of state@y, gy), all timers T, and all paths from,go g, T is used

no more than once. For example, the TFAs shown in Figlre 1 arevell-formed, since in both cases,
timers can potentially be used more than once— in the first ¢&s), along the self-loop onx and

in the second case&\g), along two separate transitions along the path. At firsis tmay appear to be
overly restrictive, but as it turns out, many of these casesaasily be rewritten equivalently to conform
to the single-use restriction, as shown in Figlte 2.

b ; (T<10)?
- a;:T=0 c
Ar {ar) $®\ (%)
.2 (1=0)? _b;(T<10)?7_¢ ;(T<207?

Figure 1: Malformed TFAs. Start states are denoted with aethgircle, and accepting states with a
double line. The intent oA is to allow strings of the forna, followed by arbitrarily manybs, as long
as they all occur less than 10 units after thdollowed by ac. The intent ofA; is to allows strings of
the formabg where the elapsed time between #hendb is less than 10, and that between &endc is
less than 20. Both of these can be rewritten using conformirigmata, as shown in Figtire 2.

P. Hui & S. Chikkagoudar 43

C
PN T, =0 (T1<10)? (T2<20)7
-) =

Figure 2: Equivalent, well-formed versions of automatarfrieigure[1.

2.1.1 Bounding Maximum Delay

An important notion throughout the remainder of the papénas of computing bounds on the allowable
delays along all possible paths through a TFA. Specifically,are interested in doing so to be able to
reason formally about the maximum execution time for a cpilotess, with the end goal of being able
to bound the execution time of the system— parent and alll gribcesses— as a whole.

The idea is that we will ultimately use TFAs to represent ihartg properties of a child process.
Paths through the automaton from its start state to an angegthte correspond to possible execution
paths of the child process’ code. Certainly, proving a tighper bound on the delay between two
arbitrary points along an execution path remains a verycdiffiproblem, but to be clear, this is not
our goal. Rather, our approach involves modeling an exacytath through a child process (and, by
extension, its corresponding timed automaton) using@want-basednodel, in which selected system
events are modeled by transitions in the automaton, andlwemdiming properties of the process to be
guaranteed by the underlying RTOS process scheduler. Disdepn of computing the worst-case delay
through the automaton equates to that of computing the mamitelay over all possible paths through
the automaton from its start state to its accepting state:

Ap= max A
A pepaths(A) (p)

where
o A=(2,Q,q0,0,T,3,y,n) is the TFA
e paths(A) denotes the set of all pathsAnfrom its start statejg to accepting statgs, and

e A(p), for pathp = (qp, ...,qs), denotes the maximum delay frogp to g;. That is, the maximum
duration of any timed stringo, T) such that(qp...q¢, V) is a run of the string oveh (for somev).

This problem can thus be formulated in the following manmggren a timed finite automatofs and

an integem, is there a timed word of duratich> n that is accepted bj? While simple cases, such as
those presented in this paper, can be computed by obsenaim enumeration, the complexity of the
general problem remains an open question, although weyhigldpect it to be intractable— Courcou-
betis and Yannakakis give exponential-time algorithmdligs and related problems, and have shown a
strictly more difficult variant of the problem to B@SPACE-complete[[4]. Furthermore, expanding the
timer constraint syntax to a more expressive variant (4f) ¢an only complicate matters in terms of
complexity. We must be cautious, then, to ensure that we tonpmse an inordinately large number of
timers on a child process.

44 Formal Model for RT Parallel Computation

2.2 Timed Blchi Automata

Whereas we model the timing properties of the child procesdea cluster system using the timed
finite automata of the previous section, we model these ptiepeof the parent using a timed variant
of w-automata, specifically Timed Bichi Automata. We assumeascbfamiliarity with these; due
to space constraints, we give only brief overview here. Newe briefly, w-automata, like standard
finite automata, also consist of a finite number of statesiisttad operate over words of infinite length.
Classes otv-automata are distinguished by their acceptance critBiiahi automata, which we consider
in this paper, are defined to accept their input if and onlyrifraover the input string visits an accepting
state infinitely often. Other classes@fautomata exist as well. For example, Muller automata aneemo
stringent, specifying their acceptance criteria ag@f acceptance sets; a Muller automaton accepts its
input if and only if the set of states visited infinitely oftexrspecified as an acceptance set. More detailed
specifics can be found elsewhere— for example, [1].

A Timed Richi Automator(TBA) is a tuple(Z, Q,qo, 0s T.0, y,n), where

2 is afinite alphabet,

Qs a finite set of states,

0o € Qs the start state,

F C Qis a set of accepting states,

Tis a set of clocks,

e 0 C Qx Qx Xis the state transition relation,

e yCox 2T is the clock initialization relation, and
e N C & x X(T) is the constraint relation.

A tuple (g;,qj,0) € 0 indicates that a symbat yields a transition from statg to stateq;, subject
to the restrictions specified by the clock constraints)in A tuple (q,q;,0,T) € y indicates that on
the transition on symbobr from q; to qj, all clocks inT are to be initialized to 0. Finally, a tuple
(gi,9;,0,X(T)) € n indicates that the transition am from g; to g; can only be taken if the constraint
X(T) evaluates to true under the values of the current timerpregation.

We definegpaths runs andsubrunsover a TBA analagously to those over a TFA:

Definition 6 (Path (TBA)) Let.o/ be a TBA with state set Q and transition relatién (qy, ...,qn) Is @
pathoverA if, forall 1 <i <n,30.(q,qi+1,0) € 0.

Definition 7 (Run, Subrun (TBA)) A run (subrun) r, denoted bfq, v), of a Timed Bichi Automaton
(£,Q,090,9¢,T,9,y,n) over a timed word o, T), is an infinite (finite) sequence of the form

(o) O; O
r: (QQ, Vo) —1> (ql,vl) —2> (QQ,VQ) —3> .
T1 T2 13
satisfying the same requirements as given in Definiflon 5.

For a runr, the setinf(r) denotes the set of states which are visited infinitely mamgsi. A TBA
</ with final statesF accepts a timed word = (o, 1) if inf(r)F # 0, wherer is the run ofw on <.
That is, a TBA accepts its input if any of the states frbmepeat an infinite number of timesiin

Example 8. Consider the following TBA¥;, with start state g and accept states E {q; }:

P. Hui & S. Chikkagoudar 45

This TBA accepts the-language b = {((ab"c)®, 1) | ¥x.3i, j.Vk.¢} whereg is the boolean formula
<Tk<Tj] = (gg=a)A(gk=Db)A(gj=c)A(Tj— T <50)

Lastly, we take the concept of maximum delay, introducechanpirevious section with respect to
Timed Finite Automata, and extend it to apply to Timed Bu&htomata. Doing so first requires the
following definition, which allows us to restrict the timiragalysis for TBAS to finite subwords:
Definition 9 (Subword oven). Let.«” be a TBA, and le§j = (gm...0n) be a finite path overs. A finite
timed word w= ((Om...0n), (Tm...Tn)) is asubword oven iff 3qo, ...,qm-1, Oo, .-+, Om-1, 10, ---, Tm—1 SUCh
that (0o.-.Om_10m---Ch, V) is @ subrun of (0p...0m_10m...0n), (To...Tm_1Tm.--Tn)) Over.e for somev.

Definition[9 is a technicality which is necessary to supplegtfollowing definition of the maximum
delay between states of a TBA:

Definition 10. Let.«” be a TBA, and leq be a finite path ovets. ThenA,,(q) is the maximum duration
of any subword oveq.
Example 11. Considerez; from Examplé8. Thed,, (01020201) = 50.

Algorithmically computingA_,(q) for a TBA <7 is analogous to the case for TFAs; in small cases

(i.e., relatively few timers with small time constraintff)e analysis is relatively simple, while we con-

jecture the problem for more complex cases to be intractaldeave more detailed analysis for future
work.

2.3 Parallel Timing Systems

Next, we model the timing properties of a SPMD-type paraletem as a whole by combining the two
models of Sectionis 2.1 ahd 2.2 into a singéallel timing systemA parallel timing systenfPTS) is a
tuple (P A, ¢, ¢), where

e P=(3Q, qo,qf,f, 0,y,n) is a TBA (used to model the timing properties of the parentess)

e Aisa set{A1,...,An} of TFAs (used to model the timing properties of the child psses)

o YCOx A is afork relation (used to model the spawning of child processes)

e p COx Ais ajoin relation (used to model barriers (joins))
Atuple (q,q;,0,A) in ¢, with A € A, indicates that an instance Afis to be “forked” on the transition
from g to g; on symbolo, and this “fork” is denoted graphically aﬁﬂ gj, modeling the spawning

of a child process along the transition. Similarly, a tufdgq;,o,A) in ¢ indicates that a previously

forked instance oA is to be “joined” on the transition fromg to g; on symbolo. This “join” is denoted

graphically asg; ﬂ gj, modeling the joining along the transition with a previguspawned child

process.

1 was chosen as the symbol for ‘fork’, as it graphically reskemia “fork”; Q was chosen as that for ‘join’, as it connotes
“ending” or “finality”.

46 Formal Model for RT Parallel Computation

Example 12. Consider the following timing system S (P, {A}, Y, ¢):

c ; (T <50)?
QA) b
a;T=0 (J 0;U=0 1:(U<10)?

P: :@:’W A: (:S:l: @ @

P is the parent TBA with initial state;cand final state set = {g.}. P accepts theo-language L
(see plL4b), and is a TFA which accepts the timed languad®1, 1112) | 72— 11 < 10}. In addition, the
fork andjoin relations y and ¢ dictate that on the transition fromydo @, an instance oA is forked
(W(A)), and that the transition fromgto g; can only proceed once that instancefohas completed
(Q(A)).

Conceptually, this system models a parent process (P) wxibtbits periodic behavior, accepting
an infinite number of substrings of the formi*apin which the initial ‘a’ triggers a child procesa which
must be completed prior to the end of the sequence, markdrt bgltowing ‘c’. In addition, the ‘c’ must
occur no more than 50 time units after the initial ‘a’. Theldhprocess is modeled B, which accepts
strings of the forn®1, in which thel must occur no more than ten time units after the ini@ial

In theory, child processes could spawn children of their ¢eug. recursion). For now, however,
we disallow this possibility, as it somewhat complicates #malysis in the following section without
adding significantly to the expressive power of the modek model can be expanded later to allow for
arbitrarily nested children of children with the approgeianodifications; specifically, TBAs would need
to be extended to include their owpnand¢ relations, as would the definition affor TBAs.

Before proceeding, it is important to note that a PIS (P A, , ¢) is not itself interpreted as an
automaton. In particular, we do not ever define a languagepéed byS. Indeed, it is not entirely clear
what such a language would be, as we never specify the in@nyef the children irA. Rather, the
sole intent in specifying such a systesis to specify theiming behaviorof the overall system, rather
than any particular language that would be accepted by it.

2.3.1 Consistency

With this said, we note that in Examplel 1& is in some sense “consistent” with its usagéinSpecifi-
cally, since the maximum duration of any string accepted liy 10, we are guaranteed that any instance
of A forked on theq; 2 0o transition will have completed in time for the ‘join’ alonge gy 5 oz tran-
sition and hence, the timg¢m < 50)? on this transition would be respected in all cases. In #nise,

all (W(A),Q(A)) pairs are consistent with timdr. However, such consistency is not always the case.
Consider, for instance, the parallel timing syst&shown in Figuré3. In this case, there are two child

c;(T<257?
__ 0;U=0 1;(U<10)7?
Q(B) RN 2\
T=0 b o 0;V=0 ®1 \% 20)7@
- a;l = _ V= (VL !
p: Lo (%) Oz B: (Si) () S3
G @ ~ ©

Figure 3: An inconsistent parallel timing syst&n

P. Hui & S. Chikkagoudar 47

processesA andB. The maximum duration of a timed word acceptedfbis 10, and that oB is 20.
Supposing that an ‘a’ occurs (ardforked) at time O, it is thus possible that thewill not complete
until time 10— &, at which time the ‘b’ and fork oB can proceed. It is therefore possible tBawill not
complete until time 306- &1 — & (for small&g, £). This would then violate théT < 25)? constraint, cor-
responding to a case in which a child process could take tdnggomplete than is allowable, given the
timing constraints of the parent process. It is precisely type of interference which we must disallow
in order for a timing system to be considered consistent itg#if.

To this end, we propose a method of definoansistencywithin a timing system. Informally, we
take the approach of deriving a new set of conditions fromtithang constraints of the child processes,
so that checkingonsistencyeduces to the process of verifying that these conditiosgea® the timing
constraints of the master process.

First, we replacé\, @, and¢ from the parallel timing system with a new setd#rivedtimers, one
for eachA € A, defining the possible “worst case” behavior of the childgesses. Each such timéx
is initialized on the transition along which the correspiogdA is forked, and is used along (constrains)
any transitions along which is joined. Each such use ensures that the timer is lesgthaepresenting
the fact that the elapsed time between the forking and jgioifra child process is bounded in the worst
case byAp— the longest possible duration for the child process. Asamle, “flattening” the timing
systemS; of Example[I results in a single new timEy;, initialized along theg; 2 g transition, and
used along thep < o transition with the constrainfTa < 10)?. We then check that none of these new
derived timers invalidate the timing constraints of thegpdiprocess.

Formally, we define two relations. The first of thes#astening which takes a parallel timing system
(PA,,¢) and yields a new pair of relatior{y,n). Intuitively, y defines the edges along which each
of the derived timers are initialized, amddefines the edges along which each of the derived timers are
used:

Definition 13. Let S= <P,A_, Y, ¢) be a parallel timing system. Thdlatten(S) = (y,n), where

y={(a,9,0.{Ta}) | (6i,0,0,A) € ¢/}
n= {<Qi,Qj,U,X> ’ <Qi,Qj,U,A> € ¢}

and

X= /\ (TA < AA)
(41,0j,0,A)€0

The second relation takel and ¢ as inputs and extracts a set of edge pairs, defined such that ea
such pair(e, e;) specifies when a derived timer is initializée,) and usede,).

Definition 14. Let S= <P,A_, Y, ¢) be a parallel timing system, with € A. Then the set of all use pairs

of Ain S is defined apairs(A,S) = {((ax,y), (Gm,th)) | ({(Ax, Ty, 01,A) € Y) A ({Om,0n, 02,A) € @)}
for someoy, g,. Furthermore,

pairs(S) = | pairs(A,9)
AcA

Example 15. Consider parallel timing systeny Shown in Figuré 4. Observe thAj = 25andAg = 11.
Then:flatten(S3) = (y,n), where

y={(d1,%,a,{Ta}),(d,03,b,{Te })}
n ={(ags,q1,¢,X)} , where X= (Ta < 25 A (Tg < 11)

48 Formal Model for RT Parallel Computation

/_\O;V:O 0;(V<112

P:
1;V=0;(U<20)7? 7.
> ,('/TSJ?
)
. 0 (U 410)‘?

Figure 4: Parallel timing systei®. Ax = 25,Ag = 11.

shown graphically in Figurgls, and

pairs(S) = pairs(A,S) Upairs(B,S)
= {((a, %), (3, 01)) } U{((02, 03). (A3,) }
= {((%1,%2), (98, 01)), (92, G3), (A3, 1)) }

Figure 5: The result of flattening: forks and joins ofA andB are shown along with derived timefg
andTg. Compare with Figurgl4.

We can now proceed with a formal definition of consistencyafparallel timing system. Recall that
intuitively, such a system is consistent if the worst casertiy scenarios over all child processes will not
invalidate the timing constraints of the parent process-etler words, if the maximum delay between
two states allowed by the child processes never exceed®thesponding maximum delay allowed by

the timers in the parent process.

Definition 16 (Consistency) Let S= (<7, Y, ¢,A_> be a PTS, where
o o/ =(2,Q,00,F,T,3,y,n)isaTBA
o flatten(S) = (y',n’)

P. Hui & S. Chikkagoudar 49

o ' = <27Q7q07F7i67V,7r'/>
Then S isconsistentf for all edge pairs((dx,0y), (Gm,0n)) € pairs(S) and all paths p= 0x0y...Gm0n
through.«,
Dy (p) <Ay (p) (16.1)

We conclude this section with a few simple examples, whidukhhelp to clarify Definitioh 16; the
following section gives a more realistic example.

Example 17. S is consistent.
Proof. P, the result of flattening,, is shown below, witily being the derived timer corresponding to

A:
c ; (T <50)?

(TA < 10)? b

Ta=0

Furthermorepairs(P') = {((g1,d2), (d2,01))}, and by observation, all paths throuBhbeginning
with the edg€q;, g2) and ending with the edgey, o) take the fornm; (g2)*gx. All such pathsp satisfy
inequality[16.1, and thus by definitio; is consistent. O

Example 18. S3 is not consistent.

Proof. P, the result of flattenin@s, is shown in Figurél5. Furthermore,

pairs(P') = {((a1,q2), (G3,91)), ((A2,93), (43,01)) }

There are thus two paths against which we need to test ingq&l1: (01020301), and (02030h); the
first of these fails the tesfp (01020301) = 25,andAp(Q1020301) = 24.
O

3 Case Study: Matrix Multiplication

We now turn our attention to a practical application of theaapts discussed so far. Namely, we demon-
strate the use of the formal validation concepts on a simalaliel, MPI-style [13]_15] matrix multipli-
cation kernel, extracted from the larger power-grid analggplication described in [11, 12]. Our kernel
implements a variant of Fox’s algorithm for matrix multigaition [7]. For simplicity, we assume square
matrices, and that the number of columns, rows, and processe all perfect squares. The algorithm
distributes the task of multiplying two matrices amongkpabcessors in the system.

We give a simple distributed algorithm for matrix multi@iton, and a consistent parallel timing
system for that algorithm. We conclude the section with eigli results— timing measurements taken
on a small, four-node real-time cluster, each node congisif dual quad-core 2.66Ghz Xeon X5660
processors running the Xenomai RTOS with 48GB RAM. The tgmmeasurements of the PTS, along
with the usual restrictions associated with real-time cotation (e.g. no virtual memory or paging,
process scheduling, ensuring minimal variance in exeguiimings, etc.), are bounded by virtue of

50 Formal Model for RT Parallel Computation

Xenomai'’s real-time process scheduler. The result is aixmatultiplication kernel which provably runs
in under 9 ms per cycle for 128128 double-precision matrices. We emphasize that we ardaioting
the speed of the operation to be a groundbreaking result—eadly, this is a relatively small matrix
size, but was so chosen as this is the order of the size relquyreur targeted application kernel. Rather,
we give these numbers, as well as the PTS, to illustratgtheessby which we analyze the temporal
interactions between processes, thus showing this delag #oprovable upper bound.

3.1 Algorithm

Algorithm 1 MatrixMultiply: ComputeC =A x B

p Number of processors
N : Rank of matrices
1 g+ /P
2: while true do
3: dest+—1
4. if self==0then {Master process
5: fori=0toq—1do
6: for j=0tog—1do
7: we il xe (i+1)8
8: yeig.ze (i+1)§
9: X + Alw: X][0:N]
10; Y « B[0:N]ly: Z
11: if i #0and j # 0then {Master already has these chupks
12: send X,des}
13; sendY,des
14: dest+ dest+ 1
15: end if
16: end for
17: end for
18: else{Child processés
19: X « recv(0)
20: Y « recv(0)
21: endif L
22: Z<+locMM (X,Y)

23: reduce(Z,C)
24: end while

The pseudocode for the algorithm is given in Algorithin 1. Geptually, to multiply twoN x N
matricesA and B using ap processor cluster, each matrix is divided into segmentsctware then
distributed in round-robin fashion amongst the processbthe cluster. Each processor then performs
a local matrix multiplication on its own local submatricesid the results of these local operations are
aggregated (reduced) to form the matrix proddict B.

Due to space constraints, we will not describe the partitpin detail; Figurd 6 shows the parti-
tioning and distribution of work by Algorithril 1 for a four-pcessor cluster. In this figuré,, B, andC
are allN x N matrices.A is partitioned into 2 sets df rows each, an@ is partitioned into 2 sets dj

P. Hui & S. Chikkagoudar 51

columns each. The master procegs,computes the local produét; x By, and writes the result t€1.
Po then sends submatricdg andB, to p;, who then computes their product, writing the resulCio
Similarly, p, receives and computé&s = A, x By, andps receives and computé€s, = A, x Bo.

The algorithm proceeds as follows: the master process te®tines b through 17, which partition
A andB into submatrices (line)sl 7=110), and send these parts ouetoetipective child processes (lines
[12+£13). Conversely, the child processes execute [inEsOl9Rich receive the submatrices assigned
by the master process. Linesl 22123 are run by all processgtading the master process (which, in
this case, participates in the task of matrix multiplicatas well). Lind 2P performs the local operation,
line[23 writes the local result to the appropriate locatio@iThe entire process then repeats indefinitely,
as given by thevhile loop (lined 2 and 24).

Aq Cl CZ
X B]_ Bz =

A2 C3 C4

A B C

Figure 6: Partitioning and distribution of matrix multigdition by AlgorithnT1 across a four processor
cluster.

3.2 Parallel Timing System

Figure[T shows a parallel timing system for Algoritiiin 1 asrasfour processor cluster, consisting of
the TBA Bywm, which models the master process, and a child Frfv, modeling instances of the child
processes. Specific events have been elided from the diagthia case, since events in this case always
represent transitions between statements.

3.2.1 Parent

States in the parent automatBrare prefixed with a ‘P’, followed by the line number as giverAigo-
rithm[1. For examplef3 corresponds to the state of the parent process as it istigtine[3.

Additionally, lines 12 and 13 each beget three separatesstaipparameterized on the values of the
loop induction variables and j]— and are labeled accordingly. As is commonly the case in WCET
analysis, unrolling the loop nest in this fashion is necgsseaorder to obtain a strict upper bound on the
number of iterations and, consequently, the total exegutine, of the loop nest.

P forms, in this case, a simple cycle. The cycle starts at §f8tand steps sequentially through the
steps (states) of the algorithm. Namely, the parent prostests at liné 3 (i.e., staté3), and proceeds
sequentially through lindg 4 (stefd]), and eventually to Iinmj::"l). The delay between the initial-
ization (stateA3) and the first sendﬂjﬂ) is bounded by a timeflsetun (the idea being that this is the
delay incurred by the time to “set up” the first send). Exemuthen proceeds to Ii@lﬂﬂjﬂ); the
delay along this transition represents the time to send tstecfiunk to the respective child process, and
is bounded by timelseng. At this point, execution proceeds to lin€el]HI@;%). Along this transition,
there are two items to note: first, the time to process thensksend is bounded by the tim&yne, and
second, the child process has now been sent the data it reebdsonsequenth ; is forked. Execution
proceeds similarly through the next six states, represgiiie unwound iterations of the loop nest. Child

52 Formal Model for RT Parallel Computation

processAz is similarly forked on the transition frorAI3 =}, to FII4 =%, andAs on the transition from
I3} to AI4-}. Execution then proceeds through liie$ 22 (sE#8) and 2B FZ3). The duration
of the local matrix multiplication operation (linie 22) istloeded by the timefywu, and that through the
reduce operation (life23) by the timBgquce Additionally, the transition fronfAZ23 back toP3 waits for
(joins with) all child processes to complete before proasgd

3.2.2 Child

In this case, the child processes are modeled by the AFAlomenclature is analogous to thatFif
states inA are prefixed with ai\, followed by the corresponding line number from Algorithin 1

The child process starts at lihe] 18 (stAf€8). The process then proceeds to receive the first block
of data (line[1P, staté19). The time to process the receive is bounded by tifg. Execution
proceeds to receive the second block of data [lide 20, AfZ8B. The time to process this second receive
is bounded byTecp. Execution proceeds next to the local matrix multiplicatigine[22, stateA22);
the time spent on this operation is bounded by tiMiggum. Finally, execution proceeds to the data
writeback (lind 2B, stat&23); the time spent on this operation is bounded by tifagK.ce

Theorem 19. Sym is consistent.

Proof. Let flatten(Sym) = (v,n’), with Ry = (£,Q,00,F,T,8,y,n’). By definition, pairs(Sum) =
{(e1,&4), (e, €4), (€3,€4)}, Where

€ = (HE;%, HET:%) €= (Hﬂjilo, m-_zjj::%))
e3 = (FI3 2L, FI4ZY) e = (F23 F3)

By observation, there are three paths which we must consider

P1= (HE,Z%PDZI,Z%HBZB)
P2 = (P@JZ%P@,Z%@B)
ps = (FI3Z5FI4 S F23F)

The rest of the proof follows by enumeration:

O

Finally, we note that the worst case delay along one iteradfdhe algorithm is 8.9 ms. This follows
from the observation that the parent automaktakes the form of a simple cycle with no unbound
segments (i.e., subpaths which are not constrained by rauey)ti SpecificallyP consists of consecutive
pairs of segments, each constrained by pairs of timers. &foestly, we can derive an upper bound
for a single iteration of the algorithm by summing the bouatiall of the timers, yielding the specified
upper bound. Combined with Theorémi 19, which ensures thdirtting of the child processes does not
invalidate this bound, we are left with a cyclic, parall@hé-bounded matrix multiplication kernel.

P. Hui & S. Chikkagoudar 53

Q(A1,A2,A3) Treduce=0

(TMM < 1.5)?

®

D
&

(Treduce< 4)?

(Tsetupmm < 1)?
TMM =0

H

Tsetu B

Tsetupmn=0

;7 > Treew=0

Amm ZI\AEIE/‘ @(

Trec=0

~_~

()
&

Trecu < .3 (Trecwe < .3)? ‘ Tum=0

m Treduce=0 O
A24 A23 A22
@ (Treduce< 4)? U (Tum < 1.5)?

Figure 7: Parallel timing syste®ym for Algorithm[1l across a four processor cluster. Events Heaen
elided for the sake of clarity. Upper bounds on timer comstsacorrespond to delay measurements

taken over our implementation; times are given in milliset® Minimal variance from these bounds is
ensured to the extent provided by the underlying RTOS.

54 Formal Model for RT Parallel Computation

4 Concluding Remarks

We conclude with a few closing remarks. We have presented@aicsystem for modeling the temporal
properties of a restricted class of real-time parallel ayst, with a simple example of an application
kernel. As is usually the case with real-time systems, lowed to be unrolled, bounding the number
of iterations, in order to obtain an upper bound on the tataketion time of the loop. Algorithral 1
(intentionally) distills to a relatively simple PTS, duettee basic structure of the control flow graph of
both the parent and child processes; more complex exammdesf @bvious interest for future work.
Similarly, the model in Figur&l7 in our case was derived méydain this case, a relatively simple
task. More complex examples can certainly prove to be moascbtllenge, and automated tools for this
task are desirable. One possible approach for such autmmatiuld be compiler-driven, whereby users
could specify to the compiler (vidpragmas, for instance), events of interest, and the compiler could
proceed to output the appropriate annotated control flopigra

We assume timing behavior is consistent across all childgeges, although if there were to be sig-
nificant variance across child processes (e.g. heterogermdNUMA architectures) we could account
for such behavior using different child TFAs.

Additionally, we have laid out several interesting openguoes which arise out of the analysis of
our relatively straightforward formulation: what is thengplexity of computing the worst case delay
along a single path of a TFA (TBA), and through a TFA (TBA) imgeal? Up to this point, we have
only considered conjunctions of maximum constraints; hoasdthis change in the presence of a more
generalized constraint syntax (clfl [1])?

We have largely been working with the SPMD execution modehgigmatic of many MPI-type
programs. It would be interesting to investigate temporadieis for other parallel models (e.g. OpenMP)
as well. Lastly, our application kernel distills to a relaly simple set of automata. More complex
examples are certainly of interest, and are on the horizofufore work.

References

[1] Rajeev Alur & David L. Dill (1994):A theory of timed automatarheor. Comput. Scil26(2), pp. 183—-235,
doi{10.1016/0304-3975(94)90010-8.

[2] Fang Chen, Xueshan Han, Zhiyuan Pan & Li Han (20@ate Estimation Model and Algorithm Including
PMU. In: Electric Utility Deregulation and Restructuring and Powechnologies, 2008. DRPT 2008. Third
International Conference ppp. 1097 —1102, d0i:10.1109/DRPT.2008.4523571.

[3] Yousu Chen, Zhenyu Huang & D. Chavarria-Miranda (201Bgrformance evaluation of counter-based
dynamic load balancing schemes for massive contingenclysisavith different computing environments
In: Power and Energy Society General Meeting, 2010 IFiE1 -6, doi:10.1109/PES.2010.558S536.

[4] Costas Courcoubetis & Mihalis Yannakakis (199&)inimum and maximum delay problems in real-time
systemsForm. Methods Syst. De%(4), pp. 385—415, d0i:10.1007/BF00709157.

[5] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman &ndrzej Wasowski (2010)Timed I/O au-
tomata: a complete specification theory for real-time systén: Proceedings of the 13th ACM international
conference on Hybrid systems: computation and contfCC '10, ACM, New York, NY, USA, pp. 91-100,
doi{10.1145/1755952.1755967.

[6] Khaled El-Fakih, Nina Yevtushenko, Sergey Buffalov & egor v. Bochmann
(2006): Progressive solutions to a parallel automata equation Theoretical Com-
puter Science 362(13), pp. 17 - 32, d6i:10.1016/j.tcs.2006.05.034. lade at
http://www.sciencedirect.com/science/article/pii/S0304397506003161.

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1109/DRPT.2008.4523571
http://dx.doi.org/10.1109/PES.2010.5589536
http://dx.doi.org/10.1007/BF00709157
http://dx.doi.org/10.1145/1755952.1755967
http://dx.doi.org/10.1016/j.tcs.2006.05.034
http://www.sciencedirect.com/science/article/pii/S0304397506003161

P. Hui & S. Chikkagoudar 55

[7] G.C Fox, S.W Otto & A.J.G Hey (1987):Matrix algorithms on a hypercube I: Matrix multipli-
cation Parallel Computing4(1), pp. 17 — 31, doi:10.1016/0167-8191(87)90060-3. &k at
http://www.sciencedirect.com/science/article/pii/0167819187900603.

[8] Wenzhong Gao & Shaobu Wang (201pn-line dynamic state estimation of power systerite North
American Power Symposium (NAPS), 20p@. 1 —6, doi:10.1109/NAPS.2010.5619951.

[9] I. Gorton, Zhenyu Huang, Yousu Chen, B. Kalahar, Shubngaeg Jin, D. Chavarria-Miranda, D. Baxter &
J. Feo (2009)A High-Performance Hybrid Computing Approach to Massivaeni@mency Analysis in the
Power Grid In: e-Science, 2009. e-Science '09. Fifth IEEE Internatiorahf€rence onpp. 277 —283,
doii10.1109/e-Science.2009.46.

[10] Zhenyu Huang, Yousu Chen & J. Nieplocha (200%tassive contingency analysis with high perfor-
mance computing In: Power Energy Society General Meeting, 2009. PES '09. |Efpk 1 -8,
doi{10.1109/PES.2009.5275421.

[11] Peter Hui, Satish Chikkagoudar & Daniel Chavarriadviida (2011):Towards a Real-Time Cluster Com-
puting Infrastructure IEEE Real-Time Systems Symposium (Work-in-Progress 8gysiAvailable at
http://www.cs.wayne.edu/~fishern/Meetings/wip-rtss2011/.

[12] Peter Hui, Barry Lee & Satish Chikkagoudar (2012pwards Real-Time High Performance Computing
for Power Grid Analysis In: Proceedings of the Second International Workshop on HigfoReance
Computing, Networking and Analytics for the Power GHIPCNA-PG '12, IEEE, Washington, DC, USA.
To appear.

[13] M.J. Koop, T. Jones & D.K. Panda (2008YIVAPICH-Aptus: Scalable high-performance multi-trangpo
MPI over InfiniBand In: Parallel and Distributed Processing, 2008. IPDPS 2008EIEfernational Sym-
posium onpp. 1 -12, doi:10.1109/IPDPS.2008.4536283.

[14] P. David Stotts & William Pugh (1994 Parallel finite automata for modeling concurrent softwaystems
J. Syst. Softw27(1), pp. 27-43, d0i:10.1016/0164-1212(94)90112-0.

[15] CORPORATE The MPI Forum (1993MPI: a message passing interfacén: Proceedings of the 1993
ACMY/IEEE conference on Supercomputjigypercomputing '93, ACM, New York, NY, USA, pp. 878-883,
doii10.1145/169627.169855.

http://dx.doi.org/10.1016/0167-8191(87)90060-3
http://www.sciencedirect.com/science/article/pii/0167819187900603
http://dx.doi.org/10.1109/NAPS.2010.5619951
http://dx.doi.org/10.1109/e-Science.2009.46
http://dx.doi.org/10.1109/PES.2009.5275421
http://www.cs.wayne.edu/~fishern/Meetings/wip-rtss2011/
http://dx.doi.org/10.1109/IPDPS.2008.4536283
http://dx.doi.org/10.1016/0164-1212(94)90112-0
http://dx.doi.org/10.1145/169627.169855

	1 Introduction
	2 Formalisms
	2.1 Timed Finite Automata
	2.1.1 Bounding Maximum Delay

	2.2 Timed Büchi Automata
	2.3 Parallel Timing Systems
	2.3.1 Consistency

	3 Case Study: Matrix Multiplication
	3.1 Algorithm
	3.2 Parallel Timing System
	3.2.1 Parent
	3.2.2 Child

	4 Concluding Remarks

