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The imposition of real-time constraints on a parallel computing environment— specifically high-
performance, cluster-computing systems— introduces a variety of challenges with respect to the for-
mal verification of the system’s timing properties. In this paper, we briefly motivate the need for such
a system, and we introduce an automaton-based method for performing such formal verification. We
define the concept of a consistent parallel timing system: a hybrid system consisting of a set of timed
automata (specifically, timed Büchi automata as well as a timed variant of standard finite automata),
intended to model the timing properties of a well-behaved real-time parallel system. Finally, we give
a brief case study to demonstrate the concepts in the paper: aparallel matrix multiplication kernel
which operates within provable upper time bounds. We give the algorithm used, a corresponding
consistent parallel timing system, and empirical results showing that the system operates under the
specified timing constraints.

1 Introduction

Real-time computing has traditionally been considered largely in the context of single-processor and
embedded systems, and indeed, the terms real-time computing, embedded systems, and control systems
are often mentioned in closely related contexts. However, real-time computing in the context of multin-
ode systems, specifically high-performance, cluster-computing systems, remains relatively unexplored.
It can be argued that one reason for the relative dearth of work in this area is the lack of scenarios to date
which would require such a system. Previously [11, 12], we have motivated the emerging need for such
an infrastructure, giving a specific scenario related to thenext generation North American electrical grid.
In that work, we described the changes and challenges in the power grid driving the need for much higher
levels ofcomputational resourcesfor power grid operations. To briefly summarize (and to provide some
motivational context for the current work), many of these computations— particularly floating-point in-
tensive simulations and optimization calculations ([2, 3,8, 9, 10])—can be more effectively done in a
centralized manner, and the amount and scale of such data is estimated by some [11, 12] to be on the
order of terabytes per day of streaming sensor data (e.g. Phasor Measurement Units (PMUs)), with the
need to analyze the data within a strict cyclical window (every 30ms), presumably with the aid of high-
performance, parallel computing infrastructures. With this in mind, the current work is part of a larger
research effort at Pacific Northwest National Laboratory aimed at developing the necessary infrastruc-
ture to support an HPC cluster environment capable of processing vast amounts of streaming sensor data
under hard real-time constraints.

While verifying the timing properties of a more traditional(e.g. embedded) real-time system poses
complex questions in its own right, imposing real-time constraints on a parallel (cluster) computing
environment introduces an entirely new set of challenges not seen in these more traditional environments.
For example, in addition to standard real-time concepts such asworst-case execution time(WCET), real-
time parallel computation introduces the necessity of considering worst case transmission timewhen
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communicating over the network between nodes, as well as theneed to ensure that timing properties of
one process do not invalidate those of the entire parallel process as a whole.

These are but two examples of the many questions which must beaddressed in a real-time parallel
computing system; certainly there are many more questions than can be addressed in a single paper. To
this end, we introduce a simple, event driven, automata-based model of computation intended to model
the timing properties of a specific class of parallel programs. Namely, we consider SPMD (Single Pro-
gram, Multiple Data), parent-child type programs, in part because in practice, many parallel programs—
including many prototypical MPI-based [13, 15] programs— fall into this category. We give an exam-
ple of such a program in Section 3. This model is typified by theexistence of a cyclicmasteror parent
process, and a set of noncyclicchild or slaveprocesses amongst which work is divided. With this charac-
terization, a very natural correspondence emerges betweenthe processes and the automata which model
them: the cyclicparentprocess is very naturally modeled by anω-automaton, and thechild processes by
a standard finite automaton. Our main contribution of this paper, then, is twofold: first, a formal method
of modeling the respective processes in this manner, combining these into a single hybrid system of par-
allel automata, and secondly, a simple case study demonstrating a practical application of this system.
We should note that the notion of parallel finite automata is not a new one; variants have been studied
before (e.g. [6, 14]). We take the novel approach of combining timedvariants ([1, 5]) of finite automata
into a single hybrid model which captures the timing properties of the various component processes of a
parallel system.

The rest of the paper proceeds as follows: Section 2 defines the automaton models used by our
system: Timed Finite Automata in Section 2.1, Timed Büchi Automata in Section 2.2, and a hybrid
system combining these two models in Section 2.3. Section 3 gives a case study in the form of an
example real-time matrix multiplication kernel, running on a small, four-node real-time parallel cluster.
Section 4 concludes.

2 Formalisms

In this section, we give formal definitions for the machineryused in our hybrid system of automata. The
definitions given in Sections 2.1 and 2.2 are not new [1]. However, it is still important that we state their
definitions here, as they are used later on, in Section 2.3.

2.1 Timed Finite Automata

In this section, we define a simple timed extension of traditional finite state automata and the words they
accept. We will use these in later sections to model the timing properties of child processes in a real-time
cluster system.

Timed stringstake the form(σ̄ , τ̄), whereσ̄ is a string of symbols, and̄τ is a monotonically in-
creasing sequence of reals (timestamps).τx denotes the timestamp at which symbolσx occurs. We also
use the notation(σx,τx) to denote a particular symbol/timestamp pair. For instance, the timed string
((abc),(1,10,11)) is equivalent to the sequence(a,1)(b,10)(c,11), and both represent the case where
‘a’ occurs at time 1, ‘b’ at time 10, and ‘c’ at time 11.

Correspondingly, we extend traditional finite automata to include a set oftimers, which impose tem-
poral restrictions along state transitions. A timer can beinitialized along a transition, setting its value
to 0 when the transition is taken, and it can beusedalong a transition, indicating that the transition can
only be taken if the value of the timer satisfies the specified constraint. Formally, we associate with each
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automaton a set of timer variables̄T, and following the nomenclature of [1], aninterpretationν for this
set of timers is an assignment of a real value to each of the timers inT̄. We writeν [T 7→ 0] to denote the
interpretationν with the value of timerT reset to 0. Clock constraints consist of conjunctions of upper
bounds:

Definition 1. For a setT̄ of clock variables, the set X(T̄) of clock constraintsχ is defined inductively as

χ := (T< c)? | χ1∧ χ2

where T is a clock in̄T and c is a constant inR+.

While this definition may seem overly restrictive compared to some other treatments (e.g. [1]), we
believe it to be acceptable in this early work for a couple of reasons. First, while simple, this sole syntactic
form remains expressive enough to capture an interesting, non-trivial set of use cases (e.g. Section 3).
Secondly, the timing analysis in subsequent sections of thepaper becomes rather complex, even when
timers are limited to this single form. Restricting the syntax in this manner simplifies this analysis to a
more manageable level. We leave more complex formulations and the corresponding analysis for future
work.

Definition 2 (Timed Finite Automaton (TFA)). A Timed Finite Automaton (TFA) is a tuple

〈Σ,Q,s,qf , T̄,δ ,γ ,η〉

, where

• Σ is a finite alphabet,

• Q is a finite set of states,

• s∈Q is the start state,

• qf ∈Q is the accepting state,

• T̄ is a set of clocks,

• δ ⊆Q×Q×Σ is the state transition relation,

• γ ⊆ δ ×2T̄ is the clock initialization relation, and

• η ⊆ δ ×X(T̄) is the constraint relation.

A tuple〈qi ,q j ,σ〉 ∈ δ indicates that a symbolσ yields a transition from state qi to state qj , subject to the
restrictions specified by the timer constraints inη . A tuple〈qi ,q j ,σ ,{T1, ...,Tn}〉 ∈ γ indicates that on the
transition on symbolσ from qi to qj , all of the specified timers are to be initialized to0. Finally, a tuple
〈qi ,q j ,σ ,X(T̄)〉 ∈ η indicates that the transition onσ from qi to qj can only be taken if the constraint
X(T̄) evaluates to true under the current timer interpretation.

Example 3. The following TFA accepts the timed language{(ab∗c,τ1...τn) | τn− τ1 < 10} (i.e., the set
of all strings consisting of an ‘a’, followed by an arbitrarynumber of ‘b’s, followed by a ‘c’, such that
the elapsed time between the first and last symbols is no greater than 10 time units). The start state is
denoted with a dashed circle, and the accepting state with a double line.

q1 q2 q3
a

T= 0

c

(T< 10)?

b
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Paths and runs are defined in the standard way:

Definition 4 (Path). LetA be a TFA with state set Q and transition relationδ . Then(q1, ...,qn) is apath
overA if, for all 1≤ i < n, ∃σ .〈qi ,qi+1,σ〉 ∈ δ .

Definition 5 (Run). A run r of a TFA〈Σ,Q,q0,qf , T̄,δ ,γ ,η〉 over a timed word(σ̄ , τ̄), is a sequence of
the form

r : (q0,ν0)
σ1−→
τ1

(q1,ν1)
σ2−→
τ2

(q2,ν2)
σ3−→
τ3

...
σn−→
τn

(qn,νn)

satisfying the following requirements:

• Initialization: ν0(k) = 0,∀k∈ T̄

• Consecution: For all i≥ 0:

– δ ∋ 〈qi ,qi+1,σi〉,
– (νi−1+ τi− τi−1) satisfiesχi , whereη ∋ 〈qi−1,qi ,σi,χi〉, and

– νi = (νi−1+ τi− τi−1)[T 7→ 0], ∀T∈ T̄, whereγ ∋ 〈qi ,q j ,σi , T̄〉

r is anacceptingrun if qn = qf .

A TFA A acceptsa timed strings= (σ̄ ,τ1...τn) if there is an accepting run ofs overA, andτn− τ1

is called thedurationof the string.

Note (Well-Formedness). We introduce a restriction on how timers can be used in a TFA, thus defining
what it means for a TFA to bewell-formed. Namely, we restrict timers to be used only once along a
path; this is to simplify somewhat the timing analysis in subsequent sections. In particular, we say that a
TFAA is well-formed if, for all pairs of states(qx,qy), all timers T, and all paths from qx to qy, T is used
no more than once. For example, the TFAs shown in Figure 1 are not well-formed, since in both cases,
timers can potentially be used more than once— in the first case (A1), along the self-loop on q2, and
in the second case (A2), along two separate transitions along the path. At first, this may appear to be
overly restrictive, but as it turns out, many of these cases can easily be rewritten equivalently to conform
to the single-use restriction, as shown in Figure 2.

A1: q1 q2 q3

a ; T= 0

b ; (T< 10)?

c

A2: q1 q2 q3 q4

a ; (T=0)? b ; (T< 10)? c ; (T< 20)?

Figure 1: Malformed TFAs. Start states are denoted with a dashed circle, and accepting states with a
double line. The intent ofA1 is to allow strings of the forma, followed by arbitrarily manybs, as long
as they all occur less than 10 units after thea, followed by ac. The intent ofA2 is to allows strings of
the formabc, where the elapsed time between thea andb is less than 10, and that between thea andc is
less than 20. Both of these can be rewritten using conformingautomata, as shown in Figure 2.
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A′1: q1 q2a q2b q3

a ; T= 0

b

b ; (T< 10)? c

c

A′2: q1 q2 q3 q4
T1 = 0

T2 = 0

(T1 < 10)? (T2 < 20)?

Figure 2: Equivalent, well-formed versions of automata from Figure 1.

2.1.1 Bounding Maximum Delay

An important notion throughout the remainder of the paper isthat of computing bounds on the allowable
delays along all possible paths through a TFA. Specifically,we are interested in doing so to be able to
reason formally about the maximum execution time for a childprocess, with the end goal of being able
to bound the execution time of the system— parent and all child processes— as a whole.

The idea is that we will ultimately use TFAs to represent the timing properties of a child process.
Paths through the automaton from its start state to an accepting state correspond to possible execution
paths of the child process’ code. Certainly, proving a tightupper bound on the delay between two
arbitrary points along an execution path remains a very difficult problem, but to be clear, this is not
our goal. Rather, our approach involves modeling an execution path through a child process (and, by
extension, its corresponding timed automaton) using anevent-basedmodel, in which selected system
events are modeled by transitions in the automaton, and we rely on timing properties of the process to be
guaranteed by the underlying RTOS process scheduler. The problem of computing the worst-case delay
through the automaton equates to that of computing the maximum delay over all possible paths through
the automaton from its start state to its accepting state:

∆A = max
p∈paths(A)

∆(p)

where

• A = 〈Σ,Q,q0,qf , T̄,δ ,γ ,η〉 is the TFA

• paths(A) denotes the set of all paths inA from its start stateq0 to accepting stateqf , and

• ∆(p), for pathp= (q0, ...,qf ), denotes the maximum delay fromq0 to qf . That is, the maximum
duration of any timed string(σ̄ , τ̄) such that(q0...qf , ν̄) is a run of the string overA (for someν̄).

This problem can thus be formulated in the following manner:given a timed finite automatonA and
an integern, is there a timed word of durationd≥ n that is accepted byA? While simple cases, such as
those presented in this paper, can be computed by observation and enumeration, the complexity of the
general problem remains an open question, although we highly suspect it to be intractable— Courcou-
betis and Yannakakis give exponential-time algorithms forthis and related problems, and have shown a
strictly more difficult variant of the problem to bePSPACE-complete [4]. Furthermore, expanding the
timer constraint syntax to a more expressive variant (c.f. [1]) can only complicate matters in terms of
complexity. We must be cautious, then, to ensure that we do not impose an inordinately large number of
timers on a child process.
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2.2 Timed Büchi Automata

Whereas we model the timing properties of the child processes of a cluster system using the timed
finite automata of the previous section, we model these properties of the parent using a timed variant
of ω-automata, specifically Timed Büchi Automata. We assume a basic familiarity with these; due
to space constraints, we give only brief overview here. To review briefly, ω-automata, like standard
finite automata, also consist of a finite number of states, butinstead operate over words of infinite length.
Classes ofω-automata are distinguished by their acceptance criteria.Büchi automata, which we consider
in this paper, are defined to accept their input if and only if arun over the input string visits an accepting
state infinitely often. Other classes ofω-automata exist as well. For example, Muller automata are more
stringent, specifying their acceptance criteria as asetof acceptance sets; a Muller automaton accepts its
input if and only if the set of states visited infinitely oftenis specified as an acceptance set. More detailed
specifics can be found elsewhere— for example, [1].

A Timed B̈uchi Automaton(TBA) is a tuple〈Σ,Q,q0,qf , T̄,δ ,γ ,η〉, where

• Σ is a finite alphabet,

• Q is a finite set of states,

• q0 ∈Q is the start state,

• F ⊆Q is a set of accepting states,

• T̄ is a set of clocks,

• δ ⊆Q×Q×Σ is the state transition relation,

• γ ⊆ δ ×2T̄ is the clock initialization relation, and

• η ⊆ δ ×X(T̄) is the constraint relation.

A tuple 〈qi ,q j ,σ〉 ∈ δ indicates that a symbolσ yields a transition from stateqi to stateq j , subject
to the restrictions specified by the clock constraints inη . A tuple 〈qi ,q j ,σ , T̄〉 ∈ γ indicates that on
the transition on symbolσ from qi to q j , all clocks in T̄ are to be initialized to 0. Finally, a tuple
〈qi ,q j ,σ ,X(T̄)〉 ∈ η indicates that the transition onσ from qi to q j can only be taken if the constraint
X(T̄) evaluates to true under the values of the current timer interpretation.

We definepaths, runs, andsubrunsover a TBA analagously to those over a TFA:

Definition 6 (Path (TBA)). Let A be a TBA with state set Q and transition relationδ . (q1, ...,qn) is a
pathoverA if, for all 1≤ i < n, ∃σ .〈qi,qi+1,σ〉 ∈ δ .

Definition 7 (Run, Subrun (TBA)). A run (subrun) r, denoted by(q̄, ν̄), of a Timed B̈uchi Automaton
〈Σ,Q,q0,qf , T̄,δ ,γ ,η〉 over a timed word(σ̄ , τ̄), is an infinite (finite) sequence of the form

r : (q0,ν0)
σ1−→
τ1

(q1,ν1)
σ2−→
τ2

(q2,ν2)
σ3−→
τ3

...

satisfying the same requirements as given in Definition 5.

For a runr, the setin f (r) denotes the set of states which are visited infinitely many times. A TBA
A with final statesF accepts a timed wordw= (σ̄ , τ̄) if in f (r)

⋂
F 6= /0, wherer is the run ofw on A .

That is, a TBA accepts its input if any of the states fromF repeat an infinite number of times inr.

Example 8. Consider the following TBAA1, with start state q1 and accept states F= {q1}:
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q1 q2

a ; T = 0

b

c ; (T < 50)?

This TBA accepts theω-language L1 = {((ab∗c)ω ,τ) | ∀x.∃i, j.∀k.φ} whereφ is the boolean formula

τi < τk < τ j =⇒ (σi = a)∧ (σk = b)∧ (σ j = c)∧ (τ j − τi < 50)

Lastly, we take the concept of maximum delay, introduced in the previous section with respect to
Timed Finite Automata, and extend it to apply to Timed BüchiAutomata. Doing so first requires the
following definition, which allows us to restrict the timinganalysis for TBAs to finite subwords:

Definition 9 (Subword over ¯q). LetA be a TBA, and let̄q= (qm...qn) be a finite path overA . A finite
timed word w= ((σm...σn),(τm...τn)) is a subword over ¯q iff ∃q0, ...,qm−1,σ0, ...,σm−1,τ0, ...,τm−1 such
that (q0...qm−1qm...qn, ν̄) is a subrun of((σ0...σm−1σm...σn),(τ0...τm−1τm...τn)) overA for someν̄ .

Definition 9 is a technicality which is necessary to support the following definition of the maximum
delay between states of a TBA:

Definition 10. LetA be a TBA, and let̄q be a finite path overA . Then∆A (q̄) is the maximum duration
of any subword over̄q.

Example 11. ConsiderA1 from Example 8. Then∆A1(q1q2q2q1) = 50.

Algorithmically computing∆A (q̄) for a TBA A is analogous to the case for TFAs; in small cases
(i.e., relatively few timers with small time constraints),the analysis is relatively simple, while we con-
jecture the problem for more complex cases to be intractable; we leave more detailed analysis for future
work.

2.3 Parallel Timing Systems

Next, we model the timing properties of a SPMD-type parallelsystem as a whole by combining the two
models of Sections 2.1 and 2.2 into a singleparallel timing system. A parallel timing system(PTS) is a
tuple〈P, Ā,ψ ,ϕ〉, where

• P= 〈Σ,Q,q0,qf , T̄,δ ,γ ,η〉 is a TBA (used to model the timing properties of the parent process)

• Ā is a set{A1, ...,An} of TFAs (used to model the timing properties of the child processes)

• ψ ⊆ δ × Ā is afork relation (used to model the spawning of child processes)

• ϕ ⊆ δ × Ā is a join relation (used to model barriers (joins))

A tuple 〈qi ,q j ,σ ,A〉 in ψ , with A ∈ Ā, indicates that an instance ofA is to be “forked” on the transition

from qi to q j on symbolσ , and this “fork” is denoted graphically asqi
Ψ(A)−−−→ q j , modeling the spawning

of a child process along the transition. Similarly, a tuple〈qi ,q j ,σ ,A〉 in ϕ indicates that a previously
forked instance ofA is to be “joined” on the transition fromqi to q j on symbolσ . This “join” is denoted

graphically asqi
Ω(A)−−−→ q j , modeling the joining along the transition with a previously spawned child

process1.

1 Ψ was chosen as the symbol for ‘fork’, as it graphically resembles a “fork”; Ω was chosen as that for ‘join’, as it connotes
“ending” or “finality”.
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Example 12. Consider the following timing system S1 = 〈P,{A},ψ ,ϕ〉:

P: q1 q2

a ; T = 0

Ψ(A)

bΩ(A)

c ; (T < 50)?

A: s1 s2 s3

0 ; U = 0 1 ; (U < 10)?

P is the parent TBA with initial state q1 and final state set F= {q2}. P accepts theω-language L1
(see p. 45), andA is a TFA which accepts the timed language{(01,τ1τ2) | τ2−τ1 < 10}. In addition, the
fork and join relationsψ and ϕ dictate that on the transition from q1 to q2, an instance ofA is forked
(Ψ(A)), and that the transition from q2 to q1 can only proceed once that instance ofA has completed
(Ω(A)).

Conceptually, this system models a parent process (P) whichexhibits periodic behavior, accepting
an infinite number of substrings of the form ab∗c, in which the initial ‘a’ triggers a child processA which
must be completed prior to the end of the sequence, marked by the following ‘c’. In addition, the ‘c’ must
occur no more than 50 time units after the initial ‘a’. The child process is modeled byA, which accepts
strings of the form01, in which the1 must occur no more than ten time units after the initial0.

In theory, child processes could spawn children of their own(e.g. recursion). For now, however,
we disallow this possibility, as it somewhat complicates the analysis in the following section without
adding significantly to the expressive power of the model. The model can be expanded later to allow for
arbitrarily nested children of children with the appropriate modifications; specifically, TBAs would need
to be extended to include their ownψ andϕ relations, as would the definition of∆ for TBAs.

Before proceeding, it is important to note that a PTSS= 〈P, Ā,ψ ,ϕ〉 is not itself interpreted as an
automaton. In particular, we do not ever define a language accepted byS. Indeed, it is not entirely clear
what such a language would be, as we never specify the input toany of the children inA. Rather, the
sole intent in specifying such a systemS is to specify thetiming behaviorof the overall system, rather
than any particular language that would be accepted by it.

2.3.1 Consistency

With this said, we note that in Example 12,A is in some sense “consistent” with its usage inP. Specifi-
cally, since the maximum duration of any string accepted byA is 10, we are guaranteed that any instance
of A forked on theq1

a−→ q2 transition will have completed in time for the ‘join’ along theq2
c−→ q1 tran-

sition and hence, the timer(T < 50)? on this transition would be respected in all cases. In this sense,
all (Ψ(A),Ω(A)) pairs are consistent with timerT. However, such consistency is not always the case.
Consider, for instance, the parallel timing systemS2 shown in Figure 3. In this case, there are two child

P: q1 q2 q3

a ; T = 0

Ψ(A)

b

Ω(A);Ψ(B)

Ω(B)

c ; (T < 25)?

A: s1 s2 s3

0 ; U = 0 1 ; (U < 10)?

B: s1 s2 s3

0 ; V= 0 1 ; (V< 20)?

Figure 3: An inconsistent parallel timing systemS2.
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processes:A andB. The maximum duration of a timed word accepted byA is 10, and that ofB is 20.
Supposing that an ‘a’ occurs (andA forked) at time 0, it is thus possible that theA will not complete
until time 10−ε1, at which time the ‘b’ and fork ofB can proceed. It is therefore possible thatB will not
complete until time 30− ε1− ε2 (for smallε1,ε2). This would then violate the(T< 25)? constraint, cor-
responding to a case in which a child process could take longer to complete than is allowable, given the
timing constraints of the parent process. It is precisely this type of interference which we must disallow
in order for a timing system to be considered consistent withitself.

To this end, we propose a method of definingconsistencywithin a timing system. Informally, we
take the approach of deriving a new set of conditions from thetiming constraints of the child processes,
so that checkingconsistencyreduces to the process of verifying that these conditions respect the timing
constraints of the master process.

First, we replacēA,ψ , andϕ from the parallel timing system with a new set ofderivedtimers, one
for eachA ∈ Ā, defining the possible “worst case” behavior of the child processes. Each such timerTA

is initialized on the transition along which the corresponding A is forked, and is used along (constrains)
any transitions along whichA is joined. Each such use ensures that the timer is less than∆A , representing
the fact that the elapsed time between the forking and joining of a child process is bounded in the worst
case by∆A— the longest possible duration for the child process. As an example, “flattening” the timing
systemS1 of Example 12 results in a single new timerTA , initialized along theq1

a−→ q2 transition, and
used along theq2

c−→ q1 transition with the constraint(TA < 10)?. We then check that none of these new
derived timers invalidate the timing constraints of the parent process.

Formally, we define two relations. The first of these isflattening, which takes a parallel timing system
〈P, Ā,ψ ,ϕ〉 and yields a new pair of relations(γ ,η). Intuitively, γ defines the edges along which each
of the derived timers are initialized, andη defines the edges along which each of the derived timers are
used:

Definition 13. Let S= 〈P, Ā,ψ ,ϕ〉 be a parallel timing system. Thenflatten(S) = (γ ,η), where

γ = {〈qi ,q j ,σ ,{TA}〉 | 〈qi ,q j ,σ ,A〉 ∈ ψ}
η = {〈qi ,q j ,σ ,X〉 | 〈qi ,q j ,σ ,A〉 ∈ ϕ}

and

X =
∧

〈qi ,qj ,σ ,A〉∈ϕ
(TA < ∆A)

The second relation takesψ andϕ as inputs and extracts a set of edge pairs, defined such that each
such pair(e1,e2) specifies when a derived timer is initialized(e1) and used(e2).

Definition 14. Let S= 〈P, Ā,ψ ,ϕ〉 be a parallel timing system, withA ∈ Ā. Then the set of all use pairs
of A in S is defined aspairs(A,S) = {((qx,qy),(qm,qn)) | (〈qx,qy,σ1,A〉 ∈ ψ)∧ (〈qm,qn,σ2,A〉 ∈ ϕ)}
for someσ1,σ2. Furthermore,

pairs(S) =
⋃

A∈Ā

pairs(A,S)

Example 15. Consider parallel timing system S3 shown in Figure 4. Observe that∆A = 25and∆B = 11.
Then:flatten(S3) = (γ ,η), where

γ = {〈q1,q2,a,{TA}〉,〈q2,q3,b,{TB}〉}
η = {〈q3,q1,c,X〉} , where X= (TA < 25)∧ (TB < 11)
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P: q1 q2

q3

a ; T= 0

Ψ(A)

b Ψ(B)

Ω(
A,

B)c
; (T

<
24)?

A:

s1 s2

s3 s4

s5 s6

s7

0 ; U = 0

0

0 0 ; (U < 10)?

1

1 ; V= 0 ; (U < 20)? 1 ; (V< 5)?0

B:

t1 t2 t3
0 ; V= 0 0 ; (V< 11)?

Figure 4: Parallel timing systemS3. ∆A = 25,∆B = 11.

shown graphically in Figure 5, and

pairs(S) = pairs(A,S)∪pairs(B,S)

= {((q1,q2),(q3,q1))}∪{((q2,q3),(q3,q1))}
= {((q1,q2),(q3,q1)),((q2,q3),(q3,q1))}

q1 q2

q3

a

T=0,TA=0

b TB=0

((TA
<

25)∧
(TB

<
11))

?

c ; (T
<

24)?

Figure 5: The result of flatteningS3: forks and joins ofA andB are shown along with derived timersTA

andTB. Compare with Figure 4.

We can now proceed with a formal definition of consistency fora parallel timing system. Recall that
intuitively, such a system is consistent if the worst case timing scenarios over all child processes will not
invalidate the timing constraints of the parent process— inother words, if the maximum delay between
two states allowed by the child processes never exceeds the corresponding maximum delay allowed by
the timers in the parent process.

Definition 16 (Consistency). Let S= 〈A ,ψ ,ϕ , Ā〉 be a PTS, where

• A = 〈Σ,Q,q0,F, T̄,δ ,γ ,η〉 is a TBA

• flatten(S) = (γ ′,η ′)
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• A
′ = 〈Σ,Q,q0,F, T̄,δ ,γ ′,η ′〉

Then S isconsistentif for all edge pairs((qx,qy),(qm,qn)) ∈ pairs(S) and all paths p= qxqy...qmqn

throughA ,
∆A ′(p)≤ ∆A (p) (16.1)

We conclude this section with a few simple examples, which should help to clarify Definition 16; the
following section gives a more realistic example.

Example 17. S1 is consistent.

Proof. P′, the result of flatteningS1, is shown below, withTA being the derived timer corresponding to
A:

q1 q2

a ; T = 0

TA = 0

b(TA < 10)?

c ; (T < 50)?

Furthermore,pairs(P′) = {((q1,q2),(q2,q1))}, and by observation, all paths throughP′ beginning
with the edge(q1,q2) and ending with the edge(q1,q2) take the formq1(q2)

∗q1. All such pathsp satisfy
inequality 16.1, and thus by definition,S1 is consistent.

Example 18. S3 is not consistent.

Proof. P′, the result of flatteningS3, is shown in Figure 5. Furthermore,

pairs(P′) = {((q1,q2),(q3,q1)),((q2,q3),(q3,q1))}

There are thus two paths against which we need to test inequality 16.1: (q1q2q3q1), and(q2q3q1); the
first of these fails the test:∆P′(q1q2q3q1) = 25,and∆P(q1q2q3q1) = 24.

3 Case Study: Matrix Multiplication

We now turn our attention to a practical application of the concepts discussed so far. Namely, we demon-
strate the use of the formal validation concepts on a simple parallel, MPI-style [13, 15] matrix multipli-
cation kernel, extracted from the larger power-grid analysis application described in [11, 12]. Our kernel
implements a variant of Fox’s algorithm for matrix multiplication [7]. For simplicity, we assume square
matrices, and that the number of columns, rows, and processors are all perfect squares. The algorithm
distributes the task of multiplying two matrices amongst all processors in the system.

We give a simple distributed algorithm for matrix multiplication, and a consistent parallel timing
system for that algorithm. We conclude the section with empirical results— timing measurements taken
on a small, four-node real-time cluster, each node consisting of dual quad-core 2.66Ghz Xeon X5660
processors running the Xenomai RTOS with 48GB RAM. The timing measurements of the PTS, along
with the usual restrictions associated with real-time computation (e.g. no virtual memory or paging,
process scheduling, ensuring minimal variance in execution timings, etc.), are bounded by virtue of
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Xenomai’s real-time process scheduler. The result is a matrix multiplication kernel which provably runs
in under 9 ms per cycle for 128×128 double-precision matrices. We emphasize that we are notclaiming
the speed of the operation to be a groundbreaking result— obviously, this is a relatively small matrix
size, but was so chosen as this is the order of the size required by our targeted application kernel. Rather,
we give these numbers, as well as the PTS, to illustrate theprocessby which we analyze the temporal
interactions between processes, thus showing this delay tobe a provable upper bound.

3.1 Algorithm

Algorithm 1 MatrixMultiply: ComputeC = A×B

p : Number of processors
N : Rank of matrices
1: q←√p
2: while true do
3: dest← 1
4: if self== 0 then {Master process}
5: for i = 0 toq−1 do
6: for j = 0 to q−1 do
7: w← i N

q ,x← (i +1)N
q

8: y← j N
q ,z← ( j +1)N

q

9: X̄← A[w : x][0 : N]
10: Ȳ← B[0 : N][y : z]
11: if i 6= 0 and j 6= 0 then {Master already has these chunks}
12: send(X̄,dest)
13: send(Ȳ,dest)
14: dest← dest+1
15: end if
16: end for
17: end for
18: else{Child processes}
19: X̄← recv(0)
20: Ȳ← recv(0)
21: end if
22: Z̄← locMM (X̄,Ȳ)
23: reduce(Z̄,C)
24: end while

The pseudocode for the algorithm is given in Algorithm 1. Conceptually, to multiply twoN×N
matricesA and B using ap processor cluster, each matrix is divided into segments, which are then
distributed in round-robin fashion amongst the processorsof the cluster. Each processor then performs
a local matrix multiplication on its own local submatrices,and the results of these local operations are
aggregated (reduced) to form the matrix productA×B.

Due to space constraints, we will not describe the partitioning in detail; Figure 6 shows the parti-
tioning and distribution of work by Algorithm 1 for a four-processor cluster. In this figure,A,B, andC
are allN×N matrices.A is partitioned into 2 sets ofN2 rows each, andB is partitioned into 2 sets ofN2
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columns each. The master process,p0, computes the local productA1×B1, and writes the result toC1.
p0 then sends submatricesA1 andB2 to p1, who then computes their product, writing the result toC2.
Similarly, p2 receives and computesC3 = A2×B1, andp3 receives and computesC4 = A2×B2.

The algorithm proceeds as follows: the master process executes lines 5 through 17, which partition
A andB into submatrices (lines 7–10), and send these parts out to the respective child processes (lines
12–13). Conversely, the child processes execute lines 19–20, which receive the submatrices assigned
by the master process. Lines 22–23 are run by all processes, including the master process (which, in
this case, participates in the task of matrix multiplication as well). Line 22 performs the local operation,
line 23 writes the local result to the appropriate location in C.The entire process then repeats indefinitely,
as given by thewhile loop (lines 2 and 24).

A B C

× =
A1

A2

B1 B2

C1 C2

C3 C4

Figure 6: Partitioning and distribution of matrix multiplication by Algorithm 1 across a four processor
cluster.

3.2 Parallel Timing System

Figure 7 shows a parallel timing system for Algorithm 1 across a four processor cluster, consisting of
the TBAPMM, which models the master process, and a child TFAAMM , modeling instances of the child
processes. Specific events have been elided from the diagramin this case, since events in this case always
represent transitions between statements.

3.2.1 Parent

States in the parent automatonP are prefixed with a ‘P’, followed by the line number as given inAlgo-
rithm 1. For example,P3 corresponds to the state of the parent process as it is executing line 3.

Additionally, lines 12 and 13 each beget three separate states— parameterized on the values of the
loop induction variablesi and j— and are labeled accordingly. As is commonly the case in WCET
analysis, unrolling the loop nest in this fashion is necessary in order to obtain a strict upper bound on the
number of iterations and, consequently, the total execution time, of the loop nest.

P forms, in this case, a simple cycle. The cycle starts at stateP3, and steps sequentially through the
steps (states) of the algorithm. Namely, the parent processstarts at line 3 (i.e., stateP3), and proceeds
sequentially through lines 4 (stateP4), and eventually to line 12 (P12i=0

j=1). The delay between the initial-

ization (stateP3) and the first send (P12i=0
j=1) is bounded by a timer,Tsetup1 (the idea being that this is the

delay incurred by the time to “set up” the first send). Execution then proceeds to line 13 (P13i=0
j=1); the

delay along this transition represents the time to send the first chunk to the respective child process, and
is bounded by timerTsend1. At this point, execution proceeds to line 14 (P14i=0

j=1). Along this transition,
there are two items to note: first, the time to process the second send is bounded by the timerTsend2, and
second, the child process has now been sent the data it needs,and consequently,A1 is forked. Execution
proceeds similarly through the next six states, representing the unwound iterations of the loop nest. Child
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processA2 is similarly forked on the transition fromP13i=1
j=0 to P14i=1

j=0, andA3 on the transition from
P13i=1

j=1 to P14i=1
j=1. Execution then proceeds through lines 22 (stateP22) and 23 (P23). The duration

of the local matrix multiplication operation (line 22) is bounded by the timerTMM , and that through the
reduce operation (line 23) by the timerTreduce. Additionally, the transition fromP23 back toP3 waits for
(joins with) all child processes to complete before proceeding.

3.2.2 Child

In this case, the child processes are modeled by the TFAA. Nomenclature is analogous to that ofP:
states inA are prefixed with anA, followed by the corresponding line number from Algorithm 1.

The child process starts at line 18 (stateA18). The process then proceeds to receive the first block
of data (line 19, stateA19). The time to process the receive is bounded by timerTrecv1. Execution
proceeds to receive the second block of data (line 20, stateA20). The time to process this second receive
is bounded byTrecv2. Execution proceeds next to the local matrix multiplication (line 22, stateA22);
the time spent on this operation is bounded by timerTlocMM. Finally, execution proceeds to the data
writeback (line 23, stateA23); the time spent on this operation is bounded by timerTreduce.

Theorem 19. SMM is consistent.

Proof. Let flatten(SMM) = (γ ′,η ′), with P′MM = 〈Σ,Q,q0,F, T̄,δ ,γ ′,η ′〉. By definition, pairs(SMM) =
{(e1,e4),(e2,e4),(e3,e4)}, where

e1 = (P13i=0
j=1,P14i=0

j=1) e2 = (P13i=1
j=0,P14i=1

j=0)

e3 = (P13i=1
j=1,P14i=1

j=1) e4 = (P23,P3)

By observation, there are three paths which we must consider:

p1 = (P13i=0
j=1P14i=0

j=1...P23P3)

p2 = (P13i=1
j=0P14i=1

j=0...P23P3)

p3 = (P13i=1
j=1P14i=1

j=1...P23P3)

The rest of the proof follows by enumeration:

(∆P′MM
(p1) = 6.1) < (∆PMM(p1) = 8.1)

(∆P′MM
(p2) = 6.1) < (∆PMM(p2) = 7.3)

(∆P′MM
(p3) = 6.1) < (∆PMM(p3) = 6.5)

Finally, we note that the worst case delay along one iteration of the algorithm is 8.9 ms. This follows
from the observation that the parent automatonP takes the form of a simple cycle with no unbound
segments (i.e., subpaths which are not constrained by any timer). Specifically,P consists of consecutive
pairs of segments, each constrained by pairs of timers. Consequently, we can derive an upper bound
for a single iteration of the algorithm by summing the boundsof all of the timers, yielding the specified
upper bound. Combined with Theorem 19, which ensures that the timing of the child processes does not
invalidate this bound, we are left with a cyclic, parallel, time-bounded matrix multiplication kernel.
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Figure 7: Parallel timing systemSMM for Algorithm 1 across a four processor cluster. Events havebeen
elided for the sake of clarity. Upper bounds on timer constraints correspond to delay measurements
taken over our implementation; times are given in milliseconds. Minimal variance from these bounds is
ensured to the extent provided by the underlying RTOS.
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4 Concluding Remarks

We conclude with a few closing remarks. We have presented a formal system for modeling the temporal
properties of a restricted class of real-time parallel systems, with a simple example of an application
kernel. As is usually the case with real-time systems, loopsneed to be unrolled, bounding the number
of iterations, in order to obtain an upper bound on the total execution time of the loop. Algorithm 1
(intentionally) distills to a relatively simple PTS, due tothe basic structure of the control flow graph of
both the parent and child processes; more complex examples are of obvious interest for future work.
Similarly, the model in Figure 7 in our case was derived manually— in this case, a relatively simple
task. More complex examples can certainly prove to be more ofa challenge, and automated tools for this
task are desirable. One possible approach for such automation would be compiler-driven, whereby users
could specify to the compiler (via#pragmas, for instance), events of interest, and the compiler could
proceed to output the appropriate annotated control flow graph.

We assume timing behavior is consistent across all child processes, although if there were to be sig-
nificant variance across child processes (e.g. heterogeneous or NUMA architectures) we could account
for such behavior using different child TFAs.

Additionally, we have laid out several interesting open questions which arise out of the analysis of
our relatively straightforward formulation: what is the complexity of computing the worst case delay
along a single path of a TFA (TBA), and through a TFA (TBA) in general? Up to this point, we have
only considered conjunctions of maximum constraints; how does this change in the presence of a more
generalized constraint syntax (c.f. [1])?

We have largely been working with the SPMD execution model paradigmatic of many MPI-type
programs. It would be interesting to investigate temporal models for other parallel models (e.g. OpenMP)
as well. Lastly, our application kernel distills to a relatively simple set of automata. More complex
examples are certainly of interest, and are on the horizon for future work.
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