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Physical systems can fail. For this reason the problem of identifying and reacting to faults has
received a large attention in the control and computer science communities. In this paper we study the
fault diagnosis problem for hybrid systems from a game-theoretical point of view. A hybrid system
is a system mixing continuous and discrete behaviours that cannot be faithfully modeled neither
by using a formalism with continuous dynamics only nor by a formalism including only discrete
dynamics. We use the well known framework of hybrid automatafor modeling hybrid systems, and
we define a Fault Diagnosis Game on them, using two players: the environment and the diagnoser.
The environment controls the evolution of the system and chooses whether and when a fault occurs.
The diagnoser observes the external behaviour of the systemand announces whether a fault has
occurred or not. Existence of a winning strategy for the diagnoser implies that faults can be detected
correctly, while computing such a winning strategy corresponds to implement a diagnoser for the
system. We will show how to determine the existence of a winning strategy, and how to compute it,
for some decidable classes of hybrid automata like o-minimal hybrid automata.

1 Introduction

In modern complex systems continuous and discrete dynamicsinteract. This is the case of wide manu-
facturing plants, agents systems, robotics and physical plants. This kind of systems, called hybrid in their
behaviour, need a specific formalism to be analysed. In orderto model and specify hybrid systems in a
formal way, the notion ofhybrid automatahas been introduced [2, 22]. Intuitively, a hybrid automaton
is a “finite-state automaton” with continuous variables that evolve according to dynamics characterizing
each discrete state. In the last years, a wide spectrum of modeling formalism and algorithmic techniques
has been studied in the control and computer science communities to solve the problems of simulation,
verification and control synthesis for hybrid systems. Muchscarce attention have been posed to the prob-
lem of dealing with faults. When a hybrid system fail, the failure propagates throughout the system both
in continuous and discrete evolutions. Nevertheless the interaction of continuous and discrete dynamics
leads to the need of studying new theories for fault tolerance.

A fault is a deviation of the system structure or the system parameters from the nominal situation [6].
This implies that after the occurrence of a fault the system will have a behaviour which is different from
the nominal one. HenceFault Toleranceis the property of reacting to faults. In particular the analysis
of fault tolerance consists in establishing if a given system is still able to achieve its tasks after the
occurrence of a given fault, whereas the synthesis of fault tolerance resides in providing a given system
the tools to react to a given faulty situation. The fault tolerance problem can be divided in two tasks: fault
detection and isolation (FDI) and control redesign. FDI produces a diagnostic result including detection
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and location of the fault, and if possible an estimate of the dimensions of the fault. In this paper we
concentrate our attention to the problem of fault detectionand isolation for hybrid systems.

Fault tolerance and fault tolerant systems have been studied by the control community since the
late ’70s, as in [16] where fault detection for chemical processes is introduced, and later in [25]. One
of the first surveys on fault detection is [17], which is dated1984, and where some methods based on
modelling and estimation are introduced. Much later the interesting book [24] collects some results on
Fault Detection and Isolation (FDI) methods. For a completeoutline of the recent improvements in this
field, it is worth citing [26] where a quite new approach to fault detection in industrial (batch) systems is
introduced and [19], an overview on fault tolerant techniques for flight control.

In the computer science community fault tolerance is also known asFault localization and correction,
and it is usually viewed as the problem of finding and fixing bugs in a software program or in a digital
circuit. One of the most systematic approaches in this area is Model Based Diagnosis, where an oracle
provides an example of correct behavior that is inconsistent with the behavior of the faulty system, and
a correct model of the system is usually not necessary [11]. Model based diagnosis can be distinguished
between abduction-based and consistency-based diagnosis. Abduction-based diagnosis [27] assumes that
it is known in which ways a component can fail. Using a set of fault models, it tries to find a component
and a corresponding fault that explains the observation. Consistency-based diagnosis [12, 28] considers
the faulty behavior as a contradiction between the actual and the nominal behavior of the system. It does
not require the possible faults to be known, and it proceeds by dropping the assumptions on the behavior
of each component in turn. If this removes the contradiction, the component is considered a candidate
for correction. More recently, applicability of discrete game theory to fault localization and automatic
repair of programs have been proposed in [18]. In this alternative setting, the specification of the correct
behaviour is given in Linear Temporal Logic and the correction problem is stated as a game, in which
the protagonist selects a faulty component and suggests alternative behaviours.

Not many attempts have been made until now in the field of faultdiagnosis for hybrid systems. This
can be due in first instance to the hard task of state estimation in this kind of systems. Indeed to know
if a fault has occurred it has to be detected if the system is behaving in an unusual way, that is based on
the knowledge of the state in which the system is working. When dealing with hybrid systems a state
estimator must provide both the continuous and the discretestate. The accomplishment of this task is
generally difficult because of the coupling of the two dynamics.

Among the first methods for fault detection of hybrid systemsit is worth citing the ones presented
in [23] and [29]. These two methods are quite different, because they are based on opposite models of
hybrid systems. The first one deals with mixed logical dynamical (MLD) systems, and mainly with faults
on the continuous dynamics, whereas the second one uses quantised systems, then it deals mainly with
the discrete part. The method introduced in [13] presents some results based on Hybrid Input/Output
Automata [21] and extends the theory of diagnosability for discrete events systems to the hybrid case.
As usual in this kind of discrete event approach to hybrid systems, the two dynamics are kept separated,
which means that the diagnoser has to first check if some faulthas occurred in the current (discrete)
mode, then to check the continuous dynamics inside the mode,finally a supervisor will decide which
kind of fault has occurred and where. Nevertheless the diagnosability is tested on the hybrid dynamics,
using the notion on hybrid traces.

In this paper we choose to start from the modeling framework of [21], where Hybrid Automata
assume a distinction between internal and external actionsand variables. We add faults to this model, by
using a distinguishedfault action. This is not a restrictive assumption, since every kind of fault can be
modeled as an internal action of an automaton, supposing thefault action leads from a nominal state to a
faulty one in the system. We assume that after a fault the system remains in its faulty situation and never
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recovers.
We choose to use game theory applied to fault diagnosis of hybrid systems because it allows us not

to split the continuous and the discrete behaviours. A hybrid game is a multiplayer structure where the
players have both discrete and continuous moves and the gameproceeds in a sequence of rounds. In
every round each player chooses either a discrete or a continuous move among the available ones [30].
Hybrid games has been successfully applied to solve the controller synthesis problem for timed [4] and
hybrid automata [7, 15], and to the fault diagnosis problem for timed automata [9]. In our setting we
model the fault diagnosis problem as a game between two players, the environment and the diagnoser.
The environment controls the evolution of the system and chooses whether and when a fault occurs. The
diagnoser observes the external behaviour of the system andannounces whether a fault has occurred or
not. Existence of a winning strategy for the diagnoser implies that faults can be identified correctly, while
computing such a winning strategy corresponds to implementa diagnoser for the system. In contrast with
the usual definition of hybrid game, our game is asymmetric, since the environment is more powerful
than the diagnoser, and is under partial observability, since the diagnoser is blind to the value of internal
variables and to the occurrence of internal events. We definetwo notions of diagnosability, and we prove
that the fault diagnosis problem is solvable for the weakestnotion of diagnosability for all classes of
hybrid automata that admit a bisimulation with finite quotient that can be effectively computed.

2 Hybrid Automata with Faults

Throughout the paper we fix thetime axisto be the set of non-negative real numbersR
+. An interval I

is any convex subset ofR+, usually denoted as[t1, t2] = {t ∈ R
+ : t1 6 t 6 t2}. For any intervalI and

t ∈R
+, we defineI + t as the interval{t ′+ t : t ′ ∈ I}.

We also fix a countable universal setV of variables, where every variablev∈ V has a type Type(v)
which defines the domain over which the variable ranges. Elementary types includebooleans, integers
andreals. Given a set of variablesV ⊆ V, avaluationoverV is a function that associate every variable
in V with a value in its type. We often refer to valuation asstates, and we denote them asx,y,z, . . .. The
set Val(X) is the set of all valuations overX. Given a valuationx and a subset of variablesY ⊆ X, we
denote therestriction of x to Y asx|Y. The restriction operator is extended to sets of valuationsin the
usual way.

A notion that will play an important role in the paper is the one of trajectory. A trajectory over a set
of variablesX is a functionτ : I 7→ Val(X), whereI is a left-closed interval with left endpoint equal to 0.
With dom(τ) we denote the domain ofτ , while with τ .ltime (the limit timeof τ) we define the supremum
of dom(τ). Thefirst point of a trajectory isτ .fval = τ(0), while, when dom(τ) is right-close, thelast
point of a trajectory is defined asτ .lval = τ(τ .ltime). We denote withTrajs(X) the set of all trajectories
overX. Given a subsetY ⊆ X, therestrictionof τ toY is denoted asτ |Y and it is defined as the trajectory
τ ′ : dom(τ) 7→ Val(Y) such thatτ ′(t) = τ(t)|Y for everyt ∈ dom(τ).

A trajectory τ ′ is a prefix of another trajectoryτ if and only if τ ′.ltime6 τ .ltime andτ ′(t) = τ(t)
for every t ∈ dom(τ ′). Conversely, we say thatτ ′ is a suffix of τ if there existst ∈ R

+ such that
τ ′.ltime= τ .ltime− t andτ ′(t ′) = τ(t ′+ t) for everyt ′ ∈ dom(τ ′). Given two trajectoriesτ1 andτ2 such
thatτ1.lstate= τ2.fstate, their concatenationτ1 · τ2 is the trajectory with domain dom(τ1)∪ (dom(τ2)+
τ1.ltime) such thatτ1 ·τ2(t) = τ1(t) if t ∈ dom(τ1), τ1 ·τ2(t) = τ2(t − τ1.ltime) otherwise. We extend the
concatenation operation to countable sequences of trajectories in the usual way.

We model hybrid systems with faults by using the formalism ofHybrid Automata (HA) as defined by
Lynch, Segala, and Vandraager in [21], enriched with a distinguishedfault action, and with a partition of
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the state space into faulty and non-faulty states. We assumea single type of faults for simplicity reasons.
However, all the results presented in the paper can be easilygeneralized to a finite number of faults.

Definition 2.1. A Hybrid Automaton with Faultsis a tupleA= 〈W,X,Q,Qf ,Θ,E,H, f ,D,T〉, where:
• W and X are two finite sets ofexternaland internalvariables, disjoint from each other. We define

V =W∪X;
• Q⊆ Val(X) is the set ofstates;
• Qf ⊂ Q is the set offaulty states. We define Qn the set ofnon-faulty statessuch that Q= Qn∪Qf

and Qn∩Qf = /0.
• Θ ⊆ Qn is a nonempty set ofinitial states;
• E and H are two finite sets ofexternaland internalactions, disjoint from each other. We define

A= E∪H;
• f ∈ H is a distinguishedfault action;
• D ⊆ Q×A×Q is the set ofdiscrete transitionsrespecting the following properties:

D1 for everyx ∈ Qn, there existsx′ ∈ Qf such that(x, f ,x′) ∈ D;
D2 for every(x, f ,x′) ∈ D, x ∈ Qn andx′ ∈ Qf ;
D3 for every(x,a,x′) ∈ D such that a6= f , x ∈ Qf iff x′ ∈ Qf ;

• T is a set of trajectories on V. Letτ .fstate= τ .fval|X and τ .lstate= τ .lval|X, if τ closed: we
requireT to respect the following properties:
T1 faulty state invariance: for everyτ , eitherτ(t)|X ∈ Qf for every t∈ dom(T), or τ(t)|X ∈ Qn

for every t∈ dom(T);
T2 prefix closure: for everyτ ′ prefix ofτ , τ ′ ∈ T;
T3 suffix closure: for everyτ ′ suffix ofτ , τ ′ ∈ T;
T4 concatenation closure: for every (possibly infinite) sequence of trajectoriesτ0,τ1,τ2, . . . ∈ T

such thatτi .lstate= τi+1.fstate, the concatenationτ0 · τ1 · τ2 · . . . ∈ T;

ConditionD1 implies that a fault can occur at any time of the evolution. ConditionsD2 andD3 implies
that the only discrete action that can switch between non-faulty and faulty states is the fault actionf ,
while conditionT1 implies that trajectories cannot switch between faulty andnon-faulty states. Condi-
tionsT2, T3, andT4 express some natural closure properties onT.

Notice that, following the same approach as Lynch, Segala, and Vandraager, we have defined the state
of a Hybrid Automaton with Faults to depend only on the valuesof the internal variablesX. However,
the choice of the set of trajectoriesT can constrain the admissible values for the external variables inW.
For this reason, we define the set ofextended statesasS= {v ∈ Val(V)|∃τ ∈ T s.t. τ .fval= v}. By T1
we have thatS|X = Q, and thus the definition of extended states is sound. The set of faulty extended
states Sf and the set ofnon-faulty extended states Sn can be defined in a similar way.

Given a set of variablesV and a set of actionsA, a (V,A)-sequenceis a possibly infinite sequence
α = τ0a1τ1a2τ2 . . . such that

1. τi is a trajectory onV, for everyi > 0,
2. ai is an action inA, for everyi > 0,
3. if α is finite then it ends with a trajectory, and
4. if τi is not the last trajectory ofα , then dom(τi) is right-closed.

If V ′ ⊆ V and A′ ⊆ A, then the(V ′,A′)-restriction of α (denotedα |(V ′,A′) is the (V ′,A′)-sequence
obtained by first projecting all trajectories ofα on the variables inV ′, then removing the actions not in
A′, and finally concatenating all adjacent trajectories.(V,A)-sequences are used to give the semantics of
Hybrid Automata in terms ofexecutionsandtraces.
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Definition 2.2. An executionof a Hybrid AutomatonA from a statex ∈ Q is a (V,A)-sequenceα =
τ0a0τ1a1τ2a2 . . . such that:

1. everyτi is a trajectory inT;
2. τ0.fstate= x;
3. if τi is not the last trajectory inα , thenτi .lstate

a
−→ τi+1.fstate, with a∈ A.

The correspondingtrace, denoted trace(α), is the restriction ofα to external variables and external
actions.

We say that an executionα = τ0a0τ1a1τ2a2 . . . is faulty if for somei > 0, ai = f . An executionα is
maximalif it starts from a state inΘ and either it is infinite or its last trajectoryτn is such that(i) there
exists no trajectoryτ ′ ∈ T such thatτn is a prefix ofτ ′, and(ii) there exists no discrete transition(x,a,x′)
with x = τn.lstate. Moreover, we say that an executionα is progressiveif it is infinite and it contains an
infinite number of occurrences of external actions. Given a Hybrid AutomatonA, we denote byExec(A)
the set of all maximal execution ofA, and byTraces(A) the set of all maximal traces ofA, that is, the
set{trace(α) : α ∈ Exec(A)}. A is progressiveif all executions inExec(A) are progressive.

We say that a hybrid automaton with faults isdiagnosableif (maximal) faulty executions can be
distinguished from non-faulty ones by looking at the corresponding traces.

Definition 2.3 (Diagnosability). We say that a Hybrid Automaton with FaultsA = 〈W,X,Q,Qf ,Θ,E,
H, f ,D,T〉 is diagnosableif for any two maximal executionsα1,α2 ∈ Exec(A), if α1 is faulty then either
α2 is faulty or trace(α1) 6= trace(α2).

The above definition of diagnosability is very general, and can be applied to a large class of faults,
involving both the continuous and the discrete dynamics of the system. However, solving the fault-
diagnosis problem can be very complex, if not impossible at all, under this definition.

In this paper we consider a weaker notion of diagnosability,that we calltime-abstract diagnosabil-
ity, for which the fault-diagnosis problem can be solved in a simpler way, leaving the treatment of the
stronger diagnosability notion for a subsequent paper. We assume the system to be progressive, and we
define the diagnoser as some kind of finite-state digital device, that monitors the evolution of the sys-
tem by reacting to external actions and by measuring the values of external variables with a fixed and
finite precision. We formally define the latter restriction by introducing the notion ofobservationfor the
external variables.

Definition 2.4. Given the set of external variables W of a hybrid automaton with faultsA, an observa-
tion of W is any finite partitionO = {O1, . . . ,O2} of Val(W). We call the elements Oi of the partition
observablesfor W.

In this setting, we say that a progressive system is time-abstract diagnosable if faults can be deter-
mined only by looking at the observables and at the occurences of external discrete actions, without
considering the delays and the trajectories between them. To formally define such a notion, we first need
to defineuntimed observation tracesfor hybrid automata.

Definition 2.5. Given a traceβ = τ0a0τ1a1τ2a2 . . . of a Hybrid AutomatonA, and an observationO for
W, we define the correspondinguntimed observation traceas the sequence untime(β )=O0a0O1a1O2a2 . . .
such thatτi .fval∈Oi for each i> 0. Given an executionα ofA, we define utrace(α) = untime(trace(α)).

Definition 2.6 (Time-abstract diagnosability). We say that a Hybrid Automaton with FaultsA= 〈W,X,
Q,Qf ,Θ,E,H, f ,D,T〉 is time-abstract diagnosableif it is progressive and, for any two maximal execu-
tionsα1,α2 ∈ Exec(A), if α1 is faulty then eitherα2 is faulty or utrace(α1) 6= utrace(α2).



242 A Game-Theoretic approach to Fault Diagnosis of Hybrid Systems

Sinceutrace(α1) 6= utrace(α2) implies thattrace(α1) 6= trace(α2), a hybrid automaton that is time-
abstract diagnosable is also diagnosable, but the conversedoes not necessarily hold. Indeed, any fault
that do not change the sequence of discrete actions performed by the system, but only the delays or the
continuous trajectories between them is not time-abstractdiagnosable.

3 The Fault Detection Game

In this section we introduce the key notion ofFault Detection Game(for time-abstract fault diagnosis),
played on a Hybrid Automaton with FaultsA by two players, theEnvironmentand theDiagnoser. A
position in the game is a pair(v,d) ∈ Val(V)×{yes,no}, such thatv is an extended state ofA. Given a
current position(v,d), we distinguish between the following kind of moves:

1. Diagnoser move: the Diagnoser chooses an answerd′ ∈ {yes,no}. The game continues from

position(v,d′) with an Environment move, and we denote this by(v,d) d′

−→ (v,d′).

2. Environment move: the Environment chooses one of the following possible moves

(a) two valuationsv′,v′′ ∈ Val(V), a trajectoryτ ∈ T, and an external actione∈ E such that
τ .fval= v, τ .lval = v′′, andv′′|X e

−→ v′|X. The game continues from position(v′,d) with a
Diagnoser move, and we denote this by(v,d) e

−→ (v′,d);
(b) two valuationsv′,v′′ ∈ Val(V), a trajectoryτ ∈ T, and an internal actionh ∈ H such that

τ .fval= v, τ .lval = v′′, andv′′|X h
−→ v′|X. The game continues from position(v′,d) with an

Environment move, and we denote this by(v,d) h
−→ (v′,d).

Notice that the Fault Detection Game is is asymmetric: in ourframework the environment is more
powerful than the diagnoser, since it can choose the continuous trajectory to follow and prevent the
diagnoser to move by choosing an internal action. Moreover,the game is also under partial observability:
as formally stated in the following, the diagnoser is blind to the value of internal variables and to the
occurrence of internal events.

Definition 3.1 (Run of the Fault Detection Game). A run of the game is an infinite sequenceρ =
(v0,d0)

m1−→ (v1,d1)
m2−→ . . . such that:

1. d0 = no,
2. m1 is a diagnoser move,
3. for every i> 1, (vi−1,di−1)

mi−→ (vi−1,di−1) is a valid move of the game;
4. for every i> 1, mi is a diagnoser move if and only if mi−1 is an environment move with mi−1 6∈ H.

A run iswinning for the diagnoser if one of the two conditions hold:
• either for each i> 1, mi 6= f and, for each j> 1, dj = no, or
• there exists i> 1 such that mi = f and j> i such that dj = yes.

Given an observationO for the external variables, the correspondingobservationof a run ρ is a
sequenceobs(ρ) = (O0,d0)

m1−→ (O1,d1)
m2−→ . . . obtained fromρ by replacing every maximal sequence of

environment moves(v j ,d j)
mj+1
−−→ . . .

mj+k
−−→ (v j+k,d j+k) with (v j ,d j)

mj+k
−−→ (v j+k,d j+k) and by restricting

every position(v j ,d j) to (O j ,d j), whereO j is the unique observable such thatv j |W ∈ O j . We denote by
Obsf (A) the set of finite observations for the Fault Detection Game played onA. A strategy is a function
that tells the Diagnoser which move to choose given a finite observation.

Definition 3.2. A strategyis a partial functionλ from Obsf (A) to {yes,no}.
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The strategy tells the diagnoser what answer to give at the current moment. Letρ be a run of the
game,σ = obs(ρ) and letσi = (O0,d0)

m1−→ . . .
mi−→ (Oi ,di) . . . be the prefix ofσ of length i. We say

that ρ is consistent with the strategyλ when, for alli, if λ (σi) = d then eithermi+1 = d or mi+1 is an
environment move. A strategyλ is winning from a statex ∈ Q if for all v such thatv|X = x, all runs
starting in(v,no) compatible withλ are winning. The set ofwinning statesis the set of states from
which there is a winning strategy.

We can now define the fault diagnosis problems we will study.

Definition 3.3 (Time-abstract Diagnosability in a classC of automata). Given a hybrid automaton with
faultsA ∈ C, determine whether there exists a winning strategy in the Fault Detection Game played on
A from the initial statesΘ.

Definition 3.4 (Time-abstract Diagnoser synthesis in a classC of automata). Given a hybrid automaton
with faultsA ∈ C, determine whether there exists a winning strategy in the Fault Detection Game played
onA from the initial statesΘ, and compute such a strategy if possible.

4 Computing Strategies

In this section we will show how to solve the Time-abstract Diagnosability and the Time-abstract Diag-
noser synthesis problems for some relevant classes of hybrid automata, exploiting the notion of bisimu-
lation. Such a key notion has been introduced in many fields with different purposes (for instance, van
Benthem proposed it as an equivalence principle between structures [5]). In our setting, we use bisimula-
tion as an equivalence principle between states of a hybrid automaton. Roughly speaking, two extended
statesv andv′ arebisimilar if every behaviour that starts fromv can be matched by starting fromv′ and
vice versa.

Definition 4.1 (Time-abstract bisimulation). Given a Hybrid Automaton with FaultsA = 〈W,X,Q,
Qf ,Θ,E,H, f ,D,T〉, a time-abstract bismulationis an equivalence relation∼⊆ S×S such that for every
v1,v′1,v2 ∈ S, the following two conditions are satisfied:

∀a∈ A,
(

v1 ∼ v′1 andv1|X
a
−→ v2|X

)

⇒
(

∃v′2 ∈ S s.t.v2 ∼ v′2 andv′1
a
−→ v′2

)

, and

∀τ ∈ T,
(

v1 ∼ v′1 andv1 = τ .fval andv2 = τ .lval
)

⇒
(

∃τ ′ ∈ T,v′2 ∈ S s.t.v2 ∼ v′2 andτ ′.fval= v′1 andv′2 = τ .lval
)

.

Given a hybrid automatonA and a time-abstract bisimulation∼⊆ S×S, we say that two extended
statesv,v′ ∈ Sarebisimilar if and only if v ∼ v′. Theequivalence class ofv, denoted byJvK∼ is defined
as the setJvK∼ = {v′ ∈ S|v′ ∼ v} (in the following, we will omit the∼ subscript when clear from the
context). A time-abstract bisimulation naturally inducesa partition ofS into equivalence classes, called
bisimulation quotient ofA.

Definition 4.2 (Bisimulation quotient). Given a Hybrid Automaton with FaultsA and a time-abstract
bisimulation∼⊆ S×S, thebisimulation quotient ofA under∼ is defined as the set S/∼ = {JvK∼|v ∈ S}.

A bisimulation∼ hasfinite indexif the number of equivalence classes inS/∼ is finite, and ofinfinite
indexotherwise. We say that a classC of hybrid automataadmits a bisimulation with finite quotientif
for everyA ∈ C there exists a time-abstract bisimulation∼ with finite index. We say that such quotient
can beeffectively computedif there exists an algorithm that can compute∼ andS/∼ for everyA ∈ C. In
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the following we concentrate our attention on the classes ofhybrid automata that admits a bisimulation
with finite quotient that can be effectively computed, and wewill prove that the Diagnosability and the
Diagnoser synthesis problems are decidable in this case.

In the case of hybrid automata with faults, we have that the equivalence classes of a bisimulation
respect the partition between faulty and non-faulty states, as formally proved by the following lemma. In
the following, we denote withSf /∼ the set of equivalence classes of the faulty extended statesof A, and
with Sn/∼ the set of equivalence classes of the non-faulty extended states of the automaton.

Lemma 4.3. Given a hybrid automaton with faultsA and a time-abstract bisimulation∼⊆ S×S, we
have that for everyv ∈ Sn andv′ ∈ Sf , v 6∼ v′.

Proof. Suppose by contradiction that there existsv1 ∈ Sn andv′1 ∈ Sf such thatv1 ∼ v′1. By D1 we have
that there must existsv2 ∈Sf such that(v1|X, f ,v2|X)∈D. By the definition of bisimulation, this implies
that there existsv′2 ∈ Ssuch that(v′1|X, f ,v′2|X) ∈ D, in contradiction withD2, sincev′1|X ∈ Qf .

Given an observationO of Val(W), we say that a bisimulation∼⊆ S×S respectsO if for every
v,v′ ∈ S, v ∼ v′ implies thatv|W andv′|W belong to the same observable ofO. From now on we assume
that∼ respects the observation of external variables.

We are now ready to define the key notion ofstate estimatorof a hybrid automaton with faults.
Intuitively, a state estimator is a finite automaton that given an untimed observation traceβ of A, provides
the set of states that can be reached byA under all possible executions compatible withβ .

Definition 4.4 (State estimator). Given a hybrid automaton with faultsA = 〈W,X,Q,Qf ,Θ,E,H, f ,D,
T〉, an observationO for the external variables, and a bisimulation with finite index∼⊆ S×S that
respectsO, we define thestate estimator ofA as the transition systemE= 〈2Q/∼ ,Π,∆〉 such that:
E1 2S/∼ is the powerset of S/∼;
E2 Π ⊆ 2S/∼ is the set of initial states defined as

Π = {S ∈ 2S/∼ |∃O∈ O s.t.∀v ∈ S,(v|X ∈ Θ∧v|W ∈ O)⇒ JvK ∈ S};
E3 ∆ : 2S/∼ ×A×O 7→ 2S/∼ is the transition function such that∆(S,a,O) = S′ iff for all finite executions

α = τ0a0 . . .anτn ofA,
(an = a∧ Jτ0.fvalK ∈ S∧utrace(α) = O0aO)⇒ Jτn.fvalK ∈ S′.

The state estimator is a deterministic automaton, since thetransition function associate a unique
successor state to every pair of input symbols(a,O). Hence, with a little abuse of notation, we can
define the function∆ on untimed observation traces as follows. Given an untimed observation trace
β = O0a0O1a1 . . . and a stateS ∈ 2S/∼ , we define∆(S,β ) is the sequence of estimator statesS0S1 . . .
such that(i) S0 = S, and(ii) Si = ∆(Si−1,ai−1,Oi) for all i > 1. Moreover, we define∆(β ) = ∆(S0,β ),
whereS0 is the unique state inΠ such thatS0 = {JvK ∈ S/∼ s.t. v|X ∈ Θ andv|W ∈ O0}. The following
lemma proves that the state estimator is correctly defined, and can be seen ad a consequence of the fact
that time-abstract bisimulation preserves traces.

Lemma 4.5. Given a hybrid automaton with faultsA, and a state estimatorE for it, let β be a finite
untimed observation trace ofA, and∆(β ) = S0S1 . . .Sn. Then, for everyJvK ∈ S/∼, JvK ∈ Sn if and only
if there exists a finite executionα = τ0a0τ1a1 . . .am−1τm such that utrace(α) = β , τ0.fstate∈ Θ, and
τm.fval∈ JvK.

Proof. Let β = O0a0O1a1 . . .an−1On be a finite untimed observation trace ofA. We prove the lemma by
induction on the length ofβ .

If n= 0 thenβ = O0 and the claim trivially follows from the definition of∆(β ).
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If n> 0, letβn−1 =O0a0O1a1 . . .an−2On−1, and suppose by inductive hypothesis that the claim holds
for βn−1. Now, let α = τ0a0 . . .am−1τm an execution ofA such thatutrace(α) = β andτ0.fstate∈ Θ.
By the definition of untimed execution trace, letαn−1 = τ0a0 . . .al−1τl be the prefix ofα such that
utrace(αn−1) = βn−1, and let∆(βn−1) = S0 . . .Sn−1. By inductive hypothesis, we have thatJτl .fvalK ∈
Sn−1. Consider now the finite executionα ′ = τl al . . .am−1τm such thatα = αn−1α ′. By the definition of
untimed observation trace, we have thatutrace(α ′) = On−1an−1On and thus, by the definition of∆, that
Jτm.fvalK ∈ ∆(Sn−1,an−1,On) = Sn. To prove the converse implication, letJvK ∈ Sn. By definition of∆,
this implies that there exists a finite executionγ = τ0a0 . . .am−1τm such thatJτ0.fvalK∈ Sn−1, utrace(γ) =
On−1an−1On, andτm.fval ∈ JvK. By inductive hypothesis, we have that there exists a finite execution
γ ′ = τ ′

0a′0 . . .a
′
l−1τ ′

l such thatutrace(γ ′) = βn−1, τ ′
0.fstate∈ Θ, and τ ′

l .fval ∈ Sn−1. Hence, the finite
executionζ = τ ′

0a′0 . . .a
′
l−1τ0a0 . . .am−1τm is a valid execution ofA respecting the desired properties.

Given the partition of the equivalence classes inS/∼ between faulty and non-faulty ones, we can
distinguish between three different kinds of statesS ∈ 2S/∼ of the state estimator:

faulty states such thatS⊆ Sf /∼,
non-faulty states such thatS⊆ Sn/∼, and
indeterminate states that contains both faulty and non-faulty equivalence classes.

It turns out that there exists a winning strategy for the diagnoser on the Fault Detection Game played on
A if and only if there are no loops of indeterminate states reachable from the initial states of the estimator.

Theorem 4.6. Given a hybrid automaton with faultsA, an observationO for the external variables, and
a bisimulation with finite index∼⊆ S×S that respectsO, we have that there exists a winning strategy
for the diagnoser in the Fault Detection Game played onA from the initial satesΘ if and only if there
are no loops of indeterminate states reachable from the initial statesΠ of the state estimator forA.

Proof. Let E= 〈2Q/∼ ,Π,∆〉 be the state estimator forA, and suppose that there are no loops of indeter-
minate states reachable from the initial statesΠ. Then we show how to define a winning strategy for the
diagnoser in the Fault Detection Game played onA from the initial statesΘ. Given a finite observation
for the fault diagnosis gameσ = (O0,d0)

m1−→ (O1,d1)
m2−→ . . .

mn−→ (On,dn), we define the corresponding
untimed observation traceutrace(σ) = O0a0 . . .al−1Ol by removing all diagnoser moves and ignoring
thedi component of the positions. Let∆(O0a0 . . .al−1Ol ) = S0 . . .Sl . We define the strategyλ on σ as
follows:

λ (σ) =

{

yes if Sl is a faulty state ofE
no otherwise

Now, let ρ = (v0,d0)
m1−→ (v1,d1)

m2−→ . . . be an infinite run of the game compatible withλ , let α =
utrace(obs(ρ)) = O0a1O1a2 . . . be the corresponding infinite untimed observation trace, and let ∆(α) =
S0S1S2 . . .. Two cases may arise:

• ρ is faulty. Since there are no loops of indeterminate states inE, from Lemma 4.5 we can conclude
that there existsi > 0 such that for everyj > i S j is a faulty state of the estimator. Hence, the
strategyλ is such that there existsk such thatmk = yes, and thusρ is winning for the diagnoser.

• ρ is non-faulty. From Lemma 4.5 we can conclude that allSi are either non-faulty or indeterminate.
Hence, the strategyλ is such thatmi = no for every diagnoser move, andρ is winning for the
diagnoser.

In both cases the diagnoser wins the game, so we can conclude that λ is a winning strategy for the
diagnoser in the Fault Detection Game onA from the initial statesΘ.
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Conversely, suppose that there exists a loop of indeterminate states reachable fromΠ in E. This im-
plies that there exist an indeterminate stateS and two time-abstract observation tracesα =O0a0 . . .an−1On

andβ = Onan . . .am−1Om such that:
1. ∆(S0,α) = S0 . . .Sn is such thatS0 ∈ Π andSn = S, and
2. ∆(Sn,β ) = Sn . . .Sm is such thatSn = Sm = S andSi is an indeterminate state for eachn6 i 6 m.

Now, suppose by contradiction that there exists a winning strategyλ for the diagnoser, and consider the
infinite time-abstract observation traceγ = αβββ . . .. Two cases may arise:

• For every finite prefixγi of γ , λ (γi) = no. By Lemma 4.5, since every state inβ contains a faulty
equivalence class, we have that there exists a faulty execution α of A such thatutrace(α) = γ .
This implies that it is possible to build an infinite faulty run of the game that is winning for the
environment, against the hypothesis thatλ is winning for the diagnoser.

• There exists a finite prefixγi of γ such thatλ (γi) = yes. By Lemma 4.5, since every state inβ
contains a non-faulty equivalence class, we have that thereexists a non-faulty executionαi of A
such thatutrace(αi) = γi . This implies that it is possible to build a run of the game that is winning
for the environment, against the hypothesis thatλ is winning for the diagnoser.

In both cases a contradiction is found, and the thesis is proved.

Let T be a logical theory. If all the components of a hybrid automaton with faultsA are definable in
T, we say thatA is definable inT. Moreover, a class of hybrid automata with faultsC is definable inT if
everyA∈C is definable inT. The previous theorems shows that the state estimator can beused to define a
winning strategy for the diagnoser in the Fault Detection Game. However, it does necessarily implies that
we can compute such a strategy, since the theory used to definethe automata is not necessarily decidable.
Moreover, even whenT is decidable it is not guaranteed that a bisimulation with finite quotient that can
be effectively computed. The following theorem states thatif some conditions on the considered theory
and on the observation of external variables are respected,then Theorem 4.6 provides an algorithmic
solution to the diagnosability and the diagnoser synthesisproblem.

Theorem 4.7. LetT be a decidable theory. LetC be a class of Hybrid Automata with Faults that can be
defined inT and such that for everyA in C, there exists a bisimulation with finite quotient∼ that can
be effectively computed. Then the time-abstract diagnosability problem in the classC is decidable for
every observationO definable inT. Moreover, a winning strategy for the diagnoser can be computed, if
possible.

Proof. To prove that that both the time-abstract diagnosability and the time-abstract diagnoser synthesis
problems are decidable we have to show how to compute a state estimatorE for the automatonA.

First of all, letO be a definable observation for the external variables, and let ∼ a bisimulation with
finite quotient forA. In general, it is not guaranteed that∼ respectsO. However, sinceO is definable
in T, andT is decidable, we can always refine∼ to a finer bisimulation≈ respectingO by using the
bisimulation algorithm given in [10, 14]. Since bothO andS/≈ are finite sets, to prove thatE can be
effectively computed it is sufficient to prove that the the transition relation∆ is computable. Given a state
S of the estimator, an actiona∈ E, and an observableO∈ O, computing the successor state∆(S,a,O)
can be reduced to a reachability problem onA. Since it is known that reachability is decidable for all
classes of hybrid automata for which there exists a bisimulation with finite quotient that can be effectively
computed, then∆ is computable and there exists an algorithm that can build the state estimator forA.

Once that the state estimatorE has been built, we can use it for solving both the time-abstract diag-
nosability and the time-abstract diagnoser synthesis problems as follows.
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• From Theorem 4.6 we know that there exists a winning strategyfor the diagnoser in the Fault
Detection Game if and only if there are no loops of indeterminate states inE. Since the state
estimator is a finite automaton, existence of such loops can be determined by computing a depth-
first visit of E, and thus the time-abstract diagnosability problem is decidable.

• The proof of Theorem 4.6 shows how the state estimator can be used to define a winning strategy
for the diagnoser in the Fault Detection Game. Since the the state estimator can be effectively
computed, we have that such a strategy can be computed.

Hence, both problems are decidable under the considered assumptions.

This decidability results is very general: examples of classes of hybrid automata that respects the
conditions of Theorem 4.7 are Timed Automata [3], Simple Multirate Automata [2], O-minimal Hybrid
Automata [10, 20], and STORMED Hybrid Automata [31]. Hence,for all such classes of systems,
the time-abstract diagnosability problem and the time-abstract diagnoser synthesis problem is decidable.
Moreover, the discovery of more classes of hybrid automata respecting the conditions of the theorem
immediately leads to new classes of systems for which the twofault-diagnosis problems considered in
this paper are decidable.

The complexity of the two problems depends on the size of the bisimulation quotientS/∼: if n
is the number of equivalence classes, then the size of the state estimatorE is exponential inn. Since
computing a depth-first visit on a finite transition system isin LOGSPACE, we have that the time-
abstract diagnosability problem is solvable with polynomial space w.r.t.n. Theorem 4.7 proves that
solving the time-abstract diagnoser synthesis problem corresponds to compute the state estimatorE for
the considered system. Hence, this second problem can be solved using an exponential amount of time
w.r.t. n.

It is worth to notice that for most classes of hybrid automata, like Timed Automata, Initialized Rect-
angular Automata, and of o-minimal systems, like Pfaffian Hybrid Automata, the number of equivalence
classes inS/∼ is exponential in the size of the automaton. Hence, for thoseclasses the time-abstract
diagnosability problem is in EXPSPACE and the time-abstract diagnoser synthesis problem is in 2-
EXPTIME.

5 Conclusions

In this paper we studied the fault-diagnosis problem for hybrid systems from a game-theoretical point of
view. We used the formalism of hybrid automata for modeling hybrid systems with faults and to define
the notions of diagnosability and time-abstract diagnosability. We focused our attention on time-abstract
diagnosability and we defined a Fault Diagnosis Game on hybrid automata with faults between two
players, the environment and the diagnoser. Existence of a winning strategy for the diagnoser implies that
faults can be identified correctly, while computing such a winning strategy corresponds to implementing
a diagnoser for the system. Finally, we shown how to determine the existence of a winning strategy, and
how to compute it, for all classes of hybrid automata definable in a decidable theoryT and such that a
bisimulation with finite quotient can be effectively computed, like timed automata and o-minimal hybrid
automata.

The results presented in the paper can be extended in many directions. First of all, by considering the
stronger notion of diagnosability instead of time-abstract diagnosability. Then, by extending the results
also to undecidable classes of hybrid automata, by exploiting abstraction refinement and approximation
techniques. Finally, in the current framework there is no upper bound on the time that elapses between
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the occurrence of the fault and the detection by the diagnoser. We envision the extension of our approach
to reward and priced hybrid games [1, 8] as a possible way to provide minimal-delay strategies for the
diagnoser.
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