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We consider perfect-information reachability stochasticgames for 2 players on infinite graphs. We
identify a subclass of such games, and prove two interestingproperties of it: first, Player Max always
has optimal strategies in games from this subclass, and second, these games are strongly determined.
The subclass is defined by the property that the set of all values can only have one accumulation point
– 0. Our results nicely mirror recent results for finitely-branching games, where, on the contrary,
Player Min always has optimal strategies. However, our proof methods are substantially different,
because the roles of the players are not symmetric. We also donot restrict the branching of the games.
Finally, we apply our results in the context of recently studied One-Counter stochastic games.

1 Introduction

Two-player turn-based zero-sum stochastic games, simply called “games” in this text, evolve randomly in
discretetransitionsfrom one of countably manystatesto another. The winning condition is some prop-
erty of such infinite evolutions. Each state is either owned by Player Max, Player Min, or it is stochastic,
and has a fixed set, possibly infinite, of available outgoing transitions. The states and transitions define a
game graph, an infinite path in this graph is called arun. The set of runs comes with a product topology
over the discrete state space, i.e., open sets are generatedby sets of runs sharing a common finite prefix.
In stochastic states, the successor is sampled according toa fixed distribution, whereas players choose
successors in states they own, based on the history of the play so far. This induces a probabilistic measure
for Borel-measurable sets of runs in a natural way.

A winning condition is a setW of runs. A run fromW is won by Player Max, the other runs are won
by Player Min (the games are zero-sum). For Borel measurablesetsW, a fixed pair(σ ,π) of strategies
for Player Max and Min, respectively, and an initial state,s, the probability that Max wins is denoted by
P

σ ,π
s [W]. Thevalueof the game ins, denoted byVal(s), is defined as

Val(s) := sup
σ

inf
π
Pσ ,π

s [W] = inf
π

sup
σ

Pσ ,π
s [W] . (1)

The above equality, a consequence of a more general, Blackwell-determinacy result of Martin [12],
implies that for everyε > 0 both of the players have so calledε-optimalstrategies,σε andπε , such that
infπ P

σε ,π
s [W]≥Val(s)−ε , and supσ P

σ ,πε
s [W]≤Val(s)+ε . This may not be true for the case whenε = 0,

where the optimal (i.e., 0-optimal) strategies may not exist for neither of the players.
We consider a stronger notion of determinacy than (1), and call a gamestrongly determinedif for

every states, everyν , 0 ≤ ν ≤ 1, and⊲ ∈ {>,≥} either Player Max has a strategȳσ such that∀π :
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P
σ̄ ,π
s [W]⊲ν , or Player Min has a strategȳπ such that∀σ : Pσ ,π̄

s [W]⋫ ν . DenoteL := supσ infπ P
σ ,π
s [W]

andR:= infπ supσ P
σ ,π
s [W], then if Max has a strategȳσ such that∀π :Pσ̄ ,π

s [W]≥ ν thenν ≤ L. Similarly,
if Player Min has a strategȳπ such that∀σ : Pσ ,π̄

s [W]≤ ν thenν ≥R. By strong determinacy,∀ν :¬(R>
ν > L), thusR≤ L. L ≤ R follows from definitions, thus strong determinacy implies determinacy. On
the other hand, it is easy to see that the existence ofε-optimal strategies for both players implies strong
determinacy for cases where|ν −Val(s)| ≥ 2ε , the players simply use theirε-optimal strategies to win.
This works even forε = 0, thus whenever both players have optimal strategies, the game is strongly
determined (for allν). To sum up the relation between the key three notions: Everygame with a Borel
winning condition is determined in the sense of (1), some of these games are strongly determined, and
some of the strongly determined games are those admitting optimal strategies for both players. Example 1
and [7, Fig. 1] show that both the inclusions are proper. Moreprecisely, in the game from Example 1,
which we show later, Player Min has only one (trivial) strategy, thus the game is strongly determined.
However, there is a stater0, such that for every fixed strategy of Max the probability of winning is
strictly belowVal(r0). The game from [7, Fig. 1], is composed of two halves, one of which is essentially
equivalent to the game in Example 1, and the other is a similargame adopted for Min (infinite branching
needed). As a consequence, neither Player Max in the first half, nor Min in the second half have optimal
strategies. Thus, fixing a strategy of one player first, whichis ε-optimal, the other player may choose an
ε/2-optimal strategy to beat the first player. As a consequence, no player has a winning strategy.

We are especially interested in the situation whenW is an open set, and call such gamesopenas
well. This includes allreachability conditions, whereW is the set of all runs visiting a state from a
distinguished set of target states,T. For reachability, results of [7, 6] imply (see Corollary 1)that Player
Min has always optimal strategies if every state,s, owned by Min has at least one successor,t, such that
Val(s) = Val(t). This is always the case in finitely-branching games, where all states have only finite
number of successors. On the other hand, even in very simple reachability games where every state has
at most 2 successors, Player Max may not have an optimal strategy (cf. Example 1). Our main result
gives a condition sufficient for the existence of optimal strategies for Player Max.

Theorem 1. LetG be an open stochastic game. Player Max has an optimal strategy in all states, if

the set Vε := {Val(s) | s is a state ofG ∧Val(s)≥ ε} is finite for everyε > 0. (∗)

In particular,G is not assumed to be finitely-branching. Condition (∗) is just saying that the set
V := {Val(s) | s is a state} has no accumulation points, or the only such point is 0. It is atrivial task
to construct a game where none of the players owns a single state, i.e., a Markov chain, and where the
setV contains other accumulation points than 0. In Markov chains, however, each player has only one,
trivial, strategy, which must thus be the optimal one. This shows that (∗) is not necessary. However,
there are at least two reasons for which (∗) is interesting: First, we identify a class of recently studied
infinite-state stochastic games which satisfy the assumption of Theorem 1, and for which the existence
of optimal strategies for Max was not known before. This class, properly described later, consists of
games generated by One-Counter automata [3, 2, 4], which satisfy a certain additional property, which
can be tested algorithmically. As a special case, this classinvolves a maximizing variant of Solvency
Games [1].

Second, in Examples 1 and 2, we show games where Player Max lacks optimal strategies. These
games are rather simple, and violate (∗) only “very slightly”, in particular, they (1) are finitely-branching,
and in fact have both the out-degree and in-degree of the gamegraph bounded by 2, (2) do not contain
states of Player Min at all, (3) all transition probabilities in stochastic states are uniformly distributed,
and (4)V has only one accumulation point. This point is 1 in Example 1,and 1/2 in Example 2. In the
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latter case, the accumulation point is approached only fromabove, andV ∩ [0,1/2) = {0}. Thus it is not
possible to weaken the assumption (∗) in Theorem 1 by allowing other accumulation points than 0.

As noted before,both players having optimal strategies implies strong determinacy. But even for
finitely-branching reachability games strong determinacystill holds, although Player Max may not have
optimal strategies, and only Player Min always does [7]. Interestingly, we show here that under (∗),
where Max has optimal strategies, and Min may not have such, strong determinacy survives.
Theorem 2. LetG be an open stochastic game satisfying (∗). ThenG is strongly determined.

Related work and open questions. Blackwell games are more general than our stochastic games,
players there choose their moves simultaneously, not knowing the concurrent choice of the opponent. A
famous determinacy result in the sense of (1) for Blackwell games is given in [12]. Finitely-branching
reachability games have been studied as a theoretical background for some algorithmic results concern-
ing BPA games (i.e., games with graphs generated by stateless pushdown automata) in [7, 6]. Finite-state
reachability stochastic games were studied in [8]. In view of existence of optimal strategies and strong
determinacy, finite-state games are not interesting: optimal strategies always exist there. However, the
precise complexity of associated computational problems for these games is a long-standing and inter-
esting open problem.

Theorem 2 and the results from [7, 6] give us two classes of strongly determined games: games
satisfying (∗), and finitely-branching games, respectively. Neither of these two classes is contained in
the other. The most interesting question in our opinion is whether the following conjecture is true; and if
it is not, for which, as weak as possible, restrictions onW and/orG it becomes true.
Conjecture 1. LetG be a stochastic game, and W a winning condition, such that Player Max (or Player
Min) has an optimal strategy in every state ofG . ThenG is strongly determined.

We do not even know whether the conjecture is true for all games whereW is a reachability condi-
tion. Other open questions include finding new interesting classes of games where one of the players is
guaranteed to have optimal strategies.

Outline of the paper. We briefly formalise the necessary notions, and recall some important known
facts in Section 2. In Section 3 we prove Theorem 1 in the special case of games without Player Min.
Both theorems are then proved in full generality in Section 4. Finally, in Section 5 we briefly explain
what are One Counter games, and apply our results to them.

2 Preliminaries

As noted in the Introduction, we use the simple term “games” for our special kind of games (Definition 2).
Because we do not speak about other games here, we hope the reader will excuse us for this inaccuracy.
Definition 1. A game graph, G= (S,→ ,δ ), has a countable setSof states, partitioned into setsS0, S1,
S2 of stochastic states, states of Player Max, and Player Min, respectively; a countabletransition relation
→ ⊆ S×S such that∀r ∈ S : ∃s∈ S : r→s; and a probability weight functionδ : S0×S→ [0,1] such
that for allr ∈ S0 we have∑r→sδ (r,s) = 1.

A run is an infinite path in a game graph. For a finite pathw, we denote the states it visits by
w(0),w(1), . . . ,w(k), and callk = len(w) the length of w. Run(w) is the set of all runs extendingw.
Unions of sets of the formRun(w) are called open sets, they are open in the product topology over the
discrete spacesS. Closing the set of open sets under complements and countable union defines the set of
(Borel-)measurable sets.



V. Brožek 63

Definition 2. A game, G , is given by a game graph,G, and a Borel-measurable set of runs,W, called the
winning condition. If there is someT ⊆ Sso thatW =

⋃

{Run(w) | w ends inT} thenW is areachability
condition, andG is called areachability game.

A strategy for Player Max is a function assigning to every finite path (called ahistory) ending in a
states∈ S1 a distribution over the successors ofs. Similarly, a strategy for Min is defined for histories
ending inS2. A strategy is memoryless, if it only depends on the last state of the history.

Fixing a pair of strategies,(σ ,π), for Max and Min, respectively, we assign to every finite path, w,
the product,ρσ ,π(w), of weights on the edges alongw given byδ , σ , andπ. Fixing also an initial state,
s, we define a probability measurePσ ,π

s [·] by P
σ ,π
s [Run(w)] := 0 for w not starting ins, Pσ ,π

s [Run(w)] :=
ρσ ,π(w) for w starting ins, and extending this to complement and union to satisfy the axioms of a
probability measure. The uniqueness of this construction is a standard fact, see, e.g., [13, p. 30].

The definition of the value,Val(·), given in (1), has thus been formalised. Forε ≥ 0, a strategy,σ ,
for Max is ε-optimal in a states if P

σ ,π
s [W] ≥ Val(s)− ε for all strategies,π, for Min. The ε-optimal

strategies for Min are defined analogously. We call 0-optimal strategies just optimal.

2.1 Technical Assumptions

Although a game graph, in general, may have an arbitrary structure, we can always transform it to be a
forest, without changing the properties of the game, by keeping track of the history inside the states. More
precisely, given a gameG = (G,W), G= (S,→ ,δ ), consider a gameG ′ = (G′,W′), G′ = (S′, →֒ ,δ ′),
where the states inS′ are just finite sequences of states fromS. In particular,S⊆ S′, and wheneverr→s
in G thenwr →֒wrs in G ′. Projecting the states ofS′ to their last component induces a map,φ , from
paths inG′ to paths inG. We setW′ := φ−1(W). The mapφ also induces a map,Φ, from strategies inG
to strategies inG ′, by sending histories throughφ . Naturally, the partition ofS′, and the weight function
δ ′ are both derived fromSandδ by projecting states fromS′ to the last component.

It is easy to verify that for everys∈ S, if we restrict the game graphs ofG andG ′ to states reachable
from s, thenφ is clearly bijective and preserves measurability in both directions. AlsoΦ is bijective,

and for all measurableA⊆ Run(s), and all pairs(σ ,π) of strategies:Pσ ,π
s [A] = P

Φ(σ),Φ(π)
s [φ(A)] . As a

consequence,Val(s) is the same inG andG ′ for all s∈ S, and the sets of all values inG and inG ′ are
equal. Also,W is open iffW′ is a reachability condition. Every strategy inG ′ is memoryless, becauseG′

is a forest. Finally, once we have a reachability objective,with the target setT, we may clearly assume
without loss of generality, that all states inT are absorbing. This shows that to prove Theorems 1 and 2
we may safely assume the following:

Assumption 1. The game graph is always a forest, all strategies are memoryless, and the winning
condition is a reachability condition specified by some target set T⊆ S, such that for all t∈ T the only
edge leaving t is t→ t.

2.2 Known Results for Reachability Games

We state here some known results to be used later. The following gives a characterisation of values, and
allows us to characterise the existence of optimal strategies for Min.

Fact 1 (cf. [7, Theorem 3.1]). Let G = (G,W), G = (S,→ ,δ ) be a game, with W=
⋃

{Run(w) |
w ends in T}. The least fixed point of the following (Bellman) functionalV : (S→ [0,1])→ (S→ [0,1])
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Figure 1: A reachability game where Player Max (� states) has no optimal strategy.

exists and is equal to Val(·).

V ( f )(s) =























1 if s∈ T

sup{ f (r) | s→ r} if s∈ S1 \T

inf{ f (r) | s→ r} if s∈ S2 \T

∑s→r δ (s, r) · f (r) if s∈ S0 \T

Corollary 1 (cf. [7, Theorem 3.1]). Let G be a game as in Fact 1. Let G′ = (S, →֒ ,δ ) be a subgraph
of G where→֒ is a subset of→ , and if there is a pair r,s∈ S such that r→s and r 6֒→s then r∈ S2 and
there is some s′ ∈ S such that r֒→s′ and Val(s′)≤ Val(s) in G . LetG ′ = (G′,W). Then the values are the
same inG andG ′.

As a consequence, a strategy,π, for Min is optimal iff for all r∈S2 it chooses with positive probability
only successors s∈ S satisfying Val(r) = Val(s).

Proof. Let V ′ be the Bellman functional associated withG ′. Observe that the values inG form a fixed
point of V ′, thus for alls∈ S, Val(s) in G ′ is equal to or less thanVal(s) in G ′. Moreover, it cannot be
less, because Player Max has the same set of strategies inG ′ as inG , whereas Player Min does not get
more strategies inG ′. To derive the consequence, remove all edges not used byπ.

Note that the situation is not symmetric for Player Max. Consider games without Player Min, and
with out-degree and in-degree bounded by 2. In particular, this implies that every state,r, of Player Max
has at least one successor,s, with Val(r) = Val(s). Even in these games, Player Max may lack optimal
strategies, as illustrated in the following classical (see, e.g., [4, p. 871],[5, Example 6]) example.

Example 1. Consider the reachability game from Figure 1. Its game graph, G, has the setS:= {r i ,si , ti |
i ≥ 0} of states, partitioned byS0 = {si , ti | i ≥ 0}, S1 = {r i | i ≥ 0}, andS2 = /0. Transitions ares0→s0,
t0→ t0, andr i−1→ r i , r i →si , si →si−1, si → ti , andti → ti−1 for i > 0. Probabilities are always uniform.
The target set isT = {t0}. Clearly,Val(si) = 1−2−i for all i ≥ 0. ThusVal(r i) = 1 for all i ≥ 0: for every
N > 0, choosing the transitionr i → r i+1 for i < N, and the transitionr i →si for i ≥ N, is a 2−N-optimal
strategy for Max. Yet Max has no optimal strategy in anyr i , i ≥ 0: no strategy reaching somesj is
optimal, and, on the other hand, never reachingsj means never reachingt.

3 Games without Player Min

Proposition 1. LetG = (G,W) be a stochastic game, where G= (S,→ ,δ ) and S2 = /0, 1 and W is open.
If (∗) from Theorem 1 is satisfied then Player Max has an optimal strategy in all states.

1 These are also sometimes called (minimizing) Markov Decision Processes (MDPs), see, e.g., [3, 2, 13].
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We fix the gameG from Proposition 1 in the rest of this section, devoted to proving the proposition.
By Assumption 1,G is a forest, and there isT ⊆ Ssuch thatW =

⋃

{Run(w) | w ends inT} and for all
t ∈ T there is only one transition:t→ t. The proof is by contradiction, in three steps. First, we prove that
if there is a state with no optimal strategy, then there must be a state from which winning with probability
sufficiently close to the optimum implies the need to use somevalue decreasing transition. A transition
r→s is value decreasing ifVal(r) > Val(s). Second, we will argue that the potential “damage” caused
by this transition is positive and bounded away from 0, independently of the actual strategy. Third, we
show that (∗) implies that the potential “damage” factor is indeed bounding the probability of reaching
T away from the value, which is a contradiction with the definition of the value.

We introduce a random variable,L (for “loss”). For a run,ω , a losing index is everyi, such that
ω(i) ∈ S1 andVal(ω(i))> Val(ω(i +1)). If there is no losing index forω , we setL(ω) := 0. Otherwise,
there is the least losing index,i, and we setL(ω) := Val(ω(i)) > 0. Finally, we say that a states∈ S is
losing if there is someδs > 0 such that for everyδs-optimal strategy,σ , in s, we havePσ

s [L > 0]> 0.

Lemma 1. Assume (∗). If ∃s∈ S such that∀σ : Pσ
s [W]< Val(s) then there is also some losing state.

Proof. By contradiction. Assume there is no losing state, we construct an optimal strategy in every state.
Define a subset֒→ of the transition relation→ of G , by setting for every pairr,s∈ S: r →֒s iff r→sand
eitherr ∈ S0, or Val(r) = Val(s). Observe that (∗) implies that for allr ∈ S1 there is at least ones such
that r →֒s andVal(r) = Val(s). Thus →֒ is total andG′ = (S, →֒ ,δ ) is a game graph. Without losing
states, for everyr ∈ Sand everyε > 0 there is someε-optimal strategy,σ , such thatPσ

s [L > 0] = 0, i.e.,
σ does not use value-decreasing transitions. This strategy works inG ′ = (G′,W) as well, winning with
the same probability, as inG . The values inG andG ′ are thus the same.

Consider nowG ′. Denote byFPk(s) the set of all finite paths of lengthk starting ins. Due to the last
sentence in Assumption 1, and because→֒ preserves value, the following is true inG ′:

∀k≥ 0 : ∀σ : ∀s∈ S: Val(s) = ∑
w∈FPk(s)

Pσ
s [Run(w)] ·Val(w(k)). (2)

For all s∈ Sfix a 1/4·Val(s)-optimal strategyσs. After somens ≥ 0 of steps,T must be reached froms
underσs with probability at leastVal(s)/2, asPσs

s [W] = limk→∞ Pσ
s [{Run(w) | len(w)≤ k∧w(k) ∈ T}] .

For all s∈ Swe finally construct a strategyσ for G ′, optimal ins. Because the values are the same
in G andG ′, and every strategy forG ′ is also a strategy forG , this will finish the proof of the lemma.
The strategyσ starts ins according toσs, and follows it forns steps. After that, having arrived to some
stater, it switches toσr and follows it for othernr steps. This is repeated ad infinitum. The invariant (2),
and the choice ofnr andσr for r ∈ S, guarantee that after them-th stage of the above repetitive process,
T has actually been reached with probability(1−2−m) ·Val(s), proving thatσ is optimal.

For every losing state,s∈S, and every constantε > 0 we defineℓε
s := inf{Eσ

s [L] |σ is ε-optimal ins}.

Sinceℓε
s ≤ ℓ

ζ
s ≤ 1 for ε ≥ ζ , the limit ℓs := limε→0ℓ

ε
s exists.

Lemma 2. Assume (∗). For every losing state, s, inG we haveℓs > 0.

Proof. By contradiction. Assume thats is losing andℓs = 0. To every strategyσ which may possibly
use value-decreasing transitionsr→ r ′ whereVal(r) > Val(r ′) we consider a strategȳσ , which copies
the moves ofσ until a value-decreasing transition is chosen. From that point on, just before the value-
decreasing transition, the strategyσ̄ keeps choosing arbitrary successors with the only requirement that
they preserve the value, i.e., wheneverσ̄ chooses a transitions→s′ with a positive probability,Val(s) =
Val(s′). Such a choice always exists, because sups→s′ Val(s′) = Val(s), and eitherVal(s) = 0, in which
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caseVal(s′) = 0 for all s′, s→s′, or Val(s) > 0, and by (∗) Val(s) > 0 cannot be an accumulation point,
so there is somes′, s→s′ with Val(s) = Val(s′). Observe that for everyσ , Pσ

s [W]−Pσ̄
s [W] ≤ Es

σ[L] . As
a consequence, due toℓs= 0, Val(s) = sup{Pσ̄

s [W] | σ is some strategy}. This contradictssbeing losing,
sincePσ̄

s [L > 0] = 0 for everyσ .

Proof of Proposition 1.By contradiction. Assume (∗), and that there is somer ∈ S with no strategy
optimal in r. By Lemma 1, there is a losing state,s∈ S. By Lemma 2,ℓs > 0. Choose someε > 0 such
thatℓε

s ≥ ℓs/2> 0. Thus under everyε-optimal strategy,σ , with some positive probability,p> 0, a state
r ∈ S1 with Val(r)≥ ℓε

s is visited, and some transitionr →֒ r ′ with Val(r ′)< Val(r) is taken. Observe that
(∗) gives us the following “value-gap”:

δ := inf{|Val(r)−Val(r ′)| | r, r ′ ∈ S,Val(r) 6= Val(r ′),Val(r)≥ ℓε
s}> 0.

This allows us to boundp independently ofσ , sinceℓε
s ≤ Es

σ[L]≤ p·1+(1− p)(ℓε
s −δ ) and hence

p≥
δ

1+δ − ℓε
s
> 0.

Thus for every strategy,σ , we have thatVal(s)−Pσ
s [W]≥ min{ε ,δ · p}> 0. This clearly contradicts the

definition ofVal(s). The proof is finished.

4 Reachability Games

In this section we prove Theorems 1 and 2. Let us fix a gameG = (G,W), whereG = (S,→ ,δ ),
satisfying Assumption 1. Also assume thatW is open, and thus there isT ⊆ Ssuch thatW =

⋃

{Run(w) |
w ends inT}. We call a states safeif ∀σ for Max : ∃πσ for Min : Pσ ,πσ

s [W] = 0. The following lemma
states the strong determinacy restricted to states with value 0, and will be useful in proving each of both
theorems.

Lemma 3. If G satisfies (∗) then for every safe s∈ S: ∃π for Min : ∀σ for Max : Pσ ,π
s [W] = 0.

Proof. We cut off some choices for Min in the game graphG of G , and obtain its sub-graphG′, so that all
states reachable inG′ from s have value 0 inG ′ = (G′,W). In particular, no run can satisfyW. Because
the choices of Max remain unrestricted inG′, this ensures that the probability ofW is 0 inG as well. Let
us proceed in more detail.

Observe that every safe state has value 0, so no safe state is in T. Also, observe that for every safe
r ∈ S0∪S1 ands∈ S, if r→s thens is safe. Likewise, ifr ∈ S2 is safe, then there must be a safes such
that r→s. Fix a safes, and defineG′ as the smallest sub-graph ofG containings and satisfying that ifr
is in G′, then so is every safe successorr ′ of r in G. As shown above,G′ is a game graph, the probability
assignmentδ from G is valid inG′ as well, and all states inG′ are safe. Hence, no paths inG′ visit T, and
the value of every state inG ′ is 0. Fix an arbitrary strategyπ for Min in G ′ = (G′,W), thenPσ ,π

s [W] = 0
for all σ of Max in G ′. All transitions out of safe states of Max were preserved inG′, andπ is also a
strategy inG , so we havePσ ,π

s [W] = 0 also for everyσ of Max in G .

4.1 Proof of Theorem 1

Lemma 4. If G satisfies (∗), then for all s∈ S we have:∀π for Min : ∃σ for Max : Pσ ,π
s [W]≥ Val(s).
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Proof. For every (memoryless, due to Assumption 1) strategyπ of Player Min, we denote byGπ the game
where the choices of Player Min are resolved usingπ. Formally,Gπ = (G′,W), whereG′ = (S′, →֒ ,δ ′),
and (1)S′ =Sbut comes with a different partition:S′0 =S0∪S2, S′1 =S1, S′2 = /0, (2) the relation֒→ ⊆ →
is given byr →֒s iff r→sand eitherr ∈ S0∪S1, or r ∈ S2 andπ(r)(s) > 0, and (3)δ ′ = δ ∪π. For every
strategyσ for Player Max, and everys∈ S the measurePσ ,π

s [·] in G obviously coincides withPσ
s [·] in

Gπ . Thus we may apply Proposition 1 to allGπ to derive the lemma.

Consider now the following gameH = (H,W), which is a slight modification ofG . The set of
states ofH = (S, →֒ ,δH) is S, the same as inG, and with the same partition. There is a transitionr →֒s
iff exactly one of these three situations occurs:Val(r) = 0 in G , ands= r; or Val(r)> 0, r ∈S0 andr→s;
or Val(r)> 0, r /∈ S0, r→s, andVal(r) = Val(s) in G . In other words, inH we made all states with value
0 absorbing, and only left value preserving transitions forplayers. Finally,δH is the only probability
weight function which coincides withδ on stochastic states with positive value.

Lemma 5. If G satisfies (∗), then H is a game graph, and the values are the same inG andH .

Proof. We refine the modifications from above into three steps, obtaining game graphsH0 = G, H1, H2,
andH3 = H. We will show for eachi ∈ {1,2,3} thatHi is a game graph, and that the values are the same
in Hi = (Hi ,W) as they are inG . All the graphs constructed have the same set of states,S, and the same
partition, asG, and the same weight function,δH , asH.

H1 = (S, 7→ ,δH), andr 7→s iff Val(r) = 0 in G , ands= r, or Val(r) > 0 andr→s. H1 is clearly a
game graph, because7→ is total. The values did not change, because each absorbing loop outside ofT has
value 0. Moreover, everyr ∈ S2 has always a successor with the same value. Indeed, ifVal(r) = 0 then
r itself is its own successor inG1; if Val(r) > 0 then infr 7→sVal(s) = Val(r), and by (∗), sinceVal(r) > 0
cannot be an accumulation point, there is somes, r 7→s with Val(r) = Val(s). By Corollary 1, Min has
optimal strategies inH1.

H2 = (S, ,δH), and r s iff r 7→s and eitherVal(r) = 0 in G , or r /∈ S2, or (if Val(r) > 0 and
r ∈ S2) Val(r) = Val(s) in G . Because Min has always value-preserving transitions inH1, H2 is clearly
a game graph, and by Corollary 1 all strategies of Min inH2 are optimal. Fix one suchπ for Min, and
an arbitrarys∈ S. By Lemma 4 there is aσ for Max in G (and thus also inH2 = (H2,W)) such that
P

σ ,π
s [W]≥ Val(s). Becauseπ is optimal,σ cannot choose value-decreasing transitions. Thus, even when

only using edges in֒→ , i.e., fromH3 = H, we still obtain that infπ supσ P
σ ,π
s [W] = Val(s). Thus also the

graphH is a game graph, and the values inH andG are the same.

Lemma 6. If G satisfies (∗), then Player Max has an optimal strategy,σ , in H .

Proof. We first describeσ , then we prove that it is optimal. In every state,s, there is some 1/2·Val(s)-
optimal strategy,τs, for Max. We call a history (i.e., a finite path),w, starting in some states, and ending
in r, lazy, if Val(r)> 0 and infπ P

τs,π
s [W | Run(w)] = 0. Observe that each history,w, can be uniquely split

into a sequence of sub-paths, divided by single states,w = s0w0s1w1s2 · · ·skwk, k ≥ 1, si ∈ S, wi ∈ S∗,
such that for alli < k, siwisi+1 is lazy, and for alli ≤ k, siwi is not lazy. We callk the laziness indexof w,
written laz(w) andskwk thenon-lazysuffix of w. We now defineσ for a historyw with a non-lazy suffix
skwk by σ(w) := τsk(skwk).

Now we prove thatσ is optimal. To do so, we need to extend the laziness index to runs. For a run,ω ,
we setLaz(ω) := sup{laz(w) | ω ∈ Run(w)} ∈ N∪{∞}. Thus we defined a random variable,Laz. We
prove the following claim, which clearly implies the statement of the lemma:

∀s∈ S: ∀π for Min : ∀k≥ 0 :Pσ ,π
s [W∧Laz≤ k]≥ Val(s) · (1−2−k). (3)
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By induction onk. Fix somes∈ S, and a strategy,π, for Min. Clearly, (3) is true fork = 0. Also it is
true whenVal(s) = 0. Assume thusVal(s)> 0 andk= ℓ+1 for someℓ≥ 0. We setL to be the set of all
finite paths,w, such thatlaz(w) = k and the non-lazy suffix only consists of one state. Denote bylast(w)
the last state ofw. Observe that, by the definition ofσ andτsk,

∀w∈ L : ∀π for Min : Pσ ,π
s [W | Run(w)]≥ 1/2·Val(last(w)). (4)

Let Λ be any prefix-free set of finite paths such thatP
σ ,π
s [

⋃

w∈Λ Run(w)] = 1. BecauseH only contains
value-preserving edges for players, we have

Val(s) = ∑
w∈Λ

Pσ ,π
s [Run(w)] ·Val(last(w)). (5)

We havep := P
σ ,π
s [W∧Laz≤ ℓ] ≥ Val(s) · (1−2−ℓ), by the inductive hypothesis. We also haveq :=

∑w∈LP
σ ,π
s [Run(w)] ·Val(last(w)) = Val(s)− p, by (5). By (4),Pσ ,π

s [W∧Laz= k]≥ q·1/2. Finally,

Pσ ,π
s [W∧Laz≤ k] = Pσ ,π

s [W∧Laz≤ ℓ]+Pσ ,π
s [W∧Laz= k]

= p+q·1/2= p+(Val(s)− p) ·1/2= p/2+Val(s)/2

≥ (2−1−2−(ℓ+1)) ·Val(s)+Val(s) ·2−1 = (1−2−(ℓ+1)) ·Val(s).

Proof of Theorem 1.Consider the strategyσ from Lemma 6. It partially defines a strategy inG . To
complete its definition, we now specify it for histories containing a transition of the formr→s, where
r ∈ S2 andVal(s) > Val(r), by requiringσ to behave as a 1/2 · (Val(s)−Val(r))-optimal strategy since
that point. Fix an initial state,s, and consider an arbitrary strategy,π, of Min. If π is optimal, then it is
also valid inH , andPσ ,π

s [W] = Val(s) by Lemmata 5 and 6. For a non-optimalπ it is easy to verify that
P

σ ,π
s [W]> Val(s) by both the definition ofσ , and Lemmata 5 and 6.

4.2 Proof of Theorem 2

If both players have optimal strategies, the game is strongly determined. However, even under Condi-
tion (∗), Player Min may not always have an optimal strategy, because of states with value 0, without
value-preserving transition for Min available. See the game in [7, Fig. 1] restricted to states reachable
from s, for an example. Theorem 2 is a direct consequence of Lemma 7 and Lemma 9, where the former
lemma deals with all “easy cases”, and the latter “patches” the above deficiency by using Lemma 3 to
deal with states with value 0, and “restoring” the optimal strategies for both players in the rest.

Lemma 7. Assume thatG satisfies (∗). Let s∈ S, 0 ≤ ν ≤ 1, and⊲ ∈ {>,≥}. Assume that either
Val(s) = 0, or ν 6=Val(s), or⊲=≥. Then either Player Max has a strategȳσ such that∀π : Pσ̄ ,π

s [W]⊲ν ,
or Player Min has a strategȳπ such that∀σ : Pσ ,π̄

s [W]⋫ ν .

Proof. The case whenν = Val(s) = 0 is solved by Lemma 3. Ifν < Val(s), we can choose any 1/2 ·
(Val(s)−ν)-optimal strategy for Max as̄σ . Similarly, if ν >Val(s), we can choose any 1/2·(ν −Val(s))-
optimal strategy for Min as̄π. If ν = Val(s) and⊲=≥, we can choose any optimal strategy for Max as
σ̄ . Such a strategy exists due to Theorem 1.
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It remains to solveν = Val(s)> 0 and⊲=>. We do two preprocessing steps onG to first obtainG ′,
and thenH . In H both players will have optimal strategies, and we will be able to lift such a strategy
for Min back toG iff Max does not have a strategy ingG to always win with probability> Val(s).

We fix s∈ Swith Val(s)> 0 and setR := {r ∈ S| Val(r) = 0∧∃σ̄ : ∀π : Pσ̄ ,π
r [W]> 0}. Intuitively, if

Max does not have a strategy to always win with probability> Val(s), then Min can always respond to
a strategyσ of Max with aπσ , so thatR is not visited at all froms under these strategies, and yet Max
wins with probability at mostVal(s). Thus, if we cut off all states fromR, producing the gameH , we
obtain a valid game graph, and the values of states will not change.

Before we describe this formally, we observe that neither ofthe players benefits from using transi-
tions which do not preserve the value. LetG ′ = (G′,W), G′ = (S, 7→ ,δ ) be a game given by restricting
the edges ofG to value-preserving where possible: for allr, r ′ ∈ S we require thatr 7→ r ′ iff r→ r ′ and
eitherr ∈ S0∪R, or Val(r) = Val(r ′).

Lemma 8. Assume thatG satisfies (∗). Then the values inG and inG ′ are the same, and for all s∈ S,
each of the following is true inG ′ if it is true in G :

∀σ for Max : ∃πσ for Min : Pσ ,πσ
s [W]≤ Val(s), (6)

∀π for Min : ∃σπ for Max : Pσπ ,π
s [W]> Val(s). (7)

Proof. By Theorem 1, there is an optimal strategy,σ , for Min. This is also a strategy forG ′, thus for
all s∈ S, Val(s) in G ′ is at leastVal(s) in G . On the other hand, by Corollary 1, cutting off non-optimal
edges leaving states fromS2\Rdoes not alter the values. Further, cutting off non-optimaledges fromS1

could only decrease the values. Thus, for alls∈ S, the values inG ′ andG are equal.
Now we fix somes∈ S, and prove that if (6) is true inG then it is true inG ′. Let σ be a strategy

for Max in G ′, i.e., it is a strategy forG which does not use value-decreasing edges. Ifσ is optimal,
then the strategyπσ from (6) in G necessarily has to use value-preserving edges everywhere,and thus
it is valid in G ′ as well. If σ is not optimal, consider again the responseπσ of Min to satisfy (6) inG .
If πσ cannot be used directly inG ′, then there must be somer ∈ S2 \R whereπσ chooses a successorr ′

with Val(r ′) > Val(r). But becauser /∈ R, there must also be a successorr ′′ such thatVal(r ′′) = Val(r).
We modify πσ to a π ′

σ , which chooses for all suchr the value-preserving successor instead ofr ′, and

continues as a 1/2 · (Val(r ′)−Val(r))-optimal strategy inG ′. Clearly,Pσ ,π ′
σ

s [W] ≤ P
σ ,πσ
s [W] in G , and

sinceπ ′
σ is also a strategy inG ′, (6) is true inG ′ as well.

Finally, we prove that if (7) is true inG then it is true inG ′. Let π be a strategy inG ′. Fix the choices
of π in G ′ outside ofR to define a gameGπ . By Corollary 1,Gπ has the same values asG . Thus, optimal
strategies of Max inGπ exist, becauseGπ satisfies (∗), and only choose edges preserving the value in
G . Consider the strategyσπ witnessing (6) inG . We now define a strategyσ ′

π in G ′: it copies moves
of σπ in G ′, unlessσπ chooses some value-decreasing edge. In that case, instead of following σπ , σ ′

π
immediately switches to some optimal strategy forGπ . Since the values inGπ are the same as inG , this

only increases the probability of winning, thusPσ ′
π ,π

s [W]≥ P
σπ ,π
s [W] .

Lemma 9. Assume thatG satisfies (∗). For all s∈ S such that Val(s) > 0, if

∀σ for Max : ∃πσ for Min : Pσ ,πσ
s [W]≤ Val(s), (8)

then
∃π for Min : ∀σ for Max : Pσ ,π

s [W]≤ Val(s). (9)
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s0d0 u0 r0 z0 t0

s1d1 u1 r1 z1 t1

s2d2 u2 r2 z2 t2
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Figure 2: Left: A game,G , where player
Max (�) does not have optimal strate-
gies. All stochastic (©) states have uni-
form distribution on outgoing transitions.
Right: A One Counter description ofG .
Signed numbers represent counter incre-
ments.

Proof. By Lemma 8, if (8)=⇒ (9) in G ′ then the implication holds inG as well, and ifG satisfies (∗)
then so doesG ′. Thus we focus onG ′ instead. We describe the modification ofG ′, calledH , where we
cut off R. By Att(R) we denote the set of all states,r, such that inG ′ Max has a strategy,σ , such that for
all π for Min, Pσ ,π

r [ReachR]> 0. Further, we consider the edge relation→֒ , which is simply the relation
7→ without edges leading to states fromAtt(R).

We fix somes, Val(s) > 0, satisfying (8), and byS′ we denote the subset of allr ∈ S to which there
is a path froms in the graph(S, →֒). Consider a game graph,H = (S′, →֒ ,δ ), inheriting the partition
of states fromG. The edge relation is the֒→ defined above, only restricted toS′×S′. Observe that if
r ∈ S′0∪S′1 andr→ r ′ for somer ′ ∈ S, thenr ′ ∈ S′. This is becauser /∈ Att(R) implies r ′ /∈ Att(R) if r is
not owned by Min. Similarly, for allr ∈ S′2 there is ar ′ ∈ S′ such thatr →֒ r ′. Thusδ , restricted toS′, is
still a valid probability weight function, andH is a valid game graph. We abuse the letterW to denote a
restriction ofW to H , and define a gameH = (H,W).

Because all edges leaving states fromS2\R were value-preserving inG ′, Corollary 1 yields that the
values stay the same inH as they were inG ′, and there is an optimal strategy,π̄ for Min in H . This is
also a strategy forG ′, and because the choices of Player Max were not affected whenreducingG ′ to H ,
we obtain, that for allσ for Max we havePσ ,π̄

s [W]≤ Val(s) both inH and inG ′. This proves (9).

5 One Counter Games

One Counter stochastic games (OC-SSGs), see, e.g., [3, 2, 4], are games played on transition graphs of
one-counter automata. Such automata have a finitecontrol-stateunit, Q, and a set of rules, which are
triples of the form(r,k,s) with r,s∈ Q andk ∈ {−1,0,+1}. States of an OC-SSG are then of the form
sn wheres∈ Q is acontrol state, andn≥ 0 is an integer, representing thecounter value. Transitions are
generated by settingr i →sj if i > 0 and there is a rule(r, j − i,s). Moreover, states with counter 0 are
made absorbing,s0→s0, to reflect that the system halts with the empty counter. The partition of states
is induced by a partition ofQ, and the probabilities of transitions out of stochastic states, are induced by
probabilities on rules. OC-SSGs come with an implicit reachability objective, the set to be reached is the
set{s0 | s∈ Q} of states with counter 0. Because the system halts in 0 we alsocall this atermination
winning condition.
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Example 2. In the right-hand part of Figure 2 we give the one-counter automaton with the setQ =
{s,u,d, r,z, t} of control states. An unlabelled edge, likes→u, represents a 0-rule, e.g.,(s,0,u). A label
(±1) represents the counter change, e.g., the loopt→ t represents(t,+1, t). The square-states belongs
to Max, other states are stochastic. The distributions on outgoing transitions are implicitly uniform in
this example. In the left-hand part is the generated OC-SSG.Grey states are to be reached. Later in this
section we will show thatVal(si) =

2i+1
2i+1 , but no strategy of Player Max is optimal insi . Observe that

1/2= lim i→∞
2i+1
2i+1 is an accumulation point in the set of all values.

Note that every OC-SSG has bounded out-degree and in-degree, in particular it is finitely branching.
Thus Min has always optimal strategies in OC-SSGs. However,they may not always satisfy (∗), and
Example 2 shows that in OC-SSGs, Max may have no optimal strategies. On the other hand, the structure
of the accumulation points in the set of all values is well understood for OC-SSGs. To describe it, we
need to introduce another winning objective.

In OC-SSGs there is an implicit boundary on the counter value– if it reaches zero, the system halts.
However, we may also interpret the one-counter automaton asa directed graph onQ, with the rules as
edges withrewards. This way we obtain a finite game graph. Accumulating those rewards along a run in
such a game graph then corresponds to observing the counter in the OC-SSG, with the exception that the
counter does not stop in 0 and may get negative. Adding the winning condition (for Max) that the liminf
of the accumulated rewards be−∞, we just defined(LimInf =−∞)-games.

In [2, 4] it was shown that both players always have pure and memoryless optimal strategies in
(LimInf =−∞)-games, and the optimal value is always rational and computable. Observe that the ter-
mination values,Val(sn), for a fixeds∈ Q, are non-increasing with increasingn. Thus their limit exists,
and, in fact, it is an easy exercise to employ the results of [2, 4] to prove that the(LimInf =−∞)-value
of a control state,s, equals limn→∞ Val(sn). Intuitively this is because, with increasing the initial counter,
n, the objective of reaching 0 becomes more and more similar tothe(LimInf =−∞) objective. Thus the
set of(LimInf =−∞)-values of all statess∈ Q contains the set of all accumulation points of the termi-
nation values. It is also possible to decide in time polynomial in |Q| whether a(LimInf =−∞)-value,ν ,
actually is an accumulation point, i.e., whether for all states,s, with (LimInf =−∞)-valueν the limit of
termination values stabilises after finitely many steps.

Corollary 2. LetG be an OC-SSG with the set Q of control states. If for every s∈Q the(LimInf =−∞)-
value of s is1 or 0, then Player Max has an optimal strategy for termination inG .

Proof. The limits of termination values are approached from above,becauseVal(sn) ≥ Val(sn+1) for all
s∈ Q and alln≥ 0. Thus, 1 is not an accumulation point, and we may apply Theorem 1.

Note that the class of OC-SSGs satisfying the condition of Corollary 2 involves all OC-SSGs where
the graph of rules is strongly connected, and one of the players is missing. This is because(LimInf =−∞)
is a prefix independent objective, and the strong connectivity allows the only player to reach each control
state almost surely, thus all control states have the same(LimInf =−∞)-value. By results of [11, Theo-
rem 3.2], such a common value can only be 0 or 1. In particular,Corollary 2 covers both the Solvency
games, see [1], and their maximizing variant.

In Solvency games, a gambler has an initial positive amount of money, and in each step chooses
one of finitely many actions. Each action is associated with adistribution on a finite set of integers. A
number from this set is then sampled, and added to the sum of money owned by the gambler (it can be,
however, negative), and the process ends only when the wealth becomes≤ 0. This is easily modelled
by one-player OC-SSGs (see [4]), and these have strongly connected graphs of rules, because the only
state where the gambler chooses the action, is reachable from all other states. The natural scenario is,
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obviously, with Player Min for these games, and there the existence of optimal strategies follows from
the finite branching. However, the dual situation, with Player Max, is theoretically interesting as well,
and we are not aware of any result prior to our Corollary 2, indicating the existence of optimal strategies
for Player Max.

5.1 Analysis of Example 2

Consider an arbitraryn≥ 1. It is easy to see thatVal(rn) =
1
2. Observe that starting inun, sn+1 is visited

with probability∑∞
i=0 2−1−2i = 2

3, andsn−1 with probability 1
3.

Lemma 10. For the unique strategy,σ , not using transitions sn→ rn, n≥ 1, we havePσ
si
[W] = 2−i .

Proof. ClearlyPσ
s0
[W] = 1= 2−0. Further, the assignmentx :=Pσ

s1
[W] is the least non-negative solution of

the equationx= 2
3+

x2

3 , see, e.g., [9, Theorem 3.4] or [10, Theorem 1], which is1
2. Solving the recurrence

Pσ
si
[W] = 2

3 ·P
σ
si−1

[W]+ 1
3 ·P

σ
si+1

[W] , given the initial conditions fori = 0,1, yieldsPσ
si
[W] = 2−i.

Lemma 11. Val(s1) =
3
4.

Proof. First we proveVal(s1)≥
3
4. For anyn consider the memoryless strategy,σn, given byσn(si)(ui) =

1 if i < n andσn(si)(r i) = 1 if i ≥ n. Setpi := Pσi
s1
[Reachsi ] . Observe thatpi does not change if we define

it using anyσn with n ≥ i, and that 1− pi = Pσn
s1
[W∧¬Reachsi ] for n ≥ i. Moreover, p1 = 1 and

pi+1 := 2
3 · (pi +(1− pi) · pi+1) . This uniquely determines thatpi =

2i−1

2i−1. Finally, observe thatPσn
s1
[W] =

(1− pn)+ pn ·
1
2, thusVal(s1)≥ limn→∞(1− pn)+ pn ·

1
2 = 3

4.

Now we prove thatVal(s1)≤
3
4 by provingPσ

s1
[W]≤ 3

4 for all σ . Consider the following probabilities:
pa := Pσ

s1
[W∧¬Reach somer j ], pb := Pσ

s1
[W∧Reach somer j ], pc := Pσ

s1
[Reach somer j ]. Clearly pb =

pc
2 . Due to Lemma 10 applied toi = 1 we also have thatpa ≤

1
2. Finally, pa+ pc ≤ 1 since the events are

disjoint. We conclude thatPσ
s1
[W] = pa+ pb ≤ pa+

1
2 · (1− pa) =

1
2 · pa+

1
2 ≤ 3

4.

Lemma 12. Val(si) =
2i+1
2i+1 for all i ≥ 0.

Proof. The casei = 0 is trivial, andi = 1 is Lemma 11. Solving the recurrenceVal(si) =
2
3 ·Val(si−1)+

1
3 ·Val(si+1), given the initial conditions fori = 0,1, yieldsVal(si) =

2i+1
2i+1 .

In particular, for alli ≥ 1, Val(si)>Val(r i), thus no optimal strategy may use transitionssn→ rn, n≥
1. By Lemma 10, there are no optimal strategies insi .
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