
Giovanna D’Agostino, Salvatore La Torre (Eds.):
Proceedings of the Second International Symposium on
“Games, Automata, Logics and Formal Verification” (GandALF 2011)
EPTCS 54, 2011, pp. 116–130, doi:10.4204/EPTCS.54.9

c© Zhilin Wu
This work is licensed under the
Creative Commons Attribution License.

A Decidable Extension of Data Automata∗

Zhilin Wu
State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences
Beijing, China

wuzl@ios.ac.cn

Data automata on data words is a decidable model proposed by Bojańczyk et al. in 2006. Class
automata, introduced recently by Bojańczyk and Lasota, is an extension of data automata which uni-
fies different automata models on data words. The nonemptiness of class automata is undecidable,
since class automata can simulate two-counter machines. In this paper, a decidable model called
class automata with priority class condition, which restricts class automata but strictly extends data
automata, is proposed. The decidability of this model is obtained by establishing a correspondence
with priority multicounter automata. This correspondence also completes the picture of the links be-
tween various class conditions of class automata and various models of counter machines. Moreover,
this model is applied to extend a decidability result of Alur, Cerný and Weinstein on the algorithmic
analysis of array-accessing programs.

1 Introduction

With the momentums from the XML document processing and the statical analysis and verification of
programs, formalisms over infinite alphabets are becoming a research focus of theoretical computer
science (c.f. [6] for a survey).

The infinite alphabet means Σ×D, with Σ a finite tag set and D an infinite data domain. Words and
trees with the labels of nodes from the infinite alphabet Σ×D are called data words and data trees. For-
mally, a data word is a pair (w,π), with w denoting the sequence of tags and π denoting the corresponding
sequence of data values. Data trees can be defined similarly.

Among various models of logic and automata over infinite alphabets that have been proposed, data
automata were introduced by Bojańczyk et al. in 2006 to prove the decidability of two-variable logic on
data words ([4]).

A data automaton D consists of two parts, a nondeterministic letter-to-letter transducer A : Σ∗→ Γ∗,
and a class condition which is a finite automaton B with the alphabet Γ. D accepts a data word (w,π)
iff from w, A is able to produce a Γ-string w′ such that,

for each class X of (w,π) (a class of a data word is a maximal set of positions with the same
data value), B has an accepting run over w′|X (the restriction of w′ to the positions in X).

Several extensions of data automata have appeared in the literature.
Extended data automata, was proposed by Alur, Cerný and Weinstein in 2009, in order to analyze

the array-accessing programs ([1]). Extended data automata extend data automata by the class condition,
which is now a finite automaton B with the alphabet Γ∪{0}. D accepts a data word (w,π) iff from w,
A is able to produce a Γ-string w′ such that,

∗This work was done while the author was a postdoc at LaBRI, Université Bordeaux 1, France.

http://dx.doi.org/10.4204/EPTCS.54.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Zhilin Wu 117

for each class X of (w,π), B has an accepting run over w′⊕X , where w′⊕X is the string
in (Γ∪{0})∗ obtained from w′ by replacing each letter w′i such that i 6∈ X by 0 (note that
w′⊕X has the same length as w′).

However, as shown in [1], it turns out that extended data automata are expressively equivalent to data
automata, thus they are a syntactic extension, but not a semantic extension of data automata.

Another extension of data automata, class automata, was proposed by Bojańczyk and Lasota in 2010
to capture the full XPath, including forward and backward modalities and all types of data tests ([3]).

Class automata generalize both data automata and extended data automata by the class condition,
which is now a finite automaton B with the alphabet Γ×{0,1}. D accepts a data word (w,π) iff from
w, A is able to produce a Γ-string w′ such that,

for each class X of (w,π), B has an accepting run over w′⊗X , where w′⊗X is the string in
(Γ×{0,1})∗ obtained from w′ by replacing each letter w′i by (w′i,1) if i ∈ X , and by (w′i,0)
otherwise.

In [3], Bojańczyk and Lasota also defined various class conditions of class automata and established
their correspondences with different models of counter machines, including multicounter machines with
or without zero tests, counter machines with increasing errors, and Presburger automata.

Besides the models of counter machines considered in [3], there is still another type of counter ma-
chines, called priority multicounter automata, proposed by Reinhardt in his Habilitation thesis ([5]),
where he showed that the nonemptiness of priority multicounter automata is decidable. Priority multi-
counter automata were also used by Björklund and Bojanczyk to prove the decidability of two-variable
first order logic over data trees of bounded depth ([2]).

A priority multicounter automaton (PMA) is a multicounter automaton M with the restricted zero
tests: The n counters in M are ordered as C1, . . . ,Cn. M can select an index i ≤ n, and test whether for
each j ≤ i, C j = 0.

In this paper, we propose a new type of class condition for class automata, called priority class con-
dition, and show its correspondence with priority multicounter automata, thus showing the decidability
as well as completing the picture of the links between class automata and counter machines established
by Bojańczyk and Lasota.

The main idea of the priority class condition of class automata is roughly as follows:

Let D = (A ,B) be a class automaton such that the output alphabet of the transducer A is
Γ. Then a priority class condition is obtained by putting an order (priority) over the letters
γ ∈ Γ and using this order to restrict the (γ,0)-transitions of B.

In this sense, a data automaton is a class automaton with priority class condition (PCA) in which all
the (γ,0)-transitions are self-loops, while an extended data automaton is a PCA in which the different
γ’s are non-distinguishable in (γ,0)-transitions.

With respect to the closure properties, we show that PCAs are closed under letter projection and
union, but not under intersection nor complementation. While data automata (and the expressively equiv-
alent extended data automata) are closed under letter projection, union and intersection, it turns out that
PCAs strictly extend data automata and still preserve the decidability.

In addition, we demonstrate the usefulness of PCAs by applying them to generalize a decidability
result of Alur, Cerný and Weinstein on the analysis of array-accessing programs ([1]).

This paper is organized as follows. In Section 2, some preliminaries are given. Then in Section 3,
the concepts of 0-priority finite automata and 0-priority regular languages are introduced and PCA is
defined. In Section 4, the correspondence between PCA and PMA is established. Section 5 discusses the

118 A decidable extension of data automata

application of PCAs to the algorithmic analysis of array-accessing programs. All the missing proofs can
be found in the full version of this paper ([7]).

2 Preliminaries

In this paper, we fix a finite tag set Σ and an infinite data domain D, e.g. the set of natural numbers N.
A word w over Σ is a function from [n] = {1, . . . ,n} to Σ for some n ≥ 1. Suppose w : [n]→ Σ is a

word, then |w| is used to denote the length of w, namely n. If in addition X ⊆ [n], then w|X is used to
denote the subword of w restricted to the set of positions in X . A language is a set of words.

A data word is a pair (w,π), where w is a word in Σ∗ of length n and π : [n]→D. A class of a data
word (w,π) (of length n) corresponding to a data value d ∈ D is a collection of all the positions i ∈ [n]
such that π(i) = d. For instance, the class of the data word (a,0)(b,1)(c,0) corresponding to the data
value 0 is {1,3}. A data language is a set of data words. Let L be a data language, the language of words
corresponding to L, denoted by str(L), is {w | (w,π) ∈ L}.

A data automaton D consists of two parts,

• a nondeterministic letter-to-letter transducer A : Σ∗→ Γ∗,

• and a class condition, which is a finite automaton B over the alphabet Γ.

A data automaton D = (A ,B) accepts a data word (w,π) iff from w, A is able to produce a string
w′ ∈ Γ∗ (with the same length as w) such that for each class X of (w,π), B has an accepting run over
w′|X . The set of data words accepted by D is denoted by L (D).

Class automata D = (A ,B) is an extension of data automata with the class condition changed into
a finite automaton B over the alphabet Γ×{0,1}.

A class automaton D = (A ,B) accepts a data word (w,π) iff from w, A is able to produce a Γ-string
w′ such that for each class X of (w,π), B has an accepting run over w′⊗X , where w′⊗X ∈ (Γ×{0,1})∗ is
obtained from w′ by replacing each letter w′i by (w′i,1) if i ∈ X , and by (w′i,0) otherwise, e.g. if w′ = abc
and X = {1,3}, then w′⊗X = (a,1)(b,0)(c,1). The set of data words accepted by D is denoted by
L (D).

A multicounter automaton C is a hexa-tuple (Q,Σ,k,δ ,q0,F) such that

• Q is a finite set of states,

• Σ is the finite alphabet,

• k is the number of counters,

• δ ⊆Q×(Σ∪{ε})×L×Q is the set of transition relations over the instruction set L= {inci,deci, i f zi |
1≤ i≤ k},
• q0 is the initial state,

• F is the set of accepting states.

Let C = (Q,Σ,k,δ ,q0,F) be a multicounter automaton. A configuration of C is a state together
with a list of counter values, namely, an element from Q×Nk. A configuration (q′,c′) is said to be
an immediate successor of (q, c̄) induced by a letter σ ∈ Σ∪{ε} and an instruction l ∈ L, denoted as

(q, c̄)
σ ,l−→ (q′,c′), if (q,σ , l,q′) ∈ δ and

• if l = inci, then c′i = ci +1 and c′j = c j for j 6= i,

• if l = deci, then ci > 0, c′i = ci−1, and c′j = c j for j 6= i,

Zhilin Wu 119

• if l = i f zi, then ci = 0 and c′j = c j for each j : 1≤ j ≤ k.

A run of C over a word w is a nonempty sequence (q0,c0)
σ1,l1−−→ (q1,c1)

σ2,l2−−→ . . .
σn,ln−−→ (qn,cn) such

that w = σ1 . . .σn. A run is accepting if qn ∈ F . C accepts a word w if there is an accepting run of C
over w.

A priority multicounter automaton (abbreviated as PMA) is a multicounter automaton C with the
following restricted zero tests:

The k counters in C are ordered as C1, . . . ,Ck. C can select some index i ≤ k, and test
whether for each j ≤ i, the counter C j has value 0.

Namely, a priority multicounter automaton is the same as a multicounter automaton, except that the
instruction set L is changed into {inci,deci, i f z≤i | 1≤ i≤ k}.
Theorem 1 ([5]). The nonemptiness of priority multicounter automata is decidable.

3 Class automata with priority class condition

Intuitively, class automata with priority class condition are obtained from class automata by restricting
the class condition to 0-priority regular languages defined in the following.

We first introduce several notations.
Let B = (Q,Γ×{0,1},δ ,q0,F) be a deterministic complete finite automaton over the alphabet Γ×

{0,1}. We use the notation q
(γ,b)−−→ q′ to denote the fact that δ (q,(γ,b)) = q′, where b = 0,1, and q ∗−→ q′

to denote the fact that q′ is reachable from q in the transition graph of B. The transitions q
(γ,1)−→ q′ (resp.

q
(γ,0)−→ q′) are called the one-transitions (resp. zero-transitions) of B.

Let G0 be the directed subgraph of the transition graph (Q,δ) obtained from (Q,δ) by restricting the
set of arcs to those labeled by letters from Γ×{0}. Formally, G0 = (Q,δ ∩ (Q× (Γ×{0})×Q)). We
use the notation q ∗−→

0
q′ to denote the fact that q′ is reachable from q in G0.

A state q ∈ Q is called 0-cyclic if q belongs to some nontrivial (containing at least one arc) strongly-
connected component (SCC) C of G0. Otherwise q is called 0-acyclic.

For each γ ∈ Γ, let G(γ,0) be the directed subgraph of (Q,δ) obtained from (Q,δ) by restricting the
set of arcs to those labeled by (γ,0). Formally, G(γ,0) = (Q,δ ∩ (Q×{(γ,0)}×Q)). The out-degree of
each vertex in G(γ,0) is exactly one, thus it has a simple structure: Each connected component of G(γ,0)
consists of a unique cycle and a set of directed paths towards that cycle.

Let γ ∈ Γ. The cycles in G(γ,0) are called the (γ,0)-cycles of B. If a state q belongs to some (γ,0)-
cycle in G(γ,0), then q is called a (γ,0)-cyclic state, otherwise, it is called a (γ,0)-acyclic state of B. Note
that (γ,0)-acyclic states may be 0-cyclic.

Example 2. An example of the deterministic complete automaton B over the alphabet {a,b}×{0,1} is
given in Figure 1(a). Its associated G0 and G(b,0) are given in Figure 1(b) and Figure 1(c) respectively.
The state q0 and q2 are both 0-cyclic and (b,0)-cyclic, while q1 is 0-cyclic but (b,0)-acyclic, since q1
belongs to a cycle in G0 and does not belong to any cycle in G(b,0).

Definition 3 (((γ1,0),(γ2,0))-pattern). Let γ1,γ2 ∈ Γ. A ((γ1,0),(γ2,0))-pattern in B is a state-tuple

(q1,q2,q3,q4) such that q1
(γ1,0)−→ q2

∗−→
0

q3
(γ2,0)−→ q4, q1 is 0-cyclic, and q3 is (γ2,0)-acyclic.

120 A decidable extension of data automata

(a, 1)

q1

(a, 0)
(b, 1)

q0

(b, 0)

(a, 0) (b, 1)

(b, 0)

q2

(a, 0)

(b, 1)

(b, 0)

(a, 1)
(a, 1)

B

q1

(a, 0)

q0

(b, 0)

(a, 0) (b, 0)

q2

(a, 0) (b, 0)

G0

(a) (b)

q1q0

(b, 0)

(b, 0)

q2

(b, 0)

G(b,0)

(c)

Figure 1: Automaton B, G0 and G(b,0)

Example 4. For the automaton B in Figure 1(a), because q1
(a,0)−→ q1

∗−→
0

q1
(b,0)−→ q0, q1 is 0-cyclic and

(b,0)-acyclic, it follows that (q1,q1,q1,q0) is a ((a,0),(b,0))-pattern in B.

Definition 5 (0-priority finite automata and 0-priority regular languages). Let B be a finite automaton
over the alphabet Γ×{0,1}. Then B is called a 0-priority finite automaton if B is a deterministic
complete automaton such that

the letters in Γ can be ordered as a sequence γ1γ2 . . .γk satisfying that there are no ((γi,0),(γ j,0))-
patterns with i≥ j in B.

A regular language L ⊆ (Γ×{0,1})∗ is called a 0-priority regular language if there is a 0-priority
finite automaton B over the alphabet Γ×{0,1} accepting L.

Now we state several properties of 0-priority finite automata and 0-priority regular languages.

Proposition 6. Let B = (Q,Γ×{0,1},δ ,q0,F) be a deterministic complete finite automaton. Then B
is a 0-priority finite automaton iff B satisfies the following two conditions,

1. for any γ ∈ Γ, there are no ((γ,0),(γ,0))-patterns in B;

2. for any γ1,γ2 ∈ Γ such that γ1 6= γ2, if there is a ((γ1,0),(γ2,0))-pattern in B, then there do not
exist ((γ2,0),(γ1,0))-patterns in B.

Corollary 7. Given a deterministic complete automaton B over the alphabet Γ×{0,1}, it is decidable
in polynomial time whether B is a 0-priority finite automaton.

For each nontrivial SCC, strongly-connected-component, C of G0, let LC denote the set of labels
(γ,0) of the arcs belonging to C.

Proposition 8. If B is a 0-priority finite automaton, then G0 enjoys the following two properties.

1. Suppose that q1
(γ,0)−→ q2 such that q1 is 0-cyclic, then q2 is (γ,0)-cyclic.

2. For each nontrivial SCC C of G0 and each (γ,0) ∈ LC, every state in C is (γ,0)-cyclic.

From Proposition 8, the following property can be easily deduced.

Corollary 9. Let B be a 0-priority finite automaton. If a state q is reachable from some 0-cyclic state in
B, then q is 0-cyclic as well.

In other words, the above corollary says that 0-acyclic states cannot be reached from 0-cyclic states
in a 0-priority finite automaton.

Zhilin Wu 121

Proposition 10. Let L⊆ (Γ×{0,1})∗ be a regular language. Then L is a 0-priority regular language iff
the unique minimal deterministic complete finite automaton B accepting L is a 0-priority finite automa-
ton.
Definition 11 (Class automata with priority class condition, PCA). A class automaton (A ,B) is said
to have priority class condition, if the alphabet Γ can be partitioned into k (k ≥ 1) disjoint subsets
Γ1, . . . ,Γk such that L (B) is a union of languages L1, . . . ,Lk satisfying that Li ⊆ (Γi×{0,1})∗ is a
0-priority regular language for each i : 1≤ i≤ k.

Intuitively, a class automaton D = (A ,B) with priority class condition is a class automaton such
that

over a data word (w,π), A nondeterministically chooses an index i : 1≤ i≤ k, then produces
a word w′ ∈ Γ∗i , and verifies that each class string w′⊗X belongs to the 0-priority regular
language Li.

Remark 12. In the definition of PCAs, L (B) is defined as a disjoint union of 0-priority regular lan-
guages, instead of a single 0-priority regular language. PCAs defined in this way can be shown to be
closed under union (c.f. Proposition 15), while preserving the decidability (Theorem 18).
Example 13. Let C be the class automaton (A ,B) such that A is the identity transducer and B is the
automaton over the alphabet {a,b}×{0,1} in Figure 1(a). Then C accepts the data words satisfying
the property “between any two occurrences of the letter a with the same data value, there is a letter b
with a different data value”. If {a,b} is ordered as ab, then there are no ((a,0),(a,0))-patterns, nor
((b,0),(a,0))-patterns, nor ((b,0),(b,0))-patterns, in B. Thus B is a 0-priority finite automaton under
the ordering ab, so C is a PCA.

Remark 14. Data automata can be seen as PCAs by adding self-loops q
(γ,0)−→ q. Moreover, the extended

data automata introduced in [1] can also be seen as a special case of PCA. In extended data automata,
the class condition is a finite automaton B over the alphabet Γ∪{0}, where the letters in Γ are omitted
in zero-transitions. Without loss of generality, B can be assumed to be deterministic and complete, then
a deterministic complete finite automaton B′ over the alphabet Γ×{0,1} can be defined as follows:

q
(γ,1)−→ q′ in B′ iff q

γ−→ q′ in B, and q
(γ,0)−→ q′ in B′ iff q 0−→ q′ in B. In the subgraph G0 of B′, different

letters (γ,0) are non-distinguishable, so G0 has the same structure as G(γ,0) for any γ ∈ Γ. Therefore,
B′ is a 0-priority finite automaton under any ordering of letters in Γ, and extended data automata can
also be seen as PCAs.
Proposition 15. The class of data languages accepted by PCAs are closed under letter projection and
union, but not under intersection nor complementation.

The fact that PCAs are not closed under intersection is proved by contradiction: If PCAs are closed
under intersection, then PCAs are able to simulate two-counter machines, thus become undecidable,
contradicting to Corollary 19 in the next section.

Since data automata are closed under both union and intersection, it can be deduced that PCAs are
strictly more expressive than data automata.
Corollary 16. Class automata with priority class condition are strictly more expressive than data au-
tomata.
Remark 17. From Corollary 16, we know that there is a data language recognized by PCAs, but not by
data automata. It would be nice if we could prove for instance that the data language in Example 13,
namely, “Between any two occurrences of the letter a of the same data value, there is an occurrence of
the letter b with a different data value”, cannot be recognized by data automata. This is stated as an
open problem in this paper.

122 A decidable extension of data automata

4 Correspondence between PCA and PMA

The aim of this section is to show that a correspondence between PCAs and PMAs can be established so
that the decidability of the nonemptiness of PCAs follows from that of PMAs.

Let pr j : Σ→ Σ′∪{ε}, then the projection of a data word (w,π) under pr j, denoted by pr j((w,π)),
is pr j(w1) . . . pr j(w|w|), and the projection of a data language L, denoted by pr j(L), is {pr j((w,π)) |
(w,π) ∈ L}. Note that the projection of a data language is a language, not a data language.

Theorem 18. The following two language classes are equivalent:

• projections of data languages accepted by PCAs,

• languages accepted by PMAs.

Corollary 19. The nonemptiness of PCAs is decidble.

We prove Theorem 18 by showing the following two lemmas.

Lemma 20. For a PCA D , a PMA C can be constructed such that L (C) = str(L (D)).

From Lemma 20, it follows that the first language class in Theorem 18 is included in the second one,
since the class of languages accepted by PMAs is closed under mappings pr j : Σ1→ Σ2∪{ε}. The next
lemma says that the second language class in Theorem 18 is included in the first one.

Lemma 21. For a given PMA C , a PCA D can be constructed such that L (C) is a projection of L (D).

The rest of this section is devoted to the proof of the Lemma 20. The proof of Lemma 21 is omitted
and can be found in the full version of this paper ([7]).

The idea of the proof is to consider the abstract runs of class automata, simulate them by multicounter
automata, and illustrate that the simulation can be fulfilled by a priority multicounter automaton if the
priority class condition is assumed. The proof is inspired by the proof of Theorem 2 in [1].

4.1 From class automata to multicounter automata

Let D =(A ,B) be a class automaton, where A =(Qg,Σ,Γ,δg,q
g
0,Fg) and B=(Qc,Γ×{0,1},δc,qc

0,Fc).
Without loss of generality, we assume that B is deterministic and complete.

Given a data word (w,π), let S (w,π) be the set of data values occurring in (w,π), namely, S (w,π)=
{πi | 1≤ i≤ |w|}, and (w,π)≤i be the restriction of (w,π) to the set of positions {1, . . . , i} for each i≤ |w|.

Intuitively, a run of D over a data word (w,π) is a parallel running of the transducer A and the copies
of the automaton B over (w,π), with one copy for each data value occurring in (w,π). A run of D over a
data word (w,π) can be seen as a sequence (qg

1,q
c
1,γ1,R1)(q

g
2,q

c
2,γ2,R2) . . .(q

g
|w|,q

c
|w|,γ|w|,R|w|) such that

• the sequence (qg
1,γ1) . . .(q

g
|w|,γ|w|) corresponds to a run of the transducer A ,

• qc
i records the state of a copy of B corresponding to a data value that has not been met until the

position i, namely, a data value d 6∈S ((w,π)≤i),

• each time a new data value πi is met, Ri(π(i)) is set as δc(qc
i−1,(γi,1)), since π(i) has not been met

before and qc
i−1 records the current state of B for the new data values.

Formally, A run of D over a data word (w,π) is a sequence (qg
1,q

c
1,γ1,R1) . . .(q

g
|w|,q

c
|w|,γ|w|,R|w|)

satisfying the following conditions,

• for each i : 1≤ i≤ |w|, (qg
i−1,wi,γi,q

g
i)∈ δg, δc(qc

i−1,(γi,0)) = qc
i (where qg

0,q
c
0 are the initial states

of respectively A ,B),

Zhilin Wu 123

• for each i, Ri is a function from S ((w,π)≤i) to Qc, satisfying the following conditions,

– R1(π1) = δc(qc
0,(γ1,1)),

– for each i : 1 < i≤ |w|,
Ri(πi) = δc(Ri−1(πi),(γi,1)) if πi ∈S ((w,π)≤i−1), otherwise Ri(πi) = δc(qc

i−1,(γi,1)).
For each d ∈S ((w,π)≤i−1) such that d 6= πi, Ri(d) = δc(Ri−1(d),(γi,0)).

A run (qg
1,q

c
1,γ1,R1) . . .(q

g
|w|,q

c
|w|,γ|w|,R|w|) is successful if qg

|w| ∈ Fg and R|w|(d) ∈ Fc for each d ∈
S (w,π).

The functions R1, . . . ,R|w| in a run of D on the data word (w,π) can be abstracted into a sequence of
functions C1, . . . ,C|w| such that each Ci is a function Qc→N satisfying that for each q ∈ Qc, Ci(q) is the
number of data values d ∈S ((w,π)≤i) such that Ri(d) = q.

Intuitively, each Ci is a tuple of counter values, with one counter for each state in Qc. The sequence
C1, . . . ,Cn can be seen in a more abstract way, without directly referring to the data values in S ((w,π)),
as follows:

For each 1 < i ≤ |w|, Ci is obtained from Ci−1 by nondeterministically choosing one of the
following two possibilities:

• either (corresponding to the situation πi ∈S ((w,π)≤i−1))
– select some counter q′ with non-zero value (i.e. Ci−1(q′) > 0), decrement the

counter q′,
– then for each counter q′′, the value of q′′ is assigned as the sum of those of counters

p such that δc(p,(γi,0)) = q′′,
– finally increment the counter δc(q′,(γi,1)).

• or (corresponding to the situation πi 6∈S ((w,π)≤i−1))
– for each counter q′′, the value of q′′ is assigned the sum of those of counters p

such that δc(p,(γi,0)) = q′′,
– increment the counter δc(qc

i−1,(γi,1)).

The sequence (qg
1,q

c
1,γ1,C1)(q

g
2,q

c
2,γ2,C2) . . .(q

g
|w|,q

c
|w|,γ|w|,C|w|) is said to be an abstract run of D

over the data word (w,π).
With such an abstract view of runs, D can be transformed into a multicounter automaton (with zero

tests) C = (Qa,Σ,k,δa,qa
0,Fa = {qacc}) as follows,

• Qa includes Qg×Qc and some auxiliary states, e.g. for controlling the updates of the counter
values.

• C consists of k = |Qc| counters, one counter for each state in Qc.

• qa
0 = (qg

0,q
c
0).

• Each γ ∈ Γ induces a series of transition rules in δa as follows:
If

the current state of C is (pg, pc), the read head is in a position labeled by σ ∈ Σ, and
there are qg ∈ Qg,qc ∈ Qc such that (pg,σ ,γ,qg) ∈ δg and δc(pc,(γ,0)) = qc,

then

the state of C is changed into (qg,qc), the counter values are updated in such a way to
obtain Ci from Ci−1 as above, and the read head is moved to the next position.

• Nondeterministically, C changes the state into a special state qs and repeats the following action:

124 A decidable extension of data automata

C arbitrarily chooses a non-zero counter q ∈ Fc, decrements q. Then it tests whether all
the counters have zero value. If so, C changes the state into qacc and accepts.

We now specify in detail how to update the counter values in C , essentially, how to perform the
following updates:

For each counter q′′ in C , the value of q′′ is assigned the sum of those of the counters p such
that δc(p,(γ,0)) = q′′.

Recall that each connected component of G(γ,0) of B consists of a unique cycle C and several paths
towards C. Let C = q1 . . .qr, then for each 1 < i≤ r, the value of the counter qi+1 is assigned as the sum
of the value of the counter qi and the values of the counters of its predecessors not in C, where qr+1 = q1
by convention. Then the counter values can be updated as follows,

1. the counters corresponding to the states in C are first renamed1: For each i : 1≤ i≤ r, qi is renamed
as qi+1, where qr+1 = q1 by convention. The renaming is remembered by the finite-state control
of C . With this renaming, the counter qi+1 takes the value of the counter qi for each i : 1≤ i≤ r.

2. then the values of the counters on the paths towards C are updated in a backward way: For instance,

let p1
(γ,0)−→ p2

(γ,0)−→ p3 such that p3 ∈ C, p1, p2 6∈ C, then the value of p2 is first added into p3, by
decrementing p2 and incrementing p3 until the value of p2 becomes zero; afterwards, the value of
p1 is added into p2, and so on.

The above updates of counter values of C need (unrestricted) zero tests. In the following we will
show that if D is a PCA, then these updates can be done with the restricted zero tests of PMAs, namely,
testing zero for a prefix of counters as a whole, instead of a single counter.

4.2 From PCA to PMA

We first assume that (A ,B) is a PCA such that L (B) is a 0-priority regular language, and B is a
0-priority finite automaton. Later we will consider the more general case that L (B) is a disjoint union
of 0-priority regular languages.

We first introduce some notations and prove a property of abstract runs of PCA.
Suppose that Γ is ordered as γ1 . . .γl under which B is a 0-priority finite automaton.
Let Dscc(G0) be the strongly-connected-component directed graph of G0 of B, then Dscc(G0) is an

acyclic directed graph. Let #scc(G0) denote the maximal length (number of arcs) of paths in Dscc(G0).
Similar to Lemma 1 in [1], we can obtain the following lemma.

Lemma 22. Let D = (A ,B) be a PCA such that B is a 0-priority finite automaton. Then any ab-
stract run of D over a data word (w,π), say (qg

1,q
c
1,γ1,C1) . . .(q

g
|w|,q

c
|w|,γ|w|,C|w|), enjoys the following

property:
For each i : 1≤ i≤ |w|, the sum of Ci(q′)’s such that q′ is 0-acyclic is bounded by #scc(G0).

By utilizing Lemma 22, we then demonstrate how the updates of the counter values of the multi-
counter automaton C obtained from D in Section 4.1 can be done with the restricted zero tests in PMAs.

We introduce some additional notations.
For each i : 1≤ i≤ l, let Acyci denote the set of 0-cyclic states q ∈ Qc such that q is (γi,0)-acyclic.
In addition, let Acycl+1 denote the set of 0-cyclic states q 6∈ ⋃

i:1≤i≤l
Acyci by convention.

1The idea of renaming is from [1]

Zhilin Wu 125

Proposition 23. Let D = (A ,B) be a PCA such that B is a 0-priority finite automaton under the
ordering γ1 . . .γl . Then Acyc1, . . . ,Acycl+1 satisfy the following two properties:

1. Acyci ⊆ Acyci+1 for each i < l.

2. For each i : 1≤ i≤ l, if q ∈ Acyci and q
(γi,0)−→ q′, then q′ 6∈ Acyci and q′ ∈ Acyc j for some j > i. In

particular, if q ∈ Acycll and q
(γl ,0)−→ q′, then q′ 6∈ Acycl and q′ ∈ Acycl+1.

We are ready to show that if D is a PCA, then C can be turned into a PMA Cp = (Qp,Σ,k,δp,q
p
0 ,Fp).

From Lemma 22, if D is a PCA, then in the multicounter automaton C , the sum of the values of
the counters corresponding to the 0-acyclic states of B are always bounded. Thus in Cp, the counters
corresponding to these 0-acyclic states become virtual, in the sense that the values of these counters are
stored in the finite state control of Cp, and there are no real counters in Cp corresponding to the 0-acyclic
states of B.

The state set of Cp consists of the states (pg, pc,IAcyc) and some auxiliary states for updating the
counter values, where IAcyc is the information about the virtual counters corresponding to the 0-acyclic
states of B. The counters of Cp correspond to the 0-cyclic states of B, with one counter for each 0-cyclic
state.

The counters (corresponding to the 0-cyclic states of B) of Cp are ordered according to the following
order of 0-cyclic states of B,

Acyc1(Acyc2 \Acyc1) . . .(Acycl \Acycl−1)Acycl+1,

where an arbitrary ordering is given to the states within Acyc1, Acycl+1, and each of Acyci+1 \Acyci for
i : 1≤ i < l.

Each γ ∈ Γ induces a series of transition rules in δp specified in the following.
If the current state of Cp is (pg, pc,IAcyc), the read head is in some position labeled by σ , and there

are qg ∈ Qg,qc ∈ Qc such that (pg,σ ,γ,qg) ∈ δg and δc(pc,(γ,0)) = qc, then the state of Cp is changed
into (qg,qc,I ′

Acyc). Now we illustrate how the values of the real counters are updated and how the values
of the virtual counters, i.e. IAcyc in the finite state control of Cp, is updated into I ′

Acyc, by the following
three steps.

1. Either

the state pc
1 = δc(pc,(γ,1)) (a new data value is met) is stored in the finite state control of Cp,

or

some (0-acyclic or 0-cyclic) state q′ ∈ Qc (an old value is met) is selected, the (virtual
or real) counter corresponding to q′ is decremented, and the state pc

1 = δc(q′,(γ,1))
(the virtual or real counter corresponding to it should be incremented) is stored in the
finite-state control of Cp.

2. The values of the (virtual or real) counters are updated as follows.
Let γ = γi for some i : 1≤ i≤ l.
The counters corresponding to the states in Acyc j \Acyc j−1 for j > i, which are (γi,0)-cyclic in B,
are first updated by renaming, with the renaming stored in the finite state control of Cp. Then for
each counter q ∈ Acyc1, the value of the counter q is added to its (γi,0)-successor q′, which is in

Acyc j \Acyci for some j > i according to the fact that q ∈ Acyc1 ⊆ Acyci, q
(γi,0)−→ q′ and Proposition

23. Namely, the value of the counter q is decremented and the value of q′ is incremented until the

126 A decidable extension of data automata

value of the counter q becomes zero. Afterwards, for each counter q ∈ Acyc2 \Acyc1, the value of
the counter q is added to its (γi,0)-successor (which is also in Acyc j \Acyci for some j > i), and
so on, until all the counters corresponding to the states in Acyci \Acyci−1 are updated.
Note that during these updates of counter values, the zero-tests can be restricted to the zero-tests
for a prefix of counters. The reason is that when updating the counter corresponding to a state
q ∈ Acyc j+1 \ Acyc j for some j < i, the values of the counters corresponding to the states in
Acyc1, . . . ,Acyc j \ Acyc j−1 are already zero. Therefore, testing zero for the counter q is equal
to testing zero for the counters before q (including q) in the ordering.
Then, IAcyc, i.e. the information about the values of the virtual counters, is updated into I ′

Acyc
by following G0, the zero-transitions of B, and some real counters (corresponding to the 0-cyclic
states) should also be incremented if they correspond to the (γi,0)-successors of some 0-acyclic
states in B.

3. If pc
1 is 0-acyclic, then I ′

Acyc is further updated by incrementing the value of the virtual counter
pc

1, otherwise, the value of the real counter corresponding to the (0-cyclic) state pc
1 is incremented.

The definition of the Fp of Cp is similar to Fa of C in Section 4.1.
Finally the read head is moved to the next position.
This finishes the description of Cp.

At last, we consider the general case that L (B) is a disjoint union of 0-priority regular languages,
i.e. Γ is a disjoint union of Γ1, . . . ,Γk (k ≥ 1) such that
• for each u ∈ Σ∗, A outputs a word in Γ∗1∪ . . .Γ∗k ,

• L (B) is a union of languages L1, . . . ,Lk satisfying that Li ⊆ (Γi×{0,1})∗ is a 0-priority regular
language for each i.

For each i, let Γi be ordered as γi,1 . . .γi,li under which Li is a 0-priority regular language.
For each i, suppose Bi is a 0-priority finite automaton accepting Li and Acyci, j(1≤ j ≤ li +1) is the

set of 0-cyclic and (γi, j,0)-acyclic states in Bi.
Then from the PCA D , a PMA C can be constructed such that the counters of C correspond to the

set of 0-cyclic states in all these Bi’s, and these counters are ordered as follows,
Acyc1,1(Acyc1,2 \Acyc1,1) . . .(Acyc1,l1 \Acyc1,l1−1)Acyc1,l1+1 . . .

Acyck,1(Acyck,2 \Acyck,1) . . .(Acyck,lk \Acyck,lk−1)Acyck,lk+1.

In the PCA D , after the transducer A nondeterministically chooses an index i and outputs a string
in Γ∗i , only the 0-priority finite automaton Bi is used and the other automata B j for j 6= i remain idle,
thus the values of the counters before Acyci,1 in the above ordering are always zero, and the updates of
the counter values corresponding to the states Acyci,1, . . . ,Acyci,li \Acycli−1Acycli+1 can still be fulfilled
using the restricted zero tests of PMAs.

5 Application to the analysis of array-accessing programs
In this section, we demonstrate how to apply class automata with priority class condition to the algorith-
mic analysis of array-processing programs considered in [1]. The notations of this section follow those
in [1].

An array A is a list (A[1].s,A[1].d) . . .(A[n].s,A[n].d) such that A[i].s ∈ Σ and A[i].d ∈ D for each
i : 1≤ i≤ n.

The syntax of array-accessing programs over an array A are defined by the following rules2:
2The nondeterministic-choice rule i f ∗ then P else P is not included here for simplicity

Zhilin Wu 127

P ::= skip | {P} | b := B | p := IE | v := DE |
if B then P else P | for i := 1 to length(A) do P | P;P

where

• i, j, i1, j1, . . . are loop variables, p, p1, . . . are index variables, v,v1, . . . are data variables, and
b,b1, . . . are Boolean variables,

• s,s1, · · · ∈ Σ and c,c1, · · · ∈D are constants,

• IE ::= p | i are index expressions, SE ::= s | A[IE].s are Σ-expressions, DE ::= v | c | A[IE].d are
data expressions, and B are Boolean expressions defined by the following rules,

B ::= true | f alse | b | B and B | not B | IE = IE | IE < IE | DE = DE | DE < DE | SE = SE.

A state of the array-accessing program P is an assignment of values to the variables in P.
A Boolean state of the program P is an assignment of values to the Boolean variables in P.
The initial state of the program P is a state such that

• all the Boolean variables have value f alse;

• all the loop and index variables have value 1;

• all the data variables have the value the same as the first element of A.

A loop-free program is a program containing no loops, namely a program formed without using the
rules “for i := 1 to length(A) do P”.

The Boolean state reachability problem is defined as follows: Given a program P and a Boolean state
m of P, whether there is an array A such that m is reached from the initial state after the execution of P
over A.

Restricted ND2 programs are programs of the following form,

for i:=1 to length(A) do

{

P1;

for j:=1 to length(A) do

{

if A[i].d=A[j].d then

P2

else

P3

};

P4

}

such that

• P1,P2,P3,P4 are loop-free,

• P1,P2,P3,P4 do not use index or data variables,

• P1,P2,P3,P4 do not refer to the order on indices or data.

Theorem 24 ([1]). The Boolean state reachability problem is decidable for Restricted ND2 programs
satisfying the following additional condition:

P3 does not refer to A[j], i.e. it does not contain the occurrences of A[j].s or A[j].d.

128 A decidable extension of data automata

The idea of the proof of Theorem 24 is to reduce the Boolean state reachability problem to the
nonemptiness of extended data automata D = (A ,B) (c.f. Remark 14) such that

• A guesses an accepting run of the outer-loop of P over an array A,

• B corresponds to the inner loop and verifies the consistency of the guessed run.

Roughly speaking, B can be constructed from P2 and P3 such that

• P2 corresponds to the one-transitions in B,

• P3 corresponds to the zero-transitions in B.

The restriction that P3 does not refer to A[j] in Theorem 24 is crucial, because in extended data
automata, the labels are omitted in zero-transitions of the class condition B.

On the other hand, as we have shown, PCAs, i.e. class automata with priority class conditions, do
not omit the labels in zero-transitions and strictly generalize extended data automata. So naturally, by
using PCAs, we should be able to show that the Boolean state reachability problem is decidable for a
larger class of programs than those in Theorem 24.

Similar to the construction of extended data automata from Restricted-ND2 programs satisfying the
additional condition in Theorem 24, we have the following result.

Lemma 25. For a Restricted-ND2 program P and a Boolean state m, a class automaton D = (A ,B)
can be constructed such that m is reached from the initial state after the run of P over an array A iff the
array (data word) A is accepted by D .

In principle, the Boolean reachability problem is decidable for Restricted-ND2 programs P satisfying
the additional condition that the class automaton D = (A ,B) constructed from P in Lemma 25 is a class
automaton with priority class condition. However, this condition is in some sense a semantical condition,
since the construction of the automaton D from P has an exponential blow-up. In the following, we
demonstrate how to define a simple syntactic condition for P3 which guarantees that D constructed from
P is a PCA.

The 0-priority restricted-ND2 program is a Restricted-ND2 program satisfying the following condi-
tion:

Either P3 does not refer to A[j], i.e. it does not contain the occurrences of A[j].s or A[j].d,
or there are a set of constants s1, . . . ,sr ∈ Σ such that P3 is a program of the following form,

if BB then

if A[j].s =s1 then

PA1

else if A[j].s=s2 then

PA2

...

else if A[j].s=sr then

PAr

else skip

else skip

such that

• BB is a conjunction of literals, i.e. b or not b for Boolean variables b,
• PA1,PA2, . . . ,PAr are compositions of the assignments b := true or b := f alse for

Boolean variables b,

Zhilin Wu 129

• Each PAi for 1≤ i≤ r is nontrivial in the sense that there is a Boolean variable b such
that either b is a conjunct of BB and the assignment b := f alse is in PAi, or not b is a
conjunct of BB and the assignment b := true occurs in PAi.

Remark 26. The 0-priority restricted-ND2 programs subsume the Restricted-ND2 programs satisfying
that P3 does not refer to A[j]. A slightly more general syntactic condition than the above can be defined,
which we choose not to present here, since the condition is rather tedious, and we believe that the simple
condition presented above already sheds some light on the usefulness of PCAs.

Example 27. The following program to describe the property “for any two occurrences of the letter a
with the same data value in A, there is an occurrence of the letter b between them with a different data
value” (c.f. Example 13) is an example of 0-priority restricted-ND2 programs. Intuitively,

• the Boolean state b1 = true,b2 = f alse,b3 = f alse corresponds to the state q0 in Figure 1(a), the
Boolean state b1 = f alse,b2 = true,b3 = f alse corresponds to the state q1, and the Boolean state
b1 = f alse,b2 = f alse,b3 = true correspond to the Boolean state q2;

• the outer loop selects a position i and the inner loop verifies that the class string corresponding to
the data value A[i].d satisfies the class condition.

for i:=1 to length(A) do

{

if not b3 then %the sink state q2 is not reached yet

b1: = true; b2:=false

else

skip

for j:=1 to length(A) do

{ if A[i].d = A[j].d then

{ if A[j].s=a then

if b1 and not b2 and not b3 then

b1:=false; b2:=true

else if not b1 and b2 and not b3 then

b2:=false; b3:=true

else skip

else skip

}

else

{ if not b1 and b2 and not b3 then

if A[j].s = b then

b2:=false; b1:= true

else skip

else skip

}

}

}

An array A satisfies the property iff the Boolean state b1 = true,b2 = f alse,b3 = f alse or the state
b1 = f alse,b2 = true,b3 = f alse is reached from the initial state after the run of the above program
over the array A.

130 A decidable extension of data automata

Theorem 28. The Boolean state reachability problem is decidable for 0-priority restricted-ND2 pro-
grams.

Acknowledgement. The author thanks Anca Muscholl for introducing him to this field. The author
also thanks Luc Segoufin, Stéphane Demri, and Mikołaj Bojanćzyk for the discussions and suggestions.
Last but not the least, the author thanks anonymous referees for their valuable suggestions and comments.

References
[1] Rajeev Alur, Pavol Cerný & Scott Weinstein (2009): Algorithmic Analysis of Array-Accessing Programs. In:

CSL’09, LNCS 5771, pp. 86–101, doi:10.1007/978-3-642-04027-6 9. Also available as a technical report,
http://repository.upenn.edu/cis_reports/894/.

[2] Henrik Björklund & Mikłoj Bojanczyk (2007): Bounded depth data trees. In: In ICALP’ 07, pp. 862–874,
doi:10.1007/978-3-540-73420-8 74.

[3] Mikołaj Bojańczyk & Sławomir Lasota (2010): An extension of data automata that captures XPath. In: LICS
’10, pp. 243–252, doi:10.1109/LICS.2010.33.

[4] Mikołaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin & Claire David (2006): Two-Variable
Logic on Words with Data. In: LICS ’06, pp. 7–16, doi:10.1109/LICS.2006.51.

[5] K. Reinhardt (2005): Counting as Method, Model and Task in Theoretical Computer Science. Habilitation
thesis, Universität Tübingen.

[6] Luc Segoufin (2006): Automata and Logics for Words and Trees over an Infinite Alphabet. In: CSL, LNCS
4207, pp. 41–57, doi:10.1007/11874683 3.

[7] Zhilin Wu (2011): A decidable extension of data automata. Manuscript, avialable at http://lcs.ios.ac.
cn/~wuzl/wu-gandalf11.pdf.

http://dx.doi.org/10.1007/978-3-642-04027-6_9
http://repository.upenn.edu/cis_reports/894/
http://dx.doi.org/10.1007/978-3-540-73420-8_74
http://dx.doi.org/10.1109/LICS.2010.33
http://dx.doi.org/10.1109/LICS.2006.51
http://dx.doi.org/10.1007/11874683_3
http://lcs.ios.ac.cn/~wuzl/wu-gandalf11.pdf
http://lcs.ios.ac.cn/~wuzl/wu-gandalf11.pdf

	1 Introduction
	2 Preliminaries
	3 Class automata with priority class condition
	4 Correspondence between PCA and PMA
	4.1 From class automata to multicounter automata
	4.2 From PCA to PMA

	5 Application to the analysis of array-accessing programs

