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We prove that adding upwards closed first-order dependency atoms to first-order logic with team se-
mantics does not increase its expressive power (with respect to sentences), and that the same remains
true if we also add constancy atoms. As a consequence, the negations of functional dependence,
conditional independence, inclusion and exclusion atoms can all be added to first-order logic without
increasing its expressive power.

Furthermore, we define a class of bounded upwards closed dependencies and we prove that
unbounded dependencies cannot be defined in terms of boundedones.

1 Introduction

Team semantics is a generalization of Tarski’s semantics inwhich formulas are satisfied or not satisfied
by sets of assignments, calledteams, rather than by single assignments. It was originally developed by
Hodges, in [14], as a compositional alternative to the imperfect-informationgame theoretic semantics
for independence friendly logic [13, 18].

Over the past few years team semantics has been used to specify and study many other extensions
of first-order logic. In particular, since a team describes arelation between the elements of its model
team semantics offers a natural way to add to first-order logic atoms corresponding to database-theoretic
dependency notions.

This line of thought led first to the development ofdependence logic[19], and later to that ofin-
dependence logic[12] and inclusion and exclusion logics[8].1 By now there are many results in the
literature concerning the properties of these logics, and in Section 2 we recall some of the principal ones.

One common characteristic of all these logics is that they are much stronger than first-order logic
proper, even though they merely addfirst-order definabledependency conditions to its language. Indeed,
the rules of team semantics straddle the line between first and second order, since they evaluate first-order
connectives by means of second-order machinery: and, whilein the case of first-order logic formulas
team semantics can be reduced to Tarski’s semantics, if we add to our language atoms corresponding to
further conditions the second-order nature of team semantics can take over.

The purpose of the present paper is to investigate the boundary between first and second order “from
below”, so to say, taking first-order logic with team semantics and trying to find out how much we can
add to it while preserving first-orderness. In Section 3 we define a fairly general family of classes of
first-order definable dependency conditions and prove they can be safely added to first-order logic; then
in Section 4 we expand this family, and in Section 5 we show that, as a consequence, the negations of
all the main dependency atoms studied in team semantics do not “blow up” first-order logic into a higher
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order one. Finally, in Section 6 we introduce a notion ofboundednessfor dependencies and use it to
demonstrate somenon-definability results.

2 Preliminaries

In this section we will recall some fundamental definitions and results concerning team semantics.

Definition 1 (Team) Let M be a first-order model and letDom(M) be the set of its elements.2 Further-
more, let V be a finite set of variables. Then ateamX over M withdomainDom(X) = V is a set of
assignments s from V toDom(M).

Given a team X and a tuple of variables~v contained in the domain of X, we write X↾~v for the team
obtained by restricting all assignments of X to the variables of~v and X(~v) for the relation{s(~v) : s∈
X} ⊆ Dom(M)|~v|.

As it is common when working with team semantics, we will assume that all our expressions are in
negation normal form.

Definition 2 (Team Semantics for First-Order Logic) Let φ(~x) be a first-order formula in negation
normal form with free variables in~x. Furthermore, let M be a first-order model whose signature contains
the signature ofφ and let X be a team over it whose domain contains~x. Then we say that Xsatisfiesφ
in M, and we write M|=X φ , if and only if this follows from these rules:3

TS-lit: For all first-order literalsα , M |=X α if and only if for all s∈ X, M |=s α according to the usual
Tarski semantics;

TS-∨: For all ψ and θ , M |=X ψ ∨ θ if and only if X= Y ∪Z for two subteams Y and Z such that
M |=Y ψ and M |=Z θ ;

TS-∧: For all ψ andθ , M |=X ψ ∧θ if and only if M |=X ψ and M |=X θ ;

TS-∃: For all ψ and all variables v, M|=X ∃vψ if and only if there exists a function

H : X → P(Dom(M))\{ /0}

such that M|=X[H/v] ψ , where X[H/v] = {s[m/v] : s∈ X,m∈ H(s)} andP(Dom(M)) is the pow-
erset ofDom(M);

TS-∀: For all ψ and all variables v, M|=X ∀vψ if and only if M |=X[M/v] ψ , where X[M/v] = {s[m/v] :
s∈ X,m∈ M}.

Given a sentence (that is, a formula with no free variables)φ and a model M over its signature, we
say thatφ is true in M and we write M|= φ if and only if M |={ /0} φ .4

The following is a useful and easily derived rule:

Lemma 3 Let~v= v1 . . .vn be a tuple of n variables and let∃~vψ be a shorthand for∃v1 . . .∃vnψ . Then
M |=X ∃~vψ if and only if there exists a function H: X → P(Dom(M)n)\{ /0} such that M|=X[H/~v] ψ ,
where X[H/~v] = {s[~m/~v] : s∈ X,~m∈ H(s)}.

2We always assume that models have at least two elements in their domain.
3What we give here is the so-calledlax version of team semantics. There also exists astrict version, with slightly different

rules for disjunction and existential quantification; but as pointed out in [8],locality – in the sense of Theorem 8 here – fails
in strict team semantics for some of the logics we are interested in. Therefore, in this work we will only deal with lax team
semantics.

4Of course, one should not confuse the team{ /0}, which contains only the empty assignment, with theempty team/0, which
contains no assignments at all.
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With respect to first-order formulas, team semantics can be reduced to Tarski’s semantics. Indeed,

Proposition 4 ([14, 19]) Let φ(~x) be a first-order formula in negation normal form with free variables
in~x. Furthermore, let M be a first-order model whose signature contains that ofφ , and let X be a team
over M whose domain contains~x. Then M|=X φ if and only if, for all s∈ X, M |=s φ with respect to
Tarski’s semantics.

In particular, a first-order sentenceφ is true in a model M with respect to team semantics if and only
if it is true in M with respect to Tarski’s semantics.

Therefore, not all first-order definable properties of relations correspond to the satisfaction conditions of
first-order formulas: for example, the non-emptiness of a relation R is definable by∃~xR~x, but there is no
first orderφ such thatM |=X φ if and only if X 6= /0. More in general, letφ∗(R) be a first-order sentence
specifying a property of thek-ary relationR and let~x= x1 . . .xk be a tuple of new variables: then, as it
follows easily from the above proposition, there exists a first-order formulaφ(~x) such that

M |=X φ(~x)⇔ M,X(~x) |= φ∗(R)

if and only if φ∗(R) can be put in the form∀~x(R~x→ θ(~x)) for someθ in which Rdoes not occur.5

It is hence possible to extend first-order logic (with team semantics) by introducing new atoms corre-
sponding to further properties of relations. Database theory is a most natural choice as a source for such
properties; and, in the rest of this section, we will recall the fundamental database-theoretic extensions
of first-order logic with team semantics and some of their properties.

Dependence logicFO(=(·, ·)), from [19], adds to first-order logicfunctional dependence atoms
=(~x,~y) based on database-theoreticfunctional dependencies([2]). Their rule in team semantics is

TS-fdep: M |=X=(~x,~y) if and only if for all s,s′ ∈ X, s(~x) = s′(~x)⇒ s(~y) = s′(~y).

This atom, and dependence logic as a whole, isdownwards closed: for all dependence logic formulas
φ , modelsM and teamsX, if M |=X φ thenM |=Y φ for all Y ⊆ X. It is not howeverunion closed: if
M |=X φ andM |=Y φ then we cannot in general conclude thatM |=X∪Y φ .

Dependence logic is equivalent to existential second-order logic over sentences:

Theorem 5 ([19]) Every dependence logic sentenceφ is logically equivalent to some ESO sentenceφ∗,
and vice versa.

Constancy logicFO(=(·)) is the fragment of dependence logic which only allows functional dependence
atoms of the form=( /0,~x), which we will abbreviate as=(~x) and callconstancy atoms. Clearly we have
that

TS-const: M |=X=(~x) if and only if for all s,s′ ∈ X, s(~x) = s′(~x).

As proved in [8], every constancy logic sentence is equivalent to some first-order sentence: therefore,
constancy logic is strictly weaker than dependence logic. Nonetheless, constancy logic is more ex-
pressive than first-order logic with respect to the second-order relations generated by the satisfaction
conditions of formulas: indeed, it is an easy consequence ofProposition 4 that no first-order formula is
logically equivalent to the constancy atom=(x).

Exclusion logic FO(|), from [8], adds to first-order logicexclusion atoms~x | ~y, where~x and~y are
tuples of variables of the same length. Just as functional dependence atoms correspond to functional
database-theoretic dependencies, exclusion atoms correspond toexclusion dependencies[3]; and their
satisfaction rule is

5That is, according to the terminology of [19], if and only ifφ∗(R) is flat.
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TS-excl: M |=X ~x |~y if and only if X(~x)∩X(~y) = /0.

As proved in [8], exclusion logic is entirely equivalent to dependence logic: every exclusion logic for-
mula is logically equivalent to some dependence logic formula, and vice versa.

Inclusion logic FO(⊆), also from [8], adds instead to first-order logicinclusion atoms~x⊆~y based
on database-theoreticinclusion dependencies[6]. The corresponding rule is

TS-inc: M |=X ~x⊆~y if and only if X(~x)⊆ X(~y).

Inclusion logic is stronger than first-order logic, but weaker than existential second-order logic: indeed,
as shown in [9], sentence-wise it is equivalent to positive greatest fixed point logic GFP+. Formula-wise,
it is incomparable with constancy, dependence or exclusionlogic, since its formulas are union closed but
not downwards closed.

Independence logicFO(⊥), from [12], adds to first-order logicindependence atoms~x ⊥~y with the
intended meaning of “the values of~x and~y are informationally independent”. More formally,

TS-ind: M |=X ~x ⊥~y if and only if X(~x~y) = X(~x)×X(~y).

This notion of informational independence has a long history: see for example [11] for an analysis of
this concept from a probabilistic perspective.

Theconditional independence atoms~x ⊥~z~y, also from [12], relativize the independence of~x and~y
to all fixedvalue of~z. Their semantics is

TS-c-ind: M |=X ~x ⊥~z~y if and only if for all tuples~m∈ Dom(M)|~z| and forX~z=~m = {s∈ X : s(~z) = ~m} it
holds thatX~z=~m(~x~y) = X~z=~m(~x)×X~z=~m(~y).

As pointed out in [4], the rule for~x ⊥~z ~y corresponds precisely to the database-theoreticembedded
multivalued dependency[5] (~z։~x|~y).

In [12] it was shown that every dependence logic formula is equivalent to someFO(⊥c) (conditional
independence logic) formula, but not vice versa; and sentence-wise, both of these logics are equivalent
to each other (and to ESO). Furthermore, in [8] it was proved that FO(⊥c) is equivalent toinclu-
sion/exclusion logic6 FO(⊆, |), even with respect to open formulas, and that this is, roughly speaking,
the most general logic obtainable by adding first-order (or even existential second-order) definable de-
pendency conditions to first-order logic.7 More recently, in [10], it was shown that FO(⊥) and FO(⊥c)
are also equivalent.

We conclude this section with Figure 1, which depicts the relations between the logics we discussed
so far.

3 Upwards Closed Dependencies

In this work we will study the properties of the logics obtained by adding families ofdependency con-
ditions to the language of first-order logic. But what is a dependencycondition, in a general sense? The
following definition is based on thegeneralized atomsof [17]:

Definition 6 Let n∈ N. A dependencyof arity n is a classD, closed under isomorphisms, of models
over the signature{R} where R is a n-ary relation symbol. If~x is a tuple of n variables (possibly with
repetitions), M is a first-order model and X is a team over it whose domain contains all variables of~x
then

6That is, to first-order logic plus inclusionandexclusion atoms.
7To be more precise, for every ESO formulaφ∗(R) there exists a FO(⊥c) formulaφ(~x) such that, for all suitable modelsM

and nonempty teamsX, M |=X φ(~x) if and only if M,X(~x) |= φ∗(R).
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Figure 1: Relations between logics wrt formulas (a) and sentences (b).

TS-D: M |=X D~x if and only if(Dom(M),X(~x)) ∈ D.

Definition 7 Let D = {D1,D2, . . .} be a family of dependencies. Then we write FO(D) for the logic
obtained by adding to the language of first-order logic alldependency atomsD~x, whereD ∈ D and~x is
a tuple of variables of the arity ofD.

It is not difficult to represent the logics of Section 2 in thisnotation. For example, dependence logic is
FO(=(·, ·)) for =(·, ·) = {=(n,m) : n,m∈ N}, where(Dom(M),R) ∈ =(n,m) if and only if

~a~b,~a~c∈ R⇒~b=~c

for all tuples of elements~a= a1 . . .an,~b= b1 . . .bm,~c= c1 . . .cm ∈ Dom(M).
The following property can be easily verified, by induction on the formulasφ :8

Theorem 8 (Locality) LetD be a family of dependencies and letφ(~x) be a formula of FO(D) with free
variables in~x. Then for all models M and all teams X over it whose domain contains~x, M |=X φ(~x) if
and only if M|=X↾~x φ(~x).

In this work, we will be mainly interested in dependencies which correspond to first-order definable
properties of relations:

Definition 9 A dependency notionD is first-order definableif there exists a first-order sentenceD∗(R)
over the signature{R}, where R is a new relation symbol, such that

M ∈ D ⇔ M |= D∗(R)

for all models M= (Dom(M),R).

8For the sake of reference, we mention Theorem 4.22 of [8] in which the same result is proved in detail for (conditional)
independence logic. The only new case here is the one in whichφ(~x) = D~y for someD ∈ D and~y is contained in~x; and for it
the result follows at once from conditionTS-D and from the fact thatX(~y) = (X ↾~x)(~y).
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It is not necessarily the case that ifD is first-order definable then FO(D) and FO are equivalent with
respect to sentences. For example=(n,m)∗(R) is ∀~x~y~z(R~x~y∧R~x~z→~y=~z), where~x has lengthn and~y,~z
have lengthm; but as we said in Section 2, dependence logic is stronger than first-order logic.

When is then the case that dependency conditions can be addedsafely to first-order logic, without
increasing the expressive power? The following definition will provide us a partial answer:

Definition 10 A dependency notionD is upwards closedif

(Dom(M),R) ∈ D,R⊆ S⇒ (Dom(M),S) ∈ D

for all models(Dom(M),R) and all relations S overDom(M) of the same arity of R.

It is easy to see that upwards closed dependencies induce upwards closed satisfaction rules: ifD is
upwards closed,M |=X D~x andX ⊆ Y then it is always the case thatM |=Y D~x. However, differently
from the case of downwards or union closure, upwards closureis not preserved by team semantics: ifD
is upwards closed,φ ∈ FO(D) andM |=X φ then it is not in general true thatM |=Y φ for all Y ⊇ X (for
example, letφ be a nontrivial first-order literal and recall RuleTS-lit ).

Some examples of upwards closed dependencies follow:

Non-emptiness: M |=X NE if and only if X 6= /0;

Intersection: M |=X ♦(~x=~y) if and only if there exists as∈ X with s(~x) = s(~y);

Inconstancy: M |=X 6=(~x) if and only if |X(~x)|> 1;

n-bigness: For all n∈N, M |=X |~x| ≥ n if and only if |X(~x)| ≥ n;

Totality: M |=X All(~x) if and only if X(~x) = Dom(M)|~x|;

Non-dependence:M |=X 6=(~x,~y) if and only if there exists,s′ ∈ X with s(~x) = s′(~x) but s(~y) 6= s′(~y);9

Non-exclusion: M |=X ~x ∤~y if and only if there exists,s′ ∈ X with s(~x) = s′(~y);

Infinity: M |=X |~x| ≥ ω if and only if X(~x) is infinite;

κ-bigness: For all cardinalsκ , M |=X |~x| ≥ κ if and only if |X(~x)| ≥ κ .

All the above examples except infinity andκ-bigness are first-order definable. TheNE atom is the adap-
tation to first-order team semantics of the non-emptiness atom introduced in [20] for the propositional
version of dependence logic, and the totality atomAll is due to Abramsky and Väänänen ([1]).

The main result of this section is the following:

Theorem 11 LetD be a collection of upwards closed first-order definable dependency conditions. Then
for every formulaφ(~x) of FO(D) with free variables in~x there exists a first-order sentenceφ∗(R), where
R is a new|~x|-ary relation symbol, such that

M |=X φ(~x)⇔ M,X(~x) |= φ∗(R)

for all models M over the signature ofφ and all teams X.
In particular, every sentence of FO(D) is equivalent to some first-order sentence.

Let us begin by adapting the notion offlatteningof [19] to the case of an arbitrary logic FO(D):

9The same symbol6=(~x,~y) has been used in [7] to describe a different non-dependence notion, stating that forevery s∈ X
there exists as′ ∈ X with s(~x) = s′(~x),s(~y) 6= s′(~y). In that thesis it was proved that the resulting “non-dependence logic” is
equivalent to inclusion logic. As we will see, this is not thecase for the non-dependence notion of this paper.
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Definition 12 Let D be any set of dependency conditions and letφ be a FO(D) formula. Then its
flatteningφ f is the first-order formula obtained by replacing any non-first-order atom with⊤, where⊤
is the trivially true atom.

It is trivial to see, by induction onφ , that

Lemma 13 For all D , all φ ∈ FO(D), all models M and all teams X over M, if M|=X φ then M|=X φ f .

As we said, even ifD contains only upwards closed dependency conditions it is not true that all formulas
of FO(D) are upwards closed. However, the following restricted variant of upwards closure is preserved:

Theorem 14 Let φ be a FO(D) formula, whereD contains only upwards closed dependencies. Let M
be a first-order model, and let X, Y be teams such that X⊆Y, M |=X φ , and M|=Y φ f . Then M|=Y φ .

Proof:
The proof is by structural induction onφ .

1. If φ is a first-order literal,φ f = φ and there is nothing to prove;

2. If φ is of the formD~x for someD ∈ D , M |=X φ andX ⊆Y, then by upwards closureM |=Y φ ;

3. Suppose thatM |=X φ1∨φ2 andM |=Y φ f
1 ∨φ f

2 . NowX =X1∪X2 for two X1, X2 such thatM |=X1 φ1

andM |=X2 φ2, and therefore by Lemma 13M |=X1 φ f
1 andM |=X2 φ f

2 . Furthermore,Y =Y1∪Y2 for
two Y1, Y2 such thatM |=Y1 φ f andM |=Y2 φ f

2 . Let Z1 = X1∪Y1 andZ2 = X2∪Y2; thenZ1∪Z2 =

X ∪Y = Y, and by Proposition 4M |=Z1 φ f
1 andM |=Z2 φ f

2 . But M |=X1 φ1 andX1 ⊆ Z1, so by
induction hypothesisM |=Z1 φ1; and similarly,M |=X2 φ2 andX2 ⊆ Z2, soM |=Z2 φ2. Therefore
M |=Y φ1∨φ2, as required.

4. If M |=X φ1∧φ2 thenM |=X φ1 andM |=X φ2. Then by induction hypothesis, sinceM |=Y φ f
1 and

X ⊆Y, M |=Y φ1; and similarly, sinceM |=Y φ f
2 andX ⊆Y, M |=Y φ2, and thereforeM |=Y φ1∧φ2.

5. If M |=X ∃vφ then there is a functionH : X → P(Dom(M))\{ /0} such thatM |=X[H/v] φ , and
therefore (by Lemma 13) such thatM |=X[H/v] φ f . Similarly, if M |=Y ∃vφ f then for someK we
have thatM |=Y[K/v] φ f . Now letW : Y → P(Dom(M))\{ /0} be such that

W(s) =

{

H(s)∪K(s) if s∈ X;
K(s) if s∈Y\X.

ThenY[W/v] =X[H/v]∪Y[K/v], and therefore by Proposition 4M |=Y[W/v] φ f . Then by induction
hypothesisM |=Y[W/v] φ , sinceX[H/v] satisfiesφ and is contained inY[W/v]; and thereforeM |=Y

∃vφ , as required.

6. If M |=X ∀vφ thenM |=X[M/v] φ , and if M |=Y ∀vφ f thenM |=Y[M/v] φ f . Now X[M/v] ⊆Y[M/v],
so by induction hypothesisM |=Y[M/v] φ , and thereforeM |=Y ∀vφ .

�

Definition 15 If θ is a first-order formula andφ is a FO(D) formula we define(φ ↾ θ) as(¬θ)∨(θ ∧φ),
where¬θ is a shorthand for the first-order formula in negation normalform which is equivalent to the
negation ofθ .

The following lemma is obvious:
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Lemma 16 For all first order θ andφ ∈ FO(D), M |=X (φ ↾ θ) if and only if M |=Y φ for Y = {s∈ X :
M |=s θ}.

One can observe that(φ ↾ θ) is logically equivalent toθ →֒ φ , where→֒ is themaximal implicationof
[16]:

TS-maximp: M |=X θ →֒ φ if and only if for all maximalY ⊆ X s.t. M |=Y θ , M |=Y φ .

We use the notation(φ ↾ θ), instead ofθ →֒ φ , to make it explicit thatθ is first order and that Lemma 16
holds.

The next step of our proof of Theorem 11 is to identify a fragment of our language whose satisfaction
conditions do not involve quantification over second-orderobjects such as teams or functions. We do so
by limiting the availability of disjunction and existential quantification:

Definition 17 A FO(D) formulaφ is cleanif

1. All its disjunctive subformulasψ1∨ψ2 are first order or of the formψ ↾ θ for some suitable choice
of ψ andθ (whereθ is first order);

2. All its existential subformulas∃vψ are first order.

As the next proposition shows, clean formulas correspond tofirst-order definable properties of relations.

Proposition 18 LetD be a class of first-order definable dependencies and letφ(~x) ∈ FO(D) be a clean
formula with free variables in~x. Then there exists some first-order sentenceφ∗(R), where R is a new
|~x|-ary relation, such that

M |=X φ(~x)⇔ M,X(~x) |= φ∗(R). (1)

Proof:
By induction overφ .

1. If φ(~x) is a first-order formula (not necessarily just a literal) then let φ∗(R) = ∀~x(R~x→ φ(~x)). By
Proposition 4, (1) holds.

2. If φ(~x) is a dependency atomD~y, whereD ∈ D and~y is a tuple (possibly with repetitions) of
variables occurring in~x, let φ∗(R) be obtained fromD∗(S) by replacing every instanceS~zof S in it
with ∃~x(~z=~y∧R~x). Indeed,M |=X D~y if and only if M,X(~y) |= D∗(S), and~m∈ X(~y) if and only
if M,X(~x) |= ∃~x(~m=~y∧R~x).

3. If φ(~x) is of the form(ψ(~x) ↾ θ(~x)), let φ∗(R) be obtained fromψ∗(R) by replacing every instance
R~z of R with R~z∧θ(~z). Indeed, by Lemma 16M |=X (ψ(~x) ↾ θ(~x)) if and only if M |=Y ψ(~x) for
Y = {s∈ X : M |=s θ}, and~m∈Y(~x)⇔ ~m∈ X(~x) andM |= θ(~m).

4. If φ(~x) is of the formψ(~x)∧θ(~x) simply letφ∗(R) = ψ∗(R)∧θ∗(R).

5. If φ(~x) is of the form∀vψ(~x,v), where we assume without loss of generality thatv is distinct from
all x ∈~x, andψ∗(S) corresponds toψ(~x,v) then letφ∗(R) be obtained fromψ∗(S) by replacing
everyS~zwwith R~z. Indeed,M |=X ∀vψ if and only if M |=X[M/v] ψ(~x,v) and~mm′ ∈ X[M/v](~xv) if
and only if~m∈ X(~x).

�

All that is now left to prove is the following:

Proposition 19 Let D be a family of upwards closed dependencies. Then every FO(D) formula is
equivalent to some clean FO(D) formula.
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Proof:
It suffices to observe the following facts:

• If φ1(~x) andφ2(~x) are in FO(D) thenφ1(~x)∨φ2(~x) is logically equivalent to

(φ f
1 ∨φ f

2 )∧ (φ1 ↾ φ f
1 )∧ (φ2 ↾ φ f

2 ).

Indeed, suppose thatM |=X φ1∨φ2: then, by Lemma 13,M |=X φ f
1 ∨φ f

2 . Furthermore,X =Y∪Z

for twoY andZ such thatM |=Y φ1 andM |=Z φ2. Now letY′ = {s∈ X : M |=s φ f
1 } andZ′ = {s∈

X : M |=s φ f
2 }: by Lemma 13 and Proposition 4 we have thatY ⊆Y′ and thatZ ⊆ Z′, and therefore

by Theorem 14M |=Y′ φ1 andM |=Z′ φ2. Thus by Lemma 16M |=X (φ1 ↾ φ f
1 ) andM |=X (φ2 ↾ φ f

2 ),
as required.

Conversely, suppose thatM |=X (φ f
1 ∨φ f

2 )∧ (φ1 ↾ φ f
1 )∧ (φ2 ↾ φ f

2 ). Then letY = {s∈ X : M |=s φ f
1 }

andZ= {s∈X : M |=s φ f
2 }. By Proposition 4 and sinceM |=X φ f

1 ∨φ f
2 , X =Y∪Z; and by Lemma

16,M |=Y φ1 andM |=Z φ2. SoM |=X φ1∨φ2, as required.

• If φ(~x,v) ∈ FO(D) then∃vφ(~x,v) is logically equivalent to

(∃vφ f (~x,v))∧∀v(φ(~x,v) ↾ φ f (~x,v)).

Indeed, suppose thatM |=X ∃vφ(~x,v). Then by Lemma 13M |=X ∃vφ f (~x,v). Furthermore, for
someH : X → P(Dom(M))\{ /0} and forY = X[H/v] it holds thatM |=Y φ(~x,v). Now let Z =
{h∈ X[M/v] : M |=h φ f (~x,v)}. By Proposition 4,M |=Z φ f (~x,v); and sinceY ⊆ Z, by Theorem
14M |=Z φ(~x,v), and therefore by Lemma 16M |=X[M/v] (φ(~x,v) ↾ φ f (~x,v)), as required.

Conversely, suppose thatM |=X (∃vφ f (~x,v))∧∀v(φ(~x,v) ↾ φ f (~x,v)). Then, for alls∈X, letK(s)=
{m∈ Dom(M) : M |=s[m/v] φ f (~x,v)}. SinceM |=X ∃vφ f (~x,v), K(s) is nonempty for alls∈ X, and
by constructionX[K/v] = {s∈ X[M/v] : M |=s φ f (~x,v)}. Now M |=X[M/v] (φ(~x,v) ↾ φ f (~x,v)), so
by Lemma 16M |=X[K/v] φ(~x,v) and in conclusionM |=X ∃vφ(~x,v).

Applying inductively these two results to all subformulas of someφ ∈ FO(D) we can obtain some clean
φ ′ to whichφ is equivalent, and this concludes the proof.
�

Finally, the proof of Theorem 11 follows at once from Propositions 18 and 19.
Since, as we saw, the negations of functional and exclusion dependencies are upwards closed, we

obtain at once the following corollary:

Corollary 20 Any sentence of FO(6=(·, ·), ∤) (that is, of first-order logic plus negated functional and
exclusion dependencies) is equivalent to some first-order sentence.

4 Adding Constancy Atoms

As we saw in the previous section, upwards closed dependencies can be added to first-order logic without
increasing its expressive power (with respect to sentences); and as mentioned in Section 2, this is also
true for the (non upwards-closed) constancy dependencies=(~x).

But what if our logic contains both upwards closedand constancy dependencies? As we will now
see, the conclusion of Theorem 11 remains valid:
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Theorem 21 LetD be a collection of upwards closed first-order definable dependency conditions. Then
for every formulaφ(~x) of10 FO(=(·),D) with free variables in~x there exists a first-order sentenceφ∗(R),
where R is a new|~x|-ary relation symbol, such that

M |=X φ(~x)⇔ M,X(~x) |= φ∗(R).

In particular, every sentence of FO(D) is equivalent to some first-order sentence.

The main ingredient of our proof will be the following lemma.

Lemma 22 Let D be any family of dependencies and letφ(~x) be a FO(=(·),D) formula. Thenφ(~x) is
equivalent to some formula of the form∃~v(=(~v)∧ψ(~x,~v)), whereψ ∈ FO(D) contains exactly the same
instances ofD-atoms (for allD ∈ D) that φ does, and in the same number.

The proof of this lemma is by induction onφ , and it is entirely analogous to the corresponding proof
from [8].

Now we can prove Theorem 21.
Proof:
Let φ(~x) be a FO(=(·),D)-formula. Then by Lemma 22φ(~x) is equivalent to some sentence of the
form ∃~v(=(~v)∧ψ(~x,~v)), whereψ(~x,~v) ∈ FO(D). But then by Theorem 11 there exists a first-order
formula ψ∗(S) such thatM |=X ψ(~x,~v) if and only if M,X(~x~v) |= ψ∗(S). Now let θ(R,~v) be obtained
from ψ∗(S) by replacing anyS~y~z with R~y∧~z=~v. SinceX[~m/~v](~x~v) = {~a~m :~a∈ X(~x)} it is easy to see
thatM |=X ∃~v(=(~v)∧ψ(~x,~v)) if and only if M,X(~x) |= ∃vθ(R,~v), and this concludes the proof.
�

5 Possibility, Negated Inclusion and Negated Conditional Independence

By Corollary 20, the negations of exclusion and functional dependence atoms can be added to first-
order logic without increasing its power. But what about thenegations of inclusion and (conditional)
independence? These are of course first-order definable, butthey are not upwards closed: indeed, their
semantic rules can be given as

TS-6⊆: M |=X ~x 6⊆~y if and only if there is as∈ X such that for alls′ ∈ X, s(~x) 6= s′(~y);

TS-6⊥c: M |=X ~x 6⊥~z ~y if and only if there ares,s′ ∈ X with s(~z) = s′(~z) and such that for alls′′ ∈ X,
s′′(~x~z) 6= s(~x~z) or s′′(~y~z) 6= s(~y~z).

However, we will now prove that, nonetheless, FO(6=(·, ·), 6⊆, ∤, 6⊥c) is equivalent to FO on the level of
sentences. In order to do so, let us first define the followingpossibility operatorand prove that it is
uniformly definable in FO(=(·), 6=(·)):

Definition 23 Let φ be any FO(D) formula, for any choice ofD . Then

TS-♦: M |=X ♦φ if there exists a Y⊆ X, Y 6= /0, such that M|=Y φ .

Lemma 24 Let φ be any FO(D) formula, for anyD . Then♦φ is logically equivalent to

∃u0u1∃v(=(u0)∧=(u1)∧ (v= u0∨v= u1)∧ (φ ↾ v= u1)∧ 6=(v)). (2)

10Here=(·) represents the class of all constancy dependencies of all arities. But it is easy to see that the one of arity 1 would
suffice: indeed, if~x is x1 . . .xn then=(~x) is logically equivalent to=(x1)∧ . . .∧=(xn).
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Proof:
Suppose that there is aY ⊆ X, Y 6= /0, such thatM |=Y φ . Then let 0,1∈ Dom(M) be such that 06= 1, let
H : X[01/u0u1]→ P(Dom(M))\{ /0} be such that

H(s[01/u0u1]) =

{

{0,1} if s∈Y;
{0} if s∈ X\Y

and letZ = X[01/u0u1][H/v]. Clearly M |=Z=(u0)∧ =(u1)∧ (v = u0 ∨ v = u1)∧ (φ ↾ v = u1), and it
remains to show thatM |=Z 6=(v). But by hypothesisY is nonempty, and therefore there exists as∈Y ⊆X
such that{s[010/u0u1v],s[011/u0u1v]} ⊆ Z. Sov is not constant inZ, as required, andX satisfies (2).

Conversely, suppose thatX satisfies (2), let 0 and 1 be our choices foru0 andu1, and letH be the
choice function forv. Then letY = {s∈ X : 1∈ H(s[01/u0u1])}. By locality, Lemma 16 and the fact that
M |=X[01H/u1u2v] (φ ↾ v= u1) we have thatM |=Y φ ; andY is nonempty, since
M |=Z (v= u0∨v= u1)∧ 6=(v).
�

It is now easy to see that the negations of inclusion and conditional independence are in FO(=(·), 6=(·)):

Proposition 25 For all ~x,~y with |~x|= |~y|,~x 6⊆~y is logically equivalent to

∃~z(=(~z)∧♦(~z=~x)∧~z 6=~y).

Proposition 26 For all ~x,~y and~z,~x 6⊥~z~y is logically equivalent to

∃~p~q~r(=(~p~q~r)∧♦(~p~r =~x~z)∧♦(~q~r =~y~z)∧~p~q~r 6=~x~y~z).

Corollary 27 Every sentence of FO(6=(·, ·), 6⊆, ∤, 6⊥c) is equivalent to some sentence of
FO(=(·), 6=(·, ·), ∤), and hence to some first-order sentence.

6 Bounded Dependencies and Totality

Now that we know something about upwards closed dependencies, it would be useful to classify them in
different categories and provenon-definabilityresults between the corresponding extensions of first-order
logic. As a first such classification, we introduce the following property:

Definition 28 (Boundedness)Let κ be a (finite or infinite) cardinal. A dependency conditionD is κ-
boundedif whenever M|=X D~x there exists a Y⊆ X with |Y| ≤ κ such that M|=Y D~x.

We say thatD is boundedif it is κ-bounded for someκ .11

For example, non-emptiness and intersection are 1-bounded; inconstancy and the negations of functional
dependence and exclusion are 2-bounded; and for all finite orinfinite κ , κ-bigness isκ-bounded. How-
ever, totality is not bounded at all. Indeed, for anyκ consider a modelM of cardinality greater thanκ and
take the teamX = { /0}[M/x]. ThenM |=X All(x), but if Y ⊆ X has cardinality≤ κ thenY(x)( Dom(M)
andM 6|=Y All(x).

As we will now see, the property of boundedness is preserved by the connectives of our language.

Definition 29 (Height of a formula) Let D be any family of bounded dependencies. Then for all for-
mulasφ ∈ FO(D), theheightht(φ) of φ is defined as follows:

11After a fashion, this notion of boundedness may be thought ofas a dual of the notion ofcoherenceof [15].
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1. If φ is a first-order literal thenht(φ) = 0;

2. If φ is a functional dependence atomD~x thenht(φ) is the least cardinalκ such thatD is κ-
bounded;

3. If φ is of the formψ1∨ψ2 or ψ1∧ψ2 thenht(φ) = ht(ψ1)+ht(ψ2);

4. If φ is of the form∃vψ or ∀vψ . thenht(φ) = ht(ψ).

In other words, the height of a formula is the sum of the heights of all instances of dependency atoms
occurring in it.

Theorem 30 Let D be a family of bounded upwards closed dependencies. Then forall formulasφ ∈
FO(D)

M |=X φ ⇒∃Y ⊆ X with |Y| ≤ ht(φ) s.t. M |=Y φ .

Proof:
The proof is by induction onφ .

1. If φ is a first-order literal thenht(φ) = 0 and it is always the case thatM |= /0 φ , as required.

2. If φ is an atomD~x then the statement follows at once from the definitions of boundedness and
height.

3. If φ is a disjunctionψ1∨ψ2 thenht(φ) = ht(ψ1)+ ht(ψ2). Suppose now thatM |=X ψ1∨ψ2:
thenX = X1∪X2 for two X1 andX2 such thatM |=X1 ψ1 andM |=X2 ψ2. This implies that there
existY1 ⊆ X1, Y2 ⊆ X2 such thatM |=Y1 ψ1 andM |=Y2 ψ2, |Y1| ≤ ht(ψ1) and|Y2| ≤ ht(ψ2). But
thenY =Y1∪Y2 satisfiesψ1∨ψ2 and has at mostht(ψ1)+ht(ψ2) elements.

4. If φ is a conjunctionψ1∧ψ2 then, again,ht(φ) = ht(ψ1)+ht(ψ2). Suppose thatM |=X ψ1∧ψ2:
then M |=X ψ1 and M |=X ψ2, and therefore by Lemma 13M |=X ψ f

1 and M |=X ψ f
2 ; and, by

induction hypothesis, there existY1,Y2 ⊆ X with |Y1| ≤ ht(ψ1), |Y2| ≤ ht(ψ2), M |=Y1 ψ1 and
M |=Y2 ψ2. Now let Y = Y1 ∪Y2: sinceY ⊆ X, by Proposition 4M |=Y ψ f

1 andM |=Y ψ f
2 . But

Y1,Y2 ⊆Y, and therefore by Theorem 14M |=Y ψ1 andM |=Y ψ2, and in conclusionM |=Y ψ1∧ψ2.

5. If φ is of the form∃vψ thenht(φ) = ht(ψ). Suppose thatM |=X ∃vψ : then for someH we
have thatM |=X[H/v] ψ , and therefore by induction hypothesis there exists aZ ⊆ X[H/v] with
|Z| ≤ ht(ψ) such thatM |=Z ψ . For anyh∈ Z, let f(h) be as∈ X such thath∈ s[H/v] = {s[m/v] :
m∈ H(s)},12 and letY = {f(h) : h∈ Z}. Now Z ⊆Y[H/v] ⊆ X[H/v]. SinceM |=X[H/v] ψ f and
Y[H/v]⊆ X[H/v], we have thatM |=Y[H/v] ψ f ; and sinceM |=Z ψ , this implies thatM |=Y[H/v] ψ
and thatM |=Y ∃vψ . Furthermore|Y|= |Z| ≤ ht(ψ), as required.

6. If φ is of the form∀vψ then, again,ht(φ) = ht(ψ). Suppose thatM |=X[M/v] ψ : again, by
induction hypothesis there is aZ⊆X[M/v] with |Z| ≤ ht(ψ) and such thatM |=Z ψ . For anyh∈Y,
let g(h) pick somes∈ X which agrees withh on all variables exceptv, and letY = {g(h) : h∈ Z}.
Similarly to the previous case,Z⊆Y[M/v]⊆ X[M/v]: therefore, sinceM |=X[M/v] ψ f we have that
M |=Y[M/v] ψ f , and sinceM |=Z ψ we have thatM |=Y[M/v] ψ . So in conclusionM |=Y ∀vψ , as
required, and|Y|= |Z| ≤ n.

�

Even though constancy atoms are not upwards closed, it is possible to extend this result to FO(=(·),D).
Indeed, constancy atoms are trivially 0-bounded, since theempty team always satisfies them, and

12SinceZ ⊆ X[H/v], such asalways exists. Of course, there may be multiple ones; in thatcase, we pick one arbitrarily.
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Corollary 31 LetD be a family of upwards closed bounded dependencies. Then forall φ ∈FO(=(·),D)

M |=X φ ⇒∃Y ⊆ X with |Y| ≤ ht(φ) s.t. M |=Y φ .

Proof:
Let φ ∈ FO(=(·),D): then by Lemma 22φ is equivalent to some formula of the form∃~v(=(~v)∧ψ),
whereψ does not contain constancy atoms andht(ψ) = ht(φ). Now suppose thatM |=X φ : then, for
some choice of elements~m∈ Dom(M)|~v|, M |=X[~m/~v] ψ . Now by Theorem 30 there exists aZ ⊆ X[~m/~v],
with |Z| ≤ ht(ψ), such thatM |=Z ψ ; andZ is necessarily of the formY[~m/~v] for someY ⊆ X with
|Y|= |Z| ≤ ht(ψ). But thenM |=Y ∃~v(=(~v)∧ψ), as required.
�

This result allows us to prove at once a number of nondefinability results concerning upwards closed
dependencies. For example, it is now easy to see that
Corollary 32 LetD be a family of upwards closed bounded dependencies. Then thetotality dependency
All is not definable in FO(=(·),D). In particular, totality atoms cannot be defined by means of the
negations of inclusion, exclusion, functional dependenceand independence atoms.

Corollary 33 Let D be a family ofκ-bounded upwards closed dependencies and letκ ′ > κ be infinite.
Thenκ ′-bigness is not definable in FO(=(·),D).

Corollary 34 Let D be a k-bounded upwards closed dependency, and let n> k. If φ(~x) of FO(=(·),D)
characterizes n-bigness, in the sense that for all M and X

M |=X φ(~x)⇔ |X(~x)| ≥ n,

thenφ(~x) contains at least⌈n
k⌉ instances ofD.

7 Conclusions and Further Work

In this work we discovered a surprising asymmetry between downwards closed and upwards closed first-
order definable dependency conditions: whereas, as it was known since [19], the former can bring the
expressive power of a logic with team semantics beyond the first order, the latter cannot do so by their
own or even together with constancy atoms. As a consequence,the negations of the principal depen-
dency notions studied so far in team semantics can all be added to first-order logic without increasing its
expressive power.

Our original question was: how much can we get away with adding to the team semantics of first-
order logic before ending up in a higher order logic? The answer, it is now apparent, isquite a lot. This
demonstrates that team semantics is useful not only (as it has been employed so far) as a formalism for
the study of very expressive extensions of first-order logic, but also as one for that of more treatable ones.

Much of course remains to be done. The notion of boundedness of Section 6 allowed us to find some
non-definability results between our extensions; but the classification of these extensions is far from
complete. In particular, it would be interesting to find necessary and sufficient conditions for FO(D) to
be equivalent to FO over sentences. The complexity-theoretic properties of these logics, or of fragments
thereof, also deserve further investigation.

Another open issue concerns the development of sound and complete proof systems for our logics.
Of course, one can check whether a theoryT implies a formulaφ simply by using Theorems 11 and 21
to translate everything in first-order logic and then use oneof the many well-understood proof systems
for it; but nonetheless, it could be very informative to find out directly which logical laws our formalisms
obey.
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