Slot Games for Detecting Timing Leaks of Programs

Aleksandar S. Dimovski
Faculty of Information-Communication Tech., FON UnivéysEkopje, 1000, MKD

aleksandar.dimovski@fon.edu.mk

In this paper we describe a method for verifying secure mftion flow of programs, where apart

from direct and indirect flows a secret information can b&éekthrough coverttiming channels. That
is, no two computations of a program that differ only on higgurity inputs can be distinguished by
low-security outputs and timing differences. We attack {hvioblem by using slot-game semantics
for a quantitative analysis of programs. We show how slatgmmodel can be used for performing
a precise security analysis of programs, that takes intowatcboth extensional and intensional
properties of programs. The practicality of this approawnteluitomated verification is also shown.

1 Introduction

Secure information flow analysis is a technique which pemnfora static analysis of a program with the
goal of proving that it will not leak any sensitive (secretiarmation improperly. If the program passes
the test, then we say that it is secure and can be run safelgreTdre several ways in which secret
information can be leaked to an external observer. The noatron are direct and indirect leakages,
which are described by the so-called non-interferencequtgpl3,[18]. We say that a program satisfies
the non-interference property if its high-security (s€cieputs do not affect its low-security (public)
outputs, which can be seen by external observers.

However, a program can also leak information through itsrignbehaviour, where an external ob-
server can measure its total running time. Such timing lea&difficult to detect and prevent, because
they can exploit low-level implementation details. To detening leaks, we need to ensure that the total
running time of a program do not depend on its high-secunipyis.

In this paper we describe a game semantics based approgoérforming a precise security analy-
sis. We have already shown [[8] how game semantics can bieabqr verifying the non-interference
property. Now we use slot-game semantics to check for tirreéags of closed and open programs. We
focus here only on detecting covert timing channels, siheenbn-interference property can be verified
similarly as in [8]. Slot-game semantics was developed i fbr a quantitative analysis of Algol-
like programs. It is suitable for verifying the above setuproperties, since it takes into account both
extensional\Whatthe program computes) and intensior@\the program computes) properties of pro-
grams. It represents a kind of denotational semantics edlbg the theory of operational improvement
of Sands[[19]. Improvement is a refinement of the standaroryhaf operational approximation, where
we say that one program is an improvement of another if itsuti@n is more efficient in any program
context. We will measure efficiency of a program as the sunoefscassociated with basic operations
it can perform. It has been shown that slot-game semantftdlysabstract (sound and complete) with
respect to operational improvement, so we can use it as datemal theory of improvement to analyse
programming languages.

The advantages of game semantics (denotational) baseolbappior verifying security are several.
We can reason about open programs, i.e. programs with mafiyialefined identifiers. Moreover, game
semantics is compositional, which enables analysis abmgram fragments to be combined into an

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Internatibn © A. S. Dimovski
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 1d6=179, d0i:10.4204/EPTCS.119.15 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.119.15
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. S. Dimovski 167

analysis of a larger program. Also the model hides the detdilocal-state manipulation of a program,
which results in small models with maximum level of absi@ttwhere are represented only visible
input-output behaviours enriched with costs that meadwee efficiency. All other behaviour is ab-
stracted away, which makes this model very suitable forrégcanalysis. Finally, the game model for
some language fragments admits finitary representationsinguegular languages or CSP processes
[10,(6], and has already been applied to automatic prograification. Here we present another appli-
cation of algorithmic game semantics for automaticallyifyerg security properties of programs.

Related work. The most common approach to ensure security propertiesogfrgms is by using
security-type systems [114]. Here for every program compbaee defined security types, which contain
information about their types and security levels. Progrémat are well-typed under these type systems
satisfy certain security properties. Type systems for reirig non-interference of programs have been
proposed by Volpano and Smith in [20], and subsequently lilagge been extended to detect also covert
timing channels in[21,12]. A drawback of this approach igntprecision, since many secure programs
are not typable and so are rejected. A more precise analfgisograms can be achieved by using
semantics-based approaches [15].

2 Syntax and Operational Semantics

We will define a secure information flow analysis for Ideatiz&igol (IA), a small Algol-like language
introduced by Reynolds [16] which has been used as a metagegn the denotational semantics com-
munity. It is a call-by-name -calculus extended with imperative features and locailypgd variables.
In order to be able to perform an automata-theoretic arabfthe language, we consider here its second-
order recursion-free fragment (4&or short). It contains finitary data typ&s int, = {0,...,n—1} and
bool = {tt,ff }, and first-order function types: ::= B| B — T, whereB ranges over base types: expres-
sions éxpD), commandsdom), and variablesvarD).

Syntax of the language is given by the following grammar:

M ::=x]|v|skip |diverge | MopM | M;M | if M thenM elseM |while M doM
|M:=M |IM | newp x:=VinM | mkvarpMM |A x.M | MM

wherev ranges over constants of type

Typing judgements are of the form- M : T, wherel is a typecontextconsisting of a finite number
of typed free identifiers. Typing rules of the language aaadard([1], but the general application rule is
broken up into the linear application and the contractidafu

r’-M:B—T A-N:B FX T, %:TEM: T
LAEMN:T M T EMX/X,X/%g] : T/
We use these two rules to have control over multiple occogerof free identifiers in terms during
typing.
Any input/output operation in a term is done through globaliables, i.e. free identifiers of type
varD. So an inputis read by de-referencing a global variablelerdn output is written by an assignment
to a global variable.

1 M[N/x] denotes the capture-free substitutiorNoffor x in M.

168 Slot Games for Detecting Timing Leaks of Programs

I+ niopny, s —*» n;s; wheren = n;opny
I+ skip; skip,s —Kseaskip, &

IFifttthen MlelseMz,S—>kif My,s

[b if ff then M elseMy, s —Kt My, s
MEXxi=V,s® (X V) —ksa skip, s® (X V)
M HIX S® (X — V) —ker v s@ (X — V)

M (AXM)M’, s —keoo MM’ /], s

I - newp X:=Vinskip,s —kewskip, s

Table 1: Basic Reduction Rules

The operational semantics is defined in terms of a smallestefuation relation using a notion of an
evaluation context [9]. A small-step evaluation (reduclicelation is of the form:

r-M,s— M,

wherer is a so-called/ar-context which contains only identifiers of typerD; s, $ arel -states which
assign data values to the variabled’ irandM, M’ are terms. The set of dil-states will be denoted by
StIr).

Evaluation contexts are conteﬁsontaining a single hole which is used to identify the nexttrm
to be evaluated (reduced). They are defined inductively yahowing grammar:

E:=[-]|EM|E; M | skip; E| EopM | vopE | ifEthenMelseM |M:=E |E:=V|IE

The operational semantics is defined in two stages. Firgf afdasic reduction rules are defined
in Table[1. We assign different (non-negative) costs to eadbction rule, in order to denote how much
computational time is needed for a reduction to completey®re only descriptions of time and we can
give them different interpretations describing how muchl tene they denote. Such an interpretation
can be arbitrarily complex. So the semantics is paramettian the interpretation of costs. Notice that
we write s® (X+— V) to denote g I, x}-state which properly extends s by mappiigp the valuev.

We also have reduction rules for iteration, local variapggslmkvarp construct, which do not incur
additional costs.

I - whilebdoM,s — if bthen (M; whilebdo M) elseskip, s
ryEMly/X,s@(y—v) — M,s@(y—V)
[newpx:=vinM,s— newpX:=VinM’[x/y],s
M- (mkvarD M]_Mz) ‘=V,Ss— MyV,S r I—!(mkvarD Mle),S—> Mo, s

Next, the in-context reduction rules for arbitrary terms defined as:
r-M,s—"M'¢d
r+EM]|,s—"EM],<
The small-step evaluation relation is deterministic, sintbitrary term can be uniquely partitioned into

an evaluation context and a sub-term, which is next to becestiu
We define the reflexive and transitive closure of the smalp-seduction relation as follows:

2A contextC[—] is a term with (several occurrences of) a hole in it, suchifiiat- M : T is a term of the same type as the
hole thenC[M] is a well-typed closed term of typ®m, i.e.- C[M] : com.

A. S. Dimovski 169

F-M,s—"M',¢ FEM,s~"M".§ TFM.,s~"M"g
r=M,s~"M',s MM, s~ M7 g

Now a theory of operational improvement is defined [19]. Lét M : com be a term, wher€ is a
var-context. We say tha\l terminates in n stepat state s, writteM,s ||", if I - M,s ~" skip, s for
some state’s If M is a closed term an,0 ||", then we writeM {|". If M " andn </, we write
M |=". We say that a terfi - M : T may beimprovedby I' - N : T, denoted by - M > N, if and only
if for all contextsC[—], if C[M] ||" thenC[N] |=". If two terms improve each other they are considered
improvment-equivalentenoted by - M =~ N.

Let',AF M : T be aterm wher& is avar-context andA is an arbitrary context. Such terms are
calledsplit terms and we denote them &s|AF M : T. If A is empty, then these terms are calteini-
closed The semi-closed terms have only some global variablestrendperational semantics is defined
only for them. We say that a semi-closed temmvarD | — - M : com does not havéiming leaksif the
initial value of the high-security variabledoes not influence the number of reduction step¥loMore
formally, we have:

Definition 1. A semi-closed termtvarD | — M : com has notiming leaksif

Vs,5 € St({h}). si(h) # s2(h) A
h:varD - M,s; ~M skip,s;’ Ah:varD M, s ~™ skip, s’ 1)
=M =n

Definition 2. We say that aplit termh: varD | AF M : com does not have timing leaks, whee=
X1:T1,...,%: Tk, if for all closed terms- Ny : Tq,...,F Nk : Ty, we have that the term:varD | — F
M[N1/X1,...,Nk/X : com does not have timing leaks.

The formula[(1) can be replaced by an equivalent formula,revivestead of two evaluations of the
same term we can consider only one evaluation of the se@li@stinposition of the given term with
another its copyl[3]. So sequential composition enable® yaice these two evaluations one after the
other. Leth: varD - M : com be a term, we definkl’ to bea-equivalent tav [’ /h] where all bound vari-
ables are suitable renamed. The following can be shdwmiM, s; ~"skip, s’ A N - M’, s, ~" skip, s/
iff h, FM; M’,s51 @5~ skip; skip,s1’ ®s,/. In this way, we provide an alternative definition to
formula (1) as follows. We say that a semi-closed térpa- = M : T has natiming leaksif

Vs € St{h}),s € S({N'}). su(h) # () A
h,i EM; M',51® s ~™ skip; M, 51" @ s ~+" skip; skip, s’ ® &'
=>m=n

(2)

3 Algorithmic Slot-Game Semantics

We now show how slot-game semantics fop kéan be represented algorithmically by regular-languages.
In this approach, types are interpreted as games, whichthavearticipants: the Player representing
the term, and the Opponent representing its context. A gamemd) is defined by means of a set of
moves, each being either a question move or an answer moweh rBave represents an observable
action that a term of a given type can perform. Apart from nsp@mother kind of action, calleédken
(slot), is used to take account of quantitative aspectsrofdelt represents a payment that a participant
needs to pay in order to use a resource such as time. A congputatinterpreted as a play-with-
costs, which is given as a sequence of moves and token-agtiaged by two participants in turns.

170 Slot Games for Detecting Timing Leaks of Programs

We will work here with complete plays-with-costs which repent the observable effects along with
incurred costs of a completed computation. Then a term iseftemtiby a strategy-with-costs, which
is a set of complete plays-with-costs. In the regular-laggurepresentation of game semantics [10],
types (arenas) are expressediphabets of movesomputations (plays-with-costs) a®rds and terms
(strategies-with-costs) asgular-language®ver alphabets.

Each typeT is interpreted by an alphabet of movesr;, which can be partitioned into two subsets
of questions @ andanswers Ay). For expressions, we hav@y., o) = {d} andAy,,p) =D, i.e. there
are a question move to ask for the value of the expression and values fidrare possible answers.
For commands, we haveQ.,m) = {run} andA.,,j = {dong}, i.e. there are a question moven
to initiate a command and an answer maaneto signal successful termination of a command. For
variables, we haveQy,,.pj = {read write(a) | a € D} and Ay,,pj = DU {0k}, i.e. there are moves
for writing to the variablewrite(a), acknowledged by the mowek, and for reading from the variable,
we have a question movead, and an answer to it can be any value fr@n For function types, we
have;z%[[BiﬁﬁBEﬁBﬂ = zlgigkdi&“ +42/[[BH, where+ mean_s_a_c_iisjoint union of alphabets. We will use
superscript tags to keep record from which type of the disjonion each move comes from. We denote
the token-action by®). A sequence oif token-actions® will be written as).

For any -normal) term we define a regular language specified gxéanded regular expression R
Apart from the standard operations for generating regupressions, we will use some more specific
operations. We define composition of regular expressivdsfined over alphabev'! + %2+ {@®} and
Sover#2+¢3+{@} as follows:

Rsze S= {w([s/a®-b?] | we Sa?-s-b? e R}

whereR s a set of words of the forra® - s- b?, such that?, b> € %2 ands contains only letters fromz*
and{@®?}. Notice that the composition is defined ovet + %2+ {@}, and all letters ofA? are hidden.
The shuffle operatioR > S generates the set of all possible interleavings from wofd2 and S, and
the restriction operatioR |~ (Rdefined overy and.«r’ C /) removes from words dr all letters from
o

If w, w are wordsmis a move, andR is a regular expression, define-w ~w =m-w -w, and
R~w ={w~w |we R}. Given a word with costa defined overs + {@}, we define the underlying
word ofw asw’ =w]{@}, and the cost ofvasw | ,,= @, which we denote asw |= n.

The regular expression for- M : T is denoted[l" =M : T] and is defined over the alphabefr 1) =
(Sxter %’},H) + 7y +{@}. Every word in[I" =M : T] corresponds to a complete play-with-costs in
the strategy-with-costs fdr-M: T.

Free identifiersc e I' are interpreted by the copy-cat regular expressions, wtodltain all possible
computations that terms of that type can have. Thus theyiggdhhe most general closure of an open
term.

Irx: Bt — .. B - B*Fx:Bl —...B{ » B = |
9 (Y (qr' - d - g aj-ar')) " ; a-a
9<Qqg) 1=isk mEQp) B1EAE] ac/e]

When a first-order non-local function is called, it may eedduany of its arguments, zero or more times,
and then it can return any value from its result type as an endvor example, the teriffi’,x : expD* -

x: expD] is modelled by the regular expressian.q*- 3 ,cp n*-n.

The linear application is defined as:
[MAFMN:T]=[AFN:BYg. [TFM:B' = T]

[B]

A. S. Dimovski 171

Since we work with terms if8-normal form, function application can occur only when thadtion term
is a free identifier. In this case, the interpretation is thee as above except that we add the &ggf
corresponding to function application. Notice thgi, denotes certain number @ units that are needed
for a function application to take place. The contractjonx : T* = M[x/x1,X/Xz] : T'] is obtained from
[F,x: T, % : T2 = M : T[], such that the moves associated withendx, are de-tagged so that they
represent actions associated with

To represent local variables, we first need to define a (st9ragll’ regular expressiorell, which
imposes the good variable behaviour on the local variabtece, responds to eachrite(n) with ok,
and plays the most recently written value in responsedal, or if no value has been written yet then
answers theeadwith the initial valuev. Then we have:

celly = (read- v)* EDwrlte k- (read-n)*)"

[F,x:varDF MJocelly = ([[r,x.varD EM] N (celly o< (Arg)+@)*)) |
[+ newpx:=vinM] = [I,x: varD - M] o cell} ~ kyar

[[varD]]

Note that all actions associated wittare hidden away in the model eéw, sincex is a local variable
and so not visible outside of the term.
Language constants and constructs are interpreted as$ollo

[v:expD]] = {g-v} [skip:com] = {run-done& [diverge:com]=0
[op : expD* x expD? — expD'] = q-Kop 0+ T mep M*+ O+ T nep - (MOPN
[; : com — com? — com] = run-run®- don€ - kseq: run? - doné - done

I

2 5 com® — com]

= run-kg - gt - tt* - run? - doné - done+
run-ki - qt-ff1-run®- doné - done

[while : expbool* — com? — com] = run- (ki - g*- tt* - run? - doné)* - ks - g* - ff1 - done

[:=: varD! — expD? — com]| = ¥ pep FuN - Kasg- 92 - n? - write(n)* - ok! - done

[': varD! — expD]| = S nep G- Kaer-readt-nt-n

if : expbool! — com

Although it is not important at what position in a word costs placed, for simplicity we decide to attach
them just after the initial move. The only exception is thke fior sequential composition (;), where the
cost is placed between two arguments. The reason will baieeal later on.

We now show how slot-games model relates to the operati@mhstics. First, we need to show
how to represent the state explicitly in the modell Atate s is interpreted as follows:

[s:varD} x ... x varD¥] = cellzéxl) DI ... D> ceIIZ‘(‘Xk)
The regular expressiofs] is defined over the alphabef[[’igm I +'Q{[[varD 1> @nd words in[s] are

such that projections ontg-component are the same as those of suitable initiakzégl,, strategies.
Note that][s] is a regular expression without costs. The interpretatfdntoM : com at state s is:

[Mo 8] = (I - MDA (8] 50 (Feom) + ®)7)) Lo

which is defined over the alphabefj.,.j + {®}. The interpretatioril" = M] o [s] can be studied
more closely by considering words in which moves fre#ft; are not hidden. Such words are called
interaction sequencesFor any interaction sequencen-t-donex @ from [- M] o [§], wheret

is an even-length word over|rj, we say that it leaves the stateifsthe last write moves in eack-
component are such that is set to the value’gg). For example, let s= (x — 1)y — 2), then the

172 Slot Games for Detecting Timing Leaks of Programs

following interaction:run- write(5)Y - ok’ - read - 1* - doneleaves the staté s- (x+— 1,y +— 5). Any two-
move word of the formrun® - n* or write(n)* - ok® will be referred to agtomic state operatioof <.
The following results are proved in [[L1] for the full ICA (IAlys parallel composition and semaphores),
but they also hold for the restricted fragment of it.

Proposition 1. If I =M : {com,expD} andl' - M,;s —" M’ &, then for each interaction sequencé i
from [T = M'] o [S] (i is an initial move) there exists an interactionti-t ~ @ € [l - M] o [[s] such
that t, is an empty word or an atomic state operationadf; which leaves the staté.s

Proposition 2. If I = M,s~"M’s then[[l - Mo [[S]e<x @ C [- M]o[s].
Theorem 1(Consistency) If M,s |" then3w ¢ [- M] o [[s] such that w|=n and W = run-done .
Theorem 2 (Computational Adequacy)lf 3w € I - M] o [[s] such thatl w |= n and W = run-done,
then M s |".

We say that a regular expressiBris improved byS, denoted aR > S if Yw € R 3t € S such that
wh=tTand|w|>|t].
Theorem 3(Full Abstraction) I =M > N iff [= M] = [- N]J.

This shows that the two theories of improvement based oratipeal and game semantics are iden-
tical.

4 Detecting Timing Leaks

In this section slot-game semantics is used to detect whatterm with a secret global varialhecan
leak information about the initial value bfthrough its timing behaviour.

For this purpose, we define a special commskid” which similarly asskip does nothing, but its
slot-game semantics igfskip”] = {run-#- done, where # is a new special action, callddlimiter.
Since we verify security of a term by running two copies of siaene term one after the other, we will
use the commanskip” to specify the boundary between these two copies. In this waywill be able
to calculate running times of the two terms separately.

Theorem 4. Let h: varD | — - M : com be a semi-closed term, aﬁd
R= [[k: expD I- newp h:=kinM); skip”; newp I :=kinM’ : com]| (3)

Any word of R is of the form w w; - #- w, such thatf w; |=| w; | iff M has no timing leaks, i.e. the fact
@) holds.

Proof. Suppose that any womd € Ris of the formw = wj - #- wy such thaf wy |=| wz |. Let us analyse
the regular expressidR defined in[(B). We have:

run-w; - donee [[h+ M] o cell?, run-ws, - donee [- M’] o cell }

for arbitrary valuess,V € D. In order to ensure that orlgeq unit of cost occurs before and after the
delimiter action kseqis played between two arguments of the sequential composiis was described
in Section(B. Given thatun-w; - donee [[h+ M] o cell? andrun-w;, - donee [N - M'] o cellly for any

3The free identifiek in @) is used to initialize the variablésandh’ to arbitrary values fronD.

A. S. Dimovski 173

v,V € D, by Computational Adequacy we have that(h — v) |l and M’, (i — V) ||Ml. Since
| wy |=| wg |, it follows that the fact[(2) holds.

Let us consider the opposite direction. Suppose that th€daholds. The term i (3) ia-equivalent
to k- newp h:=kinnewp I :=kinM; skip”; M. Considef[h, i - M; skip®; M'Jo[[(h— V)@ (W — V)],
wherev,V € D. By Consistency, we have thatw; € [h,h' F M] o [(h— V) ® (W — V)] such that
| wi |= nandw; leaves the statéh — vi) @ (W — V), and3Iws € [h, i E Mo [(h— vi) @ (0 — V)]
such that w; |= n andw; leaves the statéh+— v1) @ (0" — V). Any wordw € Ris obtained fromw;
andw, as above|(w; |=| wz |), and so satisfies the requirements of the theorem. O

We can detect timing leaks from a semi-closed term by venifythat all words in the model ifl(3)
are in the required form. To do this, we restrict our attentaly to the costs of words iR.

Example 1. Consider the term:
h:varinty Fif (!h > 0)thenh:=!h+1; elseskip : com
The slot-game semantics of this term extended dd in (3) is:

This model includes all possible observable interactidrieeterm with its environment, which contains
only the identifierk, along with the costs measuring its running time. Note thatfirst value fok read
from the environment is used to initialize while the second value fdris used to initialize'.

By inspecting we can see that the model contains the word:

run - Kyar - qk -0k Kseq' #- Kseq: Kvar - qk‘ 1. Kger - K. - done

which is not of the required form. This word (play) corresgsrto two computations of the given term
where initial values oh are 0 and 1 respectively, such that the cost of the second wtatign has
additionalkger + ki units more than the first one. O

We now show how to detect timing leaks of a split (open) térnvarD | AF M : com, whereA =
X1 : Tq,...,%: Tk. To do this, we need to check timing efficiency of the follogiimodel:

[h,H :varD FM[Ny/Xq, ..., Ni/]; skip®; M/[Ny/x1, ..., Ne/%]] 4

at state(h — v,h' — V), for any closed terms Nj : Tq,...,- N¢ : Ty, and for any values,V € D. As
we have shown slot-game semantics respects theory of @mpedaimprovement, so we will need to
examine whether all its complete plays-with-castse of the forms, - #- s, where| s |=| s, |. However,
the model in[(#) can not be represented as a regular langsagfezan not be used directly for detecting
timing leaks.

Let us consider more closely the slot-game modédllin (4). $&fmandM’ are run in the same context
A, which means that each occurrence of a free identifitom A behaves uniformly in botM andM’.
So any complete play-with-costs of the modelih (4) will beoacatenation of complete plays-with-costs
from models forM andM’ with additional constraints that behaviours of free idés fromA are the
same inM andM’. If these additional constraints are removed from the alnovdel, then we generate
a model which is an over-approximation of it and where fremtidiers fromA can behave freely iiv
andM’. Thus we obtain:

[h,H :varD - M[Ny/xq, ..., Ne/X; skip™; M/[Ny /X1, . .., Ni/x]] €
[h, b :varD = M; skip®; M/[N1/Xq, ..., Nic/Xd]]

174 Slot Games for Detecting Timing Leaks of Programs

If ENp:Tq,...,b Ng: T are arbitrary closed terms, then they are interpreted bitiige(copy-cat)
strategies corresponding to their types, and so we have:

[h,h :varD F M; skip®; M/[N1 /X1, ..., Nk/x]] = [, : varD,A F M; skip”; M']

This model is a regular language and we can use it to deteicigil@aks.
Theorem 5. Let h: varD | AF M : com be a split (open) term, whee=x; : Ty,..., X : Tk, and

S=[k: expD,AF newph:=kinM; skip”; newp l :=kinM’ : com]] 5)

If any word of S is of the form w w; - #-w, such that wy |=| w2 |, Then ht varD | AF M has no timing
leaks.

Note that the opposite direction in the above result doefaoldt That is, if there exists a word from
Swhich is not of the required form then it does not follow thahas timing leaks, since the found word
(play) may be spurious introduced due to over-approximaitiothe model in[(b), and so it may be not
present in the model in4).

Example 2. Consider the term:
h: varinty,f : expint,"* — com - (1h) : com

wheref is a non-local call-by-name function.
The slot-game model for this term is as follows:

run- kapp-run’ - (g1 - kger - read- (0"- 0" 4-1"- 171))* . dond - done

Oncef is called, it may evaluate its argument, zero or more timed,then it terminates successfully.
Notice that moves tagged wiftrepresent the actions of calling and returning from the tiond, while
moves tagged with, 1 indicate actions of the first argumentfof

If we generate the slot-game model of this term extended @) inve obtain a word which is not in
the required form:

run - kyar - g - 0K - kapp- run’ - g1 - kger - 071 - doné - kseq: #- Kseq: Kvar - 0 - 1¢- kapp- runf - doné - done

This word corresponds to two computations of the term, whiteedirst one call§ which evaluates its
argument once, and the second caNghich does not evaluate its argument at all. The first contjoua
will have the cost okger units more that the second one. However, this is a spurioustesexample,
sincef does not behave uniformly in the two computations, i.e.llsées argument in the first but not in
the second computation. O

To handle this problem, we can generate an under-appraximef the model given i {4) which can
be represented as a regular languagehletrD | A+ M be a term derived without using the contraction
rule for any identifier fromA. Consider the following model:

[h,h :varD | AF M; skip®; M/]™ = [[h,h :varD | A+ M; skip®; M/] N
(delta%m ... deltaﬁm D] (b(Z{[[nhl:varD}_com]] —|—@)*)

(6)

wherem > 0 denotes the number of times that free identifiers of functipes may evaluate its argu-
ments at most. The regular expressideiar , are used to repeat zero or once an arbitrary behaviour
for terms of typerl, and are defined as follows.

deltaepp,0 =0 SnepN- (E4+0-N) deltacom,0 = run-done (€ +run-done
deltayarp o = (read- Spepn- (€+read-n)) + (3 pepWrite(n) - ok- (€ 4 write(n) - ok))

A. S. Dimovski 175

If T is afirst-order function type, thefeltaT i will be a regular language only when the number of times
its arguments can be evaluated is limited. For example, we tieat:

m
deltacomi_comm = run- Z(runl -doné)" -done- (¢ +run- (run* - doné)" - done
=

If T is afunction type withk arguments, then we have to remember not only how many tingesremnts
are evaluated in the first call, but also the exact order irclwarguments are evaluated.

Notice that we allow an arbitrary behavior of typeo be repeated zero or oncedaltaT m, since it
is possible that depending on the current valubk ah occurrence of a free identifier frofito be run in
M but not inM’, or vice versa. For example, consider the term:

h:varintz | X,y : expinty - newint, Z:=0inif (th > 0) then z:=Xelse Z:=y+1

This term has timing leaks, and the corresponding couni@mele contains only one interaction with
occurred in a computation, and one interaction witbccurred in the other computation. This counter-
example will be included in the model inl (6), onlydéltat , is defined as above.

Let h:varD | A M be an arbitrary term where identifiers frafnmay occur more than once in
M. Leth:varD | A; - M; be derived without using the contraction fyy, such thath: varD | AF M
is obtained from it by applying one or more times the contoactule for identifiers fromA. Then
[h,h :varD | A+ M; skip; M']™ is obtained by first computinfj, i : varD | Ay - My; skip”; M{]™ as
defined in[(6), and then by suitable tagging all moves aswmtiaith several occurrences of the same
identifier fromA as described in the interpretation of contraction. We hhae t

[h,K :varD, A+ M; skip®; M/]J™ C [0, : varD F M[Ng/xq, ..., Nk/X]; skip®; M/[N1/Xq, . . ., Ni/%]]

for anym> 0 and arbitrary closed ternitsNy : Tq,...,F Nk : Tk.

In the case thak contains only identifiers of base typBsvhich do not occur in anwhile-subterm of
M, then in the above formula the subset relation becomes thediggfor m= 0. If a free identifier occurs
in awhile-subterm ofM, then it can be called arbitrary many timedvl) and so we cannot reproduce its
behaviour inM’.

Theorem 6. Let h: varD|A+ M be a split (open) term, whete= x;: T1,...,%: Tk, and
T= [k:expD,AF newph:=kinM; skip”; newph :=kinM’: com]™ @)
(i) LetA contains only identifiers of base types B, which do not oataniywhile-subterm of M. Any

word of T (where m= 0) is of the form w- #- w, such that w; |=| wy | iff M has no timing leaks.

(i) LetA be an arbitrary context. If there exists a word=wvy - #-w, € T such that wy |#| w, |, Then
M does have timing leaks.

Note that if a counter-example witnessing a timing leakadeund, then it provides a specific context
A, i.e. a concrete definition of identifiers frafy for which the given open term have timing leaks.

5 Detecting Timing-Aware Non-interference

The slot-game semantics model contains enough informéti@heck the non-interference property of
terms along with timing leaks. The method for verifying thenrinterference property is analogous to

176 Slot Games for Detecting Timing Leaks of Programs

the one described in[[8], where we use the standard game Hesnarodel. As slot-game semantics
can be considered as the standard game semantics augmeifite¢dewnformation about quantitative
assessment of time usage, we can use it as underlying maddétection of both non-interference
property and timing leaks, which we céilining-aware non-interference

In what follows, we show how to verify timing-aware non-irfe¥ence property for closed terms. In
the case of open terms, the method can be extended straigitéthy by following the same ideas for
handling open terms described in Secfibn 4.

Letl:varD,h:varD’ =M : com be a term wheré andh represent low- and high-security global
variables respectively. We defifig =1 :varD,h:varD’, I} =" :varD,N : varD’, andM’ is a-equivalent
to M[I’/I,i /h] where all bound variables are suitable renamed. We say that - M : com satisfies
timing-aware non-interferencié

Vs €SHM1),5 € SH(M). si(l) =5(I") Asi(h) # () A
M =M; M, 5@ ~M skip; M, s’ ® s ~"M skip; skip,s’ ® &’
=s(l)=50) A m=mn

Suppose thaibort is a special free identifier of typ@m°°in I'. We say that a terrfi - M is safe
iff I - M|[skip/abort] & M[diverge/abort] A; otherwise we say that a termussafe It has been shown in
[5] that a terml” - M is safe iff [T - M]| does not contain any play with moves frwﬁf‘ﬁﬂﬁ, which we

call unsafe plays. For examplbort : com?°'t |- skip; abort : com]| = run - run@°". doné®" . dong
so this term is unsafe.

By using Theorerhl4 from Sectiéh 4 and the corresponding tremutiosed terms froni 8], it is easy
to show the following result.

L = [k: expD,K : expD’,abort : com - newp | :=kinnewp h:=K'in
newp l":=!innewp Y :=K'in (8)
skip™: M; skip®; M’; skip®; if (1 £!1")then abort : com]]

The regular expressioln contains no unsafe word (plays) and all its words are of the fo = wy - #-

wo - #- W3- #-wy such that wy |=| ws | iff M satisfies the timing-aware non-interference property.
Notice that the free identifiek in (8) is used to initialize the variablésandl’ to any value fronD

which is the same for bothandl’, while k" is used to initializen andl to any values fronD’. The last

if command is used to check valuesl @ndl’ in the final state after evaluating the term/[in (8). If their

values are different, thesbort is run.

6 Application

We can also represent slot-game semantics model 0byAusing the CSP process algebra. This can be
done by extending the CSP representation of standard garmesties given in[[6], by attaching the costs
corresponding to each translation rule. In the same way,ave hdapted the verification tool inl [6] to
automatically convert an lAterm into a CSP process [17] that represents its slot-gamarstcs. The
CSP process outputted by our tool is defined by a script in magkadable CSP which can be analyzed
by the FDR tool. It represents a model checker for the CSPegmalgebra, and in this way a range of
properties of terms can be verified by calls to it.

4C denotes observational approximation of terms (see [1])

A. S. Dimovski 177

Figure 1: Slot-game semantics for the linear search ke#th

In the input syntax of terms, we use simple type annotatiomsdicate what finite sets of integers will
be used to model free identifiers and local variables of tgpepier. An operation between values of types
intn, andintn, produces a value of typi@tmayn, n,3- The operation is performed moduteax{ng,n}.

In order to use this tool to check for timing leaks in terms,need to encode the required property
as a CSP process (i.e. regular-language). This can be doné ame know the cost of the worst plays
(paths) in the model of a given term. We can calculate the tamase cost of a term by generating its
model, and then by counting the number of tokens in its play® property we want to check will be:
Sito@®-#-(, wheren denotes the worst-case cost of a term.

To demonstrate practicality of this approach for automatrification, we consider the following
implementation of the linear-search algorithm.

h: varinty, x[K] : varint -
newint, a[K] :=0in
NeWing,,, 1 :=0in
while (i < K)do{ai] :=!x[i]; i:=li+1;}
newint, y:=!hin
newpgolpresent= ff in
while (i < k&& —presenjdo {
if (comparé!a(i],!y)) then present= tt;
i=li+1;
} :com
The meta variablé& > O represents the array size. The term copies the input airayg a local arraya,
and the input value dfiinto a local variabley. The linear-search algorithm is then used to find whether
the value stored iy is in the local array. At the moment when the value is founchmdrray, the term
terminates successfully. Note that arrays are introducéioel model as syntactic sugar by using existing
term formers. So an arragk| is represented as a setloflistinct variablex(0],. .. ,x[k— 1] (see [6] 10]
for details).
Suppose that we are only interested in measuring the efficieinthe term relative to the number of
compareoperations. It is defined as follove®mpare: expint, — expinta — expbool, and its semantics
compares for equality the values of two arguments with @st

[compare: expint} — expint3 — expbool] =q- @ - o' - (T M G2 - 12 - f) + (T onmt- g2 - 02 - tt)

wheremn € {0,1}. We assume that the costs of all other operations are reljatiegligible (e.g.
kvar:kder:--- :0)-

178 Slot Games for Detecting Timing Leaks of Programs

We show the model for this term with= 2 in Fig.[1. The worst-case cost of this term is equal to
the array’s sizek, which occurs when the search fails or the valué af compared with all elements of
the array. We can perform a security analysis for this termdnsidering the model extended aslih (7),
wherem = 0. We obtain that this term has timing leaks, with a counkangple corresponding to two
computations, such that initial valuestoére different, and the search succeeds in the one after arly o
iteration ofwhile and fails in the other. For example, this will happen whervalles in the array are
0’s, and the value df is 0 in the first computation and 1 in the second one.

We can also automatically analyse in an analogous way tetmegaithe array sizkeis much larger.
Also the set of data that can be stored into the global varialihd arrayx can be larger thaf0,1}. In
these cases we will obtain models with much bigger numbetatés, but they still can be automatically
analysed by calls to the FDR tool.

7 Conclusion

In this paper we have described how game semantics can bdarseetifying security properties of
open sequential programs, such as timing leaks and norieirdace. This approach can be extended to
terms with infinite data types, such as integers, by usingesohthe existing methods and tools based
on game semantics for verifying such terms. Counter-exampided abstraction refinement procedure
(ARP) [5] and symbolic representation of game semanticsa@lare two methods which can be used
for this aim. The technical apparatus introduced here appibt only to time as a resource but to any
other observable resource, such as power or heating of toegsor. They can all be modeled in the
framework of slot games and checked for information leaks.

We have focussed here on analysing the IA language, but weasily extend this approach to any
other language for which game semantics exists. Since &libfract game semantics was also defined
for probabilistic [4], concurrent [12], and programs witkceptions [[1], it will be interesting to extend
this approach to such programs.

References

[1] Abramsky, S., and McCusker, G: Game Semantics. In Pdings ofthe 1997 Marktoberdorf Summer
School: Computational Logic(1998), 1-56. Springer.

[2] Agat, J: Transforming out Timing Leaks. In: Wegman, M.Reps, T.W. (eds.) POPL 2000. ACM, pp.
40-53. ACM, New York (2000), d0i:10.1145/325694.325702.

[3] Barthe, G., D’Argenio, P.R., Rezk, T: Secure informatftow by self-composition. In: IEEE CSFW
2004. pp. 100-114. IEEE Computer Society Press, (20041 @ldi109/CSFW.2004.17.

[4] V. Danos and R. Harmer. Probabilistic Game Semantic®réteedings of LICS 2000. 204-213. IEEE
Computer Society Press, Los Alamitos (2000), doi:10.11i@2%.2000.855770.

[5] Dimovski, A., Ghica, D. R., Lazi¢, R. Data-Abstracti®efinement: A Game Semantic Approach. In:
Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS vol. 3672, pp2—-117. Springer, Heidelberg (2005),
doii10.1007/115476623.

[6] Dimovski, A., Lazi¢, R: Compositional Software Verifiton Based on Game Semantics and Process
Algebras. Inint. Journal on STTB(1), pp. 37-51, (2007), d6i:10.1007/s10009-006-0005-y.

[7] Dimovski, A: Symbolic Representation of Algorithmic @& Semantics. In: Faella, M., Mu-
rano, A. (eds.) GandALF 2012. EPTCS vol. 96, pp. 99-112. Gpallishing Association, (2012),
doii10.4204/EPTCS.96.8.

http://dx.doi.org/10.1145/325694.325702
http://dx.doi.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1109/LICS.2000.855770
http://dx.doi.org/10.1007/11547662_9
http://dx.doi.org/10.1007/s10009-006-0005-y
http://dx.doi.org/10.4204/EPTCS.96.8

A. S. Dimovski 179

[8] Dimovski, A: Ensuring Secure Non-interference of Prargs by Game Semantics. Submitted for pub-
lication.

[9] Cartwright, R., Curien, P. L., and Felleisen, M: Fullystitact semantics for observably sequential
languages. Itnformation and Computatioh11(2) pp. 297—-401, (1994), doi:10.1006/inc0.1994.1047.

[10] Ghica, D. R., McCusker, G: The Regular-Language Seitanf Second-order Idealized Algol. Theo-
retical Computer Scienc&09(1-3), pp. 469-502, (2003), doi:10.1016/S0304-3975@3)6-3.

[11] Ghica, D. R. Slot Games: a quantitative model of comfioria In Palsberg, J., Abadi, M. (eds.) POPL
2005. ACM, pp. 85-97. ACM Press, New York (1998), doi:10.3/14€40305.1040313.

[12] Ghica, D. R., Murawski, A: Compositional Model Extramt for Higher-Order Concurrent Programs.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS \&&03 pp. 303-317. Springer, Heidelberg
(2006), doi:10.1007/116913720Q.

[13] Goguen, J., Meseguer, J: Security polices and seauaigels. In: IEEE Symp. on Security and Privacy
1982. pp. 11-20. IEEE Computer Society Press, (1982).

[14] Heintze, N., Riecke, J.G: The SLam calculus: prograngmvith secrecy and integrity. In:
MacQueen, D.B., Cardelli, L. (eds.) POPL 1998. ACM, pp. 386~ ACM, New York (1998),
doii10.1145/268946.268976.

[15] Joshi, R., and Leino, K.R.M: A semantic approach to se@formation flow. InScience of Computer
Programming37, pp. 113-138, (2000), d0i:10.1016/S0167-6423(99)00#)24-

[16] Reynolds, J. C: The essence of Algol. In: O'Hearn, P.ig &ennent, R.D. (edshlgol-like languages
(Birkhatiser, 1997).

[17] Roscoe, W. A:Theory and Practice of Concurrencirentice-Hall, 1998.

[18] Sabelfeld, A., and Myers, A.C: Language-based infdiomaflow security. In IEEEJournal on Selected
Areas in Communicatiorsl (1), (2003), 5-19, dci:10.1109/JSAC.2002.806121.

[19] Sands, Dimprovement Theory and its Application@ambridge University Press, 1998.

[20] Volpano, D., Smith, G., and Irvine, C: A sound type systior secure flow analysis. ldournal of
Computer Securit$(2/3), (1996), 167-188, d6i:10.3233/JCS-1996-42-304.

[21] Volpano, D., Smith, G: Eliminating covert flows with miinum typings. In: IEEEComputer
Security Foundations Workshop (CSFVIR97, 156-169. IEEE Computer Society Press, (1997),
doii10.1109/CSFW.1997.596807.

http://dx.doi.org/10.1006/inco.1994.1047
http://dx.doi.org/10.1016/S0304-3975(03)00315-3
http://dx.doi.org/10.1145/1040305.1040313
http://dx.doi.org/10.1007/11691372_20
http://dx.doi.org/10.1145/268946.268976
http://dx.doi.org/10.1016/S0167-6423(99)00024-6
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.3233/JCS-1996-42-304
http://dx.doi.org/10.1109/CSFW.1997.596807

	1 Introduction
	2 Syntax and Operational Semantics
	3 Algorithmic Slot-Game Semantics
	4 Detecting Timing Leaks
	5 Detecting Timing-Aware Non-interference
	6 Application
	7 Conclusion

