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In this paper we describe a method for verifying secure information flow of programs, where apart
from direct and indirect flows a secret information can be leaked through covert timing channels. That
is, no two computations of a program that differ only on high-security inputs can be distinguished by
low-security outputs and timing differences. We attack this problem by using slot-game semantics
for a quantitative analysis of programs. We show how slot-games model can be used for performing
a precise security analysis of programs, that takes into account both extensional and intensional
properties of programs. The practicality of this approach for automated verification is also shown.

1 Introduction

Secure information flow analysis is a technique which performs a static analysis of a program with the
goal of proving that it will not leak any sensitive (secret) information improperly. If the program passes
the test, then we say that it is secure and can be run safely. There are several ways in which secret
information can be leaked to an external observer. The most common are direct and indirect leakages,
which are described by the so-called non-interference property [13, 18]. We say that a program satisfies
the non-interference property if its high-security (secret) inputs do not affect its low-security (public)
outputs, which can be seen by external observers.

However, a program can also leak information through its timing behaviour, where an external ob-
server can measure its total running time. Such timing leaksare difficult to detect and prevent, because
they can exploit low-level implementation details. To detect timing leaks, we need to ensure that the total
running time of a program do not depend on its high-security inputs.

In this paper we describe a game semantics based approach forperforming a precise security analy-
sis. We have already shown in [8] how game semantics can be applied for verifying the non-interference
property. Now we use slot-game semantics to check for timingleaks of closed and open programs. We
focus here only on detecting covert timing channels, since the non-interference property can be verified
similarly as in [8]. Slot-game semantics was developed in [11] for a quantitative analysis of Algol-
like programs. It is suitable for verifying the above security properties, since it takes into account both
extensional (whatthe program computes) and intensional (howthe program computes) properties of pro-
grams. It represents a kind of denotational semantics induced by the theory of operational improvement
of Sands [19]. Improvement is a refinement of the standard theory of operational approximation, where
we say that one program is an improvement of another if its execution is more efficient in any program
context. We will measure efficiency of a program as the sum of costs associated with basic operations
it can perform. It has been shown that slot-game semantics isfully abstract (sound and complete) with
respect to operational improvement, so we can use it as a denotational theory of improvement to analyse
programming languages.

The advantages of game semantics (denotational) based approach for verifying security are several.
We can reason about open programs, i.e. programs with non-locally defined identifiers. Moreover, game
semantics is compositional, which enables analysis about program fragments to be combined into an
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analysis of a larger program. Also the model hides the details of local-state manipulation of a program,
which results in small models with maximum level of abstraction where are represented only visible
input-output behaviours enriched with costs that measure their efficiency. All other behaviour is ab-
stracted away, which makes this model very suitable for security analysis. Finally, the game model for
some language fragments admits finitary representation by using regular languages or CSP processes
[10, 6], and has already been applied to automatic program verification. Here we present another appli-
cation of algorithmic game semantics for automatically verifying security properties of programs.

Related work. The most common approach to ensure security properties of programs is by using
security-type systems [14]. Here for every program component are defined security types, which contain
information about their types and security levels. Programs that are well-typed under these type systems
satisfy certain security properties. Type systems for enforcing non-interference of programs have been
proposed by Volpano and Smith in [20], and subsequently theyhave been extended to detect also covert
timing channels in [21, 2]. A drawback of this approach is itsimprecision, since many secure programs
are not typable and so are rejected. A more precise analysis of programs can be achieved by using
semantics-based approaches [15].

2 Syntax and Operational Semantics

We will define a secure information flow analysis for Idealized Algol (IA), a small Algol-like language
introduced by Reynolds [16] which has been used as a metalanguage in the denotational semantics com-
munity. It is a call-by-nameλ -calculus extended with imperative features and locally-scoped variables.
In order to be able to perform an automata-theoretic analysis of the language, we consider here its second-
order recursion-free fragment (IA2 for short). It contains finitary data typesD: intn = {0, . . . ,n−1} and
bool = {tt, ff}, and first-order function types:T ::= B | B→ T, whereB ranges over base types: expres-
sions (expD), commands (com), and variables (varD).

Syntax of the language is given by the following grammar:

M ::=x|v|skip |diverge | M opM | M;M | ifM thenM elseM |whileM doM
| M := M |!M | newD x:=v inM |mkvarDMM |λ x.M | MM

wherev ranges over constants of typeD.
Typing judgements are of the formΓ ⊢ M : T, whereΓ is a typecontextconsisting of a finite number

of typed free identifiers. Typing rules of the language are standard [1], but the general application rule is
broken up into the linear application and the contraction rule 1.

Γ ⊢ M : B→ T ∆ ⊢ N : B
Γ,∆ ⊢ MN : T

Γ,x1 : T,x2 : T ⊢ M : T′

Γ,x : T ⊢ M[x/x1,x/x2] : T′

We use these two rules to have control over multiple occurrences of free identifiers in terms during
typing.

Any input/output operation in a term is done through global variables, i.e. free identifiers of type
varD. So an input is read by de-referencing a global variable, while an output is written by an assignment
to a global variable.

1 M[N/x] denotes the capture-free substitution ofN for x in M.
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Γ ⊢ n1opn2,s−→kop n,s, wheren= n1opn2

Γ ⊢ skip; skip,s−→kseq skip,s′

Γ ⊢ if tt thenM1elseM2,s−→kif M1,s
Γ ⊢ if ff thenM1elseM2,s−→kif M2,s
Γ ⊢ x:=v′,s⊗ (x 7→ v)−→kasg skip,s⊗ (x 7→ v′)
Γ ⊢!x,s⊗ (x 7→ v)−→kder v,s⊗ (x 7→ v)
Γ ⊢ (λ x.M)M′,s−→kapp M[M′/x],s
Γ ⊢ newD x:=vinskip,s−→knew skip,s

Table 1: Basic Reduction Rules

The operational semantics is defined in terms of a small-stepevaluation relation using a notion of an
evaluation context [9]. A small-step evaluation (reduction) relation is of the form:

Γ ⊢ M,s−→ M′,s′

whereΓ is a so-calledvar-context which contains only identifiers of typevarD; s, s′ areΓ-states which
assign data values to the variables inΓ; andM, M′ are terms. The set of allΓ-states will be denoted by
St(Γ).

Evaluation contexts are contexts2 containing a single hole which is used to identify the next sub-term
to be evaluated (reduced). They are defined inductively by the following grammar:

E ::= [−] | EM | E; M | skip; E | EopM | vopE | ifEthenM elseM | M := E | E := v |!E

The operational semantics is defined in two stages. First, a set of basic reduction rules are defined
in Table 1. We assign different (non-negative) costs to eachreduction rule, in order to denote how much
computational time is needed for a reduction to complete. They are only descriptions of time and we can
give them different interpretations describing how much real time they denote. Such an interpretation
can be arbitrarily complex. So the semantics is parameterized on the interpretation of costs. Notice that
we write s⊗ (x 7→ v) to denote a{Γ,x}-state which properly extends s by mappingx to the valuev.

We also have reduction rules for iteration, local variables, andmkvarD construct, which do not incur
additional costs.

Γ ⊢ whilebdoM,s−→ if bthen (M; whilebdoM)elseskip,s
Γ,y⊢ M[y/x],s⊗ (y 7→ v)−→ M′,s′⊗ (y 7→ v′)

Γ ⊢ newD x:=vinM,s−→ newD x:=v′ inM′[x/y],s′

Γ ⊢ (mkvarD M1M2) :=v,s−→ M1v,s Γ ⊢!(mkvarD M1M2),s−→ M2,s

Next, the in-context reduction rules for arbitrary terms are defined as:

Γ ⊢ M,s−→n M′,s′

Γ ⊢ E[M],s−→n E[M′],s′

The small-step evaluation relation is deterministic, since arbitrary term can be uniquely partitioned into
an evaluation context and a sub-term, which is next to be reduced.

We define the reflexive and transitive closure of the small-step reduction relation as follows:

2A contextC[−] is a term with (several occurrences of) a hole in it, such thatif Γ ⊢ M : T is a term of the same type as the
hole thenC[M] is a well-typed closed term of typecom, i.e.⊢ C[M] : com.
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Γ ⊢ M,s−→n M′,s′

Γ ⊢ M,s n M′,s′
Γ ⊢ M,s n M′,s′ Γ ⊢ M′,s′ n′ M′′,s′′

Γ ⊢ M,s n+n′ M′′,s′′

Now a theory of operational improvement is defined [19]. LetΓ ⊢ M : com be a term, whereΓ is a
var-context. We say thatM terminates in n stepsat state s, writtenM,s⇓n, if Γ ⊢ M,s n skip,s′ for
some state s′. If M is a closed term andM, /0 ⇓n, then we writeM ⇓n. If M ⇓n andn ≤ n′, we write
M ⇓≤n′. We say that a termΓ ⊢ M : T may beimprovedby Γ ⊢ N : T, denoted byΓ ⊢ M &N, if and only
if for all contextsC[−], if C[M] ⇓n thenC[N] ⇓≤n. If two terms improve each other they are considered
improvment-equivalent, denoted byΓ ⊢ M ≈ N.

Let Γ,∆ ⊢ M : T be a term whereΓ is a var-context and∆ is an arbitrary context. Such terms are
calledsplit terms, and we denote them asΓ | ∆ ⊢ M : T. If ∆ is empty, then these terms are calledsemi-
closed. The semi-closed terms have only some global variables, andthe operational semantics is defined
only for them. We say that a semi-closed termh : varD | − ⊢ M : com does not havetiming leaksif the
initial value of the high-security variableh does not influence the number of reduction steps ofM. More
formally, we have:

Definition 1. A semi-closed term h: varD | − ⊢ M : com has notiming leaksif

∀s1,s2 ∈ St({h}). s1(h) 6= s2(h) ∧
h : varD ⊢ M,s1 

n1 skip,s1
′ ∧ h : varD ⊢ M,s2 

n2 skip,s2
′

⇒ n1 = n2

(1)

Definition 2. We say that asplit termh : varD | ∆ ⊢ M : com does not have timing leaks, where∆ =
x1 : T1, . . . ,xk : Tk, if for all closed terms⊢ N1 : T1, . . . ,⊢ Nk : Tk, we have that the term h: varD | − ⊢
M[N1/x1, . . . ,Nk/xk] : com does not have timing leaks.

The formula (1) can be replaced by an equivalent formula, where instead of two evaluations of the
same term we can consider only one evaluation of the sequential composition of the given term with
another its copy [3]. So sequential composition enables us to place these two evaluations one after the
other. Leth : varD ⊢M : com be a term, we defineM′ to beα-equivalent toM[h′/h] where all bound vari-
ables are suitable renamed. The following can be shown:h⊢ M,s1 

n skip,s1
′ ∧ h′ ⊢ M′,s2 

n′ skip,s2
′

iff h,h′ ⊢ M; M′,s1 ⊗ s2 
n+n′ skip; skip,s1

′⊗ s2
′. In this way, we provide an alternative definition to

formula (1) as follows. We say that a semi-closed termh | − ⊢ M : T has notiming leaksif

∀s1 ∈ St({h}),s2 ∈ St({h′}). s1(h) 6= s2(h′) ∧
h,h′ ⊢ M; M′,s1⊗s2 

n1 skip; M′,s1
′⊗s2 

n2 skip; skip,s1
′⊗s2

′

⇒ n1 = n2
(2)

3 Algorithmic Slot-Game Semantics

We now show how slot-game semantics for IA2 can be represented algorithmically by regular-languages.
In this approach, types are interpreted as games, which havetwo participants: the Player representing
the term, and the Opponent representing its context. A game (arena) is defined by means of a set of
moves, each being either a question move or an answer move. Each move represents an observable
action that a term of a given type can perform. Apart from moves, another kind of action, calledtoken
(slot), is used to take account of quantitative aspects of terms. It represents a payment that a participant
needs to pay in order to use a resource such as time. A computation is interpreted as a play-with-
costs, which is given as a sequence of moves and token-actions played by two participants in turns.
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We will work here with complete plays-with-costs which represent the observable effects along with
incurred costs of a completed computation. Then a term is modelled by a strategy-with-costs, which
is a set of complete plays-with-costs. In the regular-language representation of game semantics [10],
types (arenas) are expressed asalphabets of moves, computations (plays-with-costs) aswords, and terms
(strategies-with-costs) asregular-languagesover alphabets.

Each typeT is interpreted by an alphabet of movesA[[T]], which can be partitioned into two subsets
of questions Q[[T]] andanswers A[[T]]. For expressions, we have:Q[[expD]] = {q} andA[[expD]] = D, i.e. there
are a question moveq to ask for the value of the expression and values fromD are possible answers.
For commands, we have:Q[[com]] = {run} and A[[com]] = {done}, i.e. there are a question moverun
to initiate a command and an answer movedoneto signal successful termination of a command. For
variables, we have:Q[[varD]] = {read,write(a) | a ∈ D} and A[[varD]] = D∪ {ok}, i.e. there are moves
for writing to the variable,write(a), acknowledged by the moveok, and for reading from the variable,
we have a question moveread, and an answer to it can be any value fromD. For function types, we
haveA[[B1

1→...→Bk
k→B]] = ∑1≤i≤kA i

[[Bi ]]
+A[[B]], where+ means a disjoint union of alphabets. We will use

superscript tags to keep record from which type of the disjoint union each move comes from. We denote
the token-action by$©. A sequence ofn token-actions$© will be written as n©.

For any (β -normal) term we define a regular language specified by anextended regular expression R.
Apart from the standard operations for generating regular expressions, we will use some more specific
operations. We define composition of regular expressionsRdefined over alphabetA 1+B2+{ $©} and
SoverB2+C 3+{ $©} as follows:

Ro
9B2 S= {w

[

s/a2 ·b2
]

| w∈ S,a2 ·s·b2 ∈ R}

whereR is a set of words of the forma2 ·s·b2, such thata2, b2 ∈ B2 andscontains only letters fromA 1

and{ $©}. Notice that the composition is defined overA 1+C 3+{ $©}, and all letters ofB2 are hidden.
The shuffle operationR⊲⊳ S generates the set of all possible interleavings from words of R andS, and
the restriction operationR |A ′ (Rdefined overA andA ′ ⊆A ) removes from words ofRall letters from
A ′.

If w, w′ are words,m is a move, andR is a regular expression, definem·wa w′ = m·w′ ·w, and
Raw′ = {waw′ | w∈ R}. Given a word with costsw defined overA +{ $©}, we define the underlying
word ofw asw† = w |

{ $©}
, and the cost ofw asw |A = n©, which we denote as| w |= n.

The regular expression forΓ ⊢M : T is denoted[[Γ ⊢M : T]] and is defined over the alphabetA[[Γ⊢T]] =
(

∑x:T′∈Γ A x
[[T′]]

)

+A[[T]]+{ $©}. Every word in[[Γ ⊢ M : T]] corresponds to a complete play-with-costs in
the strategy-with-costs forΓ ⊢ M : T.

Free identifiersx∈ Γ are interpreted by the copy-cat regular expressions, whichcontain all possible
computations that terms of that type can have. Thus they provide the most general closure of an open
term.

[[Γ,x : Bx,1
1 → . . .Bx,k

k → Bx ⊢ x : B1
1 → . . .Bk

k → B]] =

∑
q∈Q[[B]]

q·qx ·
(

∑
1≤i≤k

( ∑
q1∈Q[[Bi ]]

qx,i
1 ·qi

1 · ∑
a1∈A[[Bi ]]

ai
1 ·a

x,i
1 )

)∗
· ∑

a∈A[[B]]

ax ·a

When a first-order non-local function is called, it may evaluate any of its arguments, zero or more times,
and then it can return any value from its result type as an answer. For example, the term[[Γ,x : expDx ⊢
x : expD]] is modelled by the regular expression:q·qx ·∑n∈D nx ·n.

The linear application is defined as:

[[Γ,∆ ⊢ M N : T]] = [[∆ ⊢ N : B1]] o
9A 1

[[B]]
[[Γ ⊢ M : B1 → T]]
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Since we work with terms inβ -normal form, function application can occur only when the function term
is a free identifier. In this case, the interpretation is the same as above except that we add the costkapp

corresponding to function application. Notice thatkapp denotes certain number of$© units that are needed
for a function application to take place. The contraction[[Γ,x : Tx ⊢ M[x/x1,x/x2] : T′]] is obtained from
[[Γ,x1 : Tx1,x2 : Tx2 ⊢ M : T′]], such that the moves associated withx1 andx2 are de-tagged so that they
represent actions associated withx.

To represent local variables, we first need to define a (storage) ‘cell’ regular expressioncellv which
imposes the good variable behaviour on the local variable. So cellv responds to eachwrite(n) with ok,
and plays the most recently written value in response toread, or if no value has been written yet then
answers thereadwith the initial valuev. Then we have:

cellv = (read·v)∗ ·
(

∑
n∈D

write(n) ·ok· (read·n)∗
)∗

[[Γ,x : varD ⊢ M]]◦ cellxv =
(

[[Γ,x : varD ⊢ M]]∩ (cellxv ⊲⊳ (A[[Γ⊢B]]+ $©)∗)
)

|A x
[[varD]]

[[Γ ⊢ newD x:=vinM]] = [[Γ,x : varD ⊢ M]]◦ cellxva kvar

Note that all actions associated withx are hidden away in the model ofnew, sincex is a local variable
and so not visible outside of the term.

Language constants and constructs are interpreted as follows:

[[v : expD]] = {q·v} [[skip : com]] = {run ·done} [[diverge : com]]= /0
[[op : expD1× expD2 → expD′]] = q·kop ·q1 ·∑m∈D m1 ·q2·∑n∈D n2·(mopn)
[[; : com1 → com2 → com]] = run · run1 ·done1 ·kseq· run2 ·done2 ·done
[[if : expbool1 → com2 → com3 → com]] = run ·kif ·q1 · tt1 · run2 ·done2 ·done+

run ·kif ·q1 · ff 1 · run3 ·done3 ·done
[[while : expbool1 → com2 → com]] = run · (kif ·q1 · tt1 · run2 ·done2)∗ ·kif ·q1 · ff 1 ·done
[[:=: varD1 → expD2 → com]] = ∑n∈D run ·kasg·q2 ·n2 ·write(n)1 ·ok1 ·done
[[! : varD1 → expD]] = ∑n∈D q·kder · read1 ·n1 ·n

Although it is not important at what position in a word costs are placed, for simplicity we decide to attach
them just after the initial move. The only exception is the rule for sequential composition (; ), where the
cost is placed between two arguments. The reason will be explained later on.

We now show how slot-games model relates to the operational semantics. First, we need to show
how to represent the state explicitly in the model. AΓ-state s is interpreted as follows:

[[s :varDx1
1 × . . .× varDxk

k ]] = cell
x1
s(x1)

⊲⊳ . . . ⊲⊳ cellxk
s(xk)

The regular expression[[s]] is defined over the alphabetA
x1
[[varD1]]

+ . . .+A
xk
[[varDk]]

, and words in[[s]] are
such that projections ontoxi-component are the same as those of suitable initializedcells(xi) strategies.
Note that[[s]] is a regular expression without costs. The interpretation of Γ ⊢ M : com at state s is:

[[Γ ⊢ M]]◦ [[s]] =
(

[[Γ ⊢ M]]∩ ([[s]] ⊲⊳ (A[[com]]+ $©)∗)
)

|A[[Γ]]

which is defined over the alphabetA[[com]] + { $©}. The interpretation[[Γ ⊢ M]] ◦ [[s]] can be studied
more closely by considering words in which moves fromA[[Γ]] are not hidden. Such words are called
interaction sequences. For any interaction sequencerun · t · done⊲⊳ n© from [[Γ ⊢ M]] ◦ [[s]], where t
is an even-length word overA[[Γ]], we say that it leaves the state s′ if the last write moves in eachxi-
component are such thatxi is set to the value s′(xi). For example, let s= (x 7→ 1,y 7→ 2), then the
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following interaction:run·write(5)y ·oky · readx ·1x ·doneleaves the state s′ = (x 7→ 1,y 7→ 5). Any two-
move word of the form:runxi ·nxi or write(n)xi ·okxi will be referred to asatomic state operationof A[[Γ]].
The following results are proved in [11] for the full ICA (IA plus parallel composition and semaphores),
but they also hold for the restricted fragment of it.

Proposition 1. If Γ ⊢ M : {com,expD} andΓ ⊢ M,s−→n M′,s′, then for each interaction sequence i· t
from [[Γ ⊢ M′]] ◦ [[s′]] (i is an initial move) there exists an interaction i· ta · t a n© ∈ [[Γ ⊢ M]] ◦ [[s]] such
that ta is an empty word or an atomic state operation ofA[[Γ]] which leaves the state s′.

Proposition 2. If Γ ⊢ M,s n M′,s′ then[[Γ ⊢ M′]]◦ [[s′]] ⊲⊳ n©⊆ [[Γ ⊢ M]]◦ [[s]].

Theorem 1(Consistency). If M ,s⇓n then∃w∈ [[Γ ⊢ M]]◦ [[s]] such that| w |= n and w† = run ·done .

Theorem 2 (Computational Adequacy). If ∃w∈ [[Γ ⊢ M]] ◦ [[s]] such that| w |= n and w† = run ·done,
then M,s⇓n.

We say that a regular expressionR is improved byS, denoted asR& S, if ∀w∈ R,∃ t ∈ S, such that
w† = t† and| w |≥| t |.

Theorem 3(Full Abstraction). Γ ⊢ M &N iff [[Γ ⊢ M]]& [[Γ ⊢ N]].

This shows that the two theories of improvement based on operational and game semantics are iden-
tical.

4 Detecting Timing Leaks

In this section slot-game semantics is used to detect whether a term with a secret global variableh can
leak information about the initial value ofh through its timing behaviour.

For this purpose, we define a special commandskip# which similarly asskip does nothing, but its
slot-game semantics is:[[skip#]] = {run · # · done}, where # is a new special action, calleddelimiter.
Since we verify security of a term by running two copies of thesame term one after the other, we will
use the commandskip# to specify the boundary between these two copies. In this way, we will be able
to calculate running times of the two terms separately.

Theorem 4. Let h: varD | − ⊢ M : com be a semi-closed term, and3

R= [[k : expD ⊢ newD h:=k inM; skip#; newD h′ :=k inM′ : com]] (3)

Any word of R is of the form w= w1 ·#·w2 such that| w1 |=| w2 | iff M has no timing leaks, i.e. the fact
(2) holds.

Proof. Suppose that any wordw∈ R is of the formw= w1 ·#·w2 such that| w1 |=| w2 |. Let us analyse
the regular expressionRdefined in (3). We have:

R= {run ·kvar ·qk ·vk ·w1 ·kseq·#·kseq·kvar ·qk ·v′k ·w2 ·done|
run ·w1 ·done∈ [[h⊢ M]]◦ cellhv, run ·w2 ·done∈ [[h′ ⊢ M′]]◦ cellh

′

v′}

for arbitrary valuesv,v′ ∈ D. In order to ensure that onekseq unit of cost occurs before and after the
delimiter action,kseq is played between two arguments of the sequential composition as was described
in Section 3. Given thatrun ·w1 ·done∈ [[h ⊢ M]] ◦ cellhv andrun ·w2 ·done∈ [[h′ ⊢ M′]] ◦ cellh

′

v′ for any

3The free identifierk in (3) is used to initialize the variablesh andh′ to arbitrary values fromD.
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v,v′ ∈ D, by Computational Adequacy we have thatM,(h 7→ v) ⇓|w1| and M′,(h′ 7→ v′) ⇓|w2|. Since
| w1 |=| w2 |, it follows that the fact (2) holds.

Let us consider the opposite direction. Suppose that the fact (2) holds. The term in (3) isα-equivalent
to k⊢ newD h:=k innewD h′ :=k inM; skip#; M′. Consider[[h,h′ ⊢M; skip#; M′]]◦ [[(h 7→ v)⊗(h′ 7→ v′)]],
wherev,v′ ∈ D. By Consistency, we have that∃w1 ∈ [[h,h′ ⊢ M]] ◦ [[(h 7→ v)⊗ (h′ 7→ v′)]] such that
| w1 |= n andw1 leaves the state(h 7→ v1)⊗ (h′ 7→ v′), and∃w2 ∈ [[h,h′ ⊢ M′]]◦ [[(h 7→ v1)⊗ (h′ 7→ v′)]]
such that| w2 |= n andw2 leaves the state(h 7→ v1)⊗ (h′ 7→ v′1). Any word w∈ R is obtained fromw1

andw2 as above (| w1 |=| w2 |), and so satisfies the requirements of the theorem.

We can detect timing leaks from a semi-closed term by verifying that all words in the model in (3)
are in the required form. To do this, we restrict our attention only to the costs of words inR.

Example 1. Consider the term:

h : var int2 ⊢ if (!h> 0)thenh:= !h+1; elseskip : com

The slot-game semantics of this term extended as in (3) is:

run ·kvar ·qk ·
(

0k ·kseq·#·kseq·kvar ·qk · (0k ·done+1k ·kder ·k+ ·done)
+1k ·kseq·kder ·k+ ·#·kseq·kvar ·qk · (0k ·done+1k ·kder ·k+ ·done)

)

This model includes all possible observable interactions of the term with its environment, which contains
only the identifierk, along with the costs measuring its running time. Note that the first value fork read
from the environment is used to initializeh, while the second value fork is used to initializeh′.

By inspecting we can see that the model contains the word:

run ·kvar ·q
k ·0k ·kseq·#·kseq·kvar ·q

k ·1k ·kder ·k+ ·done

which is not of the required form. This word (play) corresponds to two computations of the given term
where initial values ofh are 0 and 1 respectively, such that the cost of the second computation has
additionalkder+k+ units more than the first one.

We now show how to detect timing leaks of a split (open) termh : varD | ∆ ⊢ M : com, where∆ =
x1 : T1, . . . ,xk : Tk. To do this, we need to check timing efficiency of the following model:

[[h,h′ : varD ⊢ M[N1/x1, . . . ,Nk/xk]; skip
#; M′[N1/x1, . . . ,Nk/xk]]] (4)

at state(h 7→ v,h′ 7→ v′), for any closed terms⊢ N1 : T1, . . . ,⊢ Nk : Tk, and for any valuesv,v′ ∈ D. As
we have shown slot-game semantics respects theory of operational improvement, so we will need to
examine whether all its complete plays-with-costssare of the forms1 ·#·s2 where| s1 |=| s2 |. However,
the model in (4) can not be represented as a regular language,so it can not be used directly for detecting
timing leaks.

Let us consider more closely the slot-game model in (4). TermsM andM′ are run in the same context
∆, which means that each occurrence of a free identifierxi from ∆ behaves uniformly in bothM andM′.
So any complete play-with-costs of the model in (4) will be a concatenation of complete plays-with-costs
from models forM andM′ with additional constraints that behaviours of free identifiers from∆ are the
same inM andM′. If these additional constraints are removed from the abovemodel, then we generate
a model which is an over-approximation of it and where free identifiers from∆ can behave freely inM
andM′. Thus we obtain:

[[h,h′ : varD ⊢ M[N1/x1, . . . ,Nk/xk]; skip
#; M′[N1/x1, . . . ,Nk/xk]]]⊆

[[h,h′ : varD ⊢ M; skip#; M′[N1/x1, . . . ,Nk/xk]]]
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If ⊢ N1 : T1, . . . ,⊢ Nk : Tk are arbitrary closed terms, then they are interpreted by identity (copy-cat)
strategies corresponding to their types, and so we have:

[[h,h′ : varD ⊢ M; skip#; M′[N1/x1, . . . ,Nk/xk]]] = [[h,h′ : varD,∆ ⊢ M; skip#; M′]]

This model is a regular language and we can use it to detect timing leaks.

Theorem 5. Let h: varD | ∆ ⊢ M : com be a split (open) term, where∆ = x1 : T1, . . . ,xk : Tk, and

S= [[k : expD,∆ ⊢ newD h:=k inM; skip#; newD h′ :=k inM′ : com]] (5)

If any word of S is of the form w= w1 ·#·w2 such that| w1 |=| w2 |, Then h: varD | ∆ ⊢ M has no timing
leaks.

Note that the opposite direction in the above result does nothold. That is, if there exists a word from
Swhich is not of the required form then it does not follow thatM has timing leaks, since the found word
(play) may be spurious introduced due to over-approximation in the model in (5), and so it may be not
present in the model in (4).

Example 2. Consider the term:

h : varint2, f : expint2
f ,1 → comf ⊢ f (!h) : com

wheref is a non-local call-by-name function.
The slot-game model for this term is as follows:

run ·kapp· runf · (qf ,1 ·kder · readh · (0h ·0f ,1+1h ·1f ,1))∗ ·donef ·done

Oncef is called, it may evaluate its argument, zero or more times, and then it terminates successfully.
Notice that moves tagged withf represent the actions of calling and returning from the function f , while
moves tagged withf ,1 indicate actions of the first argument off .

If we generate the slot-game model of this term extended as in(5), we obtain a word which is not in
the required form:

run ·kvar ·qk ·0k ·kapp· runf ·qf ,1 ·kder ·0f ,1 ·donef ·kseq·#·kseq·kvar ·qk ·1k ·kapp· runf ·donef ·done

This word corresponds to two computations of the term, wherethe first one callsf which evaluates its
argument once, and the second callsf which does not evaluate its argument at all. The first computation
will have the cost ofkder units more that the second one. However, this is a spurious counter-example,
sincef does not behave uniformly in the two computations, i.e. it calls its argument in the first but not in
the second computation.

To handle this problem, we can generate an under-approximation of the model given in (4) which can
be represented as a regular language. Leth : varD | ∆ ⊢M be a term derived without using the contraction
rule for any identifier from∆. Consider the following model:

[[h,h′ : varD | ∆ ⊢ M; skip#; M′]]m = [[h,h′ : varD | ∆ ⊢ M; skip#; M′]] ∩
(deltax1

T1,m
⊲⊳ . . . ⊲⊳ deltaxk

Tk,m
⊲⊳ (A[[h,h′ :varD⊢com]]+ $©)∗)

(6)

wherem≥ 0 denotes the number of times that free identifiers of function types may evaluate its argu-
ments at most. The regular expressionsdeltaT,m are used to repeat zero or once an arbitrary behaviour
for terms of typeT, and are defined as follows.

deltaexpD,0 = q ·∑n∈D n· (ε +q·n) deltacom,0 = run ·done· (ε + run·done)
deltavarD,0 = (read·∑n∈D n· (ε + read·n)) + (∑n∈D write(n) ·ok· (ε +write(n) ·ok))
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If T is a first-order function type, thendeltaT,m will be a regular language only when the number of times
its arguments can be evaluated is limited. For example, we have that:

deltacom1→com,m = run ·
m

∑
r=0

(run1 ·done1)r ·done· (ε + run· (run1 ·done1)r ·done)

If T is a function type withk arguments, then we have to remember not only how many times arguments
are evaluated in the first call, but also the exact order in which arguments are evaluated.

Notice that we allow an arbitrary behavior of typeT to be repeated zero or once indeltaT,m, since it
is possible that depending on the current value ofh an occurrence of a free identifier from∆ to be run in
M but not inM′, or vice versa. For example, consider the term:

h : var int2 | x,y : exp int2 ⊢ newint2 z:=0in if (!h> 0)then z:=xelse z:=y+1

This term has timing leaks, and the corresponding counter-example contains only one interaction withx
occurred in a computation, and one interaction withy occurred in the other computation. This counter-
example will be included in the model in (6), only ifdeltaT,m is defined as above.

Let h : varD | ∆ ⊢ M be an arbitrary term where identifiers from∆ may occur more than once in
M. Let h : varD | ∆1 ⊢ M1 be derived without using the contraction for∆1, such thath : varD | ∆ ⊢ M
is obtained from it by applying one or more times the contraction rule for identifiers from∆. Then
[[h,h′ : varD | ∆ ⊢ M; skip#; M′]]m is obtained by first computing[[h,h′ : varD | ∆1 ⊢ M1; skip#; M′

1]]
m as

defined in (6), and then by suitable tagging all moves associated with several occurrences of the same
identifier from∆ as described in the interpretation of contraction. We have that:

[[h,h′ : varD,∆ ⊢ M; skip#; M′]]m ⊆ [[h,h′ : varD ⊢ M[N1/x1, . . . ,Nk/xk]; skip
#; M′[N1/x1, . . . ,Nk/xk]]]

for anym≥ 0 and arbitrary closed terms⊢ N1 : T1, . . . ,⊢ Nk : Tk.
In the case that∆ contains only identifiers of base typesB which do not occur in anywhile-subterm of

M, then in the above formula the subset relation becomes the equality for m= 0. If a free identifier occurs
in awhile-subterm ofM, then it can be called arbitrary many times inM, and so we cannot reproduce its
behaviour inM′.

Theorem 6. Let h: varD |∆ ⊢ M be a split (open) term, where∆ = x1 :T1, . . . ,xk :Tk, and

T = [[k : expD,∆ ⊢ newD h:=k inM; skip#; newD h′ :=k inM′ : com]]m (7)

(i) Let ∆ contains only identifiers of base types B, which do not occur in anywhile-subterm of M. Any
word of T (where m= 0) is of the form w1 ·#·w2 such that| w1 |=| w2 | iff M has no timing leaks.

(ii) Let ∆ be an arbitrary context. If there exists a word w= w1 ·#·w2 ∈ T such that| w1 |6=| w2 |, Then
M does have timing leaks.

Note that if a counter-example witnessing a timing leakage is found, then it provides a specific context
∆, i.e. a concrete definition of identifiers from∆, for which the given open term have timing leaks.

5 Detecting Timing-Aware Non-interference

The slot-game semantics model contains enough informationto check the non-interference property of
terms along with timing leaks. The method for verifying the non-interference property is analogous to
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the one described in [8], where we use the standard game semantics model. As slot-game semantics
can be considered as the standard game semantics augmented with the information about quantitative
assessment of time usage, we can use it as underlying model for detection of both non-interference
property and timing leaks, which we calltiming-aware non-interference.

In what follows, we show how to verify timing-aware non-interference property for closed terms. In
the case of open terms, the method can be extended straightforwardly by following the same ideas for
handling open terms described in Section 4.

Let l : varD,h : varD′ ⊢ M : com be a term wherel andh represent low- and high-security global
variables respectively. We defineΓ1 = l : varD,h : varD′, Γ′

1 = l′ : varD,h′ : varD′, andM′ is α-equivalent
to M[l′/l,h′/h] where all bound variables are suitable renamed. We say thatΓ1 | − ⊢ M : com satisfies
timing-aware non-interferenceif

∀s1 ∈ St(Γ1),s2 ∈ St(Γ′
1). s1(l) = s2(l′) ∧ s1(h) 6= s2(h′) ∧

Γ1 ⊢ M; M′,s1⊗s2 
n1 skip; M′,s1

′⊗s2 
n2 skip; skip,s1

′⊗s2
′

⇒ s′1(l) = s′2(l
′) ∧ n1 = n2

Suppose thatabort is a special free identifier of typecomabort in Γ. We say that a termΓ ⊢ M is safe
iff Γ ⊢ M[skip/abort]⊏∼ M[diverge/abort] 4; otherwise we say that a term isunsafe. It has been shown in
[5] that a termΓ ⊢ M is safe iff [[Γ ⊢ M]] does not contain any play with moves fromA abort

[[com]], which we

call unsafe plays. For example,[[abort : comabort ⊢ skip ; abort : com]] = run · runabort · doneabort · done,
so this term is unsafe.

By using Theorem 4 from Section 4 and the corresponding result for closed terms from [8], it is easy
to show the following result.

L = [[k : expD,k′ : expD′,abort : com ⊢ newD l :=k innewD′ h:=k′ in
newD l′ := !l innewD′ h′ :=k′ in
skip#; M; skip#; M′; skip#; if (!l 6=!l′)thenabort : com]]

(8)

The regular expressionL contains no unsafe word (plays) and all its words are of the form w= w1 ·# ·
w2 ·#·w3 ·#·w4 such that| w2 |=| w3 | iff M satisfies the timing-aware non-interference property.

Notice that the free identifierk in (8) is used to initialize the variablesl and l′ to any value fromD
which is the same for bothl andl′, while k′ is used to initializeh andh′ to any values fromD′. The last
if command is used to check values ofl and l′ in the final state after evaluating the term in (8). If their
values are different, thenabort is run.

6 Application

We can also represent slot-game semantics model of IA2 by using the CSP process algebra. This can be
done by extending the CSP representation of standard game semantics given in [6], by attaching the costs
corresponding to each translation rule. In the same way, we have adapted the verification tool in [6] to
automatically convert an IA2 term into a CSP process [17] that represents its slot-game semantics. The
CSP process outputted by our tool is defined by a script in machine readable CSP which can be analyzed
by the FDR tool. It represents a model checker for the CSP process algebra, and in this way a range of
properties of terms can be verified by calls to it.

4⊏
∼ denotes observational approximation of terms (see [1])
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done

run readh 1h

0h

readx[0]

readx[0]

1
x[0]

0 x[0]

0x[0]

1
x[0]

readx[1]

readx[1]
0,1x[1]

0,1
x[1]

$

$

$

Figure 1: Slot-game semantics for the linear search withk=2

In the input syntax of terms, we use simple type annotations to indicate what finite sets of integers will
be used to model free identifiers and local variables of type integer. An operation between values of types
intn1 andintn2 produces a value of typeintmax{n1,n2}. The operation is performed modulomax{n1,n2}.

In order to use this tool to check for timing leaks in terms, weneed to encode the required property
as a CSP process (i.e. regular-language). This can be done only if we know the cost of the worst plays
(paths) in the model of a given term. We can calculate the worst-case cost of a term by generating its
model, and then by counting the number of tokens in its plays.The property we want to check will be:
∑n

i=0 i©·#· i©, wheren denotes the worst-case cost of a term.
To demonstrate practicality of this approach for automatedverification, we consider the following

implementation of the linear-search algorithm.

h : varint2,x[k] : varint2 ⊢
newint2 a[k] :=0in
newintk+1 i :=0in
while(i < k)do{a[i] :=!x[i]; i :=!i +1; }
newint2 y:= !hin
newboolpresent:= ff in
while(i < k&& ¬present)do{

if (compare(!a[i], !y))thenpresent:= tt;
i :=!i +1;

} : com

The meta variablek> 0 represents the array size. The term copies the input arrayx into a local arraya,
and the input value ofh into a local variabley. The linear-search algorithm is then used to find whether
the value stored iny is in the local array. At the moment when the value is found in the array, the term
terminates successfully. Note that arrays are introduced in the model as syntactic sugar by using existing
term formers. So an arrayx[k] is represented as a set ofk distinct variablesx[0], . . . ,x[k−1] (see [6, 10]
for details).

Suppose that we are only interested in measuring the efficiency of the term relative to the number of
compareoperations. It is defined as followscompare: expint2 → expint2 → expbool, and its semantics
compares for equality the values of two arguments with cost$©:

[[compare: expint12 → expint22 → expbool]] = q· $©·q1 · (∑m6=nm1 ·q2 ·n2 · ff )+ (∑m=nm1 ·q2 ·n2 · tt)

wherem,n ∈ {0,1}. We assume that the costs of all other operations are relatively negligible (e.g.
kvar = kder = . . .= 0).
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We show the model for this term withk = 2 in Fig. 1. The worst-case cost of this term is equal to
the array’s sizek, which occurs when the search fails or the value ofh is compared with all elements of
the array. We can perform a security analysis for this term byconsidering the model extended as in (7),
wherem= 0. We obtain that this term has timing leaks, with a counter-example corresponding to two
computations, such that initial values ofh are different, and the search succeeds in the one after only one
iteration ofwhile and fails in the other. For example, this will happen when allvalues in the arrayx are
0’s, and the value ofh is 0 in the first computation and 1 in the second one.

We can also automatically analyse in an analogous way terms where the array sizek is much larger.
Also the set of data that can be stored into the global variable h and arrayx can be larger than{0,1}. In
these cases we will obtain models with much bigger number of states, but they still can be automatically
analysed by calls to the FDR tool.

7 Conclusion

In this paper we have described how game semantics can be usedfor verifying security properties of
open sequential programs, such as timing leaks and non-interference. This approach can be extended to
terms with infinite data types, such as integers, by using some of the existing methods and tools based
on game semantics for verifying such terms. Counter-example guided abstraction refinement procedure
(ARP) [5] and symbolic representation of game semantics model [7] are two methods which can be used
for this aim. The technical apparatus introduced here applies not only to time as a resource but to any
other observable resource, such as power or heating of the processor. They can all be modeled in the
framework of slot games and checked for information leaks.

We have focussed here on analysing the IA language, but we caneasily extend this approach to any
other language for which game semantics exists. Since fullyabstract game semantics was also defined
for probabilistic [4], concurrent [12], and programs with exceptions [1], it will be interesting to extend
this approach to such programs.
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