
Gabriele Puppis, Tiziano Villa (Eds.): Fourth International
Symposium on Games, Automata, Logics and Formal Verification
EPTCS 119, 2013, pp. 240–255, doi:10.4204/EPTCS.119.20

c© D. Della Monica, M. Napoli, M. Parente
This work is licensed under the
Creative Commons Attribution License.

Model checking coalitional games in shortage resource
scenarios∗

Della Monica, Dario
ICE-TCS, School of Computer Science

Reykjavik University, Iceland

dariodm@ru.is

Napoli, Margherita
Dipartimento di Informatica
University of Salerno, Italy

napoli@dia.unisa.it

Parente, Mimmo
Dipartimento di Informatica
University of Salerno, Italy

parente@unisa.it

Verification of multi-agents systems (MAS) has been recently studied taking into account the need
of expressing resource bounds. Several logics for specifying properties of MAS have been presented
in quite a variety of scenarios with bounded resources. In this paper, we study a different formalism,
calledPriced Resource-Bounded Alternating-time Temporal Logic(PRB-ATL), whose main novelty
consists in moving the notion of resources from a syntactic level (part of the formula) to a semantic
one (part of the model). This allows us to track the evolutionof the resource availability along the
computations and provides us with a formalisms capable to model a number of real-world scenar-
ios. Two relevant aspects are the notion of global availability of the resources on the market, that
are shared by the agents, and the notion of price of resources, depending on their availability. In
a previous work of ours, an initial step towards this new formalism was introduced, along with an
EXPTIME algorithm for the model checking problem. In this paper we better analyze the features of
the proposed formalism, also in comparison with previous approaches. The main technical contribu-
tion is the proof of the EXPTIME-hardness of the the model checking problem forPRB-ATL, based
on a reduction from the acceptance problem forLinearly-Bounded Alternating Turing Machines. In
particular, since the problem has multiple parameters, we show twofixed-parameterreductions.

1 Introduction

Verification of multi-agents systems (MAS) is a topic under investigation by several research groups
in computer science in the last ten years ([8]). Most of the research is based on logical formalisms,
maybe the most famous being theAlternating-time Temporal Logics(ATL) [3] and theCoalition Logic
(CL) [15, 16], both oriented towards the description of collective behaviors and used as specification
languages for open systems. These scenarios are hence naturally modeled as games. In [10] it has been
shown thatCL can be embedded intoATL. Recently, these two logics have been used for the verification
of multi-agent systems (MAS), enhanced with resource constraints [1, 2, 5, 6, 9]. The intuitive idea is
that agent actions consume and/or produce resources, thus the choice of a given action of an agent is
subject to the availability of the resources. In [1], Alechina et al. introduce the logicResource-Bounded
Coalition Logic(RBCL), whose language extends the one ofCL with explicit representation of resource
bounds. In [2], the same authors propose an analogous extension for ATL, calledResource-Bounded
Alternating-time Temporal Logics(RB-ATL), and give a model checking procedure that runs in time
O(|ϕ |2·r+1× |G|), where|ϕ | is the length of the formulaϕ to be checked,|G| is the size of the model

∗The work of Dario Della Monica has been partially supported by the projectProcesses and Modal Logics(project
nr. 100048021) of the Icelandic Research Fund and the project Decidability and Expressiveness for Interval Temporal Log-
ics (project nr. 130802-051) of the Icelandic Research Fund in partnership with the European Commission Framework 7 Pro-
gramme (People) under “Marie Curie Actions”. The work of Margherita Napoli has been partially supported by the Italian
PRIN 2010 projectLogical Methods of Information Management. The work of Margherita Napoli and Mimmo Parente has
been partially supported by the Italian FARB projects 2010-2012.

http://dx.doi.org/10.4204/EPTCS.119.20
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

D. Della Monica, M. Napoli, M. Parente 241

G, andr is the number of resources. However, the problem of determining a lower bound to the model
checking problem is left open. In [6], Bulling and Farwer introduce twoResource-Bounded Agent Logics,
calledRAL andRAL∗. The former represents a generalization of Alechina et al.’sRB-ATL, the latter is an
analogous extension ofATL∗ (analogous extensions for, respectively,CTL andCTL∗ were presented by
the same authors in [5]). The authors study several syntactic and semantic variants ofRAL andRAL∗ with
respect to the (un)decidability of the model checking problem. In particular, while previous approaches
only conceive actionsconsumingresources, they introduce the notion of actionsproducingresources.
It turned out that such a new notion makes the model checking problem undecidable. Formulae of the
formalisms proposed in [1, 2, 5, 6] allow one to assign an endowment of resources to the agents by
means of the so-calledteam operators(borrowed fromATL). The problem is then to determine whether
the agents in theproponentteam have a strategy for the game to carry out the assigned goals with that
bounded amount of resources, whatever the agents in theopponentteam do.

In this paper we study a different formalism, calledPriced Resource-Bounded Alternating-time Tem-
poral Logic (PRB-ATL), introduced in [9], but in a much less mature version. The key features of this
new approach toward the formalization of such complex systems can be summarized as follows.
• Boundedness of the resources.This is a crucial point in our formalization. In order to model

boundedness of the resources, a notion ofglobal availability of resources on the market (or in
nature), which evolves depending on both proponent and opponent behaviors, is introduced. Such a
global availability is a semantic component (it is part of the structure where the logic is interpreted)
and its evolution is tracked during the executions of the system. Agents’ moves are affected by the
current global availability (e.g., agents cannot consume an unbounded amount of resources).

• Resources are shared.Resources are global, that is, they are shared by all the agents. Thus,
the agents either consume or produce resources out of a shared pool of bounded capability, and
acquisition (resp., release) of a resource by an agent (independently if the agent belongs to the
proponent or opponent team) implies that the resource will be available in smaller (resp., greater)
quantity. In this way, we can model several scenarios where shared resources are acquired at a cost
that depends on that resource current availability (for example in concurrent systems where there
is a competition on resources).

• Money as a meta-resource.In addition to public shared resources, our setting also allows one
to modelprivate resources, that is, resources that are possessed by agents (public resources are
present in the market and will be acquired by the agents in case they need). The idea is to provide
the agents with the unique private resource,money, that can be used to acquire (public) resources
needed to perform the tasks. In this sense, money represent several resource combinations and can
be considered as a meta-resource. Unlike the other resources, it is a syntactic component (money
endowment is part of the formula), and is the only (meta-)resource which is private for an agent.
At this stage, our formalization only features the possibility of assigning to agents one private
resource. Nevertheless, in principle, it is possible to extend the idea to admit a vector of private
resources. Furthermore, one could think of including the same resource in both the pool of public
resources and in the pool of private ones. For instance, in a car race one of the players (the cars)
possesses some gasoline in the tank (private resource) but he needs to acquire more gasoline at the
gas station (public resource) to complete the race.

• Resource production.Production of resources is allowed in a quantity that is not greater than a
fixed amount. Thus, we extend the model still preserving the decidability of the model checking
problem. Observe that the constraint we impose still allowsus to describe many interesting real-
world scenarios, such as acquiring memory by a program, or leasing a car during a travel, or, in

242 Model checking coalitional games in shortage resource scenarios

general, any release of resources previously acquired. A similar setting has been already observed
also in [6].

• Opponent power.First observe that we use the standard terminology which separates the role of
the agents in a proponent team and those in the opponent team.This distinction is not within the
game structure, but it is due to the formula under consideration. Agents of the opponent team are
subject to resource availability in choosing the action to perform, in the same way as the agent of
the proponent team, thus the opponent team cannot interferewith a proponent strategy performing
actions which either consume or produce too much (see Example 3 in Section 3). However, it
is common practice to consider opponent having maximum power, to look for robust strategy.
We give unlimited economic power to the agents in the opponent team, in the sense that at each
moment they have money enough to acquire the resources they need for a move, provided that the
resources are available.

Actually in [9] an EXPTIME algorithm for the model checking problem was given, along with a
PSPACE lower bound. The main technical contribution here isto provide an EXPTIME lower bound
for the model checking problem forPRB-ATL. This result shows that the model checking problem
for this logic is EXPTIME-complete. The hardness proof is obtained by means of a reduction from
the acceptance problem forLinearly-Bounded Alternating Turing Machines(LB-ATM), known to be
EXPTIME-complete [7], to the model checking problem forPRB-ATL. More precisely, letn be the
number of agents,r the number of resources, andM the maximum component occurring in the initial
resource availability vector, the algorithm given in [9] runs in exponential time inn, r, and the size of the
representation ofM (assuming thatM is represented in binary). To prove here the inherent difficulty with
respect to multiple input parameters, we show two reductions: one parametric in the representation ofM
(the digit size), that assumes constant bothn andr, and another parametric inr, and assuming constant
bothn and the value ofM.

2 Comparison with related works

In this section we compare our approach with the existing literature underlining differences and similar-
ities respect to [2] and [6].

In the work by Alechina et al. [2], resource bounds only appear in the formulae and are applied solely
to the proponent team, but they are not represented inside the model. Indeed, agents of the proponent
team are endowed with new resources at the different steps ofthe system execution. This means that
it is possible to ask whether a team can reach a goal with a given amount of resources, but it is not
possible to keep trace of the evolution of the global availability of resources. Moreover, resources are
private to agents of the proponent team (not shared, as in ourapproach) and resource consumption due
to the actions of the opponent is not controlled. Here instead, we keep trace of resource global avail-
ability, whose evolution depends on both proponent and opponent moves. In this way, it is possible to
avoid undesired/unrealistic computations of the system such as, for instance, computations consuming

unboundedly. Let us see a very simple example. Consider the formulaψ = 〈〈A
~$〉〉�p. Its semantics is

that agents in teamA have together a strategy which can guarantee thatp always holds, whatever agents
of the opponent team do (without consuming too many resources) and provided the expense of the agents
in A does not exceed~$. A loop in the structure where the joint actions of agents consume resources with-
out producing them, cannot be a model forψ . On the contrary, consider the formulaψ ′ = 〈〈Ab〉〉�p,
belonging to the formalism proposed in [2], expressing a similar property, with the only difference that
the agents ofA use an amount of resources bounded byb. A model forψ ′ must contain a loop where

D. Della Monica, M. Napoli, M. Parente 243

the actions of agents inA do not consume resources, but the actions of agents in the opponent team may
possibly consume resources, leading to an unlimited consumption of resources.

As a further difference, recall that in [2] actions can only consume resources. Without resource
productions, the model for many formulae (for example thosecontaining theglobal operator�) must
have a loop whose actions do not consume resources (do-nothingactions), and a run satisfying these
formulae is eventually formed by only such actions. On the contrary, by allowing resource production,
we can model more complex situations when dealing with infinite games.

Finally, observe that a similarity with the cited paper is inthe role of money, that could be seen as a
private resource, endowed to the agents of the proponent team.

Bulling and Farwer [6] adopted an “horizontal” approach, inthe sense that they explored a large
number of variants of a formalism to model these complex systems. In particular, they explored the
border between decidability and undecidability of the model checking problem for all such variants, and
they showed how the status of a formalisms (wrt decidabilityof its model checking problem) is affected
by (even small) changes in language, model, and semantics. Our work takes advantage of this analysis
in order to propose a logic that captures several desirable properties (especially concerning the variety
of natural real world scenario that is possible to express),still preserving decidability. However, our
approach presents conceptual novelties that make it difficult to accomplish a direct comparisons between
the formalisms presented here and the ones proposed in [6]. We are referring here to both the above
mentioned idea of dealing with resources as global entitiesfor which agents compete, and the notion of
cost of resource acquisition (price of the resources) that dynamically changes depending on the global
availability of that resource (thus allowing one to model the classic market law that says that getting
a resource is more expensive in shortage scenario). In [6], there is no such a notion as resources are
assigned to (team of) agents and proponent and opponent do not compete for their acquisition.

As regards the complexity issue, in [6], no complexity analysis (for the model checking problem)
is performed, while, in [2], an upper bound is given forRB-ATL, that matches the one given in [9]
for PRB-ATL. The algorithm forPRB-ATL runs in exponential time in the numbern of agents, the
numberr of resources, and the digit size of the maximum componentM occurring in the initial resource
availability vector (assuming a binary reppresentation).Analogously, the model checking algorithm
for RB-ATL runs in exponential time inr, in the digit size of the maximum component of resource
endowment vectorsb occuring in team operators〈〈Ab〉〉 of ϕ and in the numbern of the agents (this is
implicit in set of states of|G|). Actually, bothn andr are often treated as constant [2, 3] (without this
assumption, the complexity ofATL model-checking is shown to be exponential in the number of agents
[11]). However, no complexity lower bound has been exhibit so far. Aim of this paper is to fill this gap,
by providing an EXPTIME lower bound forPRB-ATL.

3 A logical formalization: PRB-ATL

Syntax. We start with the introduction of some notations we will use in the rest of the paper. The
set ofagentsis A G = {a1,a2, . . . ,an} and ateamis any subset ofA G . The integersn and r will be
used throughout the paper to denote the number of agents andresource types(or simply resources),
respectively. LetM = (N∪{∞})r denote the set ofglobal availabilities of resources on the market (or
in nature)and letN = (N∪{∞})n denote the set ofmoney availabilities for the agents, whereN is the
set of natural numbers (zero included). Given a money availability ~$∈N , its i-th component~$[i] is the

244 Model checking coalitional games in shortage resource scenarios

money availability of agentai
1. Finally, the setΠ is a finite set ofatomic propositions.

The formulae ofPRB-ATL are given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈A~$〉〉©ϕ | 〈〈A~$〉〉ϕU ϕ | 〈〈A~$〉〉�ϕ | ∼ ~m

wherep∈ Π, A⊆ A G , ∼∈ {<,≤,=,≥,>}, ~m∈M and~$ ∈N . Formulae of the kind∼ ~m test the
current availability of resources on the market. As usual, other standard operators can be considered as

abbreviation, e.g., the operator〈〈A
~$〉〉♦ψ can be defined as〈〈A

~$〉〉⊤U ψ , for every formulaψ .

Priced game structure. Priced game structuresare defined by extending the definitions of concurrent
game structure and resource-bounded concurrent game structure given in, respectively, [3] and [2].

Definition 1 A priced game structureG is a tuple〈Q,π,d,D,qty,δ ,ρ , ~m0〉, where:
• Q is the finite set oflocations; q0 ∈Q is calledinitial location.
• π : Q→ 2Π is theevaluation function, which determines the atomic propositions holding true in

each location.
• d : Q×A G → N is theaction functiongiving the number d(q,a) ≥ 1 of actionsavailable to an

agent a∈A G at a location q∈Q. The actions available to a at q are identified with the numbers2

1, . . . ,d(q,a) and a generic action is usually denoted byα . We assume that each agent has at least
one available action at each location, that could be thoughtof as the actiondo-nothingand we
assume that it is always the first.

• D : Q→ 2N
n

is a function that maps each location q to the set of vectors{1, . . . ,d(q,a1)}× . . .×
{1, . . . ,d(q,an)}. Each vector, calledaction profileand denoted by~α , identifies a choice among
the actions available for each agent in the location q. (The action of the agent a in~α is~α(a).)

• qty : Q×A G ×N→ Z
r is a partial function, where qty(q,a,α), with 1≤ α ≤ d(q,a), defines at

location q the amount of resources required by the a’s actionα . We define qty(q,a,1) =~0, that is
the vector whose components are all equal to0, for every q∈ Q, a∈A G (doing nothing neither
consumes nor produces resources).

• δ : Q×N
n→ Q is the transition function. For q ∈ Q and~α ∈ D(q), δ (q,~α) defines the next

location reached from q if the agents perform the actions in the action profile~α .
• ρ : M ×Q×A G →N

r is theprice function. It returns theprice vectorof the resources (a price for
each resource), based on the current resource availabilityand location, and on the acting agent.

• ~m0∈M is the initial global availability of resources. It represents the resource availability on the
market at the initial state of the system.

Note that a negative value inqty(q,a,~α) represents a resource consumption, while a positive one
represents a resource production. We also consider the extension of the functionqty, called again with
the same name, to get the amount of resources required by a given team. Thus, for a locationq, a
teamA and an action profile~α , qty(q,A,~α) = ∑a∈Aqty(q,a,~α (a)). Moreover, we will use the function
consd: Q×A G ×N → N

r that for the tuple(q,a,α) returns the vector of the resources which are
consumed by an agenta, being in stateq, for an actionα . This vector is obtained fromqty(q,a,α)
by replacing the positive components, representing a resource production, with zeros, and the negative
components, representing a resource consumption, with their absolute values.

Example 1 A priced game structure with two agents a1 and a2 and one resource R1 is depicted in
Figure 1. The only atomic proposition is p, labeling the locations q0, q1, q2. The action profiles, labeling

1Throughout all the paper, symbols identifying vectors are denoted with an arrow on the top (e.g.,~$,~m).
2No ambiguity will arise from the fact that actions of different agents are identified with the same numbers.

D. Della Monica, M. Napoli, M. Parente 245

q0 p

q1 p

q4

¬p

[2,1
]

(−1,0
)

[1,1]

(0,0)

q2

p

q3

¬p

[1,1]
(0,0)

[1,1]

(0,0
)

[1,2]

(0,−1)

[1,1]
(0,0)

[1,1
](0,

0)

A G = {a1,a2}, R= {R1}, Q= {q0,q1,q2,q3,q4}, ~m0 = 〈1〉
π(q0) = π(q1) = π(q2) = {p}, π(q3) = π(q4) = {}
d(q0,a1) = 2, d(q0,a2) = 1, d(q1,a1) = 1, d(q1,a2) = 2
d(q2,a1) = d(q2,a2) = d(q3,a1) = d(q3,a2) = 1
d(q4,a1) = d(q4,a2) = 1
D(q0) = {[1,1], [2,1]}, D(q1) = {[1,1], [1,2]}
D(q2) = D(q3) = D(q4) = {[1,1]}
qty(q0,a1,1) = 〈0〉, qty(q0,a1,2) = 〈−1〉, qty(q0,a2,1) = 〈0〉
qty(q1,a1,1) = 〈0〉, qty(q1,a2,1) = 〈0〉, qty(q1,a2,2) = 〈−1〉
qty(q,a,1) = 〈0〉, ∀q∈ {q2,q3,q4},a∈A G

Figure 1: Example of priced game structureG= 〈Q,π,d,D,qty,δ ,ρ , ~m0〉.

the transitions in the graph and depicted with square brackets, are as follows. D(q0) = {[1,1], [2,1]}
is due to the existence of two actions of a1 and one action of a2 at location q0, D(q1) = {[1,1], [1,2]}
corresponds to a single action of a1 and two actions of a2 at location q1. In all the other locations
the only action profile is[1,1] corresponding to the existence of a single action of both theagents. The
function qty is represented by parentheses. The price vector is not depicted.

Semantics.In the following, given a resource availability~m, byM≤~m we denote the set{~m′ ∈M | ~m′ ≤
~m}. In order to give the formal semantics let us first define the following notions.

Definition 2 A configurationc of a priced game graph G is a pair〈q,~m〉 ∈ Q×M≤ ~m0. Given two
configurations c= 〈q,~m〉 and c′ = 〈q′, ~m′〉, and an action profile~α ∈ D(q), we say that c→~α c′ if
q′ = δ (q,~α) and ~m′ = ~m+qty(q,A G ,~α). A computationover G is an infinite sequence C= c1c2 . . . of
configurations of G, such that for each i there is an action profile~αi such that ci →~αi

ci+1.

LetC= c1c2 . . . be a computation. We denote byC[i] thei-th configurationci in C and byC[i, j], with
1≤ i ≤ j, the finite sequence of configurationscici+1 . . .c j in C. Given a configurationc = 〈q,~m〉 and
a teamA, a function~αA : A→ N is calledA-feasible in cif there exists an action profile~α ∈ D(q) with
~αA(a) =~α(a) for all a∈ A and~0≤ qty(q,A,~α)+~m≤ ~m0. In this case we say that~α extends~αA.

Definition 3 A strategyFA of a team A is a function which associates to each finite sequence of configu-
rations c1c2 . . .cs, a function~αA : A→ N which is A-feasible in cs.

In other words, a strategyFA returns a choice of the actions of the agents in the teamA, considering
only those actions whose resource consumption does not exceed the available amount and whose resource
production does not exceed the amount consumed so far. Clearly, this constraint will limit both proponent
and opponent team.

For each strategyFA of a teamA and for each sequence of configurationsc1c2 . . .cs, there are several
possibilities for the next configurationcs+1, depending on the different choices of the opponent team
A = A G \A. Anyway, fixed a strategyFA of the opponent team, there is at most one action profile
obtained according to both the strategies, that is the action profile~α extending both~αA, given by the
strategyFA, and~αA, given by the strategyFA (i.e.~α is such that~α(a) = ~αX(a), for X ∈ {A,A} anda∈X).
A computationC = c1,c2 . . ., is theoutcome of the strategies FA and FA from the configuration c1 if, for
eachi ≥ 1, there is an action profile~αi obtained according to bothFA andFA, such thatci→~αi

ci+1. Given
a strategyFA and a configurationc, out(c,FA) denotes the set of the outcomes ofFA andFA from c, for all
the strategiesFA of the teamA. Observe that, given a finite sequence of configurationsC= c1c2 . . .cs, if
the action profile~α according to the two strategies is not such that~0≤ qty(qs,A G ,~α)+ ~ms≤ ~m0, then
there is no next configuration. Thus outcome of the strategies FA andFA from a given configuration may
be undefined (recall that we consider only infinite computations).

246 Model checking coalitional games in shortage resource scenarios

Example 2 Consider the priced game structure in Figure 1, with teams A= {a1} and B= {a2}, one
resource type and initial global availability~m0 = 〈1〉. Let c= 〈q0,〈1〉〉 be a sequence of configurations
(of length1). Team A has two possible strategies in c, one for each possible action of agent a1, and
team B has one strategy for the single available action of agent a2. Suppose that, according to the
strategy FA, agent a1 chooses to perform the action2 (FA(c)(a1) = 2), then the action profile[2,1] is
performed and one unit of the unique resource is consumed. Inthe obtained configuration〈q1,〈0〉〉 the
agent a1 has one available action while the agent a2 has two actions. Anyway FB cannot return the
action2 for the agent a2, since this action would require an amount of the resource greater than0, which
is the current availability. Thus only the configuration〈q2,〈0〉〉 can be reached and the computation
C = 〈q0,〈1〉〉〈q1,〈0〉〉〈q2,〈0〉〉〈q2,〈0〉〉 . . . is the only one that belongs to out(c,FA).

Now we introduce the concept of consistent strategy. Two properties have to be satisfied: first, the
outcomes starting fromc are always defined and also the agents of the proponent team have enough
money to realize the chosen actions.

Definition 4 Let~$∈N , c be a configuration, A⊆A G be the proponent team, andA= A G \A be the
opponent team. A strategy FA of A is said to beconsistent with respect to~$ andc ((~$,c)-strategy), if

1. for any strategy FA of A, the outcome of FA and FA from the configuration c is defined,
2. for every C= c1c2 . . .∈ out(c,FA), with ci = 〈qi , ~mi〉, for every i≥ 1and ak∈A: ∑i

j=1ρ(~mj ,q j ,ak) ·

consd(q j ,ak,FA(C[1, j])(ak))≤~$[k].

In the above condition the dot operator denotes the usual scalar product of vectors. Observe that only
the money availability of the teamA is tested. Actually, we suppose that the opponent teamA always
has money enough to make its choice. Notice also that the actionsproducingresources do not cause a
reimbursement of money to the agents. As it is usual when dealing with temporal logics, we guarantee
that priced game structures are non-blocking, in the sense that at least a(~$,c)-strategy exists for a given
teamA. Indeed, agents ofA can always jointly choose thedo-nothingaction.

A formula ofPRB-ATL is evaluated with respect to a priced game structureG and a configuration
c= 〈q,~m〉. The definition of the semantics is completed by the definition of the satisfaction relation|=:
• (G,c) |= p iff p∈ π(q)
• (G,c) |= ¬ψ iff (G,c) 6|= ψ
• (G,c) |= ψ1∧ψ2 iff (G,c) |= ψ1 and(G,c) |= ψ2

• (G,c) |= 〈〈A
~$〉〉©ψ iff there exists a(~$,c)-strategyFA such that, for allC ∈ out(c,FA), it holds

that(G,C[2]) |= ψ
• (G,c) |= 〈〈A

~$〉〉ψ1U ψ2 iff there exists a(~$,c)-strategyFA such that, for allC ∈ out(c,FA), there
existsi ≥ 0 such that(G,C[i]) |= ψ2 and, for all 1≤ j < i, it holds that(G,C[j]) |= ψ1

• (G,c) |= 〈〈A
~$〉〉�ψ iff there exists a(~$,c)-strategyFA such that, for allC∈ out(c,FA), it holds that

(G,C[i]) |= ψ for all i ≥ 1
• (G,c) |=∼ ~m′ iff ~m∼ ~m′ where∼∈ {<,≤,=,≥,>}.

Given aPRB-ATL formula and a priced game srtuctureG, we say thatG satisfiesϕ , G |= ϕ , if
(G,c0) |= ϕ wherec0 = 〈q0, ~m0〉. The model checkingproblem forPRB-ATL consists in verifying
whetherG |= ϕ .

Example 3 Consider the priced game structure in Figure 1, with teams A= {a1} and B= {a2}. A

formulaψ = 〈〈A G
~$〉〉©〈〈A

~$′〉〉�p holds true in the configuration〈q0,〈1〉〉, provided that~$ and~$′ are
enough to make the move. Indeed, a1 and a2 together are able to force the computation to reach the

D. Della Monica, M. Napoli, M. Parente 247

〈q1,〈0〉〉 (one unit of resource is consumed). From such a configuration, the opponent team B cannot
force the computation into q3, as the action2 is not allowed for a2 (no resources are available to per-
form the action), and thusψ holds. Instead,ψ is false in the configuration〈q0,〈2〉〉 (actually in each
configuration〈q0,〈x〉〉, with x> 1), because〈q1,〈1〉〉 is reached after the execution of the first transition,
and in that configuration action2 for a2 in B is allowed, leading to q3. Finally, notice that the formula is
false also when evaluated in〈q0,〈0〉〉, as the only possible transition is the one leading from q0 to q4 (no
resources are available to perform action1 for agent a1).

4 Complexity lower bounds for the model checking problem

In [9], the authors presented an algorithm for model checking PRB-ATL, providing an exponential upper
bound for the problem. In particular, letn be the number of agents,r the number of resources, andM the
maximum component occurring in the initial resource availability vector, the proposed algorithm runs
in exponential time inn, r, and the size of the representation ofM (assuming thatM is represented in
binary). In this section we prove that an algorithm that behaves asymptotically better cannot exist, thus
proving that the problem is EXPTIME-complete. To prove the inherent difficulty with respect to the
multiple input parameters, we show two reductions: one parametric in the representation ofM (the digit
size), which assumes bothn andr constant, and the other parametric inr, this time assuming constant
bothn and the value ofM. We conjecture the existence of a third EXPTIME reduction, in which r and
M are constant and the parameter isn. In fact, if it was not the case, it would be possible to improve the
proposed model checking algorithm in a way that its complexity would not be exponential inn.

We first recall the formalism oflinearly-bounded alternating Turing machines(LB-ATM) and the
notion ofhierarchical representation, a succinct way of representing priced game structures inspired to
the work done in [4] for classical Kripke structures. Finally, we present the two reductions from the
acceptance problem forLB-ATM, known to be EXPTIME-complete [7], to the model checking problem
for PRB-ATL.

4.1 Linearly-bounded alternating Turing Machines

A linearly-bounded alternating Turing machines(LB-ATM) is a tuple〈Q,Γ,I ,q0,〉, whereQ is the
set ofstates, partitioned inQ∀ (universal states) andQ∃ (existential states); Γ is the set oftape sym-
bols, including the ‘blank’ symbolB, and two special symbolsx andy, denoting the left and righttape
delimiters; I ⊆Q×Γ×Q×Γ×{←,→} is theinstruction set; q0 ∈Q is theinitial state.

Symbols fromΓ are stored in thetape cells, and the first and the last cell of the tape store, respectively,
the symbolsx andy. A tape configurations is a sequence of the symbols stored in the tape cells, and
keeps trace of anhead cell. A configuration cis a pair(q,s) of a stateq and a tape configurations, and
C is the set of the configurations. The initial configuration isc= (q0,s0), wheres0 contains the input,
possibly followed by a sequence of blanks, and its head cell stores the first input symbol.

An instruction i= (q,λ , r,ν ,∼) ∈I is also denoted〈q,λ 〉 → 〈r,ν ,∼〉, where〈q,λ 〉 is called afull
state. Its intuitive meaning is as follows: “whenever the machineis in the stateq and the symbol in the
head cell isλ , then the machine switches to stater, the symbol in the head cell is replaced withν , and
the head position is moved to the left or to the right (according to∼)”. An execution stepof the machine

is denotedc
i
−→ c′, wherec,c′ ∈ C , i ∈I andc′ is the configuration reached fromc after the execution

of the instructioni. Let Cnext(c) = {c
′ ∈ C | c

i
−→ c′ is an execution step, for somei ∈ I }. All the tape

configurations are linear in the length of the input and we follow the common practice to only consider

248 Model checking coalitional games in shortage resource scenarios

machines whose tape length does not vary during the computation. We can also assume thatLB-ATM
have no infinite computations since anyLB-ATM can be transformed into another, accepting the same
language and haltingin a finite number of steps. Such aLB-ATM counts the number of execution steps
and rejects any computation whose number of steps exceeds the number of possible configurations.

Theacceptance conditionis defined recursively. A configurationc= (q,s) is said to beacceptingif
either one of the following conditions is verified:(i) q∈Q∀ andc′ is accepting for allc′ ∈ Cnext(c) or
(ii) q∈Q∃ and there existsc′ ∈ Cnext(c) such thatc′ is accepting. Notice that an universal (existential)
state always accepts (rejects) ifCnext(c) = /0. A LB-ATM accepts on an initial input tapes0, if the initial
configuration(q0,s0) is accepting.
Hierarchical representation. In order to exhibit our encoding proposal, we make use of a hierarchical
representation analogous to the one described in [4, 12, 13]for model checking, and in [14] for module
checking procedures. Given a finite state machine, the idea of hierarchical representation is to replace
two or more substructures of the machine that are structurally equivalent, by another (structurally equiv-
alent) module, that is a finite state machine itself. The use of hierarchical representation results in an
exponentially more succinct representation of the system,that amounts (in most cases) to more effi-
cient model checking procedures (in the other cases, this does not yield a more efficient behavior, as the
analysis requires a flattening of the machine itself, thus incurring in an exponential blow up in its size).

In our context, this idea can be suitably adapted to deal withthe presence of resources, as follows.
Modules do not represent structurally equivalent substructures, but substructures that have the same
impact on the values of resource variables. In principle, whenever the analysis is focused on the evolution
of resource variables, it makes sense to consider as equivalent two substructures that can possibly differ in
their structure but whose effect on the set of resource variables is exactly the same. This approach could
be thought of as a hierarchical representation based onfunctionalequivalence between substructures, as
opposed to the classical notion of hierarchical representation based onstructuralequivalence.

4.2 A reduction from the acceptance problem forLB-ATM

Given anLB-ATM A and an input tape configurations0, we provide a priced game structureGA ,s0, with
two agentsag1 andag2, and a formulaφA ,s0 such thatGA ,s0 |= φA ,s0 if and only if A accepts ons0.

In the following, we exhibit the game structure by using a graphical (hierarchical) representation
(Figures 2-7 in Appendix). Notice that only significant information is explicitly shown in the pictures.
In particular, labels on transitions (arcs) represent consumptions/productions of resources due to the
execution of the joint move (proponent and opponent moves) associated to that transition. For example,
the label “−1i,+1i,+10µL,−10µL” on the loop transition of Figure 4b means that the actions associated
to the transition will consume 1 unit of the (type) resourcei and 10 unit ofµL, and will produce 1
unit of the resourcei and 10 unit ofµL. Availability of other resources is unchanged, then the relative
information is omitted.

The reduction uses the three resource variablesµL, µ , andµR to encode the tape configuration, plus
three auxiliary resource variablesi, r, and t, that will be useful during the construction. Moreover,
we associate to the above set of variables the set ofcounterbalanced variables{µL,µ ,µR, i, r , t}. The
idea behind the use of counterbalanced variables, that is also the key idea of the reduction, consists
of designing the game structure in a way that to every consumption (resp., production) of a resource,
say for instanceµ , a corresponding production (resp., consumption) of its counterbalancedµ exists. In
particular, this is true inside each module of the hierarchical structure, thus the sum of the availability of
a resource variable and its counterbalanced variable is kept constant along all the computation at every
module’s entry and exit points, equal to a valueMax, which depends on the input of theLB-ATM. This

D. Della Monica, M. Napoli, M. Parente 249

will allow us to force the execution of specific transitions at specific availabilities of resource variables.
Consider, for example, the node of Figure 4b with 2 outgoing transitions, one of which is a loop transition.
The presence of 2 outgoing transitions means that either theproponent or the opponent can choose
between 2 moves. But such a freedom is only potential, as in any moment of the computation the
choice of the next move by the proponent/opponent is constrained by the resource availability: if the
loop transition is enabled, then the availability of the resourcei is greater than 0, and thus the availability
of its counterbalanced variablei is less thanMax, that means that the other transition, which consumes
Max units of the resourcei, is disabled. On the contrary, if the non-loop transition isenabled, there are
Max units of the resourcei available, and thus the availability of the resourcei is 0, that means that the
loop transition is disabled. Thus, by taking advantage of the features of counterbalanced variables, we
are able to force the executions to have a somehow deterministic behavior.

Encoding of the tape.Without loss of generality, we considerLB-ATM on input alphabetΣ = {1,2,B},
thusΓ is the set{1,2,B,x,y}. Recall that the symbolsB, x, andy denote the ‘blank’ symbol, the left
delimiter, and the right delimiter, respectively. Tape symbols are encoded by the digits 0,1,2,3 and
4, in a pretty natural way: 0 encodes the ‘blank’ symbol, 1 and2 encode the input symbols1 and2,
and 3 and 4 encode the left and right delimiters. The tape configuration is encoded by means of the
three resource variablesµL, µ , andµR. The value ofµ ranges over the set{0,1,2,3,4} and encodes
the value stored in the cell currently read by the head (according to the above encoding of tape symbols
into digits). The value ofµL encodes the tape configuration at the left of the current headposition in a
forward fashion. The value ofµR encodes the tape configuration at the right of the current head position
in a reverse fashion, that is,µR encodes the reverse of the string corresponding to the tape configuration at
the right of current head position. As an example, consider the tape configurations= xB11211B2BBy,
the symbol read by the head is the underlined one. Such a configuration is encoded by means of the
three resource variables as follows:µL = 30112,µL = 1, andµR = 400201. It can be noticed that the
length of the representation of the three variablesµL, µ , andµR is proportional to the length of the tape
configuration which is at most linear in the size of the input,namelyO(|s0|). Using such an encoding, the
machine operation “shift the head to the left” can be represented by means of the following operations
on resource variables:
• the new value ofµR is µR∗10+µ
• the new value ofµ is µL mod 10,
• the new value ofµL is µL/10 (/ is the integer division),

The operation “shift the head to the right” can be encoded analogously.
Notice that in order to encode in polynomial time the operations of shifting the head to left and right,

we encode the string to the right of the current head positionin a reverse order. Indeed, in this way the
symbol stored on the cell immediately to the right of the headcorresponds to the least significant digit of
µR, and thus can be accessed by using the module operation (µR mod 10).

Encoding of the instructions. The encoding of the instructions is depicted in Figure 2. Transitions
starting from a node labeled〈q,λ 〉 represent all the possible instructions matching the full state〈q,λ 〉 of
theLB-ATM, that is, all the instructions that can be possibly performed at the full state〈q,λ 〉.

More in detail, given a full state〈q,λ 〉 of the machine, withq ∈ Q∃, the encoding of the
set{〈q,λ 〉 → 〈r1,ν1,∼1〉,〈q,λ 〉 → 〈r2,ν2,∼2〉, . . . ,〈q,λ 〉 → 〈rm,νm,∼m〉} of matching instructions is
shown in Figure 2a, (recall that∼i∈ {←,→}). Analogously, the encoding of the set of instructions
matching the full state〈q,λ 〉, with q ∈Q∀, is shown in Figure 2b. Let us underline that the action pro-
files 〈α1,β 〉, . . . ,〈αm,β 〉 labeling transitions corresponding to an existential state are such that the first
agentag1 has the capability to force a specific transition (instruction) to be executed, depending on the

250 Model checking coalitional games in shortage resource scenarios

〈q,λ〉

write

write

move

move

〈r1,B〉

〈r1,1〉

〈r1,2〉

〈r1,x〉

〈r1,y〉

〈α 1
,β

〉

〈rm,B〉

〈rm,1〉

〈rm,2〉

〈rm,x〉

〈rm,y〉

〈α
m ,β
〉

(a) Full state〈q,λ 〉, with q ∈Q∃.

〈q,λ〉

write

write

move

move

〈r1 ,B〉

〈r1 ,1〉

〈r1 ,2〉

〈r1 ,x〉

〈r1 ,y〉

〈α

,β 1
〉

〈rm ,B〉

〈rm ,1〉

〈rm ,2〉

〈rm ,x〉

〈rm ,y〉

〈α
,β

m 〉

(b) Full state〈q,λ 〉, with q ∈Q∀.

Figure 2: Encoding of the set of instructions matching a fullstate〈q,λ 〉 of aLB-ATM.

choice of theαi for the next action, independently from the choiceβ of the other agentag2. On the other
hand, the action profiles〈α ,β1〉, . . . ,〈α ,βm〉 labeling transitions corresponding to an universal state are
such that the roles of the agents are exchanged.

TheLB-ATM representation of Figure 2 is hierarchical and involves themoduleswrite andmove.
The former encodes the rewriting of the head cell performed by A and, to this aim, makes use of one of
the following modules (Figure 3), depending on the symbolλ read by the head, and on the symbolν to
be written:
• inc, depicted in Figure 3a, is used when the rewriting corresponds to an increment, for example,

when the symbol2 has to be written in place of the symbol1;
• doubleinc, depicted in Figure 3b, is used when the rewriting corresponds to a double increment,

for example, when the symbol2 (encoded as 2) has to be written in place of the symbolB (encoded
as 0);

• dec, depicted in Figure 3c, is used when the rewriting corresponds to a decrement, for example,
when the symbol1 has to be written in place of the symbol2;

• doubledec, depicted in Figure 3d, is used when the rewriting corresponds to a double decrement,
for example, when the symbolB has to be written in place of the symbol2.

Obviously, the module does nothing when the symbol to be written corresponds to the symbol currently
stored in the head cell.

The modulemoveencodes the shift (to right or to left) of the head. It is designed in a way that the
only next location that can be reached by the game is consistent with the value stored on the new head
cell (after the shift operation). In Figure 4 and 5 the sub-modules encoding the operation “shift to right”
are depicted. The encoding of the operation “shift to left” can be realized analogously.

As an example, we describe the first two modules of Figure 4. The moduleshi f t right, depicted in

D. Della Monica, M. Napoli, M. Parente 251

Figure 4a, is performed through the following steps:
• multiply by 10 the value ofµL (moduletimes10(µL)),
• increment the value ofµL by the value ofµ (moduleadd(µL,µ)),
• divide by 10 the value ofµR (modulediv 10(µR) — the remainder of the division is stored in the

resource variabler),
• assign to the resource variableµ the value ofr (moduleassign(µ , r)),
• suitably lead the computation to the location corresponding to the next state of theLB-ATM,

depending on the value read by the head, that is, the value stored on the resource variableµ
(modulechoosenext state(µ)).

The moduletimes10(µL), that multiplies by 10 the value ofµL (Figure 4b), is performed by storing the
value ofµL in the resource variablei, by setting the value ofµL to 0, and then by executing a transition
(the loop transition), which consumes 1 unit ofi and produces 10 units ofµL (the suitable quantity of
the counterbalanced variables is produced or consumed as well, to keep the sum constant) as long as
items of the resourcei are available. When the availability ofi goes down to 0, the other transition
is executed (the last transition is needed to keep constant the sum betweeni and its counterbalanced
variable i). It is easy to convince oneself that the value ofµL in the exit node is equal to its value in
the entry node times 10, and that the sum of each variable and its counterbalanced one is constant. As
a last remark, we point out that the names of some of the modules are parametric, in the sense that the
arguments between parenthesis are not actual resource variables, but parameters (e.g.,x, x1, x2) to be
instantiated. We adopted this notation for modules that areused more than once, and that are instantiated
with actual resource variables when they are used (e.g., themoduleassigndepicted in Figure 4c is called
assign(x1,x2) and it is used, for instance, inside the moduletimes10(µL) (Figure 4b), wherex1 (resp.,
x2) is instantiated withi (resp.,µL), and inside the moduleadd(µL,µ) (Figure 5a), wherex1 (resp.,x2)
is instantiated witht (resp.,µ).

Now, as resource productions are involved in the reduction,we need to guarantee that the avail-
ability of each resource never exceeds the initial one. To this end the values of the components of the
vector ~m0 of initial resource availability are set to the valueMax= 322. . .224, that is the largest num-
ber corresponding to an encoding of any tape configuration (precisely, it encodes the tape configuration
x22 . . .22y). Before starting the simulation of theLB-ATM, a preliminary step, depicted in Figure 6,
modifies the value of the resource variables in such a way thatthey correctly encode the input tapes0 and
the sum of the availability of each resource variable and itscounterbalanced is equal toMax. Thus, the
value of the resource variables never exceedMax.

At this point, given aLB-ATM A and an input tape configurations0, the game structureGA ,s0

presents, among others, the following features (the other features ofGA ,s0 are either irrelevant or repre-
sented in the graphical representation of the encoding — seeFigures 2-6):
• 2 agents,ag1 andag2;
• 5 locations, namely〈q,B〉, 〈q,1〉, 〈q,2〉, 〈q,x〉, 〈q,y〉, for each internal stateq of A (plus other

locations — the circles in the pictures — that do not correspond to particular states of theLB-ATM,
but are needed to perform the encoding);

• only one atomic propositionp, that holds true over all and only the locations having no matching

+1µ ,−1µ

(a) Moduleinc.

inc inc

(b) Moduledouble inc.

−1µ ,+1µ

(c) Moduledec.

dec dec

(d) Moduledoubledec.

Figure 3: Encoding of the modulewrite.

252 Model checking coalitional games in shortage resource scenarios

times10(µL) add(µL,µ)

div 10(µR) assign(µ ,r)

choosenext state(µ)

(a) Moduleshift right.

assign(i,µL) to zero(µL)

−1i,+1i
+10µL,−10µL

−Max i

+Max i

(b) Moduletimes10(µL).

to zero(x1) to zero(t)

−1x2,+1x2
+1x1,−1x1
+1t,−1t

−Max x2

+Max x2

+1x2,−1x2
−1t,+1t

−Maxt +Maxt

(c) Moduleassign(x1, x2).

−1x,+1x

−Max x +Max x

(d) Moduleto zero(x).

Figure 4: Encoding of the moduleshift right - part I.

instructions;
• initial global availability ~m0 is such that all resources are available in quantityMax, as already

mentioned above; notice thatMax also represents the maximum value occurring in the initial
resource availability vector, that is,M = Max;

• initial location〈q0,λ 〉, whereq0 is the initial state of theLB-ATM andλ is the first input symbol.

The formulaφA ,s0 = 〈〈A
~$〉〉♦p, with A= {ag1} and the value of~$ being irrelevant for our purposes, is

such thatGA ,s0 |= φA ,s0 if and only if A accepts on inputs0.
Notice that, for the sake of readability, the game structureused in the reduction does not respect the

requirement that, in every location, the first action of every agent is thedo-nothingaction, which does
not consume or produce resources. Nevertheless, this omission does not affect the correctness of our
reduction, that can be easily adapted using a game structurefulfilling the above requirement.

Theorem 1 Model checkingPRB-ATL is EXPTIME-hard even assuming n and r constant.

Let us stress that the above reduction makes use of a constantnumber of agents and resources, while
the digit size ofM (the maximum value occurring in~m0) is linear in the size of the tape configuration.
This is consistent with the complexity of the algorithm in [9], which remains exponential even if we
consider a constant number of agents and resources as input.

Corollary 1 The model checking problem forPRB-ATL is EXPTIME-complete.

4.3 Another reduction.

As noted at the beginning of Section 4, it is possible to exhibit two more reductions according to which
two parameters, out of three, are assumed constant. In the following, we briefly outline how to obtain a
reduction from the acceptance problem forLB-ATM, whenn andM are constant.

This reduction is simpler than the previous. Here the encoding of the tape is obtained using a number
of resources which is linear in the length of the tape. Let|s| be the length of the tape, we use 2 sets of

D. Della Monica, M. Napoli, M. Parente 253

assign(t,µ)

−1t,+1t
+1µL,−1µL

−Maxt +Maxt

(a) Moduleadd(µL, µ).

to zero(r) assign(i,µR) to zero(µR)

−10i,+10i
+1µR,−1µR

−(Max−9) i

+(Max−9) i

+1r,−1r
−1i,+1i

−Max i +Max i

(b) Modulediv 10(µR).

−Max µ

−1µ ,+1µ −Max µ

+Max µ

+Max µ

−1µ ,+1µ

−1µ ,+1µ

−Max µ +Max µ

−1µ ,+1µ

−Max µ +Max µ

(c) Modulechoosenext state(µ).

Figure 5: Encoding of the moduleshift right - part II.

|s| resource variables, namely,µ1
L ,µ2

L , . . . ,µ
|s|
L and µ1

R,µ2
R, . . . ,µ

|s|
R , plus the resource variableµ . Each

variable encodes the content of a tape cell: variableµ encodes the content of the head cell, while, for
eachi, the variableµ i

L (resp.,µ i
R) encodes the content of thei-th cell on the left (resp., right) of the tape

cell. Notice that, since there are finitely many possible values for a tape cell, the value ofM is upper
bounded. Now, the encoding of the set of instructions matching a full state〈q,λ 〉 of a LB-ATM is the
same used for the previous reduction and depicted in Figure 2. Nevertheless, the encoding of the module
move, which encodes the shift (to right or to left) of the head, is slightly different. In Figure 7, the
sub-modules encoding the operation “shift to right” are depicted. Essentially, the value of the variable
representing a cell is transmitted to the variable representing the cell on the right, and the next location
reached on the game structure is set according to the value stored on the current head cell (after the shift
operation). The encoding of the operation “shift to left” ismade analogously.

Theorem 2 Model checkingPRB-ATL is EXPTIME-hard even assuming n and M constant.

5 Discussion

In this paper we have presented a formalism which is very suitable to model properties of multi-agent
systems when the agents share resources and the need of avoiding an unbounded consumption of such
resources is crucial. Within our framework it is possible tokeep trace of a real global availability of the

−Max µ −Max i
−Max µL −Max r
−Max µR −Maxt

assign(µL, lv) assign(µ ,hv) assign(µR, rv)

Figure 6: Preliminary step of the reduction (lv, hv, andrv encode the input tape configuration).

254 Model checking coalitional games in shortage resource scenarios

assign(µ |s|L , µ |s|−1
L) assign(µ |s|−1

L , µ |s|−2
L)

. . .
assign(µ2

L , µ1
L) assign(µ1

L , µ)

assign(µ , µ1
R) assign(µ1

R, µ2
R)

. . .
assign(µ |s|−1

L , µ |s|L) choosenext state(µ)

Figure 7: Encoding of the moduleshift right.

resources, used by both the proponent and opponent players,avoiding thus unrealistic situations in which
an unbounded quantity of resources is used in a game.

The technical focus of the paper has been on the complexity ofthe model checking problem, and we
proved that it is EXPTIME complete (recall that also for simpler formalism this problem is in EXPTIME,
though the lower bound is not known). Other problems of interest exist in the context of multi-agents
system verification. The most important one is thereachability problem, that is the problem of determin-
ing whether a team, with a given amount of money and a given initial global resource availability, has a
strategy to force the execution of the system to reach a givenlocation. More precisely, the reachability
problem for a teamA on a priced game structureG is a particular instance of the model checking prob-
lem, namely, the problem of verifying the truth at the initial configuration ofG of aPRB-ATL formula of

the kind〈〈A
~$〉〉♦p, for a teamA, a money endowment~$ andp∈Π. An upper bound on the complexity

of this problem is clearly given by the algorithm for solvingthe model checking problem forPRB-ATL.
Let us observe that the reductions given in section 4 apply also to the reachability problem, since the

formula used there wasφA ,s0 = 〈〈A
~$〉〉♦p, thus we have the following corollary.

Corollary 2 The reachability problem forPRB-ATL is EXPTIME-complete.

One of the novelties of our logic is thatthe resource productionis allowed in the actions, though
with some limitations. Model checking and reachability problems seem both to be simpler in the case
one restricts our formalism by considering agent actions that cannot produce resources. The reachability
problem is indeed NP-hard in this case: it immediately follows from a result in [11], when the number
of agents is not constant. Anyway, we can prove the NP-hardness for just two agents using a reduction
from 3-SAT (due to lack of space we omit here the proof). The model checking problem, instead, turns
out to be PSPACE-hard, since the reduction from QBF problem given in [9] works also in this case,
when actions cannot produce resources. Observe thatPRB-ATL with this restriction is again different
from other formalisms in literature, mainly for the possibility of tracking resources avalability and for
considering shared resources.

Finally, we want to note that also the more general problem, called optimal coalition problem, is
EXPTIME-complete (the upper bound was shown in [9]). It is the problem of finding optimal (with
respect to a suitable cost function) coalitions that are capable to satisfy a givenparametricPRB-ATL

formula, that is, aPRB-ATL formula in whichparametric team operators〈〈X
~$〉〉 may occur in place of

the classical team operators〈〈A
~$〉〉. One could also investigate other optimization problems. The most

interesting is, perhaps, to consider the money availability not as an input of the problem, but rather as
a parameter to minimize, that is to establish how much money each agent should be provided with, to
perform a given task.

Further research directions concern the study of variants of the logic. First, one can consider exten-
sions based on the full alternating-time temporal languageATL∗, as already done in [6], and its fragment
ATL+.

D. Della Monica, M. Napoli, M. Parente 255

References

[1] Natasha Alechina, Brian Logan, Nguyen Hoang Nga & Abdur Rakib (2009):A Logic for Coalitions with
Bounded Resources. In: Proc. of the 21st International Joint Conference on Artificial Intelligence, IJCAI ’09,
pp. 659–664.

[2] Natasha Alechina, Brian Logan, Nguyen Hoang Nga & Abdur Rakib (2010):Resource-bounded alternating-
time temporal logic. In: Proc. of the 9th International Conference on Autonomous Agents and Multiagent
Systems: Volume 1, AAMAS ’10, pp. 481–488.

[3] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. Journal of
ACM 49(5), pp. 672–713, doi:10.1145/585265.585270.

[4] Rajeev Alur & Mihalis Yannakakis (2001):Model checking of hierarchical state machines. ACM Trans-
actions on Programming Languages and Systems (TOPLAS)23(3), pp. 273–303, doi:10.1145/503502.
503503.

[5] Nils Bulling & Berndt Farwer (2009):Expressing Properties of Resource-Bounded Systems: The Logics
RTL∗ and RTL. In Jürgen Dix, Michael Fisher & Peter Novák, editors:Computational Logic in Multi-Agent
Systems (CLIMA X), Springer, pp. 22–45, doi:10.1007/978-3-642-16867-3_2.

[6] Nils Bulling & Berndt Farwer (2010):On the (Un-)Decidability of Model Checking Resource-Bounded
Agents. In: Proc. of the 19th European Conference on Artificial Intelligence, ECAI ’10, pp. 567–572, doi:10.
3233/978-1-60750-606-5-567.

[7] Ashok K. Chandra, Dexter C. Kozen & Larry J. Stockmeyer (1981):Alternation. Journal of ACM28(1), pp.
114–133, doi:10.1145/322234.322243.

[8] Mehdi Dastani, Koen V. Hindriks & John-Jules Charles Meyer, editors (2010):Specification and Verification
of Multi-agent Systems, 1st edition. Springer Publishing Company, Incorporated.

[9] D. Della Monica, M. Napoli & M. Parente (2011):On a Logic for Coalitional Games with Priced-Resource
Agents. Electronic Notes in Theoretical Computer Science (ENTCS)278, pp. 215–228, doi:10.1016/j.
entcs.2011.10.017. Proc. of the 7th Workshop on Methods for Modalities (M4M 2011) and the 4th
Workshop on Logical Aspects of Multi-Agent Systems (LAMAS 2011).

[10] Valentin Goranko (2001):Coalition games and alternating temporal logics. In: Proc. of the 8th Conference
on Theoretical Aspects of Rationality and Knowledge, TARK ’01, Morgan Kaufmann, pp. 259–272.

[11] Wojciech Jamroga & Jürgen Dix (2005):Do Agents Make Model Checking Explode (Computationally)?In:
Proc. of the 4th International Central and Eastern EuropeanConference on Multi-Agent Systems (CEEMAS
2005), Lecture Notes in Computer Science3690, Springer, pp. 398–407, doi:10.1007/11559221_40.

[12] Salvatore La Torre, Margherita Napoli, Mimmo Parente &Gennaro Parlato (2003):Hierarchical and Recur-
sive State Machines with Context-Dependent Properties. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim
Parrow & Gerhard J. Woeginger, editors:Proc. of the 30th International Colloquium on Automata, Languages
and Programming (ICALP), Lecture Notes in Computer Science2719, Springer, pp. 776–789, doi:10.1007/

3-540-45061-0_61.

[13] Salvatore La Torre, Margherita Napoli, Mimmo Parente &Gennaro Parlato (2008):Verification of scope-
dependent hierarchical state machines. Information and Computation206(9-10), pp. 1161–1177, doi:10.

1016/j.ic.2008.03.017.

[14] Aniello Murano, Margherita Napoli & Mimmo Parente (2008): Program Complexity in Hierarchical Module
Checking. In Iliano Cervesato, Helmut Veith & Andrei Voronkov, editors: Proc. of the 15th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), Lecture Notes in
Computer Science5330, Springer, pp. 318–332, doi:10.1007/978-3-540-89439-1_23.

[15] Marc Pauly (2001):A Logical Framework for Coalitional Effectivity in DynamicProcedures. Bulletin of
Economic Research53(4), pp. 305–324, doi:10.1111/1467-8586.00136.

[16] Marc Pauly (2002):A Modal Logic for Coalitional Power in Games. Journal of Logic and Computation
12(1), pp. 149–166, doi:10.1093/logcom/12.1.149.

http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1145/503502.503503
http://dx.doi.org/10.1145/503502.503503
http://dx.doi.org/10.1007/978-3-642-16867-3_2
http://dx.doi.org/10.3233/978-1-60750-606-5-567
http://dx.doi.org/10.3233/978-1-60750-606-5-567
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1016/j.entcs.2011.10.017
http://dx.doi.org/10.1016/j.entcs.2011.10.017
http://dx.doi.org/10.1007/11559221_40
http://dx.doi.org/10.1007/3-540-45061-0_61
http://dx.doi.org/10.1007/3-540-45061-0_61
http://dx.doi.org/10.1016/j.ic.2008.03.017
http://dx.doi.org/10.1016/j.ic.2008.03.017
http://dx.doi.org/10.1007/978-3-540-89439-1_23
http://dx.doi.org/10.1111/1467-8586.00136
http://dx.doi.org/10.1093/logcom/12.1.149

	1 Introduction
	2 Comparison with related works
	3 A logical formalization: PRB-ATL
	4 Complexity lower bounds for the model checking problem
	4.1 Linearly-bounded alternating Turing Machines
	4.2 A reduction from the acceptance problem for LBATM
	4.3 Another reduction.

	5 Discussion

