
P. Bouyer, A. Orlandini & P. San Pietro (Eds.): 8th Symposium on
Games, Automata, Logics and Formal Verification (GandALF’17)
EPTCS 256, 2017, pp. 195–209, doi:10.4204/EPTCS.256.14

Linear-time Temporal Logic
with Event Freezing Functions∗

Stefano Tonetta
FBK-irst

tonettas@fbk.eu

Formal properties represent a cornerstone of the system-correctness proofs based on formal verifi-
cation techniques such as model checking. Formalizing requirements into temporal properties may
be very complex and error prone, due not only to the ambiguity of the textual requirements but also
to the complexity of the formal language. Finding a property specification language that balances
simplicity, expressiveness, and tool support remains an open problem in many real-world contexts.

In this paper, we propose a new temporal logic, which extends First-Order Linear-time Temporal
Logic with Past adding two operators “at next” and “at last”, which take in input a term and a for-
mula and represent the value of the term at the next state in the future or last state in the past in which
the formula holds. We consider different models of time (including discrete, dense, and super-dense
time) and Satisfiability Modulo Theories (SMT) of the first-order formulas. The “at next” and “at
last” functions can be seen as a generalization of Event-Clock operators and can encode some Metric
Temporal operators also with counting. They are useful to formalize properties of component-based
models because they allow to express constraints on the data exchanged with messages at differ-
ent instants of time. We provide a simple encoding into equisatisfiable formulas without the extra
functional symbols. We implement a prototype tool support based on SMT-based model checking.

1 Introduction

The specification of properties is a fundamental step in the formal verification process. System require-
ments must be captured by formal properties, typically using logic formulas. However, this is often a
complex activity and may become a blocking factor for an industrial adoption of the formal techniques.
The informal requirements are quite ambiguous but also the complexity of the target logic may be the
source of errors in the specification. Finding a property specification language that balances simplicity,
expressiveness, and analysis tool support remains an open problem in many real-world contexts.

One of the most popular logics used in computer science to specify properties for formal verifica-
tion is Linear-time Temporal Logic (LTL) [27]. The model of time is typically discrete and models are
discrete, linear sequences of states. We consider First-Order LTL [25] with future as well as past opera-
tors [24]. Thus, the system state is described by individual variables and first-order functions/predicates
can describe their relationship. In the spirit of Satisfiability Modulo Theories (SMT) [5], the formulas
are interpreted modulo a background first-order theory as in [19] (here, we restrict to a quantifier-free
fragment with all signature’s symbols rigid). Efficient SMT-based model checking techniques can be
used to verify temporal properties on systems described with first-order formulas (see, e.g, [12, 16]).

In the case of real-time systems, LTL is interpreted over a dense model of time or super-dense (dense
time with possible sequences of instantaneous events, as needed for example for asynchronous real-
time systems). When considering real models of time, it becomes natural to have constraints on the

∗This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the
Grant Agreement No. 700665 (project CITADEL).

http://dx.doi.org/10.4204/EPTCS.256.14

196 Linear-time Temporal Logic with Event Freezing Functions

time elapsing between different events. Therefore, LTL has been extended either with clocks/freezing
operators as in TPTL [4] or with metric operators as in [22, 1, 30]. Again, these extensions can be
combined with first-order logic (e.g., to represent message passing [23] or for monitoring specification
in [6]).

When a system or component is seen as a black box, the properties must be specified in terms
of the observable variables or messages exchanged with the system environment. This is for example
the case of properties of monitors (which trigger alarms based on some condition on the observed vari-
ables/messages) or contract-based specifications (which formalize the assumptions/guarantees of compo-
nents independently of the implementation). In these cases, the properties must capture the relationship
between the observable variables at different points of time, without referring to internal variables that
store the corresponding values. It is therefore necessary to have suitable mechanisms to refer to the value
of variables at different points of time. Instead of enriching the specification language with registers as
in register automata [17] to explicitly store the value of variables in an operational-style specification,
we adopt a more declarative style with functions that directly return the value of variables at the next or
last state in which a formula will be/was true.

More specifically, we extend the quantifier-free fragment of First-Order Linear-Time Temporal Logic
with Past operators adding “at next” u@F̃(φ) and “at last” u@P̃(φ) functional symbols, which are used
to represent the value of a term u at the next state in the future or at the last state in the past in which
a formula φ holds. For example, the formula G(alarm↔ x@P̃(read) = x@P̃2(read)) says that alarm
is true iff in the last two points in which read was true the variable x had the same value. We consider
different models of time, including discrete, dense, and super-dense time. In the dense time setting, the
definition has to take into account that a minimum time point may not exist because a formula may be
true on open intervals. The “at next” and “at last” functions can be seen as a generalization of Event-
Clock Temporal Logic (ECTL) operators [29, 20, 30] (which, on turn, are the logical counterpart of event
clocks [2]) and can encode some Metric Temporal Logic (MTL) operators [22] also with counting [21,
26]. They are useful to formalize properties of component-based models because they allow us to express
constraints on the data exchanged with messages at different instants of time. We provide a simple
encoding of the formulas with these extra functional symbols into equisatisfiable formulas without them.
We implemented a prototype tool support based on SMT-based model checking.

The natural alternative to the logic we proposed would be to use registers and freezing quantifiers
as in [17] and TPTL. Despite freezing quantifiers provide a higher expressiveness (also with respect to
MTL [8]), they are not so common in industrial applications (at least compared to LTL and MTL), either
because they are less intuitive to use or they lack tool support.

The main contributions of the paper are the following. First, we identify an extension of LTL that can
express interesting properties relating variables at different points of time. Second, we define the new
operators in a very rich setting that includes first-order constraints, past operators, dense and super-dense
semantics; this gives also a uniform treatment of LTL satisfiability modulo theories in the case of real
time models. Third, we provide a prototype tool support that effectively proves interesting properties,
while many logics in the real-time setting lack of tool support.

The rest of the paper is organized as follows: Section 2 introduces the considered time models, LTL
satisfiability modulo theories, and its extension with metric operators; Section 3 defines the extension
with the new event freezing functions; Section 4 describes the satisfiability procedure; Section 5 presents
some preliminary experimental results; finally, Section 6 concludes the paper and draws directions for
future work.

S. Tonetta 197

2 Background

2.1 Time models

R+
0 is the set of non-negative real numbers. A time interval is a convex subset of R+

0 . The left endpoint
of an interval I is denoted by l(I), while the right endpoint by r(I). Two intervals I and I′ are almost
adjacent iff r(I) = l(I) (so they may overlap in at most one point). A singular interval is an interval in the
form [a,a] for some a ∈ R+

0 . A time interval sequence is a sequence I0, I1, I2, . . . of time intervals such
that, for all i≥ 0, Ii and Ii+1 are almost adjacent and

⋃
i≥0 Ii = R+

0 .
We consider different models of time [3, 4]. A time model is a structure τ = 〈T,<,0,v〉 with a

domain T , a total order < over T , a minimum element 0 ∈ T , and a function v : T → R+
0 that represents

the real time of a time point in T . The v function is used instead of a distance (e.g., as in [22]) to treat
the weakly-monotonic case in a more uniform way. A time point is an element of T . In particular, we
consider the following models:

• discrete time models where T = N, 0 and < are the standard zero and order over natural numbers,
v(0) = 0 and v(0),v(1),v(2), . . . is a non-decreasing divergent sequence (this is also called the
pointwise semantics; we use these models also for discrete-time LTL ignoring these real-time
timestamps);

• dense (strictly-monotonic) time model where T = R+
0 , 0 and < are the standard zero and order

over the real numbers, and v is the identity function;

• super-dense (weakly-monotonic) time models where 1) T ⊂ N×R+
0 such that the sequence of

sets I0, I1, I2, . . . where, for all i ≥ 0, the set Ii := {t | 〈i, t〉 ∈ T}, is a time interval sequence (thus
subsequent intervals can overlap in at most one point), 2) 〈i, t〉< 〈i′, t ′〉 iff i < i′ or i = i′ and t < t ′,
3) 0 = 〈0,0〉 ∈ N×R+

0 , and 4) v(〈i, t〉) = t.

2.2 First-Order Linear-time Temporal Logic

We consider First-Order Linear-time Temporal Logic with Past Operators, which we refer to for simplic-
ity as LTL.

Given a first-order signature Σ and a set V of variables, we define the syntax of Σ-formulas as follows:

φ := p(u, . . . ,u) | φ ∧φ | ¬φ | φŨφ | φ S̃φ

u := c | x | f (u, . . . ,u)

where p is a predicate symbol of Σ, u is a term, f is a functional symbol of Σ, c is a constant symbol of
Σ, and x is a variable in V .

Σ-formulas are interpreted by a first-order structure interpreting the symbols in Σ and assignments
to variables that vary along time. More specifically, a state s = 〈M,µ〉 is given by a first-order structure
M and an assignment µ of variables of V into the domain of M. Given a state s = 〈M,µ〉 and a symbol
c of Σ or variable x ∈ V we use s(c) to denote the interpretation of c in M and s(x) to denote the value
µ(x) assigned by µ to x. Given M, let V M be the set of states with first-order structure M. A trace
σ = 〈M,τ,µ〉 is given by a first-order structure M, a time model τ , and a mapping µ from the domain of
τ into V M. Given a trace σ = 〈M,τ,µ〉 and t ∈ τ , we denote by σ(t) the state 〈M,µ(t)〉.

We assume to be given a Σ first-order theory T . Given a Σ first-order structure M, an assignment µ

to variables of V , and a Σ first-order formula φ over V , we use the standard notion of 〈M,µ〉 |=T φ . In
the rest of the paper, we omit the first-order signature Σ and theory T for simplicity.

198 Linear-time Temporal Logic with Event Freezing Functions

In our definition of trace, the first-order structure M is shared by all time points, meaning that the
interpretation of the symbols in the signature Σ is rigid, does not vary with time. However, note that the
interpretation of symbols may not be “fixed” by the background theory. These“uninterpreted” symbols
are also called parameters. For example, the signature Σ can include the symbols of the theory of reals
(including the constants 0 and 1) and an additional constant symbol p, whose value is not determined by
the theory but does not vary with time (thus, p is a parameter).

Given a trace σ = 〈M,τ,µ〉, a time point t of τ , and a Σ formula φ , we define σ , t |= φ recursively
on the structure of φ .

σ , t |= p iff σ(t) |= p

σ , t |= φ1∧φ2 iff σ , t |= φ1 and σ , t |= φ2

σ , t |= ¬φ iff σ , t 6|= φ

σ , t |= φ1Ũφ2 iff there exists t ′ > t,σ , t ′ |= φ2 and for all t ′′, t < t ′′ < t ′,σ , t ′′ |= φ1

σ , t |= φ1S̃φ2 iff there exists t ′ < t,σ , t ′ |= φ2 and for all t ′′, t ′ < t ′′ < t,σ , t ′′ |= φ1

Note that we are using the strict version of the “until” and “since” operators, where both arguments are
required to hold in points strictly greater or less than the current time.

Finally, σ |= φ iff σ ,0 |= φ . We say that φ is satisfiable iff there exists σ such that σ |= φ . We say
that φ is valid iff, for all σ , σ |= φ .

We use the following standard abbreviations:

φ1∨φ2 := ¬(¬φ1∧¬φ2) > := p∨¬p

⊥ := ¬> φ1Uφ2 := φ2∨ (φ1∧φ1Ũφ2)

Fφ :=>Uφ Gφ := ¬(F¬φ)

φ1Sφ2 := φ2∨ (φ1∧φ1S̃φ2) Pφ :=>Sφ

Hφ := ¬(P¬φ)

As usual in many works on real-time temporal logics (e.g., [1, 28]), we assume the “finite variability”
of traces, i.e., that the evaluation of predicates by a trace changes from true to false or vice versa only
finitely often in any finite interval of time. This can be lifted to temporal formulas in the sense that
temporal operators preserve the finite variability property (as proved for example in [1]). Formally, we
say that a trace σ is fine for φ in a time interval I iff for all t, t ′ ∈ I, σ , t |= φ iff σ , t ′ |= φ . A trace σ

has the finite variability property iff for every formula φ there exists a sequence of points t0, t1, t2 . . . of σ

such that σ is fine for φ in every interval (ti, ti+1), for i≥ 0. In the following, we assume that traces have
the finite variability property.

2.3 Next Operator and Function

Since Ũ is the strict version of the “until” operator, we can write the standard X as abbreviation:

Xφ :=⊥Ũφ

X is well defined in the different time models, also in the case of dense or super-dense time. In the
case of weakly-monotonic time, Xφ can be true only on a discrete step (i.e., in 〈n, t〉 if 〈n+1, t〉 is also
in T). In the case of strictly-monotonic time, Xφ is always false.

S. Tonetta 199

With the strict until, we can also define a continuous counterpart of the X operator:

X̃φ := φŨ>∧¬X>

Note that X> is true in all and only in discrete steps. Thus, X̃φ is always false in the case of discrete
time, while in the case of dense time it is true in the time points with a right neighborhood satisfying
φ . In the super-dense time case, X̃φ is false in the discrete steps, while in other time points it is true if
a right neighborhood satisfies φ . Note that this is a variant of the more standard φŨ> formula, which
has been studied for example in [18]. However, it was considered only in the dense time case. Here, we
added ¬X>, because it will be more convenient in the super-dense time case.

Similarly, we define the “yesterday” operators Y φ := ⊥S̃φ and Ỹ φ := φ S̃>∧¬Y>. We also define
the weaker version of “yesterday” that is true in the initial state: Zφ := (Y>∨ Ỹ>)→ Y φ and Z̃φ :=
(Y>∨ Ỹ>)→ Ỹ φ .

In the discrete-time setting, we often use also the functional counterpart of X , here denoted by
next [25]. Given a term u, the interpretation of next(u) in a trace σ at the time point t is equal to
the value of u assigned by σ at the time point t +1. “next” does not typically have a counterpart in the
dense time case. Let LTL-next be the extension of LTL with the next function (with discrete time).

2.4 Metric Temporal Operators

In this section, we define some extensions of LTL that use metric operators to constrain the time interval
between two or more points. We give a general version in the first-order setting that include also weakly-
monotonic time and parametric intervals.

Metric Temporal Logic (MTL) formulas are built with the following grammar:

φ := p(u, . . . ,u) | φ ∧φ | ¬φ | φŨIφ | φ S̃Iφ

I := [cu,cu] | (cu,cu] | [cu,cu) | (cu,cu) | [cu,∞) | (cu,∞)

cu := c | f (cu, . . . ,cu)

where the terms u are defined as before and cu are terms that do not contain variables. Thus, the bounds
of intervals used in MTL (as well in the other logics defined below) are rigid and may contain parameters.
We assume here that the background first-order theory contains the theory of reals and that the terms cu
have real type.

The abbreviations F̃I, G̃I, P̃I, H̃I and their non-strict versions are defined in the usual way. Moreover,
for all logics defined in this section, we abbreviate the intervals [0,a], [0,a), [a,∞), (a,∞), [a,a], by
respectively ≤ a, < a, ≥ a, > a, = a. Thus, for example, F̃=pb is an abbreviation of F̃[p,p]b.

Let σ = 〈M,τ,µ〉. We give the semantics just for the metric operators:

σ , t |= φ1ŨIφ2 iff there exists t ′ > t,v(t ′)− v(t) ∈M(I),σ , t ′ |= φ2 and for all t ′′, t < t ′′ < t ′,σ , t ′′ |= φ1

σ , t |= φ1S̃Iφ2 iff there exists t ′ > t,v(t)− v(t ′) ∈M(I),σ , t ′ |= φ2 and for all t ′′, t ′ < t ′′ < t,σ , t ′′ |= φ1

where M(I) is the set obtained from I by substituting the terms at the endpoints with their interpretation
(thus it may be also an empty set).

MTL∞
0 is the subset of MTL where the intervals in metric operators are in the form [0,a], (0,a], [0,a),

(0,a), [a,∞), (a,∞).
Event-Clock Temporal Logic (ECTL) is instead defined with the following grammar:

φ := p(u, . . . ,u) | φ ∧φ | ¬φ | φŨφ | φ S̃φ |BIφ |CIφ

200 Linear-time Temporal Logic with Event Freezing Functions

where u and I are defined as above.
We just give the semantics for the new symbols:

σ , t |=BIφ iff there exists t ′ > t,v(t ′)− v(t) ∈M(I),σ , t ′ |= φ and for all t ′′, t < t ′′ < t ′,σ , t ′′ 6|= φ

σ , t |=CIφ iff there exists t ′ > t,v(t)− v(t ′) ∈M(I),σ , t ′ |= φ and for all t ′′, t ′ < t ′′ < t,σ , t ′′ 6|= φ

Finally, we define the Temporal Logic with Counting (TLC) with the following grammar:

φ := p(u, . . . ,u) | φ ∧φ | ¬φ | φŨφ | φ S̃φ | −→C k
<cuφ | ←−C k

<cuφ

where u and cu are defined as above.
We just give the semantics for the new symbols:

σ , t |=−→C k
<cu(φ) iff there exist t1, . . . , tk, t < t1 < t2 < .. . < tk,v(tk)− v(t)< M(cu)

such that for all i ∈ [1,k],σ , ti |= φ

σ , t |=←−C k
<cu(φ) iff there exist t1, . . . , tk, tk < tk−1 < .. . < t1 < t,v(t)− v(tk)< M(cu)

such that for all i ∈ [1,k],σ , ti |= φ

3 LTL with Event Freezing Functions

3.1 Until next occurrence

Before introducing the new operators, we observe some subtleties of the dense-time semantics. In the
discrete-time setting, Fφ and (¬φ)Uφ are equivalent. In other words, if φ is true in the future, there
exists a first point in which it is true, while φ is false in all preceding points. This is not the case in the
dense-time setting, since for example the third trace of Figure 1 satisfies Fφ but not (¬φ)Uφ : for every
time in which φ holds, there exists a left open interval in which φ holds as well.

We can instead use another variant of the until operator defined as:

φ1UCφ2 := φ1U(φ2∨ (φ1∧ X̃φ2))

Thus, with UC we are requiring that φ2 holds in a point or in every point of a right interval. In this
case, we are guaranteed that there exists a minimum point that satisfies such condition. In fact, since we
are assuming finite variability, Fφ is equivalent to (¬φ)UCφ = (¬φ)U(φ ∨ X̃φ). In the next sections, we
will use this condition to characterize the next point in the future that satisfies φ . In particular, when we
say “the next point in the future in which φ holds”, we actually mean φ holds in that point or in a right
left-open interval (see also Figure 1). Similarly, for the past case.

Note that this is related to the issue of U in the dense time setting raised first by Bouajjani and
Lakhnech in [7] and later by Raskin and Schobbens in [29], namely that φ1Uφ2 is satisfied only if the
time interval in which φ2 holds is left-closed. In [7], this is solved by considering (φ1∨φ2)Uφ2. However,
this does not solve our issue of characterizing the first point in which φ2 holds. In [29], the issue was
solved at the semantic level by defining the U on timed state sequence that are fine for the subformulas
and quantifying over the time intervals of the sequence instead of over the points of the time domain.
We instead chose a more classical approach to define the semantics which seems to clarify better what
we mean for “the next point in which φ holds”. This is more similar to the semantics defined in [20]
for event clocks in Event-Clock Timed Automata and for the corresponding quantifiers in the equally
expressive monadic logic. However, in [20], a nonstandard real number is used in case φ holds in a
left-open interval.

S. Tonetta 201

𝜙 𝑡 ¬𝜙

𝜙 𝑡 ¬𝜙

𝜙 𝑡 ¬𝜙

𝜎(𝑡)(𝑢@𝐹 𝜙) = 𝜎(𝑡)(𝑢)

𝜎(𝑡)(𝑢@𝐹 𝜙) = 𝜎(𝑡)(𝑢)

𝜎(𝑡)(𝑢@𝐹 𝜙) = 𝜎(𝑡)(𝑢)

𝜎(𝑡)(𝑢@𝐹 𝜙) = 𝜎(𝑡)(𝑢)

𝜎(𝑡)(𝑢@𝐹 𝜙) = 𝜎(𝑡)(𝑢)

𝜎(𝑡)(𝑢@𝐹 𝜙) = 𝜎(𝑡)(𝑢)

Figure 1: Graphical view of different cases in which φ holds in the future. t represents “the next point in
the future in which φ holds”.

3.2 Event Freezing Functions

We extend the logic with two binary operators, “at next” u@F̃(φ) and “at last” u@P̃(φ), which take in
input a term u and a formula ψ and represent the value of u at the next point in the future, respectively
at the last point in the past, in which ψ holds. If such point does not exist we consider a default value
represented by a constant def u@F̃(ψ) or def u@P̃(ψ). As in SMT, we also use an if-then-else operator,
extended to the temporal case.

The set of LTL with Event Freezing Functions (LTL-EF) formulas is therefore defined as follows:

φ := p(u, . . . ,u) | φ ∧φ | ¬φ | φŨφ | φ S̃φ

u := c | x | f (u, . . . ,u) | u@F̃(φ) | u@P̃(φ) | ite(φ ,u,u)

A formula φ is interpreted on a trace σ = 〈M,τ,µ〉, where M is a first-order structure over the
signature extended with the constant symbols def u for every event freezing term u in φ . The semantics
of LTL is thus extended as follows:

• σ(t)(u@F̃(φ)) = σ(t ′)(u) if there exists t ′ > t such that, for all t ′′, t < t ′′ < t ′, σ , t ′′ 6|= φ and
σ , t ′ |= φ ; σ(t)(u@F̃(φ)) = σ(t ′)(u) if there exists t ′ ≥ t such that, for all t ′′, t < t ′′ ≤ t ′, σ , t ′′ 6|= φ

and σ , t ′ |= X̃φ ; otherwise, σ(t)(u@F̃(φ)) = M(def u@F̃(φ))

• σ(t)(u@P̃(φ)) = σ(t ′)(u) if there exists t ′ < t such that, for all t ′′, t ′ < t ′′ < t, σ , t ′′ 6|= φ and
σ , t ′ |= φ ; σ(t)(u@P̃(φ)) = σ(t ′)(u) if there exists t ′ ≤ t such that, for all t ′′, t ′ ≤ t ′′ < t, σ , t ′′ 6|= φ

and σ , t ′ |= Ỹ φ ; otherwise, σ(t)(u@P̃(φ)) = M(def u@P̃(φ))

• σ(t)(ite(φ ,u1,u2)) = σ(t)(u1) if σ , t |= φ , else σ(t)(ite(φ ,u1,u2)) = σ(t)(u2)

The “if-then-else” operator ite can be used to define the non-strict version:

u@F(φ) :=ite(φ ,u,u@F̃(φ))

u@P(φ) :=ite(φ ,u,u@P̃(φ))

202 Linear-time Temporal Logic with Event Freezing Functions

We define the following abbreviations:

u@F̃1(φ) :=u@F̃(φ) u@F̃ i+1(φ) :=(u@F̃(φ))@F̃ i(φ) for i≥ 1

u@P̃1(φ) :=u@P̃(φ) u@P̃i+1(φ) :=(u@P̃(φ))@P̃i(φ) for i≥ 1

3.3 Extension with Explicit Time

In this section, we extend the language with an explicit notion of time that can be constrained using
the event freezing functions defined above. In particular, we introduce an explicit symbol time, which
represents the time elapsed from the initial state. We allow time to be compared with constant terms.

The new set of LTL-EF formulas with explicit time (XLTL-EF) is defined as follows:

φ := p(u, . . . ,u) | tu ./ cu | φ ∧φ | ¬φ | φŨφ | φ S̃φ

u := c | x | f (u, . . . ,u) | u@F̃(φ) | u@P̃(φ) | ite(φ ,u,u)
tu := time | tu@F̃(φ) | tu@P̃(φ)

cu := c | f (cu, . . . ,cu)

./:=<|>|≤|≥

The semantics of LTL-EF is extended as follows: σ(t)(time) := v(t)
Note that we assume that the signature Σ contains the real arithmetic operators and that the underlying

theory contains the theory of reals.

3.4 Coverage of Metric Operators

These operators can be seen as a generalization of the ECTL operators as below:

BI φ := time@F̃(φ)− time ∈ I∧¬φŨφ

CI φ := time− time@P̃(φ) ∈ I∧¬φ S̃φ

We can encode similarly MTL∞
0 operators. As proved in [20], in case of non-singular intervals with real

constant bounds, MTL operators can be expressed in ECTL (and thus in XLTL-EF).
We can also express TLC properties as follows:

−→
C k

<cu(φ) := time@F̃k(φ)− time < cu∧ F̃k(φ)
←−
C k

<cu(φ) := time− time@P̃k(φ)< cu∧ P̃k(φ)

3.5 Sensor Example

Consider a sensor with input y and output x and a Boolean flag correct that represents whether or not
the value reported by the sensor is correct. Let us specify that the output x is always equal to the last
correct input value with G(x = y@P(correct)). We assume that a failure is permanent: G(¬correct →
G¬correct). Consider also a Boolean variable read that represents the event of reading the variable x.
Let us say that the reading happens periodically with period p: p > 0∧ read ∧G(read → B=pread).
Finally, let us say that an alarm a is true if and only if the last two read values are the same: G(a↔
x@P̃(read) = x@P̃2(read)).

S. Tonetta 203

We would like to prove that, given the above scenario, every point in which the sensor is not correct
is followed within 2∗ p by an alarm:

(G(x = y@P(correct))∧G(¬correct→ G¬correct)∧
p > 0∧ read∧G(read→B=pread)∧G(a↔ x@P̃(read) = x@P̃2(read)))

→ G(¬correct→ F≤2∗pa)

In the following, we show that this kind of problems can be indeed solved automatically with SMT-
based techniques.

4 Satisfiability Procedure

4.1 Overview of the Procedure

The satisfiability problem for (first-order) LTL with discrete time, and thus also for (X)LTL-EF which
is an extension thereof, is in general undecidable (see for example [19]). However, we can reduce it to
SMT-based model checking, which although undecidable has effective and mature tool support (also in
the case of LTL-next). We thus propose to reduce the satisfiability for (X)LTL-EF to the one for LTL-
next. The approach consists of the following steps: 1) the formula is translated into an equisatisfiable
one with discrete-time model, 2) the event freezing functions are removed generating an equisatisfiable
LTL-next formula. Since LTL-EF is a subset of XLTL-EF, in the following we consider just XLTL-EF
formulas.

4.2 Discretization

Given an XLTL-EF formula with dense or super-dense time, we create an equisatisfiable one with discrete
time. We will use the non-strict version of the temporal operators as these are those typically supported
by tools for LTL. The discretization approach is similar to the one described in [14]. The idea is to split
the time evolution is a sequence of singular or open intervals in such a way that the trace is fine for the
input formula on such intervals. To this purpose we introduce three variables that encode a sequence of
time intervals used to sample the value of variables: ι is a Boolean variable that encodes if the interval
is singular or open; δ is a real variable that encodes the time elapsed between two samplings; ζ is a real
variable that accumulates arbitrary sums of δ . A constraint ψι ensures that the value of these additional
variables represent a valid time interval sequence (e.g., after an open interval there must be a singular
interval and ζ is infinitely often greater than 1 and reset). Another constraint ψtime ensures that the
variable time is equal to the accumulation of δ and that the evaluation of predicates in the formula is
uniform in open intervals.

Given these extra variables, we can define the translation. Given a formula φ over V , we rewrite φ

into φD over V ∪{ι ,δ ,ζ} defined as:

φD :=D(φ)∧ψι ∧ψtime

where D , ψι , and ψtime are defined as follows.
D(φ) is defined recursively on the structure of φ and rewrites the temporal operators splitting be-

tween the case in which the current interval is singular (ι) or open (¬ι).
Let us consider first φ1Ũφ2; intuitively, to hold in a time point t, if t belongs to an open interval (fine

for φ1), then φ1 must hold in t; similarly, if φ1Ũφ2 because φ2 holds in t ′ > t and t ′ is part of an open

204 Linear-time Temporal Logic with Event Freezing Functions

interval, also φ1 must hold in t ′. Thus, φ1Ũφ2 is translated as follows: either the current interval is open
(¬ι), φ2 holds in a future singular interval and φ1 holds now and until that interval; or the current interval
is open, φ2 holds in a future open interval and φ1 holds now and until that interval included; or the current
interval is singular, φ2 holds in a future singular interval and φ1 holds (strictly) until that interval; or the
current interval is singular, φ2 holds in a future open interval and φ1 holds (strictly) until that interval
included. Similarly for the past case. Overall:

D(φ1Ũφ2) :=(¬ι ∧D(φ1)∧ (D(φ1)U((ι ∧D(φ2))∨ (D(φ1)∧D(φ2)))))∨
(ι ∧X(D(φ1)U((ι ∧D(φ2))∨ (D(φ1)∧D(φ2)))))

D(φ1S̃φ2) :=(¬ι ∧D(φ1)∧D(φ1)S((ι ∧D(φ2))∨ (D(φ1)∧D(φ2))))∨
(ι ∧Y (D(φ1)S((ι ∧D(φ2))∨ (D(φ1)∧D(φ2)))))

Let us consider now u@F̃(φ). We first define D(u@F(φ)), which is used as intermediate step to
define D(u@F̃(φ)). The discretization of u@F(φ) is translated into the value of u at the first state in the
future such that φ holds in that state or the following state corresponds to an open interval in which φ

holds:

D(u@F(φ)) :=D(u)@F(D(φ)∨X(¬ι ∧D(φ)))

D(u@P(φ)) :=D(u)@P(D(φ)∨Y (¬ι ∧D(φ)))

If the current interval is open and φ holds in all points of the interval, then u@F̃(φ) = u = u@F(φ).
Similarly, if the current interval is singular and is followed by an open interval in which φ holds, then
u@F̃(φ) = u = u@F(φ). If the current interval is open and φ does not hold in the interval, then again
u@F̃(φ) = u@F(φ). Finally, if the interval is singular and is not followed by an open interval in which
φ holds, u@F̃(φ) is equal to the value of u@F(φ) in the next interval. The overall translation is the
following:

D(u@F̃(φ)) :=ite(ι ∧X(ι ∨¬D(φ)),next(D(u@F(φ))),D(u@F(φ)))

D(u@P̃(φ)) :=ite(ι ∧Z(ι ∨¬D(φ)), prev(D(u@P(φ))),D(u@P(φ)))

where we use prev for simplicity with the following semantics: σ(0)(prev(u@P(φ))) = def u@P(φ) and
σ(i+ 1)(prev(u@P(φ))) = σ(i)(u@P(φ)). In practice, this is rewritten in terms of next and an extra
monitor variable in the usual way.

The following completes the definition with the trivial cases:

D(φ1∧φ2) :=D(φ1)∧D(φ2) D(¬φ1) :=¬D(φ1)

D(p(u1, . . . ,un)) :=p(D(u1), . . . ,D(un)) D(tu ./ cu) :=D(tu) ./ D(cu)

D(f (u1, . . . ,un)) := f (D(u1), . . . ,D(un)) D(time) :=time

D(c) :=c D(v) :=v

ψι encodes the structure of the time model (to enforce for example that after an open interval there
must be a singular one and that in a discrete step time does not elapse):

ψι :=ι ∧G((ι ∧δ = 0∧X(ι))∨ (ι ∧δ > 0∧X(¬ι))∨ (¬ι ∧δ > 0∧X(ι)))∧
G((next(ζ)−ζ = δ)∨ (ζ ≥ 1∧next(ζ) = 0))∧GF(ζ ≥ 1∧next(ζ) = 0)

S. Tonetta 205

Finally, ψtime encodes the value of time and forces the uniformity of predicates over time in open
intervals:

ψtime :=time = 0∧G(next(time)− time = δ)∧∧
tu./cu∈Sub(φ)

G(¬ι → ((D(tu≤ cu)→ XD(tu≤ cu))∧ (D(tu≥ cu)→ YD(tu≥ cu))))

where Sub(φ) denotes the set of subformulas of φ .
Note in particular that we require to split the time intervals in such a way that for every constant cu

occurring in a time constraint, [cu,cu] is a time interval in the sequence. Note that cu can be in general a
term built with the signature symbols that are interpreted rigidly.

Written as above the discretization clearly produces a formula whose size is exponential in the in-
put. However, since we are interested in equisatisfiability we can always use extra variables (one for
subformula) to obtain a linear-size formula.

We now prove that the translation is correct, i.e., that the new formula is equisatisfiable.

Theorem 1 φ and φD are equisatisfiable.

Proof. Given a trace σ = 〈M,τ,µ〉 satisfying φ we can build a trace σD with a discrete time model
satisfying φD as follows. Let I0, I1, I2, . . . be a sequence of time intervals such that 1) σ is fine for all
subformulas of φ in each interval Ii, 2) each interval Ii in the sequence is singular or open, and 3) in case
of super-dense time, for all i ≥ 0, there exists an integer ni such that 〈ni, t〉 ∈ τ for all t ∈ Ii. We build
an assignment to ι , δ and ζ based on such sequence. The values of ι , δ , and ζ are determined by the
sequence of intervals in order to satisfy ψι .

Let us define the value assigned by σD to ι ,δ ,ζ as follows:

• σD(i)(ι) => iff Ii is singular;

• σD(i)(δ) = (r(Ii+1)− l(Ii+1))/2 if Ii is singular
otherwise σD(i)(δ) = (r(Ii)− l(Ii))/2;

• σD(0)(ζ) = 0
σD(i+1)(ζ) = σD(i)(ζ)+σD(i+1)(δ) if σD(i+1)(ζ)≤ 1
otherwise σD(i+1)(ζ) = 0

Thus, σD |= ψι . Notice in particular, that if Ii = Ii+1 then δ = 0, if Ii is singular and Ii+1 is not then
δ is equal to half of the length of Ii+1 and if Ii is not singular then δ is equal to half of the length of Ii.

Let δi := σ(i)(δ) and ti = ∑0≤h<i δh for all i ≥ 0. Notice that for all i ≥ 0, ti ∈ Ii. We complete the
time model of σD by defining v(i) := ti for all i≥ 0.

Let ti = ti in case σ has a dense time and ti = 〈ni, ti〉 in case of super dense time. Let us complete the
definition of σD by saying that for all i≥ 0, σD(i)(x) := σ(ti)(x).

We now prove that, for all i ≥ 0, for all subformulas ψ of φ , σ , ti |= ψ iff σD, i |= D(ψ) and for all
terms u in φ , σ(ti)(u) = σD(i)(D(u)).

By definition of @F , σ(ti)(u@F(ψ)) is the value of u at the next point t ≥ ti such that σ , t |=
ψ ∨ X̃ψ . Since σ is fine for ψ , t must belong to a singular interval I j with j ≥ i (so t = t j). By inductive
hypothesis, σ , t j |= ψ iff σD, j |=D(ψ) and σ , t j+1 |= ψ iff σD, j+1 |=D(ψ). Thus, σ , t j |= ψ ∨ X̃ψ iff
σD, j |= D(ψ)∨X(¬ι ∧D(ψ)). Moreover, still by inductive hypothesis, for all i < h < j, σ , th |= ψ iff
σD,h |= D(ψ) and σ(t j)(u) = σD(j)(D(u)). Thus, σ(ti)(u@F(ψ)) = σD(i)(D(u@F(ψ))).

It is routine to prove the other cases and we can conclude that σD |= D(φ).

206 Linear-time Temporal Logic with Event Freezing Functions

Finally, σD |= ψtime: in fact, σD |= time = 0∧G(next(time)− time = δ) by definition of σD; the rest
of ψtime is trivially satisfied because σ is fine for φ .

Vice versa, suppose that there exists σ with discrete time such that σ |= D(φ). Then we can build
a σC with super-dense time such that σC |= φ as follows. Let ti = ∑0≤h<i δh. Ii := [ti, ti] if σ , i |= ι ;
otherwise Ii := (ti−1, ti+1). Let σ(t)(v) = σ(i)(v) for every t ∈ Ii.

It is routine to prove that σC |= φ . �

4.3 Removing Event Freezing Functions

In the following, we assume that satisfiability is restricted to traces with discrete time and we use the
non-strict version of temporal operators. If the term u@F(φ) occurs in a formula ψ , we can obtain a
formula R(ψ,u@F(φ)) equisatisfiable to ψ where the term u@F(φ) has been replaced with a fresh
variable pu@F(φ). More specifically,

R(ψ,u@F(φ)) :=ψ[pu@F(φ)/u@F(φ)]∧
G(Fφ → (¬φ ∧next(pu@F(φ)) = pu@F(φ))U(φ ∧ pu@F(φ) = u))∧
G(G¬φ → pu@F(φ) = def u@F(φ))

R(ψ,u@F(φ)) is a formula on an extended set of variables. Namely, if φ is a formula over variables
V , then R(ψ,u@F(φ)) is a formula over V ∪{pu@F(φ)}, where pu@F(φ) does not occur in ψ . However,
the value of pu@F(φ) is uniquely determined by a trace over V . In other words, given a trace σ over
V , we can define a trace R(σ ,u@F(φ)) over V ∪ {pu@F(φ)} such that σ |= φ iff R(σ ,u@F(φ)) |=
R(ψ,u@F(φ)). R(σ ,u@F(φ)) is simply defined as follows:

R(σ ,u@F(φ))(t)(x) = σ(t)(x),x ∈V

R(σ ,u@F(φ))(t)(pu@F(φ)) = σ(t)(u@F(φ))

Theorem 2 If σ |= φ then R(σ ,u@F(φ)) |= R(ψ,u@F(φ)). If σ |= R(ψ,u@F(φ)), then σ |= φ .
Thus, ψ and R(ψ,u@F(φ)) are equisatisfiable.

Proof. Let us assume that σ |= φ .
Given the definition of R(σ ,u@F(φ)), the prophecy variable pu@F(φ) is given the value of the term

u@F(φ), and thus R(σ ,u@F(φ)) |= ψ[pu@F(φ)/u@F(φ)].
For every t, if σ , t |= F(φ), then there exists t ′≥ t such that σ , t ′ |= φ and for all t ′′, t ≤ t ′′< t ′, σ , t ′′ 6|=

φ . Thus, σ(t ′)(u@F(φ)) = σ(t ′′)(u@F(φ)) = σ(t ′)(u). Thus σ , t |= G(F(φ)→ (¬φ ∧next(pu@F(φ)) =
pu@F(φ))U(φ ∧ pu@F(φ) = u)).

For every t, if σ , t |= G(¬φ), then σ(t)(u@F(φ)) = σ(t)(def u@F(φ)). Thus, σ , t |= G(G(¬φ)→
pu@F(φ) = def u@F(φ)).

Vice versa, let us assume that σ |= R(ψ,u@F(φ)). It is sufficient to prove that σ(t)(pu@F(φ)) =
σ(t)(u@F(φ)).

Let us assume that there exists t ′ ≥ t such that, for all t ′′, t ≤ t ′′ < t ′, σ , t ′′ 6|= φ and σ , t ′ |= φ ; thus,
σ(t)(u@F(φ)) = σ(t ′)(u). Since σ , t |= Fφ → (¬φ ∧ next(pu@F(φ)) = pu@F(φ))U(φ ∧ pu@F(φ) = u),
then σ(t)(pu@F(φ)) = σ(t ′)(u) as well.

If such t ′ does not exists, then σ(t)(u@F(φ)) = σ(t)(def u@F(φ)). Also, σ , t 6|= F(φ). Since σ , t |=
G¬φ → pu@F(φ) = def u@F(φ), then σ(t)(pu@F(φ)) = σ(t)(def u@F(φ)) as well. This concludes the proof.
�

S. Tonetta 207

Formula Valid Time in sec.
(G(x = y@P(correct))∧G(¬correct→ G¬correct)∧
p > 0∧ read∧G(read→B=pread)∧G(a↔ x@P̃(read) = x@P̃2(read)))
→ G(¬correct→ F≤2∗pa) Yes 16
G(b→ (x@F(b) = x)) Yes 0
G(X̃(b)→ (x@F(b) = x)) Yes 0
Fb→ (¬bU(b∨ (X̃b))) Yes 0
(G(a→ F≤1b)∧G(b→ F≤1c))→ G(a→ F≤2c) Yes 5
(G(a→ F≤pb)∧G(b→ F≤pc))→ G(a→ F≤2∗pc) Yes 8
(B=q B=p b)→ (B=p+qb∨B≤qb) Yes 5
Fb→ (¬bUb) No 0
¬(x = y∧F≥3x > y) No 0
(G(a→ F≤3b)∧G(b→ F≤3c))→ G(a→ F≤3c) No 2
(B=p B=p b)→ (B=2∗pb) No 4

Table 1: Some examples and their verification results

We similarly remove past event freezing operator @P with the following rule:

R(ψ,u@P(φ)) :=ψ[pu@P(φ)/u@P(φ)]∧
G(Pφ → (¬φ ∧Z(next(pu@P(φ)) = pu@P(φ)))S(φ ∧ pu@P(φ) = u))∧
G(H¬φ → pu@P(φ) = def u@P(φ))

5 Experimental Evaluation

The satisfiability procedure presented in the previous section has been implemented in a simple prototype
written in C that takes in input a XLTL-EF formula and performs the described transformations. Then,
we use nuXmv [9] to check LTL satisfiability modulo theories, in particular we use the algorithm that
combines IC3IA [11] with k-liveness [15]. Actually, we create an universal model and we apply model
checking to check that the formula is valid. We checked the validity of different formulas using a machine
with Intel(R) Core(TM) i7-3720QM CPU at 2.60GHz with 4GB of memory. All results are available at
https://es.fbk.eu/people/tonetta/papers/gandalf17/.

In Table 1, we report the time needed to solve some example formulas. The sensor example described
above was proved by nuXmv in 16s. This result is promising considering that we do not implement
any optimization neither in the translation nor in the engine. The reported time includes the time for
translation, verification, and counterexample generation in case of not valid formulas.

As proof of concept, we also verify the validity of some MTL∞
0 (e.g. (G(a → F≤pb)∧G(b →

F≤pc))→ G(a→ F≤2∗pc)) and ECTL (e.g. (B=q B=p b)→ (B=p+qb∨B≤qb)) formulas, also including
parameters. To the best of our knowledge, this is the first tool that is able to automatically prove the
validity of this kind of formulas.

https://es.fbk.eu/people/tonetta/papers/gandalf17/

208 Linear-time Temporal Logic with Event Freezing Functions

6 Conclusions and Future Work

In this paper, we considered an extension of first-order linear-time temporal logic with two new event
freezing functional symbols, which represent the value of a term at the next state in the future or last
state in the past in which a formula holds. We defined the semantics in different time models considering
discrete time with real timestamps, dense and super-dense (weakly-monotonic) time. We precisely char-
acterized what we mean for “next point in the future in which φ holds” so that, assuming finite variability,
such point always exists also in the dense time setting. Using an explicit variable that represents time,
standard metric operators can be encoded in the new logic. We provided a reduction to equisatisfiable
discrete-time formulas without event freezing functions and we solve the satisfiability of the latter by
SMT-based model checking. A prototype implementation of the technique shows that the approach can
analyze interesting properties in an automated way despite the expressiveness of the logic.

The directions for future works are manifold. We want to integrate this techniques in mature tools
such as nuXmv [9] and in OCRA [10] for contract-based reasoning; we want to extend it to encompass
variables with continuous function evolution and constraints on their derivatives as in HRELTL [14]
(HyCOMP [13] is actually already supporting time until(φ) and time since(φ), which are a restricted
version of time@F(φ) and time@P(φ), where φ must represent a discrete change); finally, we want to
apply the new logic in industrial use cases within the CITADEL project (http://citadel-project.
org/) to specify complex properties of monitoring components.

References
[1] R. Alur, T. Feder & T.A. Henzinger (1996): The Benefits of Relaxing Punctuality. J. ACM 43(1), pp. 116–146,

doi:10.1145/227595.227602.

[2] R. Alur, L. Fix & T.A. Henzinger (1999): Event-Clock Automata: A Determinizable Class of Timed Automata.
Theor. Comput. Sci. 211(1-2), pp. 253–273, doi:10.1016/S0304-3975(97)00173-4.

[3] R. Alur & T.A. Henzinger (1991): Logics and Models of Real Time: A Survey. In: REX Workshop, pp.
74–106, doi:10.1007/BFb0031988.

[4] R. Alur & T.A. Henzinger (1993): Real-Time Logics: Complexity and Expressiveness. Inf. Comput. 104(1),
pp. 35–77, doi:10.1006/inco.1993.1025.

[5] C.W. Barrett, R. Sebastiani, S.A. Seshia & C. Tinelli (2009): Satisfiability Modulo Theories. In: Handbook
of Satisfiability, pp. 825–885, doi:10.3233/978-1-58603-929-5-825.

[6] D.A. Basin, F. Klaedtke & S. Müller (2010): Policy Monitoring in First-Order Temporal Logic. In: CAV, pp.
1–18, doi:10.1007/978-3-642-14295-6 1.

[7] A. Bouajjani & Y. Lakhnech (1995): Temporal Logic + Timed Automata: Expressiveness and Decidability.
In: CONCUR, pp. 531–545, doi:10.1007/3-540-60218-6 40.

[8] P. Bouyer, F. Chevalier & N. Markey (2010): On the expressiveness of TPTL and MTL. Inf. Comput. 208(2),
pp. 97–116, doi:10.1016/j.ic.2009.10.004.

[9] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri & S. Tonetta
(2014): The nuXmv Symbolic Model Checker. In: CAV, pp. 334–342, doi:10.1007/978-3-319-08867-9 22.

[10] A. Cimatti, M. Dorigatti & S. Tonetta (2013): OCRA: A tool for checking the refinement of temporal con-
tracts. In: ASE, pp. 702–705, doi:10.1109/ASE.2013.6693137.

[11] A. Cimatti, A. Griggio, S. Mover & S. Tonetta (2014): IC3 Modulo Theories via Implicit Predicate Abstrac-
tion. In: TACAS, LNCS 8413, Springer, pp. 46–61, doi:10.1007/978-3-642-54862-8 4.

[12] A. Cimatti, A. Griggio, S. Mover & S. Tonetta (2014): Verifying LTL Properties of Hybrid Systems with
K-Liveness. In: CAV, LNCS 8559, Springer, pp. 424–440, doi:10.1007/978-3-319-08867-9 28.

http://citadel-project.org/
http://citadel-project.org/
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.1016/S0304-3975(97)00173-4
http://dx.doi.org/10.1007/BFb0031988
http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.3233/978-1-58603-929-5-825
http://dx.doi.org/10.1007/978-3-642-14295-6_1
http://dx.doi.org/10.1007/3-540-60218-6_40
http://dx.doi.org/10.1016/j.ic.2009.10.004
http://dx.doi.org/10.1007/978-3-319-08867-9_22
http://dx.doi.org/10.1109/ASE.2013.6693137
http://dx.doi.org/10.1007/978-3-642-54862-8_4
http://dx.doi.org/10.1007/978-3-319-08867-9_28

S. Tonetta 209

[13] A. Cimatti, A. Griggio, S. Mover & S. Tonetta (2015): HyComp: An SMT-Based Model Checker for Hybrid
Systems. In: TACAS, pp. 52–67, doi:10.1007/978-3-662-46681-0 4.

[14] A. Cimatti, M. Roveri & S. Tonetta (2009): Requirements Validation for Hybrid Systems. In: CAV, pp.
188–203, doi:10.1007/978-3-642-02658-4 17.

[15] K. Claessen & N. Sörensson (2012): A Liveness Checking Algorithm that Counts. In: FMCAD, IEEE, pp.
52–59.

[16] J. Daniel, A. Cimatti, A. Griggio, S. Tonetta & S. Mover (2016): Infinite-State Liveness-to-Safety via Implicit
Abstraction and Well-Founded Relations. In: CAV, pp. 271–291, doi:10.1007/978-3-319-41528-4 15.

[17] S. Demri & R. Lazic (2009): LTL with the freeze quantifier and register automata. ACM Trans. Comput.
Log. 10(3), pp. 16:1–16:30, doi:10.1145/1507244.1507246.

[18] C.A. Furia & M. Rossi (2007): On the Expressiveness of MTL Variants over Dense Time. In: FORMATS,
pp. 163–178, doi:10.1007/978-3-540-75454-1 13.

[19] S. Ghilardi, E. Nicolini, S. Ranise & D. Zucchelli (2007): Combination Methods for Satisfiability and Model-
Checking of Infinite-State Systems. In: CADE, pp. 362–378, doi:10.1007/978-3-540-73595-3 25.

[20] T. A. Henzinger, J.-F. Raskin & P.-Y. Schobbens (1998): The Regular Real-Time Languages. In: ICALP, pp.
580–591, doi:10.1007/BFb0055086.

[21] Y. Hirshfeld & A.M. Rabinovich (2006): An Expressive Temporal Logic for Real Time. In: MFCS, pp.
492–504, doi:10.1007/11821069 43.

[22] R. Koymans (1990): Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2(4),
pp. 255–299, doi:10.1007/BF01995674.

[23] R. Koymans (1992): Specifying Message Passing and Time-Critical Systems with Temporal Logic. Lecture
Notes in Computer Science 651, Springer, doi:10.1007/3-540-56283-4.

[24] O. Lichtenstein, A. Pnueli & L.D. Zuck (1985): The Glory of the Past. In: Logics of Programs, pp. 196–218,
doi:10.1007/3-540-15648-8 16.

[25] Z. Manna & A. Pnueli (1992): The temporal logic of reactive and concurrent systems - specification. Springer,
doi:10.1007/978-1-4612-0931-7.

[26] J.J. Ortiz, A. Legay & P.-Y. Schobbens (2010): Memory Event Clocks. In: FORMATS, pp. 198–212,
doi:10.1007/978-3-642-15297-9 16.

[27] A. Pnueli (1977): The Temporal Logic of Programs. In: FOCS, pp. 46–57, doi:10.1109/SFCS.1977.32.
[28] A.M. Rabinovich (1998): On the Decidability of Continuous Time Specification Formalisms. J. Log. Comput.

8(5), pp. 669–678, doi:10.1093/logcom/8.5.669.
[29] J.-F. Raskin & P.-Y. Schobbens (1997): State Clock Logic: A Decidable Real-Time Logic. In: HART, pp.

33–47, doi:10.1007/BFb0014711.
[30] J.-F. Raskin & P.-Y. Schobbens (1999): The Logic of Event Clocks - Decidability, Complexity and Expres-

siveness. Journal of Automata, Languages and Combinatorics 4(3), pp. 247–286.

http://dx.doi.org/10.1007/978-3-662-46681-0_4
http://dx.doi.org/10.1007/978-3-642-02658-4_17
http://dx.doi.org/10.1007/978-3-319-41528-4_15
http://dx.doi.org/10.1145/1507244.1507246
http://dx.doi.org/10.1007/978-3-540-75454-1_13
http://dx.doi.org/10.1007/978-3-540-73595-3_25
http://dx.doi.org/10.1007/BFb0055086
http://dx.doi.org/10.1007/11821069_43
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/3-540-56283-4
http://dx.doi.org/10.1007/3-540-15648-8_16
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1007/978-3-642-15297-9_16
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1093/logcom/8.5.669
http://dx.doi.org/10.1007/BFb0014711

	1 Introduction
	2 Background
	2.1 Time models
	2.2 First-Order Linear-time Temporal Logic
	2.3 Next Operator and Function
	2.4 Metric Temporal Operators

	3 LTL with Event Freezing Functions
	3.1 Until next occurrence
	3.2 Event Freezing Functions
	3.3 Extension with Explicit Time
	3.4 Coverage of Metric Operators
	3.5 Sensor Example

	4 Satisfiability Procedure
	4.1 Overview of the Procedure
	4.2 Discretization
	4.3 Removing Event Freezing Functions

	5 Experimental Evaluation
	6 Conclusions and Future Work

