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In this work, we exploit the power of unambiguity for the complementation problem of Büchi au-
tomata by utilizing reduced run directed acyclic graphs (DAGs) over infinite words, in which each
vertex has at most one predecessor. We then show how to use this type of reduced run DAGs as a
unified tool to optimize both rank-based and slice-based complementation constructions for Büchi
automata with a finite degree of ambiguity. As a result, given a Büchi automaton with n states and a
finite degree of ambiguity, the number of states in the complementary Büchi automaton constructed
by the classical rank-based and slice-based complementation constructions can be improved, respec-
tively, to 2O(n) from 2O(n logn) and to O(4n) from O((3n)n).

1 Introduction

The complementation of nondeterministic Büchi automata on words (NBWs) [7] is a classic problem for
NBWs and is the fundamental construction for many other important questions such as model check-
ing [29] and program-termination analysis [15]. For instance, the complementation of NBWs is partic-
ularly valuable to model checking, when both the system A and the specification B are given as NBWs.
A model-checking problem essentially asks whether the behavior of the system A satisfies the speci-
fication B. In automata-based model checking [29] framework, this model-checking problem reduces
to a language-containment problem between the NBWs A and B. The standard approach to solving
the language-containment problem between A and B relies on the complementation of B; one first has
to construct a complementary automaton Bc such that L (Bc) = Σω \L (B) and then checks language
emptiness of L (A)∩L (Bc). Various implementations of this approach with optimizations [1, 2, 11, 13]
have been proposed to improve its practical performance. All the implementations above, however, di-
rectly or indirectly, resort to constructing Bc, which can be exponentially larger than B [25, 30].

The complementation of Büchi automata is also a key component in the automata-based program-
termination checking framework proposed in [15]. This framework starts with a termination proof of a
sample path of the given program and then generalizes that path to a Büchi automaton, whose language
(by construction) represents a set of terminating paths. All these terminating paths are then removed from
the program. The removal of those paths is done by automata difference operation, involved with Büchi
complementation and intersection. By iteratively removing terminating paths, the framework may obtain
an empty program in the end, thus also proving the termination of the program. It has been shown in [10]
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that efficient complementation algorithms for Büchi automata can significantly improve the performance
of the program-termination checking framework.

In this work, we focus on the complementation of NBWs. The complexity for complementing NBWs
has been proved to be Ω((0.76n)n) [25, 30]. A classic line of research on complementation aims at de-
veloping optimal (or close to optimal) complementation algorithms. Currently there are mainly four
types of practical complementation algorithms for NBWs, namely Ramsey-based [26], determinization-
based [24], rank-based [18] and slice-based [16] algorithms. These algorithms, however, all unavoid-
ablely lead to a super-exponential growth in the size of Bc in the worst case [30].

With the growing understanding of the worst-case complexity of those algorithms, searching for spe-
cialized complementation algorithms for certain subclasses of NBWs with better complexity has become
an important line of research. For instance, complementing deterministic and semi-deterministic Büchi
automata can be done in O(n) [19] and O(4n) [5], respectively. Here we follow this line of research
and aim at a subclass of NBWs with restricted nondeterminism. This type of NBWs is important, as
in some contexts, especially in probabilistic verification, unrestricted nondeterminism in the automata
representing the properties is problematic for the verification procedure. For instance, general NBWs
cannot be used directly to verify properties over Markov chains, as they will cause imprecise proba-
bilities in the product of the system and the property [8]. In turn, it is often necessary to construct
their more deterministic counterparts in terms of other types of automata for the properties, for instance
semi-deterministic Büchi automata or deterministic Rabin automata, which, however, adds exponential
blowups of states [12].

To avoid state-space exponential blowup, earlier work sought to use of a type of automata called
unambiguous nondeterministic Büchi automata (UNBWs) in probabilistic verification [4,20], as UNBWs
can be exponentially smaller than their equivalent deterministic automata [4]. UNBWs [9] are a subclass
of NBWs that accept with at most one run for each word, while their equivalent NBWs may have more
than one accepting run, or even infinitely many accepting runs. For example, by taking advantage of
their unambiguity, the language-containment problem of certain proper subclasses of UNBWs has been
proved to be solvable in polynomial time [6], while this problem is PSPACE-complete for NBWs [17].

The complementation problem of a more general class than UNBWs, called finitely ambiguous non-
deterministic Büchi automata (FANBWs), which accept with finitely many runs for each word, was
shown to be doable in O(5n) [23], in contrast to 2Ω(n logn) for general NBWs [25]. Further, checking
whether an NBW is an FANBW can be done in polynomial time [21]. Therefore, once an FANBW has
been identified, the specialized complementation construction for FANBWs can be applied. In this paper,
we focus here on an in-depth study of the complementation problem for FANBWs.

Our main technical tool is a construction of reduced directed acyclic graphs (DAGs) of runs of
FANBWs over infinite words called co-deterministic run DAGs, in which each vertex has at most one
predecessor. This type of co-deterministic run DAGs is previously introduced in [14,23] and we defer the
comparison of [14,23] and our construction to related works section. We show that such co-deterministic
run DAGs can be used to simplify and improve both the classical rank-based and slice-based comple-
mentation constructions. Our contributions are the following.

• First, we apply the co-deterministic run DAGs of FANBWs over infinite words, as a unified tool to
show how unambiguity works in Büchi complementation, to optimizing both rank-based comple-
mentation (RKC) and slice-based complementation (SLC).

• Second, we show that the construction of co-deterministic run DAGs in different complementation
algorithms [27] helps to achieve simpler and theoretically better complementation algorithms for
FANBWs. Given an FANBW with n states, we show that the number of states of the complemen-
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tary NBW constructed by the classical RKC and SLC constructions can be improved, respectively,
to 2O(n) from 2O(n logn) and to O(4n) from O((3n)n).

• Finally, we reveal that SLC is basically an algorithm based on the construction of co-deterministic
run DAGs and a specialized complementation algorithm for FANBWs. We also provide a language
containment relation between states in the complementary NBWs of FANBWs, which can be used
to improve the containment checking between an NBW and an (FA)NBW and also to reduce the
number of redundant states in the complementary NBW.

Related work. Run DAGs were introduced in [18] and co-deterministic run DAGs were first described
in [14]. In [14], Fogarty and Vardi exploit co-deterministic run DAGs to complement reverse determinis-
tic Büchi automata with RKC and the Ramsey-based algorithm, while we consider RKC and SLC in this
work. In a reverse deterministic Büchi automaton, each state has only one predecessor for each letter,
for which all run DAGs are already co-deterministic, as explained in Section 4.2, while the run DAGs of
FANBWs may not be co-deterministic without our construction described in Section 3.

Later co-deterministic run DAGs were constructed in [23] under the name of narrow forest for com-
plementing FANBWs with the SLC construction only. Here we present it as co-deterministic run DAGs
to serve as a unified tool for explaining concepts in both RKC and SLC constructions. A subtle differ-
ence between the construction of co-deterministic run DAGs in [23] and ours is as follows. To construct
a co-deterministic run DAG over w ∈ Σω , Rabinovich [23] makes use of a transducer T that chooses
one predecessor for each vertex at current level, while our construction utilizes a transition function to
make the sets of successors of each pair of vertices at current level disjoint with each other, as given in
Definition 2.

More significantly, for complementation, we applied co-deterministic run DAGs to both RKC [18]
and SLC as presented in [28]. (The complementation construction proposed in [23] is a variant of SLC
as introduced in [16].) The comparison of the construction in [23] and our improvement over SLC is as
follows. First, the complementary NBW constructed in [23] is a UNBW with at most O(5n) states; this
complementary NBW is the product automaton of the transducer T , a Büchi automaton C for expressing
unambiguity and a Büchi automaton D for accepting all possible ways to construct co-deterministic
DAGs over w /∈L (A ). Our complementary NBW is not required to be a UNBW, since we are interested
in complementation for containment checking. Thus, the bound of O(5n) in [23] is exponentially higher
than the bound of O(4n) in this work. Indeed, the product automaton of T and D in [23] does yield a
complementary NBW with O(4n) states, but this construction and complexity were not explicitly given
in [23].

Second, the construction in [23] and our SLC-based construction are both based on reduced DAGs
in which each vertex has at most one predecessor. These two constructions, however, are technically
different and have different emphases. The construction in [23] aims at building a complementary NBW
A c that is unambiguous, based on building product of three automata, in which each automaton fulfills
part of the desired functionality for A c. For instance, C takes care of unambiguity and D obtains
the complementary language. While our focus is on a complementation construction for containment
checking. In contrast to building product automata in [23], our construction in Section 5.2 takes a tuple
of sets of states of A as a state in the complementary automaton A c of A and performs directly on
those tuples for computing successors on-the-fly, following the idea of the NCSB complementation for
semi-deterministic Büchi automata in [5]. Various subsumption relations have been proposed in [10] for
this representation of states in the NCSB complementation and help to reduce the number of states in A c,
even improving termination analysis of programs. Inspired by [10], we can also define a subsumption
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relation between states in A c (see Corollary 2) by our construction, which can be used to improve the
containment checking between an NBW and an (FA)NBW and to reduce the number of states in A c.

Organization of the paper. In the remainder of this paper, we first recap some definitions about Büchi
automata in Section 2 and then introduce the concept of co-deterministic run DAGs in Section 3. We
present our improved algorithms for the rank-based and slice-based algorithms in Section 4 and Section 5,
respectively. Finally we conclude the paper with some future works in Section 6.

2 Preliminaries

We fix an alphabet Σ. A word is an infinite sequence w of letters in Σ. We denote by Σω the set of all
(infinite) words. A language is a subset of Σω . Let L be a language and the complement language of L
is denoted by Lc, i.e., Lc = Σω \L. Let ρ be a sequence of elements: we denote by ρ[i] the i-th element
of ρ . Let n be a natural number; we denote by [n] the set of numbers {0,1, · · · ,n}, [n]odd the set of odd
numbers in [n] and 〈n〉 the set of numbers [n]\{0}.

A nondeterministic Büchi automaton on words (NBW) is a tuple A = (Q, I,δ ,F), where Q is a finite
set of states, I ⊆ Q is a set of initial states, δ : Q×Σ→ 2Q is a transition function and F ⊆ Q is a set of
accepting states. We extend δ to sets of states, by letting δ (S,a) =

⋃
q∈S δ (q,a). We assume that each

NBW A is complete in the sense that for each state q ∈Q and a ∈ Σ, δ (q,a) 6= /0. A run of A on a word
w is an infinite sequence of states ρ = q0q1 · · · such that q0 ∈ I and for every i > 0, qi ∈ δ (qi−1,ai). We
denote by inf (ρ) the set of states that occur infinitely often in the run ρ . A word w ∈ Σω is accepted
by A if there exists a run ρ of A over w such that inf (ρ)∩F 6= /0. We denote by L (A ) the language
recognized by A , i.e., the set of words accepted by A .

Let A be an NBW. A complementary NBW of A is an NBW that accepts the complementary
language Σω \L (A ) of L (A ); we denote by A S the automaton (Q,S,δ ,F) obtained from A by
setting its initial state set to the set S ⊆ Q. In particular, we use A q as the shorthand for A {q}. We say
a state q of A subsumes a state q′ of A if L (Aq′) ⊆ L (Aq). We classify A into following types of
NBWs according to their transition structures: (1) nondeterministic if |I|> 1 or |δ (q,a)|> 1 for a state
q ∈ Q and a ∈ Σ, (2) deterministic if |I|= 1 and for each q ∈ Q and a ∈ Σ, |δ (q,a)| ≤ 1, and (3) reverse
deterministic if for each state q′ ∈ Q, A has at most one state q for each a ∈ Σ such that q′ = δ (q,a).

From the perspective of the number of accepting runs of A , we have following types of NBWs.

Definition 1. Let A be an NBW and k a positive integer. We say A is (1) finitely ambiguous (an FANBW)
if for each w ∈L (A ), the number of accepting runs of A over w is finite; and (2) k-ambiguous if for
each w ∈L (A ), the number of accepting runs of A over w is no greater than k, and (3) unambiguous
if it is 1-ambiguous.

By Definition 1, it holds that both k-ambiguous NBWs and unambiguous NBWs are special classes of
FANBWs. For instance, the NBW A depicted in Figure 1 is a 2-ambiguous NBW, thus also an FANBW,
as (q0)

i+1qω
1 and (q0)

i+1q2qω
1 are the only two accepting runs for accepting word aibω ∈L (A ) where

i≥ 0.

3 Co-Deterministic Run DAGs for FANBWs

In this section, we first describe the concept of run DAGs of an NBW over a word w, introduced in [18].
We then describe the co-deterministic run DAGs for FANBWs as a unified tool for both RKC and SLC
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a, bA

〈q0, 0〉

〈q1, 1〉

〈q2, 1〉

〈q1, 2〉 · · ·

Gw=bω,A

Figure 1: An FANBW A with I = {q0} and F = {q1} and the run DAG Gw,A over bω .

constructions by making use of the finite ambiguity in FANBWs. In the remainder of the paper, we use
DAGs as the shorthand for run DAGs.

Let A = (Q, I,δ ,F) be an NBW and w = a0a1 · · · be an infinite word. The DAG Gw,A = 〈V,E〉 of
A over w is defined as follows:

• Vertices: V ⊆Q×N is the set of vertices
⋃

l≥0Vl×{l} where V0 = I and Vl+1 := δ (Vl,al) for every
l ≥ 0.

• Edges: There is an edge from 〈q, l〉 to 〈q′, l′〉 iff l′ = l +1 and q′ ∈ δ (q,al).

A vertex 〈q, l〉 is said to be on level l and there are at most |Q| states on each level. A vertex 〈q, l〉
is an F-vertex if q ∈ F . A finite/infinite sequence of vertices γ = 〈q0,0〉〈q1,1〉 · · · is called a branch of
Gw,A if q0 ∈ I and for each l ≥ 0, there is an edge from 〈ql, l〉 to 〈ql+1, l +1〉. An ω-branch of Gw,A is
a branch of infinite length. A fragment 〈ql, l〉〈ql+1, l +1〉 · · · of γ is said to be a branch from the vertex
〈ql, l〉; a fragment 〈ql, l〉 · · · 〈ql+k, l + k〉 of γ is said to be a path from 〈ql, l〉 to 〈ql+k, l + k〉, where k ≥ 1.
A vertex 〈q j, j〉 is reachable from 〈ql, l〉 if there is a path from 〈ql, l〉 to 〈q j, j〉. We call a vertex 〈q, l〉
finite if there are no ω-branches in Gw,A starting from 〈q, l〉; and we call a vertex 〈q, l〉 F-free if it is not
finite and no F-vertices are reachable from 〈q, l〉 in Gw,A .

There is a bijection between the set of runs of A on w and the set of ω-branches in Gw,A . To a run
ρ = q0q1 · · · of A over w corresponds an ω-branch ρ̂ = 〈q0,0〉〈q1,1〉 · · · . Therefore, w is accepted by
A if and only if there exists an ω-branch in Gw,A that visits F-vertices infinitely often; we say that such
an ω-branch is accepting; Gw,A is accepting if and only if there exists an accepting ω-branch in Gw,A .

Assume that A is an FANBW. Then an accepting ω-branch in Gw,A , if exists, only merges with other
(accepting) ω-branches for finitely many times. That is, there exists a level k ≥ 1 such that all vertices
after level k on an accepting ω-branch have exactly one predecessor; we call the level k a separate level.
We formalize this property of Gw,A in Lemma 1.

Lemma 1 (Separate Levels of Accepting DAGs of FANBWs). Let A be an FANBW and Gw,A the
accepting DAG of A over w ∈L (A ). Then there must exist a separate level k ≥ 1 in Gw,A .

Proof. Since A is an FANBW, there are only finitely many accepting ω-branches in Gw,A . Therefore,
an accepting ω-branch in Gw,A only merges with other (accepting) ω-branches for finitely many times.
It follows that given an accepting ω-branch ρ̂ in Gw,A , there must exist a separate level h ≥ 1 such
that each vertex ρ̂[i] with i ≥ h has exactly one predecessor. Otherwise, there will be infinitely many
accepting branches, contradicting with the assumption that A is an FANBW. Assume that there are m <
∞ accepting ω-branches in Gw,A . Then we can set the separate level k of Gw,A to max{hi | 1≤ i≤ m}
where hi is the separate level index of i-th accepting ω-branch.

For instance, the separate level is 2 in the accepting DAG Gw,A of A over bω in Figure 1, as each
vertex 〈q1, i〉 with i≥ 3 only has the predecessor 〈q1, i−1〉.
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It follows immediately from Lemma 1 that for each vertex v in Gw,A with more than one incoming
edge, keeping only one of incoming edges of v will not change whether Gw,A is accepting. Assume
that Q = {s1,s2, · · · ,sn}. We define an edge-reduced DAG Ge

w,A = 〈V,Ee〉 called co-deterministic DAG,
in which each vertex only has at most one predecessor with the following policy for removing edges:
if there is a vertex with multiple incoming edges in Gw,A , we only keep the incoming edge from the
predecessor with the minimal index. Formally, the definition of edges in Ge

w,A is given as follows.

• Edges. There is an edge from 〈sk, l〉 to 〈s′, l′〉 iff l′ = l+1 and k = min{ p ∈ 〈n〉 | s′ ∈ δ (sp,al+1)}.
Lemma 2 ensures that Ge

w,A is accepting if Gw,A is accepting.

Lemma 2 (Acceptance of Co-deterministic DAGs). Assume that A is an FANBW. Let Ge
w,A be the co-

deterministic DAG of A over a word w ∈ Σω . Then w is accepted by A if and only if Ge
w,A is accepting.

Proof. The proof is trivial when Gw,A is nonaccepting. Assume that Gw,A is accepting. Let ρ̂ be an
accepting ω-branch and k the separate level defined in Lemma 1. According to Lemma 1, the ω-branch
from ρ̂[k+1] must be accepting. Moreover, ρ̂[k+1] is reachable from an initial vertex 〈q,0〉 with q ∈ I.
Then there must exist an accepting ω-branch in Ge

w,A if Gw,A is accepting. Thus we conclude that w is
accepted by A if and only if Ge

w,A is accepting.

For instance, the co-deterministic DAG of Gw,A in Figure 1 is still accepting after deleting the edge
from 〈q2,1〉 to 〈q1,2〉, as denoted by the dashed arrow.

By removing redundant edges, we can now define a reduced transition function δ e
w,` : 2Q×Σ→ 2Q

over the levels in Ge
w,A .

Definition 2 (Transition Function for Co-deterministic DAGs). Given the set of states S⊆Q at level ` of
Ge

w,A and let S′ = δ (S,w[`]) be the set of states at level `+1. Define Smin = {qm ∈ S |m ∈min{k ∈ 〈n〉 |
q′ ∈ δ (qk,w[`])},q′ ∈ S′ } as the minimal set of predecessors of S′. Then, for a set of states S1 ⊆ S, we
define δ e

w,`(S1,w[`]) = δ (S1∩Smin,w[`]). We call δ e
w,` the reduced transition function at level ` in Ge

w,A .

Example 1. Consider again Gbω ,A in Figure 1 and let S = {q1,q2} at level 1: we have S′ = δ (S,b) =
{q1} and Smin = {q1}. Let δ e

bω ,1 be the reduced transition function at level 1 defined from δ in Definition
2. It follows that δ e

bω ,1({q1},b) = δ ({q1}∩Smin,b) = {q1} and δ e
bω ,1({q2},b) = δ ({q2}∩Smin,b) = /0.

In general, the reduced transition function δ e
w,` may seem to depend on the level ` and the word w

yielding the edge connections between vertices at levels ` and `+1 in Ge
w,A . We claim, however, that in

Definition 2, δ e
w,` is not dependent on the level number ` and the word w, due to our specific choice of

the set Smin. Thus, we can omit the level ` and w in our notion δ e.

Lemma 3. Let S ⊆ Q and b be the set of states and the input letter at the level `1 in Ge
w1,A

and at the
level `2 in Ge

w2,A
, respectively. Then δ e

w1,`1
of Ge

w1,A
and δ e

w2,`2
of Ge

w2,A
are identical regardless of their

different level numbers and infinite words.

Proof. According to Definition 2, we can let w1[`1] = w2[`2] = b. Then all the subsequent computations
defined for both δ e

w1,`1
and δ e

w2,`2
only depend on the set of states S and the input letter b, not their level

numbers and the entire infinite words. Thus we complete the proof.

Because of Lemma 3, we can just use the reduced transition function δ e with respect to the set
of states S and the input letter b at a level in the construction of complementary NBWs of FANBWs
(see Definitions 4’ and 5). We remark that one can define different co-deterministic DAGs from those
constructed in this work. This is illustrated in the following example.
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〈q0, 0〉 〈q0, 1〉
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〈q0, 2〉
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〈q1, 3〉

〈q2, 3〉
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· · ·Gw=aω,A

Figure 2: Another FANBW A with I = {q0} and F = {q1} and the run DAG Gw,A over aω

.

Example 2 (δ e
w,` depending on `). Consider Gaω ,A in Figure 2 and let S` = {q0,q1,q2} at level ` ≥ 2:

we have S` = δ (S`,a) as the set of states on each level `≥ 2. Rather than keeping the predecessor with
the minimal index of a state in Smin (see Definition 2), one can define S`,min as Smin depending on the
level ` as follows. We define S`,min = {q0,q1} when ` is an odd number and S`,min = {q0,q2} otherwise.
That is, we keep the predecessor q1 of q2 at odd levels and q2 at even levels. Let δ e

aω ,` be the reduced
transition function at level `. It follows that δ e

aω ,`({q1},a) = δ ({q1}∩S`,min,a) = {q2} when ` is odd and
δ e

aω ,`({q1},a) = /0 otherwise. Clearly, the definition of δ e
aω ,` is dependent on the level ` and the resulting

co-deterministic DAG is different from the one depicted in Figure 2 where dashed arrows denote the
removed edges.

In the remainder of the paper, we may write δ e(q,b) instead of δ e({q},b) for an input singleton set
{q}. The transition function δ e will be used in the complementation of FANBWs since the complemen-
tation essentially constructs DAGs and then identifies accepting DAGs.

One can verify that each vertex in the co-deterministic DAG Ge
w,A of A over w has at most one

predecessor. It follows that the number of ω-branches in a non-accepting/accepting Ge
w,A is at most |Q|,

as stated in Lemma 4.

Lemma 4 (Finite Number of ω-Branches in Co-deterministic DAGs). Let Ge
w,A be a co-deterministic

DAG of A over w. Then the number of ω-branches in Ge
w,A is at most |Q|.

Proof. Let mi with i≥ 0 be the number of vertices which are in the ω-branches (not in all branches) on
level i. For instance, mi = 1 for each i ≥ 1 in Fig. 1 while the number of vertices on level 1 is 2. Since
each vertex in Ge

w,A has only one predecessor, we have that m0 ≤ m1 ≤ m2 ≤ ·· · , i.e., the number of
vertices in ω-branches on each level does not decrease over the levels. In addition, there are at most |Q|
states on each level. Thus there are at most |Q| ω-branches since we have mi ≤ |Q| for each i≥ 0.

Consider the DAG Gw,A in Figure 2: one can verify that there are infinitely many ω-branches in the
non-reduced DAG Gw,A over aω ; while for the co-deterministic DAG of Gw,A where removed edges are
marked with dashed arrows, there is only one ω-branch 〈q0,0〉〈q0,1〉 · · · 〈q0, l〉 · · · .

After redundant edges have been cut off, we obtain a DAG Ge
w,A with a finite number of ω-branches.

Thus if w /∈ L (A ), there must exist a maximum level l > 0 among those ω-branches such that each
F-vertex 〈q, l′〉 with l′ ≥ l is finite, which can be used for identifying whether Ge

w,A is accepting in the
complementation of FANBWs. We call a level l > 0 a stable level in Ge

w,A if each F-vertex 〈q, l′〉 with
l′ ≥ l in Ge

w,A is finite.

Lemma 5 (Stable Level in Nonaccepting Co-deterministic DAGs). Assume that A is an FANBW and
w ∈ Σω . Let Ge

w,A be the co-deterministic DAG of A over w. Then w /∈L (A ) if and only if there exists
a stable level k > 0 in Ge

w,A .
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Proof. (⇐) By Lemma 2, if w ∈ L (A ) and A is an FANBW, there exists an accepting ω-branch in
Ge

w,A . It follows that if w ∈L (A ), there does not exist a stable level k in Ge
w,A such that each F-vertex

after k is finite. Consequently, if there exists a stable level k in Ge
w,A , it holds that w /∈L (A ).

(⇒) By Lemma 4, let m ≤ |Q| be the number of ω-branches in Ge
w,A . Since w /∈ L (A ), all the

ω-branches in Ge
w,A is nonaccepting. Therefore, for the i-th ω-branch ρ̂i, there is a vertex 〈q,ki〉 such

that every vertex of ρ̂i reachable from 〈q,ki〉 is not an F-vertex. It follows that we can set k = max{ki |
i ∈ 〈m〉} and thus all the F-vertices on a level after l ≥ k are finite and not on ω-branches.

Consider again the DAG Gw,A in Figure 2: there does not exist a stable level in the non-reduced
DAG Gw,A since each F-vertex 〈q1, l〉 with l ≥ 1 is not finite; while in the co-deterministic DAG of A
over aω , one can verify that the stable level k is 1.

4 Rank-Based Complementation

We first introduce in Subsection 4.1 the rank-based complementation (RKC) proposed in [18], which
constructs a complementary NBW A c for A with 2O(n logn) states. Then in Subsection 4.2, we show that
if A is an FANBW, RKC based on the construction of co-deterministic DAGs produces a complementary
NBW A c with 2O(n) states.

4.1 Rank-Based Algorithm for NBWs

RKC was introduced by Kupferman and Vardi in [18] to construct a complementary NBW A c of A
by identifying the DAGs of A over nonaccepting words w /∈ L (A ). Intuitively, given a word w /∈
L (A ), all ω-branches of the DAG of A over w will eventually stop visiting F-vertices. Based on this
observation, in order to identify the nonaccepting DAG of A over w, they introduced the notion of level
rankings of Gw,A . By assigning only even ranks to F-vertices, they showed that there exists a unique
ranking function that assigns ranks in [2n] to the vertices of Gw,A such that w /∈L (A ) iff all ω-branches
of Gw,A eventually get trapped in odd ranks.

We now define level rankings of a nonaccepting DAG. The level ranking of Gw,A = (V,E) defines a
ranking function f : V → [2n] that satisfies the following conditions:

(i) for each vertex 〈q, i〉 ∈V if f (〈q, i〉) ∈ [2n]odd , then q /∈ F ,

(ii) for each edge (〈q, i〉,〈q′, i+1〉) ∈ E, f (〈q′, i+1〉)≤ f (〈q, i〉)
The ranks along a branch decrease monotonically and F-vertices get only even ranks.

We now define a specific ranking function f of Gw,A for a given word w /∈ L (A ). We define a
sequence of DAGs G0

w,A ⊇ G1
w,A ⊇ ·· · , where G0

w,A = Gw,A , as follows. For each i≥ 0,

• G2i+1
w,A is the DAG constructed from G2i

w,A by removing all finite vertices in G2i
w,A and the edges

associated with them, and

• if G2i+1
w,A has at least one F-free vertex, then G2i+2

w,A is the DAG constructed from G2i+1
w,A by removing

all the F-free vertices in G2i+1
w,A and the edges associated with them.

Recall that F-free vertices cannot reach F-vertices. It was shown in [18] that G2n+1
w,A is empty and

each vertex 〈q, l〉 is either finite in G2i
w,A or F-free in G2i+1

w,A . Thus the sequence of DAGs generated from
the definition above defines a unique ranking function f over the set of vertices in Gw,A inductively as
follows. For every i≥ 0,
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(1) f (〈q, l〉) = 2i for each vertex 〈q, l〉 that is finite in G2i
w,A , if exists.

(2) f (〈q, l〉) = 2i+1 for each F-free vertex 〈q, l〉 in G2i+1
w,A , if exists.

Consequently, we have Lemma 6 for identifying nonaccepting DAGs according to [18].

Lemma 6 (Nonaccepting DAGs [18]). A rejects a word w if and only if the unique ranking function f
defined in (1) and (2) above has 2n as maximum rank, and all ω-branches of Gw,A eventually get trapped
in odd ranks.

We have constructed a unique ranking function above for identifying nonaccepting DAGs. To con-
struct the complementary NBW A c with such a ranking function, we have to guess the ranking level by
level. Since the maximum rank is 2n, along an input word w, we can encode a ranking function for Gw,A
by utilizing a level-ranking function f : Q→ [2n]∪{⊥} for the states S at a level in the DAG Gw,A such
that if q ∈ S∩F , then f (q) is even, and f (q) =⊥ if q ∈ Q\S.

Definition 3 (Coverage Relation for Level Rankings). Let a be a letter in Σ and f , f ′ be two level ranking
functions. We say f covers f ′ under letter a, denoted by f ′ ≤δ

a f , when for all q,q′ ∈ Q, if f (q)≥ 0 and
q′ ∈ δ (q,a), then 0≤ f ′(q′)≤ f (q), otherwise f ′(q′) =⊥.

Note here that ≤δ
a is defined based on the transition function δ . The coverage relation indicates that

the level rankings f and f ′ of two consecutive levels of Gw,A do not increase in ranks. We denote by R
the set of all possible level ranking functions.

In order to verify that the guess about the ranking of Gw,A is correct, RKC uses the breakpoint
construction proposed in [22]. This construction employs a set of states O⊆Q to check that the vertices
assigned with even ranks are finite. Similarly to Lemma 5, the nonaccepting DAG Gw,A with the ranking
function defined in (1) and (2) eventually reaches a stable level, after which all F-vertices are finite.
Hence, a breakpoint construction suffices to verify such guesses.

The formal definition of the complementary NBW A c of the input NBW A is given below.

Definition 4 ([18]). Let A = (Q, I,δ ,F) be an NBW. We then define an NBW A c = (Qc, Ic,δ c,Fc) of
A as follows.

• Qc ⊆R×2Q,

• Ic = ( f , /0) where f (q) = 2n if q ∈ I and f (q) =⊥ otherwise.

• δ c is defined as follows:

1. if O 6= /0, then δ c(( f ,O),a) = {( f ′,δ (O,a) \ odd( f ′)) | f ′ ≤δ
a f } (intuition: breakpoint O

only tracks vertices assigned with even ranks),
2. if O = /0, then δ c(( f ,O),a) = {( f ′,even( f ′)) | f ′ ≤δ

a f } (intuition: O = /0 means all previous
F-vertices with even ranks are finite, then verify new vertices with even ranks).

• Fc = {( f ,O) ∈ Qc | O = /0}.
where odd( f ) = {q ∈ Q | f (q) is odd } and even( f ) = {q ∈ Q | f (q) is even }.

Let w be a word. Intuitively, every state ( f ,O) in A c corresponds to a level of the DAG Gw,A over
w. If w is accepted by A c, i.e., O becomes empty for infinitely many times, then we conclude that all
the ω-branches of Gw,A eventually get trapped in odd ranks. It follows that no branches are accepting
in Gw,A , i.e., w /∈L (A ). The other direction is also easy to prove and omitted here. Thus we conclude
that L (A c) = Σω \L (A ). Since f ∈R is a function from Q to [2n]∪{⊥}, the number of possible f
functions is (2n+2)n ∈ 2O(n logn). Therefore, the number of states in A is in 2n×2O(n logn) ∈ 2O(n logn).

Lemma 7 (The Language and Size of A c [18]). Let A be an NBW with n states and A c the NBW
defined in Definition 4. Then L (A c) = Σω \L (A ) and A c has 2O(n logn) states.
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Relation to Construction of Co-deterministic DAGs. Assume that we have two level-rankings f ′ ≤δ
a

f . A state q′ in the second level can have multiple a-predecessors defined in the domain of f . Then
f ′(q′) ≤ min{ f (q) | f (q) 6= ⊥,q′ ∈ δ (q,a)}. Thus we can define a co-deterministic DAG out of Gw,A
where each vertex only keeps one predecessor with the minimal rank in the reduced DAG, in contrast
to the predecessor with minimal index in Section 3. There may, however, be multiple predecessors
with the minimal rank. Consequently, the non-reduced DAG Gw,A can be mapped to multiple co-
deterministic DAGs depending on which ranking function is defined on Gw,A and how predecessors
are chosen. Note here that not every resulting co-deterministic DAG of Gw,A described above will be
accepting if Gw,A is accepting, since each time the edges in accepting ω-branches may be deleted. Thus
these co-deterministic DAGs cannot be directly applied in RKC for general NBWs.

4.2 Rank-Based Algorithm for FANBWs

In the following, we show in Lemma 8 that if A is an FANBW, the maximum rank of the vertices in a
co-deterministic DAG of A is at most 2. It follows that the range of f ∈R is {0,1,2}∪{⊥}. We thus
only need the maximum rank to be 2 rather than 2n for the co-deterministic DAG Ge

w,A of A . Therefore,
the number of states in A c is in 2n×4n ∈ 2O(n) when the maximum rank is 2.

Lemma 8 (Maximum Rank of Co-deterministic DAGs). Assume that A is an FANBW and let w be a
word. Let Ge

w,A be the co-deterministic DAG of A over w. Then w /∈L (A ) iff (Ge
w,A )3 is empty.

Proof. Assume that w /∈L (A ). Our goal is to prove that starting from (Ge
w,A )0 = Ge

w,A , (Ge
w,A )3 is

empty. By Lemma 5, there exists a stable level, say k > 1, such that on each level l ≥ k, the F-vertices
are finite. Therefore, (Ge

w,A )1 contains only non-F-vertices after level k. It follows that (Ge
w,A )2 removes

all the vertices after level k. Thus if (Ge
w,A )2 is not empty, (Ge

w,A )2 contains only finite vertices. We then
conclude that (Ge

w,A )3 is empty. The other direction is trivial.

In order to set the maximum rank to 2 in Definition 4, the underlying DAG Gw,A constructed for
complementing FANBWs has to be co-deterministic. Since RKC generates rankings level by level, we
have to utilize the reduced transition function δ e for computing successors at next level. For FANBWs,
the complementation construction in Definition 4 can be improved accordingly:

Definition 4’. Let A = (Q, I,δ ,F) be an FANBW. We then define an NBW A c = (Qc, Ic,δ c,Fc), where
Qc and Fc are as in Definition 4, and Ic and δ c are defined by:

• Ic = ( f , /0) where f (q) = 2 if q ∈ I and f (q) =⊥ otherwise.

• δ c is then defined as follows:

1. if O 6= /0, then δ c(( f ,O),a) = {( f ′,δ e(O,a)\odd( f ′)) | f ′ ≤δ e

a f },
2. if O = /0, then δ c(( f ,O),a) = {( f ′,even( f ′)) | f ′ ≤δ e

a f }).
where δ e is the reduced transition function at a level whose corresponding set of states and input
letter are {q ∈ Q | f (q) 6=⊥} and a, respectively.

Recall that the coverage relation between two level ranking functions f and f ′, parameterized with
δ e, is defined in Definition 3. Similarly to Definition 2, to compute δ e(S1,a), one has to first compute
the minimal set Smin of predecessors of S′ = δ (S,a) where S is the domain of f , i.e., the set of states
at current level and a is the input letter at current level. Thus we have δ e(S1,a) = δ (S1 ∩ Smin,a).
Intuitively, for w ∈ Σω , δ e is used to construct a co-deterministic DAG Ge

w,A over w level by level. By
Lemma 8, the maximum rank of Ge

w,A is at most 2, which is sufficient in Definition 4’ for constructing a
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ranking function to identify whether Ge
w,A is accepting. Therefore, with Definition 4’, we can construct

a complementary NBW A c with 2O(n) states.

Theorem 1 (The Language and Size of A c for FANBWs). Let A be an FANBW with n states and A c

the NBW defined in Definition 4’. Then (1) L (A c) = Σω \L (A ); and (2) A c has 2O(n) states.

Proof. The proof for claim (2) is trivial and thus omitted here. By Lemma 2 and definition of ranking
functions, co-deterministic DAGs of A over w ∈L (A ) will be rejected in A c, thus L (A c) ⊆ Σω \
L (A ). According to the proof of Lemma 8, there exists a unique ranking function for each rejecting
co-deterministic DAG Ge

w,A of A over w /∈L (A ). This unique ranking function can be constructed in
a way similar to the one in Lemma 6. Since RKC nondeterministically guesses rankings of Ge

w,A , there
must be a guess of such unique ranking function. It follows that Ge

w,A must be accepting in A c, i.e.,
Σω \L (A )⊆L (A c). Thus it holds that L (A c) = Σω \L (A ).

In [14], Fogarty and Vardi proved that complementing reverse deterministic NBWs with RKC is
doable in 2O(n) as the non-reduced DAGs Gw,A are already co-deterministic. This is because that if A is
reverse deterministic, then each vertex 〈q, l〉 in Gw,A has at most one predecessor, as q has only one w[l]-
predecessor. It follows that Gw,A is co-deterministic. Similarly to Lemma 4, the number of (accepting)
ω-branches in Gw,A is at most |Q|. According to Definition 1, reverse deterministic NBWs are a special
class of FANBWs, as stated in Corollary 1.

Corollary 1. Let A be a reverse deterministic NBW. Then A is also an FANBW.

In contrast, an FANBW is not necessarily a reverse deterministic NBW. For instance, the FANBW
A of Figure 1 is not reverse deterministic since q1 has three b-predecessors, namely q0,q1 and q2. We
remark that the construction in [14] just sets the maximum rank to 2 in Definition 4 without modifying the
transition function δ c, which turns out to be a special case of our construction according to Corollary 1.

5 Slice-Based Algorithm

In Subsection 5.1, we first recall the slice-based complementation construction (SLC) described in [16,
28], adapted using our notations, which produces a complementary NBW A c of A with O((3n)n) states.
Then, in Subsection 5.2, we show that for FANBWs, this construction can be simplified while yielding a
complementary NBW with O(4n) states.

5.1 Slice-Based Algorithm for NBWs

Let A be an NBW, and let w be a word. SLC uses a data structure called slice instead of level rankings
to encode the set of vertices at the same level in Gw,A . A slice in [28] is defined as an ordered sequence
of disjoint sets of vertices at the same level.

We now describe SLC from the perspective of building co-deterministic DAGs. SLC does the follow-
ing to construct a co-deterministic DAG Gs

w,A as it proceeds along the word w. Here the superscript s for
SLC is used to distinguish the construction of co-deterministic DAGs Ge

w,A in Section 3. At level 0, we
may obtain at most two vertices of Gs

w,A : a vertex 〈S1,0〉= 〈I \F ,0〉 and an F-vertex 〈S2,0〉= 〈I∩F ,0〉.
Recall that I and F are the set of initial states and the set of accepting states of A , respectively. Here S1
and S2 are disjoint. A vertex 〈S j, i〉 is an F-vertex if S j ⊆ F , where j ≥ 1 and i ≥ 0. The vertices 〈S j, i〉
on level i in Gs

w,A are ordered from left to right by their indices j where i ≥ 0 and 1 ≤ j ≤ n. During
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the construction, empty sets S j are removed and the indices of remaining sets are reset according to the
increasing order of their original indices.

Assume that on level i, the sequence of vertices in Gs
w,A is 〈S1, i〉, · · · ,〈Ski , i〉where i≥ 0 and 1≤ ki≤

n. We now describe how SLC constructs the vertices on level i+1. First, for a set S j where 1≤ j≤ ki, on
reading the letter w[i], the set of successors of S j is partitioned into (1) a non-F set S′2 j−1 = δ (S j,w[i])\F ,
and (2) an F-set S′2 j = δ (S j,w[i])∩F , as a possible new F-vertex.

This gives us a sequence of sets S′1,S
′
2, · · · ,S′2ki−1,S

′
2ki

. Note that there can be some states in A
present in multiple sets S′j where j≥ 1. Here we only keep the rightmost occurrence of a state. Intuitively,
different runs of A may merge with each other at some level and we only need to keep the right most
one and cut off others, as they share the same infinite suffix. This operation does not change whether the
co-deterministic DAG Gs

w,A is accepting, since at least one accepting run of A remains and will not be
cut off. Formally, for each set S′j where 1 ≤ j ≤ 2ki, we define a set S′′j = S′j \

⋃
j<p≤2ki

S′p. This yields
a sequence of disjoint sets S′′1 ,S

′′
2 , · · · ,S′′2ki−1,S

′′
2ki

. After removing the empty sets in this sequence and
reassigning the index of each set according to their positions, we finally obtain the sequence of sets of
vertices on level i+1, denoted by 〈S1, l +1〉, · · · ,〈Ski+1 , l +1〉. Obviously, the resulting sets at the same
level are again pairwise disjoint.

Therefore, we define a co-deterministic DAG Gs
w,A = (V,E) of A over w for an NBW A as follows:

• Vertices. V =
⋃

l≥0,1≤ j≤ki
{〈S j, l〉}.

• Edges. There is an edge from 〈S j, l〉 to 〈Sh, l +1〉 iff Sh is either S′′2 j−1 or S′′2 j as defined above
where 1≤ j ≤ ki and 1≤ h≤ ki+1.

By the definition of Gs
w,A , each vertex 〈Sh, l +1〉 in which Sh is either S′′2 j−1 or S′′2 j computed from

S j has at most one predecessor 〈S j, l〉. Thus Gs
w,A is co-deterministic. Similarly, we have the following

Lemma 9.

Lemma 9 (Co-Deterministic DAGs for NBWs [28]). Let w ∈ Σω and Gs
w,A be the co-deterministic DAG

as defined above. Then (1) the number of (accepting) ω-branches in Gs
w,A is at most the number of states

in A . (2) w is accepted by A if and only if Gs
w,A is accepting. (3) There exists a stable level l ≥ 1 in

Gs
w,A such that all F-vertices after level l are finite if and only if w /∈L (A ).

SLC for general NBWs can be viewed as consisting of two components: (1) based on the construction
of co-deterministic DAGs Gs

w,A over w above, NBWs can be translated to FANBWs [21] and (2) a
specialized complementation algorithm for FANBWs. In [28], SLC utilizes these two components at the
same time for computing the complementary NBW A c.

A state of A c is an ordered sequence of tuples (S1, l1), · · · ,(Sh, lh) where the ordered sequence
(S1, · · · ,Sh) is a slice, and each vertex 〈S j, l〉 is decorated with a label l j ∈ {die, inf,new}. The level
index l is omitted during the construction of A c. Intuitively,

• die-labelled vertex means that those states in S j are currently being inspected. For w to be accepted
(i.e., w 6∈ L (A )), die-labelled vertices should eventually reach empty set after a finitely many
steps, thus become finite. Recall that empty sets will be removed in the construction of Gs

w,A .

• inf-labelled vertex indicates all states that never reach accepting states.

• new-labelled vertex records new encountered states, that should be inspected later once the die-
labelled vertex becomes empty.

Obviously, here h is at most the number n of states in A . While for FANBWs, thanks to their finite
ambiguity, the construction for co-deterministic DAGs can be simplified (see Section 3): we can even use
three components (N,C,B) to compactly encode the slice and their labels. We postpone the details of the
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construction to the next subsection. Now we recall the complexity of the above slice based construction:

Lemma 10 (The Language and Size of A c for NBWs [28] ). Let A be an NBW with n states and A c

the NBW constructed by SLC in Section 5. Then L (A c) = Σω \L (A ) and A c has O((3n)n) states.

5.2 Slice-Based Algorithm for FANBWs

We now propose the specialized complementation construction for FANBWs. Recall that, as discussed in
Subsection 5.1, this construction is also the second component of SLC, used for complementing general
NBWs.

We first provide some intuitions. According to Lemma 5, given a word w /∈ L (A ), there exists
a stable level k in the co-deterministic DAG Ge

w,A such that each F-vertex on a level after k is finite.
Therefore, in the construction of A c, we can nondeterministically guess level k and then use breakpoint
construction to verify that our guess is correct, in analogy with RKC. More precisely, when constructing
the complementary NBW A c, there are the initial phase and the accepting phase. The initial phase is
purely a subset construction to trace the reachable states of each level of the co-deterministic DAG Ge

w,A
over w. On reading a letter at a state of A c (called macrostate) in the initial phase, the run of A c over
w (called macrorun) either continues to stay in the initial phase or jumps to the accepting phase. Once
entering the accepting phase, we guess that the macrorun of A c, which consists of multiple runs of A ,
has reached the stable level k. Thus in the accepting phase, we need a breakpoint construction to verify
that the guess is correct, i.e., that all F-vertices after level k are finite.

In the accepting phase, we use a macrostate, represented as a triple (N,C,B), to encode the set of
vertices and their labels on a level after k in the co-deterministic DAG Ge

w,A (or Gs
w,A for general NBWs

accordingly), where

• the set N keeps all the reachable vertices on the level, corresponding to the set of all vertices
labelled with die, inf and new;

• the set C keeps all the finite vertices on the level. That means, it contains both new-labelled vertices
recording new encountered states, and die-labelled vertices being inspected now.

• the set B ⊆ C as a breakpoint construction is used to verify that the guess on the set C of finite
vertices is correct, corresponding to the set of vertices labelled with die.

Recall that die, inf and new are three labels of vertices used in SLC for complementing general NBWs,
as described in Subsection 5.1. The specialized complementation algorithm for FANBWs is formalized
below.

Definition 5. Let A = (Q, I,δ ,F) be an FANBW. We then define an NBW A c = (Qc, Ic,δ c,Fc) as
follows.

• Qc ⊆ 2Q∪2Q×2Q×2Q;

• Ic = {I};
• δ c = δ1

c∪δt
c∪δ2

c is defined as follows:

1. δ1
c(S,a) = δ e(S,a) for S⊆Q and a∈ Σ where δ e is the reduced transition function at current

level whose corresponding set of states and input letter are S and a, respectively. (intuition:
subset construction to organize the macrorun before the guess point).

2. δt
c(S,a) = δ2

c((N,C,B),a) where N = S,B = S∩F and C = B (intuition: make the guess
point to be the macrostate (N,C,B)).
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3. δ2
c((N,C,B),a) = (N′,C′,B′) where δ e is the reduced transition function at current level

whose corresponding set of states and input letter are N and a, respectively, and
– N′ = δ e(N,a) (intuition: tracing the reachable states correctly),
– C′ = δ e(C,a)∪ (N′∩F) (intuition: tracing the runs which has visited accepting states

after the guess point), and
– if B 6= /0, then B′= δ e(B,a) and otherwise B′=C′ (intuition: B= /0 means all runs which

have visited accepting states are finite and B 6= /0 indicates that previous runs are still
under inspection).

• Fc = {(N,C,B) ∈ Qc | B = /0}.
Remark 1. As a side remark, we note that the complementary NBW constructed by Definition 5 is limit
deterministic, as the state set Qc of A c can be partitioned into two disjoint sets Qc

N ⊆ 2Q and Qc
D ⊆

2Q×2Q×2Q such that 1) Fc ⊆ Qc
D and 2) for each state q ∈ Qc

D and a ∈ Σ, we have that |δ c(q,a)| ≤ 1.

Theorem 2 (The Language and Size of A c for FANBWs). Let A be an FANBW with n states and A c

be the NBW defined by Definition 5. Then (1) L (A c) = Σω \L (A ); and (2) A c has 2n +4n states.

Proof. We prove claim (1) as follows. Suppose w ∈ L (A ), our goal is to prove w is not accepted
by A c. Assume that the corresponding accepting run of A over w is ρ and ρ ′ is a macrorun of
A c over w. Then for the macrorun ρ ′: (1) if ρ ′ only visits states of the form s ∈ 2Q, then ρ ′ is
not accepted by A c since no accepting A c-states will be visited; (2) if ρ ′ is a macrorun of the form
s0, · · ·sk−1,(Nk,Ck,Bk)(Nk+1,Ck+1,Bk+1) · · · , ρ will visit some accepting state, say q f ∈ F infinitely of-
ten. Then at some point, say in state (N j,C j,B j), we have q f ∈ B j or q f ∈C j. If q f ∈ B j, then for every
p ≥ j, we have Bp 6= /0 according to Lemma 1; otherwise q f ∈C j, then either at some point, say p > j,
q f will be moved to Bp when Bp−1 = /0, or q f ∈Cp for each p≥ j, which indicates that Bp 6= /0 for p≥ j.
Therefore, w is not accepted by A c.

Assume that w /∈L (A ), our goal is to prove that there exists an accepting macrorun ρ ′ of A c over
w. The proof idea is to analyze the co-deterministic DAG Ge

w,A of A over w. According to Lemma 5,
there exists a stable level k ≥ 1 such that every F-vertex on a level after k of Ge

w,A is finite. Therefore,
the set B on ρ ′ will become empty infinitely often, i.e., w is accepted by A c.

We now prove claim (2). By Definition 5, the number of possible states of the form s ∈ 2Q is 2n. For
each state p = (N,C,B) ∈ Qc of A c, we have that C ⊆ N and B ⊆C. Then for a state q ∈ Q: (i) it will
either be absent or present in N; (ii) for a state q ∈ N, one of the following three possibilities holds: q is
only in N, q is both in C and N and q is both in B and C. Therefore A c has at most 2n +4n states.

As a consequence of Definition 5, we can define a subsumption relation between the macrostates of
A c below.

Corollary 2 (Subsumption Relation between Macrostates). Let A be an FANBW and A c the comple-
mentary NBW of A defined by Definition 5, and m = (N,C,B) and m′ = (N′,C′,B′) are two macrostates
of A c such that N = N′ and C ⊆C′. Then L ((A c)m′)⊆L ((A c)m) or m subsumes m′.

Proof. Let w = a0a1 · · · ∈ Σω . Let ρ = (N0 = N,C0 = C,B0 = B)(N1,C1,B1) · · ·(Nk,Ck,Bk) · · · be the
macrorun of (A c)m over w. Similarly, the macrorun of (A c)m′ over w is ρ ′ = (N′0 = N′,C′0 = C′,B′0 =
B′)(N′1,C

′
1,B
′
1) · · ·(N′k,C′k,B′k) · · · . Assume that w ∈ L ((A c)m′), i.e., there are infinitely many empty

B′-sets in ρ ′ according to Definition 5. It follows that the level 0 in the co-deterministic DAG Ge
w,A N′

of A N′ over w is a stable level, i.e., each F-vertex in Ge
w,A N′ is finite. (Recall that A N′ is an NBW

obtained from A by setting the set of initial states of A to N′.) This is because that by Definition 5,
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each branch from an F-vertex in Ge
w,A N′ will eventually be put in the B′-set and if one such branch is

not finite, the B′-set will become empty for only finitely many times, contradicting with the assumption
that w ∈L ((A c)m′). By definition of the construction of co-deterministic DAGs in Section 3, the co-
deterministic DAG Ge

w,A N of A N over w is identical to Ge
w,A N′ since N = N′. Consequently, the level 0 is

also a stable level in Ge
w,A N . That is, each F-vertex in Ge

w,A N is also finite. Since the B′-set in ρ ′ becomes
empty and is reset to C′ for infinitely many times, all branches from C′ are finite. It follows that all the
branches from B ⊆C are also finite since C ⊆C′. Then there exists a least integer j ≥ 0 in ρ such that
B j = /0. Since all branches in the C-set (including new branches coming from the N-set) are finite, there
are infinitely many integers k ≥ j such that Bk = /0 in ρ . It follows that w ∈L ((A c)m), which indicates
that L ((A c)m′)⊆L ((A c)m).

Corollary 2 provides the possibility to avoid the exploration of m′ when L ((A c)m) has already been
found to be empty, when checking the language-containment between an NBW and an FANBW A . It
follows that one can also use this subsumption relation to avoid construction of redundant macrostates
during the construction of A c, thus reducing the number of macrostates in A c.

6 Conclusion and Future Work

This work exploits co-deterministic DAGs over infinite words as a unified tool to optimize both RKC
and SLC constructions. Consequently, we have improved the complexity of the classical RKC and SLC
constructions for FANBWs, respectively, to 2O(n) from 2O(n logn) and to O(4n) from O((3n)n), based
on co-deterministic DAGs. As a further contribution, we view the SLC algorithm explicitly as the con-
struction of co-deterministic DAGs and a specialized complementation algorithm for FANBWs. We then
provide a subsumption relation between states in the complementary NBWs of FANBWs in hope of
improving the containment checking between an NBW and an (FA)NBW.

As future work, we plan to study whether O(4n) is also the lower bound for the complementation of
FANBWs. An empirical evaluation on how the subsumption relation between macrostates proposed in
Corollary 2 will benefit the containment checking problem is worthy of exploring. Moreover, we will
also explore a Ramsey-based complementation construction based on co-deterministic DAGs. Another
line of future work is studying determinization constructions for FANBWs. Finally, it is possible to use
our work to improve the program-termination checking framework proposed in [15] if one generalizes a
terminating path to an FANBW.
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