
B. Hoffmann and M. Minas (Eds.): Eleventh International
Workshop on Graph Computation Models (GCM 2020)
EPTCS 330, 2020, pp. 1–12, doi:10.4204/EPTCS.330.1

© N. Weidmann, A. Anjorin & J. Cheney
This work is licensed under the
Creative Commons Attribution License.

VICToRy: Visual Interactive Consistency Management in
Tolerant Rule-based Systems

Nils Weidmann
Paderborn University
Paderborn, Germany

nils.weidmann@upb.de

Anthony Anjorin
IAV GmbH Ingenieurgesellschaft Auto und Verkehr

Berlin, Germany
anthony.anjorin@iav.de

James Cheney
University of Edinburgh

Edinburgh, United Kingdom
jcheney@inf.ed.ac.uk

In the field of Model-Driven Engineering, there exist numerous tools that support various consistency
management operations including model transformation, synchronisation and consistency checking.
The supported operations, however, typically run completely in the background with only input and
output made visible to the user. We argue that this often reduces both understandability and con-
trollability. As a step towards improving this situation, we present VICToRy, a debugger for model
generation and transformation based on Triple Graph Grammars, a well-known rule-based approach
to bidirectional transformation. In addition to a fine-grained, step-by-step, interactive visualisation,
VICToRy enables the user to actively explore and choose between multiple valid rule applications
thus improving control and understanding.

1 Introduction and Motivation

As an approach to model management, bidirectional transformation (bx) enables designers to derive
multiple consistency management operations from a single specification. Concepts of bx for various re-
search fields exist, including Model-Driven Engineering (MDE), databases, and programming languages.
Among other formal approaches, Triple Graph Grammars (TGGs) are a rule-based approach to bx, in
which the consistency relation between two models (interchangeably denoted as source and target) is
expressed by a third correspondence model. A convenient feature of TGGs is that declarative rules are
used as a common basis from which various operations such as unidirectional transformation, model
synchronisation and consistency checking are derived. This can, however, be confusing for designers
who are not aware of or used to the underlying derivation process. While some TGG tools provide basic
debugging functionality for the transformation process (cf. Sect. 5), none of them enable the user to
track let alone influence the choice of rule applications. In most cases, only the input and output models
are visible to the user, whereas the transformation process runs in the background. Stevens [28] argues
for more transparent and fault-tolerant model transformation approaches, such that the user should be
involved in controversial decisions, i.e. decisions that cannot be made only based on the consistency
relation specification. Even for uncontroversial transformations, we have observed that novice users are
unable to fully understand how TGG tools - viewed as black-boxes - determine a specific result.

In this paper, we propose the VICToRy debugger1 as an add-on component for supporting an interac-
tive step-by-step visualisation of model transformations based on TGGs. It presents possible operational
rules including their concrete application contexts to the user, as well as a history of the involved mod-
els as they evolve during the transformation process. Additionally, the user can inspect and choose a
valid rule application at each time step, or decide to resume the automated process in the background.
Up to now, the operations model generation and forward/backward transformation are supported, while

1https://github.com/eMoflon/emoflon-victory

http://dx.doi.org/10.4204/EPTCS.330.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
https://github.com/eMoflon/emoflon-victory


2 VICToRy: Visual Interactive Consistency Management in Tolerant Rule-based Systems

model synchronisation and consistency checking are planned to be implemented soon. VICToRy is cur-
rently integrated into the eMoflon tool suite2 but can be potentially connected to other Java-based TGG
and even general graph transformation tools via the defined interfaces. This means that existing and
future tools can be enriched with debugging facilities to increase user involvement and understanding
in the transformation process, and thereby contributing to fault-tolerant model management. Previous
work [7, 1] identified possible connections between bx and provenance, to which our approach makes a
further practical contribution. By providing access to why-provenance (i.e. why is a given pair of models
consistent?) and how-provenance (i.e. how it can be proven that two models are consistent?) that bx tools
produce and maintain, we strive to improve the understandability of such tools. For TGG tools, it was
identified that why-provenance is provided by the resulting correspondence model, and how-provenance
by the underlying sequence of rule applications. While this knowledge helps to understand TGG tools
conceptually, it is also important to provide interactive access to these data structures. VICToRy visu-
alises both the correspondence model and the sequence of rule applications, allowing users to actively
inspect and shape the emerging provenance structures.

The remainder of this paper is structured as follows: An overview of supported features is presented
in Sect. 2 using a running example. The software architecture of VICToRy is sketched in Sect. 3. A brief
overview of a first case study with VICToRy is provided in Sect. 4. In Sect. 5 related work is discussed,
while Sect. 6 concludes the paper.

2 An Overview of Supported Features

This section provides an overview of features of VICToRy that can help novice users explore an unknown
TGG. To identify these features, we conducted an explorative study with students who did not have any
MDE-related experience at that point (cf. Sect. 4 for details).

2.1 Running Example

To demonstrate different features of VICToRy, the

Figure 1: Metamodels: CompanyToIT

bx example CompanyToIT is used,3 which maintains
consistency between a simplified organisational struc-
ture of a company and its corresponding IT infrastruc-
ture. The two metamodels are depicted in Fig. 1. A
Company consists of multiple Admins, Employees, and
at most one CEO. Each Admin reports to the CEO of the
Company, just like the other Employees. The corre-
sponding IT involves a set of Routers and Networks;
a Router is always assigned to a particular Network.
The Network itself consists of a set of PCs and a set
of Laptops. A Company and an IT correspond to each
other; this is depicted by a dashed line connecting the
two nodes in the metamodel. The same holds for an
Admin who is responsible for a Router within the IT
infrastructure. Finally, an Employee can either work

2https://emoflon.org/
3http://bx-community.wikidot.com/examples:companytoit

https://emoflon.org/
http://bx-community.wikidot.com/examples:companytoit


N. Weidmann, A. Anjorin & J. Cheney 3

with a PC or a Laptop, leading to two correspondence links for the Employee in the metamodel.

2.2 Configurable Visualisation of Rules and Rule Applications

To understand the effects of a rule application on a concrete model, it is essential to visualise both the rule
and the resulting model changes at runtime. The example rule AdminToRouter, which creates an Admin

in the Company model, and relates them to a created Router in a created Network in the IT model, is
depicted to the left of Fig. 2. Created (context) elements of the rule have a green (black) outline.

Figure 2: Visualising rules and matches

A specific match of this rule is depicted to the right of Fig. 2. Variables in the rule and corresponding
matched elements in the model are connected with dashed purple lines. In both the rule and its match,
the background colour of source model elements is peach, while target model elements have a rose
background. Correspondences are represented as dashed black lines. The visualisation of rules and
rule applications is based on PlantUML4 and is generated automatically on rule and match selection
(cf. Sect. 2.3). Editing rules is only possible in the underlying TGG tool, meaning that rules cannot be

4https://plantuml.com/

https://plantuml.com/


4 VICToRy: Visual Interactive Consistency Management in Tolerant Rule-based Systems

adapted at runtime. As source, target and correspondence models are depicted as a connected triple, the
visualisation represents why-provenance for TGGs. To cope with a wide range of size and complexity of
TGG rules, models’ sizes, and the user’s proficiency, it is crucial to be able to configure the visualisation:

Choice of displayed elements: For each domain (source, tar-
get, correspondence), the user can hide the respective el-
ements. For rules, it is also possible to display only con-
text elements and thus focus on the structure required for
a match of that rule in the model instance.

Abbreviation of labels: For nodes, edges and correspon-
dences, it is possible to display the labels completely,
in an abbreviated form containing the first and last three
letters, or not at all.

Neighbourhood of matches: As models of realistic size can
become much too large to be completely displayed
within the debugger, only the match of a selected rule
application and a configurable neighbourhood of this
match is displayed. The distance of a node to the match
is defined as the shortest path from this node to any node
contained in the match; nodes in the match itself are as-
signed a distance of 0. The k-neighbourhood of a match
contains all nodes that are at most k ∈ [0;3] away.

Figure 3: Configuration

2.3 Explorable and Interactive Overview of Applied Rules

The debugger’s user interface (UI) provides an over-

Figure 4: Available rules and matches

view of all rules of the TGG. Our example TGG Com-
panyToIT consists of only four rules, which are de-
picted as a list. For each rule in the list, the number
of available matches in the current model and the num-
ber of applied matches are displayed together with the
name of the rule. Rules with a dark grey background
are not applicable in the current state of the model,
whereas rules with a white background have at least
one applicable match. This provides a quick overview
and is useful for TGGs with a large number of rules. Furthermore, rules that have never been applicable
are crossed out, providing a quick visual indication of rules that might be problematic. All matches of
a rule can be viewed as sub-entries by expanding the corresponding rule entry in the list. The currently
selected rule and match are visualised in the UI (cf. Sect. 2.2). To apply a rule, the user can either
double-click on a particular match, select the match and press the apply button, or simply double-click
the rule to apply a random match. This action is delegated to the connected TGG tool, which must handle
the actual rule application (cf. Sect. 3). As soon as VICToRy receives a response, the UI is updated to
reflect the new state of the model and available matches.



N. Weidmann, A. Anjorin & J. Cheney 5

The VICToRy debugger provides traceability in-

Figure 5: The protocol section

formation by keeping track of all previous rule appli-
cations. This sequence of rule applications is referred
to as the (transformation) protocol and represents how-
provenance [1]. For each protocol entry, the name of
the rule as well as a unique ID for the rule application
is displayed. If a protocol entry is selected, the state of
the model as created by all rule applications up to and
including the selected one is displayed with a config-
urable neighbourhood; elements created by the selected rule application are highlighted green. It is also
possible to select multiple entries: the respective rule applications are then combined into a single step
and visualised accordingly.

3 Architecture

VICToRy can be connected to different Java-based TGG tools by implementing a simple interface for
transferring data between the debugger and the respective tool. An overview of this interface is depicted
in Fig. 6. The central component of this interface is the Graph class, which consists of Nodes and Edges.
There exists a mapping from each Edge to a source and a target Node, reflecting the categorical approach
to graph transformation. Both Rules and Matches are represented as Graphs consisting of rule and
model elements, respectively.

Multiple Matches can be determined for

Figure 6: Data exchange with VICToRy

the same Rule. Furthermore, a RuleApplica-
tion object is created when a Rule is ap-
plied for a concrete Match. All this informa-
tion is stored in a DataPackage transferred
between the attached TGG tool and VIC-
ToRy after each transformation step. Further
information is stored in the DataProvider,
including all current models and the current
choice between debugging and background
modi. As all information necessary to derive
the current model state from the initial mod-
els and the given TGG rules are provided,
the interface represents a data exchange metamodel for why- and how-provenance between VICToRy
and the attached TGG tool. The component diagram in Fig. 7 describes how the debugger has been
embedded into the eMoflon tool suite. VICToRy is designed for - but not limited to - being connected
to a TGG component of eMoflon. Currently, both eMoflon::IBeX [31] and eMoflon::Neo5 implement
the interface to the debugger. eMoflon::IBeX uses the incremental pattern matcher Democles [30] for
matching patterns to graph instances which are loaded from XML metadata interchange (XMI) files into
main memory, whereas eMoflon::Neo uses the external graph database Neo4J to collect matches and
store models. Depending on the operation, both tools are able to construct a superset of possible rule
applications, encode the graph problem into an optimisation problem and let an external Integer Linear

5https://github.com/eMoflon/emoflon-neo

https://github.com/eMoflon/emoflon-neo


6 VICToRy: Visual Interactive Consistency Management in Tolerant Rule-based Systems

Programming (ILP) solver determine the final set of rule applications. Interfaces to the solvers Gurobi6

and SAT4J7 are currently implemented, while other solvers can be connected to the tool suite as well.

Figure 7: Integrating VICToRy into the eMoflon tool suite

While performing a consistency management task with VICToRy, the tool switches between two
modi as depicted in Fig. 8. In the background mode, possible matches for rules are collected and one of
them is chosen to be applied.

In case of multiple options, rule applications are

Figure 8: State chart for debugging modi

chosen at random (or according to a configurable com-
ponent) without user interaction, which is the usual
workflow for model transformation tools. This proce-
dure is repeated until no further matches can be found
(leading to the termination of the process) or until a
breakpoint is reached. In the latter case, the tool switches
to the debug mode, where the VICToRy UI is visible
and each rule application requires a user interaction. In
contrast to the background mode, the user can choose
between multiple options which are shown on the UI.
To return to the background mode, the user resumes
the automated choice of rule application by quitting the
debugger. This behaviour is similar to debugging concepts in contemporary integrated development en-
vironments (IDEs), but without the possibility of stepping into a rule application.

4 Case Study

In order to qualitatively evaluate the usefulness of VICToRy, we conducted a case study adapted from
Blouin et al. [4]. The Architecture Analysis and Design Language (AADL) is a standard language in
the aerospace domain, for which a textual editor (OSATE) and a graphical editor (Adele) exist. Blouin
et al. [4] discuss the challenge of implementing a bx to synchronise models edited using the different
editors. Our evaluation aims at answering two research questions related to motivational aspects for
MDE debuggers:

1. Does VICToRy help to explore and understand a TGG of realistic size?

2. Does VICToRy help to identify bugs in rules or in input models?
6https://www.gurobi.com/
7http://www.sat4j.org/

https://www.gurobi.com/
http://www.sat4j.org/


N. Weidmann, A. Anjorin & J. Cheney 7

4.1 The Adosate TGG

Blouin et al. implemented the original Adosate TGG that maintains consistency between Adele and
OSATE models. The TGG consists of 60 rules specified with the model transformation tool MoTE [14],
in which an extended TGG formalism is used that allows the designer to connect more than one element
per model with a single correspondence. For the implementation with eMoflon, we created multiple
correspondences for each pair of involved source and target nodes. While the eMoflon TGG is much
larger than with MoTE, its rule refinement feature [2] was used to keep the rules manageable. The feature
allowed us to define rules involving abstract node types (abstract rules) that can be refined by concrete
types and enriched with additional elements in so-called concrete rules. These changes resulted in a
semantically equivalent TGG (i.e., a TGG that generates the same language) with 49 abstract rules and
91 concrete rules, of which only the concrete rules are considered at runtime. An overview comparing
the (concrete) rules required for the implementations with MoTE and eMoflon is provided in Table 1.

Number of Rules Number of Rules
AADL Construct MoTE eMoflon AADL Construct MoTE eMoflon
Package (axiom) 1 2 Component Type Features 10 19
Subcomponents 11 12 Feature Group Types 4 4

Component Types 2 13 Feature Group Type Features 10 9
Connections 20 21 Component Implementation 2 9

Total 60 91

Table 1: Size of rule groups: MoTE and eMoflon

Compared to most bx benchmark examples8 the number of rules is relatively large, while the average
rule size is comparable to existing benchmarks. The mean of the number of nodes involved in abstract
and concrete rules is 6.51 (2.69 created nodes, 3.81 context nodes), and the mean number of edges is
3.31 (2.46 created edges, 0.84 context edges) per rule.

4.2 Experiment and Results

In an experiment conducted at Paderborn University, Germany, with 15 computer science graduate stu-
dents without substantial prior experience with MDE, we attempted to assess if and how VICToRy helps
novice users understand a provided, non-trivial TGG. The first task was to identify relations between
rules and model elements (which model elements are created/required by which rules?), as well as re-
lations between the rules themselves (which rules depend on other rules?). The students were provided
with the Adosate TGG and VICToRy, and asked to work independently on developing an understanding
for the TGG. The first and second authors provided helpful material (tutorials, handbooks, and relevant
papers), supervision (answering any basic questions), and held a feedback meeting after two weeks to
check the students’ understanding for the TGG and ask if VICToRy was helpful and in what ways it
was used. In general, all students stated that the debugger indeed helped to get an overview of the en-
tire TGG. It was especially helpful to identify which rules are applicable for an empty model (axioms)
without clicking through all of them, and to determine which rules provide context for other rules (rule
dependencies). Most students started exploring the TGG rules by generating consistent model triples
and inspecting the resulting transformation protocol. In a second step, they then attempted to transform

8http://bx-community.wikidot.com/examples:home

http://bx-community.wikidot.com/examples:home


8 VICToRy: Visual Interactive Consistency Management in Tolerant Rule-based Systems

smaller instances in forward and backward directions. As all models can be saved to disk at any point of
time, it was easily possible to try out different alternatives starting from a common state of all models.

In a second task, the students were provided with the Adosate TGG, and with a test suite consisting of
input models and expected output models for both forward and backward directions. One of the students
was then asked to either make a change to a TGG rule, or to the supplied input models, resulting in
both cases in a mismatch between TGG and test suite. The other students were then asked to determine
and explain this mismatch. This task was carried out in a slightly more controlled manner, restricting
the allotted time to a few hours, and asking the students not to perform a diff between the original
and changed rules. The feedback from the students for this task (based again on a feedback meeting
and discussion) was much less positive. The task turned out to be (1) much too difficult for novice
users, and (2) VICToRy proved not to be of much help as it does not provide any information about
why a rule is not applicable in a specific situation (even though the expectation is that it should be).
While the possibility of selecting protocol entries and inspecting the resulting changes on the models
was appreciated, many students stated that the opposite direction, i.e. selecting model elements in the
visualisation and highlighting the “responsible” rule applications, would be indeed helpful as well and
is currently missing. Furthermore, there was a clear need for the introduction of breakpoints, i.e. the
transformation should start in the background mode and stop at a certain point defined by the user, e.g.,
when a specific rule is applicable for the first time. This enables users to skip irrelevant parts of the
transformation that are already clear to them and set the focus on debugging problematic steps.

Revisiting our research questions, our initial exploratory experiment at least indicates that (1) VIC-
ToRy appears to help obtain an overview of a non-trivial TGG the user is not familiar with, but (2) leaves
room for improvement regarding the detection of errors in either models or rules. An extension towards
why-not-debugging facilities [1] seems to be necessary to properly address bug finding tasks. Our ex-
periment is at best a pre-study for a more formal, controlled experiment and quantitative evaluation with
multiple use cases, a larger group of test persons, and objective measures. While we cannot generalise
our results, our goal was not to provide hard empirical evidence for the effectiveness of VICToRy but
rather to explore the design space in a realistic setting and brainstorm together with novice users for
promising features to guide future extensions of VICToRy.

5 Related Work

Several approaches to debugging in MDE have been proposed, including fundamental concepts, debug-
ging Domain-Specific Language (DSL) code, and debuggers for non-deterministic approaches. Mierlo
et al. describe a stepping semantics for debugging in MDE with four levels of different granularity [22].
The proposed approach is, however, conceptual and does not provide an implementation to the best
of our knowledge. A debugger for Petri nets is based on Modelverse and supports basic functionality
including breakpoints known from general purpose language (GPL) debuggers [23]. The prototype is
planned to be extended to support model transformations as well. A wide range of facilities for DSL
debugging is presented in previous work. Omniscient debugging - in contrast to stepwise execution -
provides the user with enhanced navigation and exploration features such as reverting execution steps at
runtime, impacting performance and scalability. Therefore, approaches are often tailored to rather small
instances [8] or specific use cases, such as xDMSLs (a subset of DSLs) [5]. Lindeman et al. propose a
declaratively defined debugger for DSLs [20]. The approach was integrated into the Spoofax language
workbench and evaluated by case studies involving the textual DSLs StrategoTL and WebDSL. How-
ever, several limitations are mentioned for debugging modelling languages and model transformations.



N. Weidmann, A. Anjorin & J. Cheney 9

Laurent et al. extended the Foundational UML (fUML) by debugging facilities [18]. While the approach
is a tool-independent add-on, it considers only the execution of models complying to the fUML standard.

For debugging rule-based systems, Tichy et al. sketch how to execute debugging steps for graph
transformation, taking the tool Henshin as an example [29]. In contrast to our approach, the debugging
of rule applications is much more detailed and takes the matching process into account as well, whereas
an implementation is not described. Similarly, Jukss et al. use graph transformations as an underly-
ing formalism for a debugger integrated into AToMPM [15]. The approach focusses on a fine-grained
inspection of the rule application process, whereas the user is not enabled to choose between multiple
possible rule applications. For algebraic graph transformation, the tool AGG [26] provides a mode for
stepwise execution of graph transformations. Rule and match can be chosen by the user in each step,
while it is neither clear which rules are applicable in the current state, nor a protocol of previous rule
applications is provided.

Furthermore, a substantial number of tools have emerged that implement bidirectional model trans-
formations based on TGGs. While in Fujaba [12] and the TGG Interpreter [13], operational rules are
directly interpreted, MoTE [14, 11], eMoflon [19, 31], HenshinTGG [9] and EMorF [16] compile rules
into source code of a GPL to be executed at runtime. A concept for debugging TGGs at different levels
was introduced to the TGG Interpreter by Rieke [25]. The debugging facilities are, however, tightly in-
terwoven with the specific tool and several open challenges for practical use are mentioned. For MoTE,
a monitor is implemented which allows to stepwise execute model transformations [11]. However, the
user cannot influence the execution order, which is determined by order of correspondence nodes in a
processing queue and their respective types. A debugging mode is implemented for EMorF as well, but
both a detailed description and the tool itself are not currently available. For all other TGG-based tools,
debugging functionality is missing to the best of our knowledge.

Besides these rule-based approaches, debugging plays an important role in other MDE-related fields
as well. Proposed concepts include work on dynamic meta modelling [3], discrete event system specifi-
cationss (DEVSs) [21], and story diagrams [17], which are each tailored to a specific tool and use case,
though. The tool TETRA Box is based on PaMoMo and involves white-box testing of transformation
languages by symbolic execution of model transformations [27], which is independent of the underlying
transformation language but not yet tested with realistic examples. SyVOLT localises errors in the input
based on igraph and the T-Core framework [24], while the focus of debugging is set on detecting reasons
for contract violations rather than on the transformation process. Ferdjoukh et al. localise faults in meta-
model design based on static analyses and implemented their approach in TIWIZI and GRIMM [10],
whereas model transformations are not taken into account.

6 Conclusion and Future Work

We presented the add-on component VICToRy for interactively visualising single steps of the model
generation and transformation process. Besides the inspection of possible rule applications in the current
state, the user can inspect the prior transformation process using a transformation protocol. The TGG-
based tool is fully integrated into the eMoflon tool suite but can be used along with other applications via
a defined interface. A concept for switching between background mode and debug mode via breakpoints
is presented, whereas an implementation for breakpoints is left for future work. Besides model gener-
ation and transformation, other consistency management operations such as model synchronisation and
consistency checking are planned to be supported as part of future work. To improve the tool’s usabil-
ity and effectiveness, support for easily defining different kinds of breakpoints should be implemented.



10 VICToRy: Visual Interactive Consistency Management in Tolerant Rule-based Systems

Furthermore - as an extension towards supporting why-not provenance - information about reasons for
blocked rule applications should be presented to the user to support detecting logical faults in TGG rules,
or a mismatch with expectations in provided input models and tests.

Acknowledgments

We would like to thank all members of the project group VICToRy at Paderborn University for taking
part in the tool development, namely Asher Ahsan, Philipp Giakoupian, Rifat Hussain, Jane Jose, Mahi
Kittur, Israq Masrur, Hariprasath Ragupathy, Shubhangi Salunkhe, Ayurshi Singh, Saman Soltani, Ankita
Srivastava, Vipasyan Telaprolu, Mario Treiber, Surbhi Verma and Darya Zarkalam.

References

[1] Anthony Anjorin & James Cheney (2019): Provenance Meets Bidirectional Transformations. In: 11th Inter-
national Workshop on Theory and Practice of Provenance (TaPP 2019), USENIX Association, Philadelphia,
PA. Available at https://www.usenix.org/conference/tapp2019/presentation/anjorin.

[2] Anthony Anjorin, Karsten Saller, Malte Lochau & Andy Schürr (2014): Modularizing Triple Graph Gram-
mars Using Rule Refinement. In Stefania Gnesi & Arend Rensink, editors: FASE 2014, LNCS 8411, Springer,
pp. 340–354, doi:10.1007/978-3-642-54804-8 24.

[3] Nils Bandener, Christian Soltenborn & Gregor Engels (2010): Extending DMM Behavior Specifications for
Visual Execution and Debugging. In Brian A. Malloy, Steffen Staab & Mark van den Brand, editors: SLE
2010, LNCS 6563, Springer, pp. 357–376, doi:10.1007/978-3-642-19440-5 24.

[4] Dominique Blouin, Alain Plantec, Pierre Dissaux, Frank Singhoff & Jean-Philippe Diguet (2014): Synchro-
nization of Models of Rich Languages with Triple Graph Grammars: An Experience Report. In Davide Di
Ruscio & Dániel Varró, editors: ICMT 2014, LNCS 8568, Springer, pp. 106–121, doi:10.1007/978-3-319-
08789-4 8.

[5] Erwan Bousse, Jonathan Corley, Benoı̂t Combemale, Jeffrey G. Gray & Benoit Baudry (2015): Supporting
efficient and advanced omniscient debugging for xDSMLs. In Richard F. Paige, Davide Di Ruscio & Markus
Völter, editors: SLE 2015, ACM, pp. 137–148. Available at https://dl.acm.org/doi/abs/10.1145/2814251.
2814262.

[6] Loli Burgueño, Jonathan Corley, Nelly Bencomo, Peter J. Clarke, Philippe Collet, Michalis Famelis, Sudipto
Ghosh, Martin Gogolla, Joel Greenyer, Esther Guerra, Sahar Kokaly, Alfonso Pierantonio, Julia Rubin & Da-
vide Di Ruscio, editors (2017): MODELS 2017 Satellite Event. CEUR Workshop Proceedings 2019, CEUR-
WS.org. Available at http://ceur-ws.org/Vol-2019/.

[7] James Cheney, Anthony Finkelstein, Bertram Ludäscher & Stijn Vansummeren (2012): Principles of Prove-
nance (Dagstuhl Seminar 12091). Dagstuhl Reports 2(2), pp. 84–113, doi:10.4230/DagRep.2.2.84.

[8] Jonathan Corley, Brian P. Eddy, Eugene Syriani & Jeff Gray (2017): Efficient and scalable omniscient debug-
ging for model transformations. Software Quality Journal 25(1), pp. 7–48, doi:10.1007/s11219-015-9304-4.

[9] Claudia Ermel, Frank Hermann, Jürgen Gall & Daniel Binanzer (2012): Visual Modeling and
Analysis of EMF Model Transformations Based on Triple Graph Grammars. ECEASST 54,
doi:10.14279/tuj.eceasst.54.771.

[10] Adel Ferdjoukh & Jean-Marie Mottu (2018): Towards an Automated Fault Localizer while Designing Meta-
models. In: Proceedings of MODELS 2018 Workshops, Copenhagen, Denmark, October, 14, 2018, pp.
547–552. Available at http://ceur-ws.org/Vol-2245/mdebug paper 4.pdf.

[11] Holger Giese, Stephan Hildebrandt & Leen Lambers (2014): Bridging the Gap between Formal Se-
mantics and Implementation of Triple Graph Grammars - Ensuring Conformance of Relational Model

https://www.usenix.org/conference/tapp2019/presentation/anjorin
http://dx.doi.org/10.1007/978-3-642-54804-8_24
http://dx.doi.org/10.1007/978-3-642-19440-5_24
http://dx.doi.org/10.1007/978-3-319-08789-4_8
http://dx.doi.org/10.1007/978-3-319-08789-4_8
https://dl.acm.org/doi/abs/10.1145/2814251.2814262
https://dl.acm.org/doi/abs/10.1145/2814251.2814262
http://ceur-ws.org/Vol-2019/
http://dx.doi.org/10.4230/DagRep.2.2.84
http://dx.doi.org/10.1007/s11219-015-9304-4
http://dx.doi.org/10.14279/tuj.eceasst.54.771
http://ceur-ws.org/Vol-2245/mdebug_paper_4.pdf


N. Weidmann, A. Anjorin & J. Cheney 11

Transformation Specifications and Implementations. Software and System Modeling 13(1), pp. 273–299,
doi:10.1007/s10270-012-0247-y.

[12] Holger Giese & Robert Wagner (2006): Incremental Model Synchronization with Triple Graph Grammars. In
Oscar Nierstrasz, Jon Whittle, David Harel & Gianna Reggio, editors: MoDELS 2006, LNCS 4199, Springer,
pp. 543–557, doi:10.1007/11880240 38.

[13] Joel Greenyer & Ekkart Kindler (2010): Comparing Relational Model Transformation Technologies: Imple-
menting Query/View/Transformation with Triple Graph Grammars. Software and System Modeling 9(1), pp.
21–46, doi:10.1007/s10270-009-0121-8.

[14] Stephan Hildebrandt, Leen Lambers, Holger Giese, Dominic Petrick & Ingo Richter (2011): Automatic
Conformance Testing of Optimized Triple Graph Grammar Implementations. In Andy Schürr, Dániel Varró &
Gergely Varró, editors: AGTIVE 2011, LNCS 7233, Springer, pp. 238–253, doi:10.1007/978-3-642-34176-
2 20.

[15] Maris Jukss, Clark Verbrugge & Hans Vangheluwe (2017): Transformations Debugging Transformations. In
Burgueño et al. [6], pp. 449–454. Available at http://ceur-ws.org/Vol-2019/mdebug 1.pdf.

[16] Lilija Klassen & Robert Wagner (2012): EMorF - A Tool for Model Transformations. ECEASST 54,
doi:10.14279/tuj.eceasst.54.768.

[17] A. Krasnogolowy, S. Hildebrandt & S. Wätzoldt (2012): Flexible Debugging of Behavior Models. In: ICIT
2012, Proceedings, pp. 331–336, doi:10.1109/ICIT.2012.6209959.

[18] Yoann Laurent, Reda Bendraou & Marie-Pierre Gervais (2013): Executing and debugging UML models: an
fUML extension. In Sung Y. Shin & José Carlos Maldonado, editors: SAC 2013, ACM, pp. 1095–1102,
doi:10.1145/2480362.2480569.

[19] Erhan Leblebici, Anthony Anjorin & Andy Schürr (2014): Developing eMoflon with eMoflon. In Davide Di
Ruscio & Dániel Varró, editors: ICMT 2014, LNCS 8568, Springer, pp. 138–145, doi:10.1007/978-3-319-
08789-4 10.

[20] Ricky T. Lindeman, Lennart C. L. Kats & Eelco Visser (2011): Declaratively Defining Domain-Specific
Language Debuggers. In Ewen Denney & Ulrik Pagh Schultz, editors: Proceedings of GPCE 2011, Portland,
Oregon, USA, October 22-24, 2011, ACM, pp. 127–136, doi:10.1145/2047862.2047885.

[21] Simon Van Mierlo, Yentl Van Tendeloo & Hans Vangheluwe (2017): Debugging Parallel DEVS. Simulation
93(4), pp. 285–306, doi:10.1177/0037549716658360.

[22] Simon Van Mierlo, Yentl Van Tendeloo & Hans Vangheluwe (2018): A Generalized Stepping Semantics for
Model Debugging. In: Proceedings of MODELS 2018 Workshops, Copenhagen, Denmark, October, 14,
2018, pp. 541–546. Available at http://ceur-ws.org/Vol-2245/mdebug paper 3.pdf.

[23] Simon Van Mierlo & Hans Vangheluwe (2017): Debugging Non-determinism: a Petrinets Modelling, Anal-
ysis, and Debugging Tool. In: MODELS 2017 Satellite Event, Austin, TX, USA, September, 17, 2017, pp.
460–462. Available at http://ceur-ws.org/Vol-2019/mdebug 4.pdf.

[24] Bentley James Oakes, Levi Lucio, Clark Verbrugge & Hans Vangheluwe (2018): Debugging of Model Trans-
formations and Contracts in SyVOLT. In: MODELS 2018 Workshops, Copenhagen, Denmark, October, 14,
2018, pp. 532–537. Available at http://ceur-ws.org/Vol-2245/mdebug paper 1.pdf.

[25] Jan Rieke (2015): Model Consistency Management for Systems Engineering. Ph.D. thesis, University of
Paderborn. Available at https://digital.ub.uni-paderborn.de/ubpb/urn/urn:nbn:de:hbz:466:2-15597.

[26] Olga Runge, Claudia Ermel & Gabriele Taentzer (2011): AGG 2.0 - New Features for Specifying and Ana-
lyzing Algebraic Graph Transformations. In Andy Schürr, Dániel Varró & Gergely Varró, editors: AGTIVE
2011, Budapest, Hungary, October 4-7, 2011, LNCS 7233, Springer, pp. 81–88, doi:10.1007/978-3-642-
34176-2 8.

[27] Johannes Schönböck, Gerti Kappel, Manuel Wimmer, Angelika Kusel, Werner Retschitzegger & Wieland
Schwinger (2013): TETRABox - A Generic White-Box Testing Framework for Model Transformations. In:
APSEC 2013, pp. 75–82, doi:10.1109/APSEC.2013.21.

http://dx.doi.org/10.1007/s10270-012-0247-y
http://dx.doi.org/10.1007/11880240_38
http://dx.doi.org/10.1007/s10270-009-0121-8
http://dx.doi.org/10.1007/978-3-642-34176-2_20
http://dx.doi.org/10.1007/978-3-642-34176-2_20
http://ceur-ws.org/Vol-2019/mdebug_1.pdf
http://dx.doi.org/10.14279/tuj.eceasst.54.768
http://dx.doi.org/10.1109/ICIT.2012.6209959
http://dx.doi.org/10.1145/2480362.2480569
http://dx.doi.org/10.1007/978-3-319-08789-4_10
http://dx.doi.org/10.1007/978-3-319-08789-4_10
http://dx.doi.org/10.1145/2047862.2047885
http://dx.doi.org/10.1177/0037549716658360
http://ceur-ws.org/Vol-2245/mdebug_paper_3.pdf
http://ceur-ws.org/Vol-2019/mdebug_4.pdf
http://ceur-ws.org/Vol-2245/mdebug_paper_1.pdf
https://digital.ub.uni-paderborn.de/ubpb/urn/urn:nbn:de:hbz:466:2-15597
http://dx.doi.org/10.1007/978-3-642-34176-2_8
http://dx.doi.org/10.1007/978-3-642-34176-2_8
http://dx.doi.org/10.1109/APSEC.2013.21


12 VICToRy: Visual Interactive Consistency Management in Tolerant Rule-based Systems

[28] Perdita Stevens (2014): Bidirectionally Tolerating Inconsistency: Partial Transformations. In Stefania Gnesi
& Arend Rensink, editors: FASE 2014, Springer, Berlin, Heidelberg, pp. 32–46, doi:10.1007/978-3-642-
54804-8 3.

[29] Matthias Tichy, Luis Beaucamp & Stefan Kögel (2017): Towards Debugging the Matching of Henshin Model
Transformations Rules. In Burgueño et al. [6], pp. 455–456. Available at http://ceur-ws.org/Vol-2019/
mdebug 2.pdf.

[30] Gergely Varró, Anthony Anjorin & Andy Schürr (2012): Unification of Compiled and Interpreter-Based
Pattern Matching Techniques. In Antonio Vallecillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald Störrle &
Dimitrios S. Kolovos, editors: ECMFA 2012, Kgs. Lyngby, Denmark, July 2-5, 2012. Proceedings, LNCS
7349, Springer, pp. 368–383, doi:10.1007/978-3-642-31491-9 28.

[31] Nils Weidmann, Anthony Anjorin, Lars Fritsche, Gergely Varró, Andy Schürr & Erhan Leblebici (2019):
Incremental Bidirectional Model Transformation with eMoflon::IBeX. In James Cheney & Hsiang-Shang
Ko, editors: Bx@PLW 2019, CEUR Workshop Proceedings 2355, CEUR-WS.org, pp. 45–55. Available at
http://ceur-ws.org/Vol-2355/paper4.pdf.

http://dx.doi.org/10.1007/978-3-642-54804-8_3
http://dx.doi.org/10.1007/978-3-642-54804-8_3
http://ceur-ws.org/Vol-2019/mdebug_2.pdf
http://ceur-ws.org/Vol-2019/mdebug_2.pdf
http://dx.doi.org/10.1007/978-3-642-31491-9_28
http://ceur-ws.org/Vol-2355/paper4.pdf

	1 Introduction and Motivation
	2 An Overview of Supported Features
	2.1 Running Example
	2.2 Configurable Visualisation of Rules and Rule Applications
	2.3 Explorable and Interactive Overview of Applied Rules

	3 Architecture
	4 Case Study
	4.1 The Adosate TGG
	4.2 Experiment and Results

	5 Related Work
	6 Conclusion and Future Work

