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The concept of adverse conditions addresses systems interacting with an adversary environment
and finds use also in the development of new technologies. We present an approach for modeling
adverse conditions by graph transformation systems. In contrast to other approaches for graph-
transformational interacting systems, the presented main constructs are graph transformation systems.
We introduce joint graph transformation systems which involve a system, an interfering environment,
and an automaton modeling their interaction. For joint graph transformation systems, we introduce
notions of (partial) correctness under adverse conditions, which contain the correctness of the system
and a recovery condition. As main result, we show that two instances of correctness, namely k-step
correctness (recovery in at most k steps after an environment intervention) and last-minute correctness
(recovery until next environment intervention) are expressible in LTL (linear temporal logic), and that
a weaker notion of k-step correctness is expressible in CTL (computation tree logic).

1 Introduction

System correctness under adverse conditions is a topic of recent research. This concept addresses systems
which interact with an environment and finds use also in the development of new technologies such as
autonomous driving [14] and neural networks [24].1 Correctness in this sense means that the interaction
between system and environment satisfies desired behavioral properties. One assumes that the environment
exhibits an only partially predictable behaviour and may have an adverse effect.

Graph transformation systems (GTS), as considered, e.g., in [7], are a visual but yet precise formalism
for modeling a system. In this perception, system states are captured by graphs and state changes by graph
transformations.

Topics in graph transformation are growing in popularity. While several concepts in the scope of
graph-transformational interacting systems such as graph transformation systems with dependencies [5],
distributed graph transformation [21], autonomous units [15], graph-transformational swarms [1], and
graph-transformational multi-agent systems [23] have been introduced, there is fewer research which
explicitly considers the special case of adverse conditions, e.g., [9,18]. Adverse conditions are modeled by
an interfering environment. Our approach focuses on the particular case in which the interaction between
system and environment is regulated. A natural way for modeling the interaction is to utilize automata.
The idea is to construct a joint system which involves the system, the environment, and a regulation
automaton.
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Fig. 1: construction of the joint system

In contrast to other approaches, the constructed joint system is in the same class as the system and the
environment, i.e., a graph transformation system. This can be advantageous for transfering well-known
concepts for graph transformation systems such as model checking [16] and well-structuredness [17] into
this framework.

Regarding the latter, the correctness notion for GTSs is also applicable to joint graph transformation
systems. The definition of (partial) correctness of a GTS w.r.t. a precondition and a postcondition means
that for every graph satisfying the precondition, every graph derived via the GTS satisfies the postcondition.
However, this turns out to be too restrictive as a notion of correctness under adverse conditions. The
validity of the postcondition may be violated after an interference of the environment; nonetheless, the
postcondition must be recovered. Correctness notions for joint GTSs contain the correctness of the system
and a recovery condition. We consider two instances of correctness notions, i.e., recovery conditions:
One possibility is to limit the maximal number of steps after which the postcondition must be recovered
(k-step correctness). By contrast, the notion of last-minute correctness demands not a recovery after k
steps but a recovery until the environment interferes again.

As main result, we show that correctness of joint GTSs in both cases can be formalized in terms of a
temporal logic, namely LTL (linear temporal logic). In addition to that, we show that a weaker notion of
k-step correctness is expressible in CTL (computation tree logic). These reductions are favorable since,
e.g., the tool GROOVE [16] provides a way for LTL/CTL model checking for graph-based systems.

The concepts are illustrated by a simple traffic network system under stress.

Example 1 (traffic network system). We model a traffic network system (TNS) where the adverse
conditions are blocked connections due to jams, accidents, or damages on the tracks. Nodes correspond
to traffic junctions while an edge of the form represents a connection between them. An edge
labeled with the symbol ) describes a vehicle in the traffic line between the traffic junctions. The rule
Ascend/Descend formalizes the ascent/descent of a vehicle onto/off the traffic network. We realize
a traffic flow by the rule Move, which enables vehicles to change their position to an adjacent track.
Blocked tracks (  ) occur only if a connection is highly frequented, i.e., if v vehicles are on the
same track; this is formalized by the environment rule Block. For the sake of simplicity, we choose v = 2.
Blocked tracks can be repaired by the rule Repair. Formally, we consider the following system S and
environment E :

S



Ascend :

〈
1 2

⇒
)

1 2

〉

Descend :

〈
)

1 2
⇒

1 2

〉

Move :

〈
)

1 2 3
⇒

1 2 3

)
〉

Repair :
〈

 
1 2

⇒
1 2

〉

E

 Block :

〈 )

)
1 2⇒ 1 2

)

)

 
〉

Fig. 2: system and environment rules of the TNS
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The regulation automaton A modeling the interaction between system and environment is given by the
following figure:

q0 q1

Block

{Move, Ascend, Descend}

Repair

Fig. 3: representation of the regulation automaton A

The joint system is a graph transformation system and constructed as the union of the “enriched” rule sets
of system and environment. By this enrichment, the regulation automaton is “synchronized” with a rule
set.

This paper is organized as follows: In Section 2, we recall the basic notions of graph transformation, graph
conditions, LTL, and CTL, before defining joint graph transformation systems in Section 3. In Section
4, we investigate three correctness notions for joint GTSs. Our main result showing that the presented
correctness notions can be formalized in LTL/CTL is proven in Section 5. In Section 6, we present related
concepts. We close with a conclusion and an outlook in Section 7.

2 Preliminaries

We recall basic notions of graphs, graph conditions, rules, and transformations and define temporal graph
constraints corresponding to temporal formulas.

2.1 Graph Transformation Systems

In the following, we recall the definitions of graphs, graph conditions, rules, and graph transformation
systems [7]. We assume that the reader is familiar with pushouts, see, e.g., [7].

A directed, labeled graph consists of a set of nodes and a set of edges where each edge is equipped
with a source and a target node and where each node and edge is equipped with a label.

Definition 1 (graphs & morphisms). A (directed, labeled) graph (over a label alphabet Λ) is a tuple
G = 〈VG,EG,sG, tG,λV,G,λE,G〉 where VG and EG are finite sets of nodes (or vertices) and edges, sG, tG :
EG→VG are functions assigning source and target to each edge, and λV,G : VG→ Λ, λE,G : EG→ Λ are
labeling functions. Given graphs G and H, a (graph) morphism g : G→H consists of functions gV : VG→
VH and gE : EG→ EH that preserve sources, targets, and labels, i.e., gV ◦ sG = sH ◦gE , gV ◦ tG = tH ◦gE ,
λV,G = λV,H ◦gV , λE,G = λE,H ◦gE . The morphism g is injective (surjective) if gV and gE are injective
(surjective), and an isomorphism if it is injective and surjective. In the latter case, G and H are isomorphic,
which is denoted by G∼= H. If g is injective, we write also g : G ↪→ H. The composition of morphisms is
defined componentwise.

Graph conditions are nested constructs which can be represented as trees of morphisms equipped with
quantifiers and Boolean connectives. Graph conditions and first-order graph formulas are expressively
equivalent [11, 20].
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Definition 2 (graph conditions). The class of (graph) conditions over a graph P is defined inductively:
(i) true is a graph condition over P, (ii) ∃(a,c) is a graph condition over P where a : P ↪→C is an injective
morphism and c is a condition over C, (iii) for conditions c, c′ over P, ¬c and c∧ c′ are conditions over P.
Conditions over the empty graph ∅ are called constraints. In the context of rules, conditions are called
application conditions.

Graph conditions may be written in a more compact form: ∃a abbreviates ∃(a,true), false abbreviates
¬true. The expressions c∨ c′ and c⇒ c′ are defined as usual. For an injective morphism a : P ↪→C in a
condition, we just depict the codomain C if the domain P can be unambiguously inferred.

Example 2 (no blocked track). The constraint NoBlocked := ¬∃
(

 
)

expresses that, intuitively
speaking, there is no blocked track in the traffic network (see Example 1).

Definition 3 (semantics). The semantics of graph conditions are defined inductively: (i) Any injective
morphism p : P ↪→ G satisfies true.
(ii) An injective morphism p satisfies ∃(a,c) with a : P ↪→ C if there exists an injective morphism
q : C ↪→ G such that q◦a = p and q satisfies c.

P

G

C,a

p q
=

c

|=
)∃(

(iii) An injective morphism p satisfies ¬c if p does not satisfy c, and p satisfies c∧ c′ if p satisfies both c
and c′.
We write p |= c if p satisfies the condition c (over P). A graph G satisfies a constraint c, G |= c, if the
morphism p : ∅ ↪→ G satisfies c.

Remark. The validity of graph constraints is closed under isomorphisms, i.e., for every graph constraint
c and every isomorphism G∼= G′, G |= c iff G′ |= c. This can be shown by an induction over the structure
of constraints.

Rules are specified by a pair of injective morphisms. For restricting the applicability of rules, the rules are
equipped with a left application condition. Such a rule is applicable with respect to an injective “match”
morphism from the left-hand side of the rule to a graph iff the underlying plain rule is applicable and the
match morphism satisfies the left application condition.

Definition 4 (rules & transformations). A (graph transformation) rule r = 〈p,ac〉 (over Λ) consists
of a plain rule p = 〈L←↩ K ↪→ R〉 with injective morphisms K ↪→ L and K ↪→ R and an application
condition ac over L. A rule 〈p,true〉 is abbreviated by p (where L, K, and R are graphs over Λ). A
(direct) transformation from a graph G to a graph H applying rule r at an injective morphism g consists of
two pushouts (1) and (2) as shown in the figure where g |= ac (for the definition & existence of pushouts
in the category of graphs, see, e.g., [7]). By G⇒ H we denote (the existence of) a direct transformation
from G to H. A rule r is applicable to a graph G if there is a transformation from G to a graph H via r.

L K R

DG H

g d h(1) (2)

ac

=|

A transformation sequence (of length n) is a sequence 〈G = G0⇒ . . .(⇒ Gn = H)〉 of direct transforma-
tions. For n≥ 0, we write G⇒∗ H or G⇒n H. For n≥ 1, we denote this also by G⇒+ H. (By n = 0,
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we mean G∼= H.) If there is an n≤ k s.t. G⇒n H, we write also G⇒≤k H.
Direct transformations and transformation sequences may be indicated with the applied rule or the rule
set, respectively, to which the applied rules belong.

Notation. A rule 〈L←↩ K ↪→ R〉 sometimes is denoted by 〈L⇒ R〉 where indices in L and R refer to the
corresponding nodes.

We consider the simplest, unregulated type of system, i.e., a finite set of graph transformation rules.

Definition 5 (graph transformation system). A graph transformation system (GTS) (over Λ) is a finite
set of graph transformation rules (over Λ).

Completing finite sequences to infinite sequences is one way to handle the semantics of temporal graph
constraints since temporal formulas are usually defined on infinite sequences. The following proposition
provides the construction of the completion of a GTS R where finite sequences are extended to infinite
sequences.

Proposition 1 (applicability). For every graph transformation system R and every plain rule p = 〈L⇒
R〉, there is an application condition app(R, p) s.t. for every transformation G⇒p H ′ with g : L ↪→ G,
g |= app(R, p) iff ∃H : G⇒R H. Consequently, the rule 〈p,¬app(R, p)〉 is applicable only if no rule
from R is applicable.

Proof. For the plain rule p = 〈L←↩ K ↪→ R〉, let p−1 = 〈R←↩ K ↪→ L〉 be the inverse rule of p. Let

app(R, p) := A(p−1,∨r∈R¬wlp(r,false)).

Consider the transformation H ′⇒p−1 G:

L K R

DG H ′

g d h′

app(R, p)

=|

g |= app(R, p) iff

g |= A(p−1,∨r∈R¬wlp(r,false)) iff (Theorem 1 of [12])

G |= ∨r∈R¬wlp(r,false) iff (Fact 2 of [12])

∃r ∈R : ∃H : G⇒r H

If 〈p,¬app(R, p)〉 is applicable to a graph G, there is a morphism g : L ↪→ G s.t. g |= ¬app(R, p), i.e.,
there is no graph H s.t. G⇒R H. 2

Remark. The rule 〈p,¬app(R, p)〉 is not applicable to a graph if p ∈R. We consider the special case
p = Skip /∈R. In this case, 〈Skip,¬app(R,Skip)〉 is applicable iff no rule from R is applicable.

Definition 6 (completion). For a graph transformation system R, the completion R of R is given by
R := R ∪{〈Skip,¬app(R,Skip)〉}.

The completion of a GTS yields only infinite transformation sequences by applying the rule Skip :=
〈∅⇒∅〉 when no rule from R is applicable.
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2.2 Temporal Graph Constraints

Temporal formulas such as LTL and CTL formulas are well-known in logics, see, e.g., [3, 4, 8]. We adapt
the notions and consider so-called LTL/CTL graph constraints [18], i.e., temporal formulas whose atoms
equate to graph constraints.

We first define LTL graph constraints and their semantics. The temporality is interpreted as the changes
along a transformation sequence. Every direct transformation correlates to a time step. Besides the
common propositional operators there are temporal operators, e.g., the operator X (NeXt) describes the
validity of a formula in the next step while G (Globally) describes the validity of a formula in every
following step. The operator U (Until) describes the validity of a first formula until a second formula is
valid.

Definition 7 (LTL graph constraints & semantics). The class LTL of linear temporal logic (graph)
constraints is defined inductively: (i) Every graph constraint is in LTL, (ii) for all ϕ,ψ ∈ LTL, ϕ ∧ψ,
ϕ∨ψ,¬ϕ,ϕ⇒ψ ∈ LTL (propositional operators), (iii) for all ϕ,ψ ∈ LTL, Xϕ,Gϕ,ϕUψ,ϕWψ ∈ LTL
(temporal operators).
The semantics of LTL constraints is defined for infinite transformation sequences: Let S = 〈G0⇒ . . .〉 be
an infinite transformation sequence. The satisfaction of LTL constraints in S, denoted by |=, is defined
inductively:
(i) For a graph constraint c, Gi |= c if Gi satisfies c as graph constraint.
(ii) The semantics for the propositional operators are as usual, e.g., for ϕ ∈ LTL, Gi |= ¬ϕ if Gi 6|= ϕ .
(iii) For all ϕ,ψ ∈ LTL,

(a) Gi |= Xϕ if Gi+1 |= ϕ ,
(b) Gi |= Gϕ if Gk |= ϕ for all k ≥ i,
(c) Gi |= ϕUψ if there is l ≥ i s.t. Gl |= ψ and Gk |= ϕ for all i≤ k < l,
(d) Gi |= ϕWψ if Gi |= ϕUψ ∨Gϕ .

For an LTL constraint ϕ , S satisfies ϕ , in symbols S |= ϕ , if G0 |= ϕ .
A GTS R satisfies ϕ , in symbols R |= ϕ , if S |= ϕ for all infinite sequences S in the completion R.

Remark. It is not necessary to distinguish between the propositional operators of LTL and the proposi-
tional operators in the graph constraints since they are “equivalent”, e.g., G |= a∧b iff G |= a∧LTL b for
every graph G and all graph constraints a,b where ∧LTL is the conjunction of LTL.

CTL graph constraints are, like LTL graph constraints, temporal formulas where the atoms equate to
the graph constraints. By contrast, the temporality is here branching, i.e., we consider changes along
a transformation tree. Besides the common propositional operators, there are path-quantified temporal
operators which are pairs of operators: the first one is either A (for All following paths) or E (there Exists
a following path), the second one is a temporal operator. The operator AG means the valdity of a formula
in all following sequences, and EF means that a graph can be reached where the formula is valid.

Definition 8 (CTL graph constraints). The class CTL of computation tree logic (graph) constraints is
defined inductively by: (i) Every graph constraint is an element of CTL. (ii) For every ϕ,ψ ∈ LTL: (a)
ϕ ∧ψ,ϕ ∨ψ,¬ϕ,ϕ⇒ ψ ∈ CTL (propositional operators), (b) AXϕ,EXϕ,AGϕ,EGϕ,ϕAUψ,ϕEUψ,
ϕAWψ,ϕEWψ ∈ CTL (path-quantified temporal operators).

The semantics of CTL constraints is defined on a transformation tree which is constructed as the unfolding
of a GTS with a distinguished root graph. We give a formal definition of transformation trees.

Definition 9 (transformation tree). Let R be a GTS and G be a graph. The transformation tree T (G) of
G w.r.t. R is a tuple 〈FinSeq(G,R),⊂R〉where FinSeq(G,R) is the set of finite transformation sequences
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in R starting from G and ⊂R is a relation on FinSeq(G,R) s.t. F ⊂R F ′ iff F is a subsequence of F ′

and their lengths differ by 1. A path in T (G) is a sequence of consecutively ⊂R-related transformation
sequences in FinSeq(G,R).

By identifying a transformation sequence 〈G⇒R . . .⇒R H〉 ∈ FinSeq(G,R) with the graph H and ⊂R

with⇒R , we obtain the following characterization of paths in the transformation tree: A path in T (G) is
a transformation sequence in R starting from a graph H ∈L (G) where L (G) is the language of G, i.e.,
the set of all graphs which are reachable from G via⇒R , see, e.g., [7].

Definition 10 (semantics of CTL). Let T (G) be a transformation tree. The satisfaction of CTL con-
straints in T (G) is defined inductively:
(i) For a graph constraint c and H ∈L (G), H |= c if H satisfies c as graph constraint.
(ii) The semantics for the propositional operators are as usual, e.g., for ϕ ∈ CTL and H ∈L (G), H |= ¬ϕ

if H 6|= ϕ .
(iii) For ϕ,ψ ∈ CTL, H ∈L (G) and O ∈ {X,G,U,W},

(a) H |= AOϕ (H |= ϕAOψ) if for all infinite paths S of T (G), which start in H, S satisfies Oϕ

(ϕAOψ) in the LTL-sense, e.g., H |= AGϕ means: for every infinite path 〈H = H0 ⇒R . . .〉,
for every i≥ 0, Hi |= ϕ .

(b) H |= EOϕ (H |= ϕEOψ) if there is an infinite path of T (G), which starts in H and satisfies Oϕ

(ϕEOψ) in the LTL-sense, e.g., H |= EXϕ means: there is an infinite path 〈H = H0 ⇒R . . .〉
s.t. H1 |= ϕ .

For a CTL constraint ϕ , T (G) satisfies ϕ , in symbols T (G) |= ϕ , if G |= ϕ .
A GTS R satisfies ϕ , in symbols R |= ϕ if T (G) |= ϕ for all transformation trees T (G) w.r.t. R (i.e., for
all graphs G).

3 Joint Graph Transformation Systems

In this section, we define joint graph transformation systems, each of which involves the system, the
environment, and an automaton modeling the interaction between them. Both system and environment
are GTSs. We illustrate the way of functioning of a joint graph transformation system by a very simple
example, namely the TNS in Example 1.

Assumption. In the following, let Λ be a fixed label alphabet, and S and E be GTSs over Λ. W.l.o.g.,
we assume that S and E are disjoint. (If S and E share a common rule r, we assign r different names in
S and E .)

We specify the class of automata which are used to regulate the interaction between system and environ-
ment. These regulation automata are similar to ω-automata, see, e.g., [22].

Definition 11 (regulation automaton). A regulation automaton of 〈S ,E 〉 is a tuple A = 〈Q,q0,δ ,sel〉
consisting of a finite set Q disjoint from Λ, called the state set, a starting state q0 ∈Q, a transition relation
δ ⊆ Q×Q, and a function sel : δ → P(S ∪E ) (into the power set of S ∪E ), called the selection
function. A regulation automaton is proper if no element of the transition relation δ is assigned to the
empty set and δ+(q0)⊇Q\{q0}, i.e., the image of {q0} under the transitive closure δ+ contains Q\{q0}.

Remark. Alternatively, the interaction between system and environment can be specified by an ω-regular
language [22] over the alphabet P(S ∪E ) corresponding to the accepting regulation automaton. In order
to obtain a GTS as joint system, we prefer to use regulation automata.



42 Modeling Adverse Conditions in the Framework of Graph Transformation Systems

An example of a regulation automaton of 〈S ,E 〉 is given in Example 1 where the system S consists of the
rules Ascend, Descend, Move, and Repair and the only environment rule is Block. In the following, we
consider only proper regulation automata. However, this leads not to a loss of generality (see Proposition
3).

A joint graph transformation system is obtained by “synchronizing” the system, repectively, the
environment, with the simulation of the regulation automaton, and then joining both sets of enriched rules.

Definition 12 (joint graph transformation system). Let S and E be graph transformation systems,
called system and environment, respectively, and A = 〈Q,q0,δ ,sel〉 a regulation automaton of 〈S ,E 〉.
The joint (graph transformation) system of S and E w.r.t. A is the graph transformation system SA∪EA,
shortly S E , where for a rule set R ∈ {S ,E }, RA denotes the enriched rule set

RA = {〈〈L,q〉 ⇒ 〈R,q′〉,ac〉|〈L⇒ R,ac〉 ∈R ∩ sel〈q,q′〉 and 〈q,q′〉 ∈ δ}

where 〈〈L,q〉 ⇒ 〈R,q′〉〉 abbreviates 〈〈L,q〉 ←↩ K ↪→ 〈R,q′〉〉 for 〈L⇒ R〉= 〈L←↩ K ↪→ R〉. For a graph
G and a state q, 〈G,q〉 denotes the graph G+ q , i.e., the disjoint union of G and a node labeled with q.

Remark. On the one hand, every joint graph transformation system is a graph transformation system over
the label set Λ∪Q where Q is the state set of the regulation automaton. On the other hand, for every graph
transformation system S , one can construct an “equivalent” joint graph transformation system using the
environment E =∅ and the regulation automaton given by:

q0

S

Fig. 4: representation of the considered regulation automaton of 〈S ,∅〉

Convention. Joint graph transformation systems are applied to graphs of the form 〈G,q0〉 where G is a
graph over Λ and q0 is the starting state of the regulation automaton.

The following proposition shows that in our construction of joint graph transformation systems, system
rules, and environment rules, respectively, are synchronized with the corresponding transitions of the
regulation automaton.

Proposition 2 (synchronization). For a rule r = 〈L⇒ R,ac〉 of the GTS S ∪E , let rA = 〈〈L,q〉 ⇒
〈R,q′〉,ac〉 be a corresponding enriched rule in the joint system S E w.r.t. a regulation automaton A =
〈Q,q0,δ ,sel〉. There is a transformation sequence 〈G0,q0〉 ⇒r1,A . . .(⇒rn,A 〈Gn,qn〉) in S E iff there is a
transformation sequence G0⇒r1 . . .(⇒rn Gn) in S ∪E s.t. 〈qi−1,qi〉 ∈ δ and ri ∈ sel〈qi−1,qi〉 for i≥ 1.

Proof. By definition of the enriched rule set, for all graphs G,G′ over Λ, 〈G,q〉 ⇒rA 〈G′,q′〉 iff G⇒r

G′ s.t. 〈q,q′〉 ∈ δ and r ∈ sel〈q,q′〉. 2

For every regulation automaton, there is an “equivalent” proper one.

Proposition 3 (proper regulation automata). For all graph transformation systems S , E and every
regulation automaton A of 〈S ,E 〉, there is a proper regulation automaton A′ s.t. every transformation
sequence in SA∪EA starting from a graph 〈G0,q0〉 is also a transformation sequence in SA′ ∪EA′ , and
vice versa.
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Proof. For A = 〈Q,q0,δ ,sel〉, let A′ = 〈Q′,q0,δ
′,sel〉 where Q′ ⊆ Q is the set of states, which can be

reached from q0 without crossing transitions 〈q,q′〉with sel〈q,q′〉=∅, and δ ′= δ ∩Q′×Q′. The inclusion
SA′ ∪ EA′ ⊆ SA ∪ EA yields one direction of the statement. Conversely, consider the transformation
sequence 〈G0,q0〉 ⇒r1 . . .(⇒rn 〈Gn,qn〉) in SA ∪EA. Assume that there is i ≥ 1 s.t. ri = 〈〈L,qi−1〉 ⇒
〈R,qi〉,ac〉 6∈SA′ ∪EA′ . By construction of A′, qi cannot be reached from q0 without crossing a transition
〈q,q′〉 with sel〈q,q′〉=∅. This is a contradiction to Proposition 2. 2

Example 3 (traffic network system). Consider the system S , the environment E , and the regulation
automaton A given in Example 1. The joint graph transformation system SA∪EA is given by:

SA



AscendA :

〈
1 2

q0 ⇒
)

1 2
q0

〉

DescendA :

〈
)

1 2
q0 ⇒

1 2
q0

〉

MoveA :

〈
)

1 2 3
q0 ⇒

1 2 3

)
q0

〉
RepairA :

〈
 

1 2
q1 ⇒

1 2
q0

〉

EA

 BlockA :

〈 )

)
1 2 q0 ⇒ 1 2

)

)

 q1

〉

Fig. 5: the TNS as joint graph transformation system

4 Correctness Notions

In this section, we recall a notion of correctness for GTSs and define three instances of correctness notions
for joint systems, which generalize correctness for GTS, namely k-step, weak k-step, and last-minute
correctness.

The definition of (partial) correctness of a GTS w.r.t. a precondition and a postcondition means that
for every graph satisfying the precondition, every graph derived via the GTS satisfies the postcondition.
This is a stronger notion than the usual definition of correctness since we demand that the postcondition is
valid in every following step and not only in the first step.

Definition 13 (correctness). Let 〈c,d〉 be a pair of graph constraints over Λ. A graph transformation
system R is (partially) correct w.r.t. 〈c,d〉 if for all graphs G,H over Λ with G |= c and G⇒+

R H, H |= d
holds. We call c the precondition and d the postcondition.

Example 4 (system correctness of the TNS). It is clear that the TNS is not correct w.r.t. 〈c,c〉 where
c = NoBlocked. However, the postcondition is violated only after applying BlockA. The enriched system
SA of the traffic network is correct w.r.t. 〈c,c〉 since Block is not a system rule.

Convention. In the context of correctness, enriched rule sets and joint GTSs are treated as GTSs over Λ.

For joint systems, this correctness notion is too restrictive. We allow that the validity of the postcondition
is violated for a short period after an interference of the environment. Nonetheless, the postcondition must
be recovered. We give two examples of correctness notions.
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One possibility is to limit the maximal number of steps, after which the postcondition must be
recovered.

Assumption. In the following, let S E be a joint system w.r.t. a regulation automaton A = 〈Q,q0,δ ,sel〉
and 〈c,d〉 be a pair of graph constraints over Λ.

The notion of k-step correctness demands that after an interference of the environment, recovery of the
postcondition must occur in at most k steps.

Definition 14 (k-step correctness). Let k be a natural number. The joint system S E is k-step correct
w.r.t. 〈c,d〉 if

(S) the enriched system SA is correct w.r.t. 〈c,d〉 and

(Rk) for every graph G = 〈G′,q0〉 with G |= c and every transformation sequence 〈G⇒∗S E H ⇒EA

M⇒k
S E

N〉 there is a subsequence 〈M⇒≤k
S E

N′〉 with N′ |= d (k-step recovery).

Example 5 (1-step correctness of the TNS). Let c = NoBlocked. The traffic network system is neither
correct w.r.t. 〈c,c〉 nor 0-step correct but 1-step correct w.r.t. 〈c,c〉 since after applying BlockA, there is a
blocked track and immediately, by applying RepairA, the blocked track vanishes.

The notion of k-step correctness yields a hierarchy. By the following proposition, k-step correctness
implies (k+1)-step correctness for k ≥ 1. Hence, the TNS is also k-step correct w.r.t. 〈c,c〉 for k ≥ 1.

Proposition 4 (hierarchy of k-step correctness). Let k be a natural number.

(i) If S E is correct w.r.t. 〈c,d〉, then it is 0-step correct w.r.t. 〈c,d〉.
(ii) If S E is k-step correct w.r.t. 〈c,d〉, then it is (k+1)-step correct w.r.t. 〈c,d〉.

Proof. This follows by definition. 2

correct

0-step correct

1-step correct

...

Fig. 6: illustration of the hierarchy of k-step correctness

We introduce another notion of correctness which demands not a recovery after k steps but a recovery
until the next enviroment step, i.e., the postcondition must hold at the last point in time before the next
environment rule is applied.
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Definition 15 (last-minute correctness). A joint graph transformation system S E is last-minute correct
w.r.t. 〈c,d〉 if

(S) the enriched system SA is correct w.r.t. 〈c,d〉 and

(R) for every transformation sequence 〈G⇒∗S E M ⇒EA N ⇒+
SA

H ⇒EA H ′〉 with G = 〈G′,q0〉 and
G |= c, H |= d holds (last-minute recovery).

Example 6 (last-minute correctness of the TNS). Let c = NoBlocked. The traffic network system is
last-minute correct w.r.t. 〈c,c〉 since after applying BlockA there is a blocked track but immediately, by
applying RepairA, the blocked track vanishes and there is no blocked track until again BlockA is applied.

Condition (R) can be replaced by a simpler condition (R’) if we assume the correctness of the enriched
system. We have the following characterization:

Proposition 5 (characterization of last-minute correctness). A joint system S E is last-minute correct
w.r.t 〈c,d〉 iff the condition (S) holds and (R’) for every transformation sequence 〈G⇒∗S E N⇒SA H⇒EA

H ′〉 with G = 〈G′,q0〉 and G |= c , H |= d holds.

Proof. “(R’)⇒ (R)”: Assume that (R’) holds. Consider a transformation sequence 〈G⇒∗S E M⇒EA

N⇒+
SA

H⇒E H ′〉 with G |= c. Then there is a graph N′ s.t. N⇒∗SA
N′⇒SA H. We apply condition (R’)

to the transformation sequence 〈G⇒∗S E N′⇒SA H⇒EA H ′〉 and obtain H |= d.
“(R) ∧ (S)⇒ (R’)”: Assume that (R) and (S) hold. Consider a transformation sequence 〈G⇒∗S E N⇒SA

H⇒EA H ′〉 with G |= c. If the subsequence 〈G⇒∗S E N⇒SA H〉 is also transformation sequence in SA,
H |= d since the enriched system is correct w.r.t. 〈c,d〉. If this is not the case, there exist graphs M′,N′

s.t. G⇒∗S E M′⇒EA N′⇒+
SA

H. We apply (R) to the transformation sequence 〈G⇒∗S E M′⇒EA N′⇒+
SA

H⇒EA H ′〉 and obtain H |= d. 2

We give an overview of the correctness notions:

correctness of S E

correctness of SA

last-minute correctness of S E

...

0-step correctness of S E

1-step correctness of S E

Fig. 7: relations of the correctness notions

The notion of weak k-step correctness demands that after an interference of the environment, in at least
one following sequence, recovery of the postcondition must occur in at most k steps.
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Definition 16 (weak k-step correctness). Let k be a natural number. A joint system S E is weakly
k-step correct w.r.t. 〈c,d〉 if

(S) the enriched system GTS S is correct w.r.t. 〈c,d〉 and

(Rk
w) for every graph G = 〈G′,q0〉 with G′ a graph over Λ, G |= c and every transformation sequence
〈G⇒∗S E H⇒EA M〉 there is an N s.t. M⇒≤k

S E N and N |= d (weak k-step recovery).

Weak k-step correctness is, indeed, a weaker notion than k-step correctness. Similarly to k-step correctness,
we obtain a hierarchy for weak k-step correctness.

Proposition 6 (relation to k-step correctness). Let k be a natural number.

(i) If S E is k-step correct w.r.t. 〈c,d〉, then S E is weakly k-step correct w.r.t. 〈c,d〉.
(ii) If S E is weakly k-step correct w.r.t. 〈c,d〉, then S E is weakly (k+1)-step correct w.r.t. 〈c,d〉.

Proof. This follows by definition. 2

The following example is weakly k-step correct for every k ≥ 1 but not k-step correct for any k w.r.t. the
same pre- and postcondition.

Example 7 (weak 1-step correctness). Let c = NoBlocked. Consider the system and environment in
Example 1. Let B be the regulation automaton given by the following figure:

q0 q1

Block

{Move, Ascend, Descend} S

Repair

Fig. 8: representation of the regulation automaton B

In this case, the joint system SB∪EB is weakly 1-step w.r.t. 〈c,c〉 since RepairB can be applied after
an application of BlockB and before BlockB is applied again, the blocked track must vanish due to an
application of RepairB. (By Proposition 6, it is weakly k-step correct for k ≥ 1.) It is not k-step correct
w.r.t. 〈c,c〉 for any k since the other system rules may be applied arbitrarily often after an application of
BlockB.

5 Reduction to Model Checking

In this section, we show as main result that our correctness notions can be expressed as LTL or CTL
constraints, respectively, i.e., that verification can be reduced to LTL or CTL model checking, respectively.
This is favorable since the tool GROOVE [16] provides a way for LTL and CTL model checking for
systems where the states constitute graphs.

First, we refine our notion of joint graph transformation systems, namely to annotated joint graph
transformation systems which also carry the information whether the last applied rule was a system or
environment rule. This is realized by a node labeled with “S” or “E”.

Notation. For a joint graph transformation system S E , the symbol m(S ) := S, m(E ) := E, respectively,
is the marking of S , E , respectively. For a rule r ∈ R and R ∈ {S ,E }, let m(r) := m(R) be the
marking of r. Further, we define prm(r) := ∪q∈Qpre(r){m(r′)|r′ ∈S ∪E : q ∈ Qpost(r′)}∪{>|q = q0}
⊆ {>,S,E} as premarkings of r where Qpre(r) := {q ∈ Q|∃q′ ∈ Q : 〈q,q′〉 ∈ δ ,r ∈ sel〈q,q′〉} and
Qpost(r′) := {q ∈ Q|∃q′′ ∈ Q : 〈q′′,q〉 ∈ δ ,r′ ∈ sel〈q′′,q〉}.
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The set of premarkings of r depicts all markings of rules which could have been applied prior to an
application of r. In the following definition, it can simply be thought of {>,S,E} (the set of all possible
markings) instead of the premarkings.

Definition 17 (annotated joint graph transformation system). Let S E be a joint graph transfor-
mation systems w.r.t. a regulation automaton A = 〈Q,q0,δ ,sel〉 of 〈S ,E 〉. The annotated joint (graph
transformation) system of S and E w.r.t. A is S ′

A∪E ′A, shortly (S E )′, where for a rule set R ∈ {S ,E },
R ′A denotes the marked rule set

R ′A := {〈〈L,q,m〉 ⇒ 〈R,q′,m′〉,ac〉|
〈〈L,q〉 ⇒ 〈R,q′〉,ac〉 ∈RA,m ∈ prm〈L⇒ R,ac〉,m′ = m(R)}

where 〈〈L,q,m〉 ⇒ 〈R,q′,m′〉〉 abbreviates 〈〈L,q,m〉 ←↩ K ↪→ 〈R,q′,m′〉〉 for 〈L⇒ R〉 = 〈L←↩ K ↪→ R〉.
For a graph G, a state q, and a marking m, 〈G,q,m〉 denotes the graph G+ q + m , i.e., the disjoint union
of G, a node labeled with q, and a node labeled with m.

Example 8 (annotated TNS). Consider the system S , the environment E , and the regulation automaton
A given in Example 1. The annotated joint system S ′

A∪E ′A is given by:

S ′
A



Ascend′A,> :

〈
1 2

q0 > ⇒
)

1 2
q0 S

〉

Ascend′A,S :

〈
1 2

q0 S ⇒
)

1 2
q0 S

〉

Descend′A,> :

〈
)

1 2
q0 > ⇒

1 2
q0 S

〉

Descend′A,S :

〈
)

1 2
q0 S ⇒

1 2
q0 S

〉

Move′A,> :

〈
)

1 2 3
q0 > ⇒

1 2 3

)
q0 S

〉

Move′A,S :

〈
)

1 2 3
q0 S ⇒

1 2 3

)
q0 S

〉
Repair′A :

〈
 

1 2
q1 E ⇒

1 2
q0 S

〉

E ′A



Block′A,> :

〈 )

)
1 2 q0 > ⇒ 1 2

)

)

 q1 E

〉

Block′A,S :

〈 )

)
1 2 q0 S ⇒ 1 2

)

)

 q1 E

〉

Fig. 9: the TNS as annotated joint system

For every joint system, there is an “equivalent” annotated joint system.
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Proposition 7 (annotation). For an enriched rule r = 〈〈L,q〉⇒ 〈R,q′〉,ac〉 of a joint graph transformation
system S E w.r.t. a regulation automaton A = 〈Q,q0,δ ,sel〉, let r′ = 〈〈L,q,m〉 ⇒ 〈R,q′,m′〉,ac〉 be a
corresponding marked rule in the annotated joint graph transformation system (S E )′. There is a
transformation sequence 〈G0,q0〉 ⇒r1 . . .(⇒rn 〈Gn,qn〉) in S E iff there is a transformation sequence
〈G0,q0,>〉 ⇒r′1

〈G1,q1,m1〉 ⇒r′2
. . .(⇒r′n 〈Gn,qn,mn〉) in (S E )′ with markings mi ∈ {S,E} for i ≥ 1.

Moreover, in this case, for all i≥ 1, mi = m(R) iff ri ∈RA.

Proof. For every G,G′ over Λ, 〈G,q〉 ⇒r 〈G′,q′〉 iff 〈G,q,m〉 ⇒r′ 〈G′,q′,m′〉. By definition of marked
rule set, m′ = m(R) iff r ∈RA. 2

Remark. Annotated joint graph transformation systems are graph transformation systems over the label
set Λ∪Q∪{>,S,E}.

Convention. Annotated joint graph transformation systems are applied to graphs of the form 〈G,q0,>〉
where G is a graph over Λ and q0 is the starting state of the regulation automaton.

5.1 Reduction LTL Model Checking

We first consider the formalization of k-step and last-minute correctness as LTL constraints. The following
theorem states that checking k-step/last-minute correctness of a joint system is equivalent to checking
whether the annotated joint system satisfies a certain LTL constraint.

Theorem 1 (from correctness to LTL). For every pair 〈c,d〉 of graph constraints and every natural
number k, there are LTL constraints ϕ〈c,d〉 and ϕk〈c,d〉 s.t. for every joint system S E :

(a) S E is k-step correct w.r.t. 〈c,d〉 iff (S E )′ |= ϕk〈c,d〉.

(b) S E is last-minute correct w.r.t. 〈c,d〉 iff (S E )′ |= ϕ〈c,d〉.

For the condition of system correctness, the k-step, and the last-minute recovery condition, we construct
LTL constraints σ〈c,d〉, ψk〈c,d〉, and ψ〈c,d〉, respectively, where 〈c,d〉 are the pre- and postcondition.
Each of the considered LTL constraint formalizes the corresponding condition. By combining them, we
obtain conjunctions each formalizing the corresponding correctness notion.

Construction 1. Let

ϕk〈c,d〉 := σ〈c,d〉∧ψk〈c,d〉
ϕ〈c,d〉 := σ〈c,d〉∧ψ〈c,d〉

σ〈c,d〉 := c⇒ X((s∧d)We)

ψk〈c,d〉 := c⇒ XG(e⇒∨k
j=0X jd)

ψ〈c,d〉 := c⇒G(s∧Xe⇒ d)

where k is a natural number, X0 is “an empty operator”, and for j ≥ 0, X j+1 := X jX denotes the iterated
next-operator in LTL. The graph constraint s := ∃( S ) means that the last applied rule was a system rule
while e := ∃( E ) means that the last applied rule was an environment rule.

We split the proof into three lemmata showing that the formalizations of correctness notions as LTL
formulas are valid. We start with the formalization of the correctness of the enriched system.

The LTL constraint σ〈c,d〉 can be read as “If c holds at the start, from the following step on, either a
system rule was applied (s holds) and d holds forever or until an environment rule was applied (e holds)”.
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Lemma 1 (from system correctness to LTL). For a joint graph transformation system S E , the enriched
system SA is correct w.r.t. 〈c,d〉 iff (S E )′ |= σ〈c,d〉.

Proof. “⇒”: Let S = 〈G0⇒ G1⇒ . . .〉 be an infinite transformation sequence in (S E )′. Assume that
G0 |= c. Let S′ ⊆ S be the longest connected subsequence of S, which is also a sequence in S ′

A and starts
with G0. Since SA is correct w.r.t. 〈c,d〉, every graph Gi, i≥ 1 in S′ satisfies d. If S′ = S, we have that
G0 |= XG(s∧d), which implies G0 |= X((s∧d)We). If S′ 6= S, there is a smallest j with G j |= e. Due to
the correctness of SA, every Gi for 1≤ i≤ j−1 satisfies d. In this case, G0 |= X((s∧d)Ue), this implies
G0 |= X((s∧d)We).
We showed G0 |= c⇒ X((s∧d)We), so S |= σ〈c,d〉.
“⇐”: Assume that G |= c and G⇒+

S ′
A

H. We define S′ := 〈G⇒+
S ′

A
H〉which is a finite sequence in S ′

A. We

can complete S′ to an infinite sequence S⊇ S′ in (S E )′. Now holds S |= σ〈c,d〉, so G |= X((s∧d)We).
This implies that H |= d. 2

The next lemma shows that the formalization of the recovery condition of k-step correctness is valid.
Together with Lemma 1, this implies part (a) of Theorem 1.

The LTL constraint ψk〈c,d〉 can be read as “If c holds at the start, from the following step on, whenever
an environment rule was applied (e holds), there is a 0≤ j ≤ k s.t. in j steps d holds”.

Lemma 2 (from k-step recovery to LTL). A joint graph transformation system S E is k-step correct
w.r.t. 〈c,d〉 iff the enriched system SA is correct w.r.t. 〈c,d〉 and (S E )′ |= ψk〈c,d〉.

Proof. We have to show that (Rk) is equivalent to (S E )′ |= ψk〈c,d〉.
“⇒”: Let S = 〈G0⇒ G1⇒ . . .〉 be an infinite transformation sequence in (S E )′. Assume that G0 |= c.
Let M = Gi with i≥ 1 and M |= e be an element of S. We can construct a subsequence S′ := 〈G⇒∗(S E )′

H⇒E ′A
M⇒k

(S E )′
N〉 ⊂ S since M |= e. By definition of k-step correctness, there exists a subsequence

〈M⇒≤k
(S E )′

N′〉 ⊂ S′ with N′ |= d. This means, there is a 0≤ j ≤ k with M |= X jd, so M |= ∨k
j=0X jd. We

showed G0 |= XG(e⇒∨k
j=0X jd).

“⇐”: Let S′ := 〈G⇒∗(S E )′ H ⇒E ′A
M ⇒k

(S E )′
N〉 be transformation sequence with G |= c. We can

complete S′ to an infinite transformation sequence S ⊃ S′. We have that G |= ψk〈c,d〉, this means
G |= XG(e⇒∨k

j=0X jd). Thus, there exists a 0≤ j ≤ k with M |= X jd. 2

The next lemma shows that the formalization of the recovery condition of last minute correctness is valid.
Together with Lemma 1, this implies part (b) of Theorem 1.

The LTL constraint ψ〈c,d〉 can be read as “If c holds at the start, whenever a system rule was applied
and an environment rule is applied next, d holds”.

Lemma 3 (from last-minute recovery to LTL). A joint graph transformation system S E is last-minute
correct w.r.t. 〈c,d〉 iff the enriched system SA is correct w.r.t. 〈c,d〉 and (S E )′ |= ψ〈c,d〉.

Proof. “⇒”: Let S = 〈G0⇒ G1⇒ . . .〉 be a transformation sequence in (S E )′. Assume that G0 |= c.
We have to show that for every i ≥ 0, Gi |= s∧Xe⇒ d. Consider the transformation sequence 〈G0⇒
. . .⇒ Gi⇒ Gi+1〉 ⊆ S and assume Gi |= s, Gi+1 |= e. Since (R’) holds, we obtain that Gi |= d.
“⇐”: Let S′ = 〈G⇒∗(S E )′ N ⇒S ′

A
H〉 be a transformation sequence with G |= c and H |= e. We can

complete S′ to a transformation sequence S⊇ S′ in (S E )′. It holds S |= ψ〈c,d〉, i.e., S |= c⇒G(s∧Xe⇒
d). Since G |= c, also G |= G(s∧Xe⇒ d). Since N⇒S ′

A
H implies that N |= s, we obtain H |= d. 2

Proof (of Theorem 1). This follows directly by Lemma 1, 2, and 3. 2
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5.2 Reduction to CTL Model Checking

Similar to Theorem 1, we prove that weak k-step correctness can be formalized as CTL constraint. The
following theorem states that checking weak k-step correctness of a joint system is equivalent to checking
whether the annotated joint system satisfies a certain CTL constraint.

Theorem 2 (from correctness to CTL). For every pair 〈c,d〉 of graph constraints and every natural
number k, there is a CTL constraint θk s.t. for every joint GTS S E , S E is weakly k-step correct iff
(S E )′ |= θk〈c,d〉.

Construction 2. Let

θk〈c,d〉 := ξ 〈c,d〉∧ζk〈c,d〉
ξ 〈c,d〉 := c⇒ AX((s∧d)AWe)

ζk〈c,d〉 := c⇒ AXAG(e⇒∨k
j=0EX jd)

where k is a natural number, EX0 is “an empty operator”, and for j ≥ 0, EX j+1 := EX jEX denotes the
iterated existential next-operator in CTL.

The CTL constraint ξ 〈c,d〉 can be read as “If c holds at the start, for all following sequences, from the
following step on, for all following sequences, either a system rule was applied and d holds forever or
until an environment rule was applied”. It is the “CTL version” of the LTL constraint σ〈c,d〉.

Lemma 4 (from system correctness to CTL). For a joint system S E , the enriched system SA is correct
w.r.t. 〈c,d〉 iff (S E )′ |= ξ 〈c,d〉.

Proof. Similar to the proof of Lemma 1. 2

The CTL constraint ζk〈c,d〉 can be read as “If c holds at the start, for all following sequences, from the
following step on, for all following sequences, whenever an environment rule was applied, there exists a
following sequence and 0≤ j ≤ k s.t. d holds in j steps”.

Lemma 5 (from weak k-step recovery to CTL). A joint system S E is weakly k-step correct w.r.t.
〈c,d〉 iff the enriched system SA is correct w.r.t. 〈c,d〉 and (S E )′ |= ζk〈c,d〉.

Proof. We have to show that (Rk
w) is equivalent to (S E )′ |= ζk〈c,d〉.

“⇒”: Let T (G) be the transformation tree of G in (S E )′. Assume that G |= c. We show that for every
infinite path 〈G = G0 ⇒ G1 ⇒ . . .〉 starting from G, holds G1 |= AG(e⇒ ∨k

j=0EX jd), i.e., for every
infinite path 〈G = G0⇒ G1⇒ . . .〉 starting from G, Gi |= e⇒∨k

j=0EX jd for all i≥ 1. Let M = Gi with
i≥ 1 and M |= e be an element of an infinite path 〈G = G0⇒ G1⇒ . . .〉. Since M |= e, we can construct
a subsequence S := 〈G⇒∗(S E )′ H⇒E ′A

M〉. By definition of weak k-step correctness, there is an N with

N |= d and M⇒≤k
(S E )′

N. This means, there is a 0 ≤ j ≤ k with M |= EX jd, so M |= ∨k
j=0EX jd. We

showed G |= AXAG(e⇒∨k
j=0EX jd).

“⇐”: Let 〈G⇒∗(S E )′ H⇒E ′A
M〉 be transformation sequence with G |= c. We have that G |= ζk〈c,d〉, this

means G |= AXAG(e⇒∨k
j=0EX jd). Thus, there exists a 0≤ j ≤ k with M |= EX jd, i.e., there is an N

with N |= d and M⇒≤k
(S E )′

N. 2

Proof (of Theorem 2). This follows directly by Lemma 4 and 5. 2
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6 Related Concepts

The basic concept of graph transformation (systems) serving as theoretical foundation for our approach is
presented in [7].
We mention some approaches for graph-transformational interacting systems, of which the concept of
adverse conditions are a special case:

In [5], graph transformation systems with dependencies (d-GTSs) are presented to model reactive
systems. In this setting, the system has to react to stimuli from the environment. Reactions are triggered
by the presence of signals which are subgraphs in the derived graphs. To this aim, transformation rules are
equipped with a dependency relation which describes extra relationships between the deleted and created
elements. To pave the way for implementation, transactional graph transformation systems (T-GTSs) are
used. Both d-GTSs and T-GTSs are extensions of GTSs, whereas in our approach, the main constructs are
GTSs.

In [21], the concept of distributed graph transformation, which is using graph transformation as
underlying formal framework, is presented and applied to distributed systems. In contrast to our approach,
the considered distributed graphs comprise two abstraction levels: the network and the local level. On the
network level, the topological structure of a distributed system is specified. The local level contains the
description of local objects. A distributed graph rule consists of a network rule and local rules.

In [23], a graph-transformational approach for modeling reorganization in multi-agent systems is
introduced. Similarly to [21], the considered multi-graphs comprise three levels: on the top level, role
graphs composed of roles and their interrelations; on the bottom level, agent graphs consisting of agents
and their interrelations; on the mid level, connection graphs having roles and agents as nodes, and the role
competences for agents as their directed edges. A mulit-level graph transformation rule consists of three
graph transformation rules each for one of the three levels. The semantics are specified by graph class
expressions on each of the three levels.
In [1], graph-transformational swarms are presented. A graph-transformational swarm consists of
members which interact simultaneously in an environment represented by a graph. The members are all
of the same kind or of different kinds. Kinds and members are modeled as graph transformational units
each consisting of a set of graph transformation rules. Control conditions regulate the application of rules;
the regulation automaton plays a similar role in our approach. Graph class expressions specify the initial
and terminal graphs whereas we use explicit graph constraints for the pre-/postcondition.

In [15], the concept of autonomous units, which are a closely related notion to graph transformational
units [1], is introduced to model distributed systems composed of highly self-controlled components. A
class of control conditions may reduce the degree of nondeterminism of rule applications. Moreover,
graph class expressions are used to specify sets of initial and terminal graphs.

All mentioned concepts of graph-transformational interacting systems are based on graph transfor-
mation as underlying framework. By contrast, the main constructs of our approach are basic graph
transformation systems.

A notion of correctness for graph programs is considered in [12, 19]. In contrast to our definition, the
correctness of graph transformation systems is usually interpreted as its correctness as graph program.
Correctness in our sense means that all graph programs over the considered graph transformation system
are correct.

Correctness and verification of programs are addressed in [2] including also verification of non-
deterministic and distributed programs.

In [9], correctness of graph programs under adverse conditions is considered. Unlike our interpretation
of adverse conditions, the system is controlled while the environment is uncontrolled. Correctness is
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defined w.r.t. pre- and postconditions which are realized in form of µ-conditions which generalize graph
conditions.

Graph grammars under adverse conditions are considered in [18] as well as temporal graph conditions.
In contrast to our approach, system and environment play against each other, i.e., their interaction is
modeled by a game. Correctness is achieved by a winning strategy.

We adhered to [3, 8] for the syntax and semantics of LTL/CTL. Methods for model checking are
presented also in [3]. Tool support for LTL/CTL model checking is due to GROOVE [16] available.
In [6], a concept for LTL on finite traces is introduced. For our purposes, completing finite sequences to
infinite by applying the identical rule, and using the satisfaction notion for infinite sequences, is sufficient.

In [10], a metric temporal logic over typed attributed graphs is introduced. The atoms are graph
conditions. Instead of discrete temporality like in the case of LTL, the continuous set of non-negative
real numbers is considered. The main point of the definition is the until-operator w.r.t. an interval of real
numbers. This approach also incorporates the tracking of elements over time, which is not possible with
LTL/CTL constraints.

7 Conclusion and Outlook

To sum up, in this paper, we have provided

(1) a definition of joint graph transformation systems which involve the system, the environment, and a
regulation automaton modeling the interaction between them,

(2) three instances of correctness notions for joint graph transformation systems, which generalize the
correctness for graph transformation systems,

(3) a reduction theorem stating that the presented correctness notions are expressible as LTL/CTL
constraints.

This approach points out a way for verification under adverse conditions subject to the condition that
LTL/CTL model checking is possible in the considered case. This may not always be the case since we
consider, in general, infinite state spaces (infinite sets of graphs).

construct

reduction

model
checking
algorithm

system

environment

regulation automaton

correctness notion

joint GTS

LTL/CTL constraint

yes

no

modeling adverse conditions

Fig. 10: overview of the presented construction and reduction

Our future work will focus mainly on verification under adverse conditions using available model checking
techniques. More precisely, we consider the following problems:

(1) Model checking for joint graph transformation systems (also using GROOVE [16]).

(2) Well-structuredness [17] of joint graph transformation systems.

(3) Integration of probabilistic graph transformation [13].
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Regarding (2), we conjecture that the class of well-structured graph transformation systems (w.r.t. the
same well-quasi order) is “closed” under the construction of joint graph transformation systems.

Acknowledgement. We are grateful to Annegret Habel, Ernst-Rüdiger Olderog, Christian Sandmann,
Nick Würdemann, and the anonymous reviewers for their helpful comments to this paper.
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