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Graph-based reaction systems were recently introduced as a generalization of the intensely stud-
ied set-based reaction systems. They deal with simple edge-labeled directed graphs, and dynamic
semantics of graph-based reaction systems is defined by graph surfing as a novel kind of graph trans-
formation where, in a single surf step, reactions are applied to a subgraph of a given background
graph yielding a successor subgraph. In this paper, we propose a categorical approach to reaction
systems so that a wider spectrum of data structures becomes available on which reaction systems can
be based. In this way, many types of graphs, hypergraphs, and graph-like structures are covered.

1 Introduction

Rozenberg and the first author introduced graph surfing in graph-based reaction systems as a novel kind
of graph transformation in [11, 12]. They consider simple edge-labeled directed graphs. A graph-based
reaction system consists of a finite background graph B and a set of reactions each of which is a triple
(R, I,P) where R and P are subgraphs of B, called reactant and product respectively, and I = (IV , IE) is
a pair of sets of vertices and edges of B respectively, called inhibitor. Such a reaction is enabled on a
state T being a subgraph of B if R is subgraph of T and none of the element of IV and IE belongs to T .
The latter allows to forbid edges without forbidding their sources and targets necessarily. All enabled
reactions are applied to a state in parallel yielding the union of all their products as successor state. The
iterated application of reactions form trajectories on the set of subgraphs of the background graph – the
metaphorical graph surfing. Before each step, a context graph can be added to the current state so that
the processing becomes interactive. Graph-based reaction systems generalize the seminal concept of set-
based reaction systems that was introduced by Ehrenfeucht and Rozenberg more than 12 years ago in [6]
and has been intensely studied since then (see, e.g., [3, 5, 9, 14]). Set-based reaction systems coincide
with graph-based reaction systems the background graphs of which are discrete graphs and the inhibitor
sets are both empty.

In this paper, we advocate a categorical approach to reaction systems by defining them over cate-
gories that provide empty subobjects, intersections and unions, eiu-categories for short. A wide spec-
trum of categories of graphs, hypergraphs and graph-like structures fit into the approach. The categorical
framework is tailored in such a way that reaction systems over an eiu-category can be defined in close
analogy to the set- and graph-based reaction systems. The ingredients of set- and graph-based reaction
systems are finite sets/graphs, subsets/subgraphs including the empty set/empty graph, subset/subgraph
inclusions, intersections of two subsets/subgraphs, and the unions of finite sets of subsets/subgraphs.
As the categorical counterparts, we use finite objects, subobjects and subobject inclusions, as they are
provided by every category, and we require a special initial object with monomorphic initial morphisms
as empty subobjects, pullbacks of monomorphisms as intersections and special colimits as unions in ad-
dition. This paper continues our work on a categorical approach to reaction systems that started in [10]
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where we tried to identify basic categorical notions that allow to define reaction systems generalizing
the known set- and graph-based reaction systems. The eiu-categories introduced in the present paper
are more restrictive, but cover still all the relevant examples and provide much more useful categorical
machinery.

The paper is organized as follows. Section 2 provides the categorial framework. In Section 3, we
introduce the notion of reaction systems over eiu-categories exemplifying the conception by a reaction
system over the category of hypergraphs. In Section 4, we show that certain diagram categories are eiu-
categories such that many categories of graphs, hypergraphs and further graph-like structures turn out
to be eiu-categories and, therefore, can be employed as base category for reaction systems. Section 5 is
devoted to the question how meaningful morphisms between reaction systems over a category may look
like giving a first answer. This enables us to define a category of reaction systems over an eiu-category.
Section 6 concludes the paper.

2 The Categorial Prerequisites

In this section, the categorical prerequisites are provided that allow us to define reaction systems over
a so-called eiu-category in the next section. In Subsection 2.1, we recall some well-known categorical
notions including subobjects, finite objects, initial objects, pullbacks, and special colimits (cf., e.g., [7,
1, 8]). Based on these concepts, we introduce the notion of an eiu-category in Subsection 2.2.

2.1 Categorial Preliminaries

A category C = (ObC,MorC,◦,1) consists of a class of objects ObC, a set of morphisms MorC(A,B) for
each pair of objects A,B ∈ ObC, an associative composition operation ◦ : MorC(B,C)×MorC(A,B)→
MorC(A,C) for each triple of objects A,B,C ∈ObC, and, an identity morphism 1A ∈MorC(A,A) for each
object A ∈ ObC such that f ◦1A = f and 1B ◦ f = f for each f ∈MorC(A,B) holds.

We may write f : A→ B or A
f−→ B for f ∈MorC(A,B) and A

k
−−⇒
h

B for pairs of morphisms with same

domain and codomain. Let f : A→ B and g : B→C. We may write A
f−→ B

g−→C instead of g◦ f .

A morphism f : A→ B is a monomorphism if, for all pairs C
k
−−⇒
h

A of morphisms, f ◦h = f ◦k implies

h = k.
A morphism f : A→ B is an isomorphism if there exists an inverse morphism f−1 : B→ A with f−1 ◦

f = 1A and f ◦ f−1 = 1B. Two objects A,B are isomorphic, denoted A ∼= B, if there is an isomorphism
f : A→ B.

A subobject of B for some B∈ObC is an equivalence class of the following equivalence of monomor-
phisms with codomain B: Two monomorphisms m1 : A1 → B,m2 : A2 → B are equivalent, denoted by
m1 ∼= m2, if there is an isomorphism i : A1→ A2 such that m1 = m2 ◦ i.

To deal with subobjects, we use their elements as representatives. This does not cause any problem
because most categorical concepts and constructions are unique up to isomorphism.

Given subobjects p1 : P1→ B and p2 : P2→ B, a monomorphism m : P1→ P2 is a subobject inclusion
from p1 to p2 if p1 = p2 ◦m, and we may write p1 ⊆ p2.

An object is finite if its set of subobjects is finite.
An object INIT ∈ ObC is an initial object if there is exactly one unique morphism initB : INIT → B

for each object B ∈ ObC.
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Let p1 : P1→B, p2 : P2→B be morphisms with common codomain B. A pullback (PB(p1, p2), p′1, p′2)
of p1 and p2 is defined by a pullback object PB(p1, p2) and morphisms p′1 : PB(p1, p2) → P1 and
p′2 : PB(p1, p2)→ P2 such that p1 ◦ p′1 = p2 ◦ p′2 and the following universal property holds: For each
object Y with morphisms p′′1 : Y → P1 and p′′2 : Y → P2, such that p1 ◦ p′′1 = p2 ◦ p′′2 , there is a unique
universal morphism u : Y → PB(p1, p2) such that p′1 ◦ u = p′′1 and p′2 ◦ u = p′′2 . The following diagram
illustrates the situation.

Y

PB(p1, p2)

P1 P2

B

u

=
p′′1 p′′2

=

p′2p′1
=

p1

p2

The dashed arrow indicates that the morphism exists uniquely.
Let S be a set of morphisms with codomain B. Let PB(S) be the set of all pullbacks (PB(p1, p2),

p′1 : PB(p1, p2)→ P1, p′2 : PB(p1, p2)→ P2) of p1, p2 for each pair (p1 : P1→ B),(p2 : P2→ B) ∈ S with
p1 6= p2. Then an object COLIMIT(PB(S)) together with a morphism p′′ : P→ COLIMIT(PB(S)) for
each (p : P→B)∈ S, called injection, such that p′′1 ◦ p′1 = p′′2 ◦ p′2 for each pullback (PB(p1, p2), p′1, p′2)∈
PB(S) is the colimit of PB(S) if the following universal property holds: For each object X together
with a morphism p̂ : P→ X for each (p : P→ B) ∈ S satisfying p̂1 ◦ p′1 = p̂2 ◦ p′2 for each pullback
(PB(p1, p2), p′1, p′2) ∈ PB(S), there exists a unique universal morphism m : COLIMIT(PB(S))→ X such
that m◦ p′′ = p̂ for each p ∈ S.

According to the definition, the following holds for three special cases of this colimit.

1. COLIMIT(PB( /0)) = INIT .

2. COLIMIT(PB({p})) = P for each subobject p : P→ B.

3. Given two subobjects pi : Pi→ B, i = 1,2, then COLIMIT(PB({p1, p2})) together with the injec-
tions p′′i : Pi→ COLIMIT(PB({p1, p2})) is the pushout of the pullback (PB(p1, p2), p′1, p′2).

It may be noted that the universal property of the colimit yields a universal morphism
m : COLIMIT(PB(S))→ B with m◦ p′′ = p for each p ∈ S.

The following diagram illustrates the situation for three subobjects.

PB(p1, p2) PB(p1, p3) PB(p2, p3)

P1 P2 P3

COLIMIT(PB({p1, p2, p3}))

B

p′1

p′2p′1 p′3p′2

p′3

p1

p′′1 p2p′′2

p3

p′′3

m
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2.2 Empty Subobjects, Intersections and Unions

Using the notions of the previous subsection, we can now define the class of categories that are considered
in this paper.

A category C is an eiu-category if C has

1. an initial object INIT , and

2. for every finite object B, pullbacks of the subobjects of B, as well as

3. colimits of the sets of all pairwise pullbacks of sets of subobjects of every finite object B

subject to the following conditions:

1. INIT has only itself as subobject and the initial morphism into B is a monomorphism, and

2. the universal morphism from COLIMIT(PB(S)) into B for every set S of subobjects of B is a
monomorphism.

We use the following notions and notations for eiu-categories and every of its finite objects B.

1. The subobject represented by the initial morphism into B is called empty subobject of B and de-
noted by emptyB : INIT→ B.

2. As pullbacks are stable under monomorphisms, the pullback morphisms p′i : PB(p1, p2)→ Pi of
two subobjects pi : Pi→ B for i = 1,2 are monomorphisms. Further, because monomorphisms are
closed under composition, p′1 ◦ p1 = p′2 ◦ p2 represents a subobject of B called intersection of p1
and p2 which is denoted by p1∩ p2 : P1∩P2→ B.

3. Given a set S of subobjects of B, the universal morphism from
COLIMIT(PB(S)) into B represents a subobject of B called union of S which is denoted by
union(S) : UNION(S)→ B. We may write p1∪ p2 for the binary (effective) union({p1, p2}).

Empty subobjects, intersections and unions have some useful properties (cf. Remarks 1 and 2 in the
next section). The initials e, i, and u of the three concepts are used to name the category.

Properties 1 Let B be a finite object.

1. Let p : P→ B and p0 : P0→ B be subobjects of B with p0 ⊆ p. Then

(a) p∩ p0 = p0,

(b) p∪ p0 = p.

In particular, p∩ emptyB = emptyB and p∪ emptyB = p.

2. Let S be a set of subobjects of B. Then union(S∪{emptyB}) = union(S).

3. Let S0 and S be sets of subobjects of B with S0 ⊆ S. Then union(S0)⊆ union(S).

Proof 1. p0 ⊆ p means that there is a monomorphism m : P0→ P with p◦m = p0. Using this equation,
it is easy to show that (P0,1P0 ,m) is a pullback of p0 and p and (P,m,1P) is a pushout of 1P0 and m.
As pullbacks and pushouts are unique up to isomorphisms, one gets p∩ p0 = p0 and p∪ p0 = p for the
represented subobjects. This holds for p0 = emptyB, in particular. The following diagrams illustrate the
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situation.
Y

P0

P0 P

B

q0
q0

=
q

=

m1P0

=

p0 p

P0

P0 P

P

X

1P0 m

=

p̂0

m 1P

p̂

p̂

2. If emptyB ∈ S, then S∪{emptyB}= S so that the statement holds in this case.
Consider now S with emptyB /∈ S. By definition, union(S) : UNION(S)→ B is accompanied with

a monomorphism p′′ : P→ UNION(S) for each (p : P→ B) ∈ S such that p = union(S) ◦ p′′ and, for
each pair (p : P→ B),(p,P→ B) ∈ S with a pullback (P∩P, p′ : P∩P→ P, p′ : P∩P→ P) of p and
p, p′′ ◦ p′ = p′′ ◦ p′. Now one can add emptyB to S and choose emptyUNION(S) : INIT → UNION(S)
as monomorphism corresponding to emptyB. As the initial morphism is unique, one gets emptyB =
union(S) ◦ emptyUNION(S) and p′′ ◦ emptyP = emptyUNION(S) = emptyUNION(S) ◦ 1INIT . As pointed out in
Point 1, (P∩ INIT,emptyP,1INIT) is a pullback of p and emptyB. Altogether, this means that union(S)
with morphisms p′′ plus emptyUNION(S) equalizes all pullbacks in PB(S∪{emptyB}). Moreover, one can
show that also the universal property of union(S∪ {emptyB}) is satisfied. Let X be an object with a
morphism p̂ : P→ X for each p : P→ B plus the only initial morphism emptyX : INIT → X such that all
pullbacks in PB(S∪{emptyB}) are equalized, i.e., (∗) p̂◦ p′ = p̂◦ p′ for each (P∩P′, p′, p′) ∈ PB(S) and
p̂ ◦ emptyP = emptyX ◦ 1INIT for each pullback (P∩ INIT,emptyP,1INIT) for p ∈ S and emptyB. Because
of (∗), the universal property of union(S) induces a morphism m : UNION(S)→ X with p̂ = m◦ p′′ for all
p ∈ S. Moreover, the initiality of INIT yields emptyX = m◦ emptyUNION(S). Summarizing, union(S) with
the morphisms p′′ plus emptyUNION(S) has the property of union(S)∪{emptyB} so that they are equal as
subobjects. The situation is depicted in the following diagram.

INIT = P∩ INIT

P INIT

UNION(S)

X

B

emptyP 1INIT

=

p

p′′

=

p′′

p̂
=

emptyUNION(S)

emptyX

=

emptyB

=
m

union(S)

3. Using the notation of Point 2, union(S) with the morphisms p′′ for p ∈ S equalizes all pullbacks in
PB(S) and, in particular, all in PB(S0) as S0 ⊆ S. Therefore, using the universal property of union(S0),
there is a morphism m : UNION(S0)→ UNION(S) with union(S) ◦m = union(S0). As union(S0) is a
monomorphism, m is a monomorphism proving union(S0)⊆ union(S).
Example 1 First of all, the category Sets with sets as objects and mappings as morphisms is an eiu-
category. This follows from well-known set-theoretic and categorial properties. The monomorphisms
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are the injective mappings. Two of them with common codomain are equivalent if they have the same
image. Therefore, there is a one-to-one correspondence between subobjects of a set and its subsets, and
subobjects can be represented by the inclusions of subsets. In particular, the finite sets are the finite
objects. The empty set /0 is the initial object. It has only itself as subset, and the initial morphism
/0B : /0→ B is injective for every set B so that /0B is the empty subobject of B. Given two subsets P1 and P2
of a set B, their set-theoretic intersection P1∩P2 together with the inclusion into P1 and P2 respectively is
a pullback over the inclusions of P1 and P2 into B and, therefore, the categorial intersection. Moreover,
let S be a set of subsets of a set B. Then the set-theoretic union

⋃
p∈S

P is the smallest subset of B that

contains each P ∈ S. If X is a set and qP : P→ X is a mapping for each P ∈ S such qP1 and qP2 are
equal on the intersection P1 ∩P2 for every pair P1,P2 ∈ S, then m :

⋃
P∈S

P→ X given by m(y) = qP(y)

for y ∈ P,P ∈ S is a mapping. This proves that the inclusions of
⋃

P∈S
P into B has the universal property

required of union(S) so that the set-theoretic union turns out to represent the categorial union.
Based on Sets, many further eiu-categories can be derived (cf. Section 4). As a first example of this

kind we consider the category Σ-Hypergraphs. Its objects are Σ-hypergraphs and its morphisms are Σ-
hypergraph morphisms defined as follows. A Σ-hypergraph H = (V,E,att, l) over a given set Σ of labels
is a system consisting of a set V of vertices, a set E of hyperedges, an attachment mapping att : E→V ∗

(assigning a string of attachment vertices to each hyperedge) and a labeling mapping l : E → Σ. The
components of H = (V,E,att, l) may also be denoted by VH , EH , attH , and lH respectively. The length of
the attachment is called type. A hypergraph morphism f from H = (V,E,att, l) to H ′ = (V ′,E ′,att ′, l′)
is a pair ( fV : V →V ′, fE : E→ E ′) of two mappings such that f ∗V ◦att = att ′ ◦ fE and l = l′ ◦ fE , where
V ∗ is the set of all string over V and f ∗V : V ∗→V ′∗ is the canonical extension of fV to strings defined by
f ∗V (v1 · · ·vn)= fV (v1) · · · fV (vn) for all v1 · · ·vn ∈V ∗. H is a sub-Σ-hypergraph of H ′ if VH ⊆VH ′ ,EH ⊆EH ′

and the pair of inclusions in = (inV , inE) is a hypergraph morphism.
It is not difficult to see that all the ingredients of eiu-categories can be carried over from Sets to

Σ-Hypergraphs componentwise for vertices and hyperedges. The monomorphisms are the pairs of in-
jective mappings so that sub-Σ-hypergraphs correspond to subobjects, and finiteness is given by finite set
components. The empty Σ-hypergraph MPT = ( /0, /0, /0 /0∗ , /0Σ) is initial so that emptyB : MPT→ B given by
/0V : /0→ VB and /0E : /0→ EB is the empty subobject of each Σ-hypergraph B. Analogously, intersection
and union can be constructed componentwise.

For pi : P1→ B, i = 1,2 we have p1 ∩ p2 : P1∩P2→ B with P1∩P2 = (VP1 ∩VP2 ,EP1 ∩EP2 ,att∩, l∩),
att∩(e) = attPi(e) and l∩(e) = lpi(e) for all e ∈ EP1 ∩EP2 . As attP1 and attP2 as well as lP1 and lP2 are
equal on the intersection EP1 ∩EP2 , att∩ and l∩ are proper mappings.

For a set S of sub-Σ-hypergraphs of a Σ-hypergraph B we have union(S) : UNION(S)→ B with
UNION(S) = (

⋃
P∈S

VP,
⋃

P∈S
EP,att∪, l∪),att∪(e) = attp(e) and l∪(e) = lP(e) for all e ∈ EP,P ∈ S. As attP1

and attP2 as well as lP1 and lP2 are equal on the intersection of P1 and P2, att∪ and l∪ are well-defined.
As a further example, we consider the category Pos of partially ordered sets (posets for short). A

poset (which can also be seen as simple acyclic transitive directed graph) is a pair (A,R) consisting of a
set A and a binary relation R⊆ A×A subject to the conditions:

• reflexivity, i.e., (a,a) ∈ R for all a ∈ A,

• anti-symmetry, i.e., (a,b),(b,a) ∈ R implies a = b for all a,b ∈ A, and

• transitivity, i.e., (a,b),(b,c) ∈ R implies (a,c) ∈ R for all a,b,c ∈ A.

A morphism f : (A,R) → (A′,R′) is given by an order-preserving mapping f : A → A′ meaning that
( f (a), f (b)) ∈ R′ for all (a,b) ∈ R. Composition and identity are the same as in Sets. A morphism
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f is a monomorphism if and only if the underlying mapping is injective. If f : (A,R)→ (A′,R′) is a
monomorphism, then the induced subobject of (A′,R′) is represented by the poset ( f (A), f (R)) with
f (R) = {( f (a), f (b)) | (a,b) ∈ R}. Conversely, a poset (A,R) is a subposet of the poset (A′,R′) if A⊆ A′

and R⊆ R′, denoted by (A,R)⊆ (A′,R′). Then the inclusion A⊆ A′ is a monomorphism such that (A,R)
represents a subobject of (A′,R′).

The empty poset ( /0,ε), where ε is the empty relation, is obviously an initial object in Pos such that
the inclusion /0⊆ A′ provides the empty subobject empty(A′,R′) : ( /0,ε)→ (A′,R′) of each poset (A′,R′).

Given two subposets (A1,R1),(A2,R2) ⊆ (A′,R′), the intersection (A1,R1)∩ (A2,R2) = (A1 ∩ A2,
R1∩R2) is obviously a subposet of (A′,R′) and – together with the inclusions (A1∩A2,R1∩R2)⊆ (Ai,Ri)
for i = 1,2 – the pullback of (Ai,Ri)⊆ (A′,R′) for i = 1,2.

Given a finite set S of subposets of (A′,R′). The union (
⋃

(A,R)∈S
A, trans(

⋃
(A,R)∈S

R)) where trans(R) is

the transitive closure for R⊆ R′ is obviously the smallest subposet of (A′,R′) that includes all (A,R) ∈ S
and, therefore, all pairwise intersections, too. Altogether, this shows that Pos is an eiu-category.

It may be noted that one encounters well-known categorical concepts in the literature that are closely
related to eiu-categories (see, e.g., [13]).

1. Strict initial objects are relevant for relating adhesive and extensive categories. An initial object
is strict if every morphism into it is an isomorphism. This implies that the initial morphisms
are monomorphisms such that the initial morphism from a strict initial object into some object B
represents a subobject of B. The converse does not hold as the category of pointed sets shows (cf.
Example 3.8 in [13]).

2. In adhesive categories, the binary union of subobjects can be defined by the pushout of the inter-
section (see Theorem 5.1 in [13]). Repeating the construction, one obtains an iterated union of a
finite set of subobjects. It is open whether this iterated union coincides with our union. If this is the
case, then adhesive categories with empty subobjects would be eiu-categories. The converse does
not hold as the category Pos is an eiu-category, but it is not adhesive (cf. Example 3.4 in [13]).

3 Reaction Systems over eiu-categories

In this section, we introduce the notion of reaction systems over an eiu-category. This can be done
in a straightforward way by replacing every occurrence of “(sub)set/(sub)graph” in the definition of
set/graph-based reaction systems by “(sub)object” with one exception: the enabledness with respect
to the inhibitor. The graph-based inhibitor (consisting of sets of vertices and edges) has not a direct
counterpart as categorical objects do not provide explicit internal information like vertices and edges of
graphs. Therefore, we replace it by a subobject i : I → B of the background like reactant and product
accompanied by a subobject i0 : I0→ I. This allows to require that the intersection of i and a current state
is included in i0 so that the ”complement” of i and i0 is forbidden.

3.1 Reaction Systems over C

Let C be an eiu-category. Then we can define reaction systems over C in a way analogous to set-based
and graph-based reaction systems.

Definition 1 1. Let B be a finite object in C. A reaction over B is a triple a = (r : R→ B,(i : I →
B, i0 : I0→ I), p : P→ B) where r and p are non-empty subobjects of B, i is a subobject of B and



78 Graph Surfing in Reaction Systems from a Categorial Perspective

i0 is a subobject of I. The subobject r is called reactant, the pair (i, i0) is called inhibitor, and p is
called product. r, (i, i0) and p may also be denoted by ra, (ia,(i0)a) and pa, respectively.

2. A state is a subobject of B.

3. A reaction a=(r : R→B,(i : I→B, i0 : I0→ I), p : P→B) is enabled on a state t : T →B, denoted
by ena(t), if r ⊆ t and t ∩ i⊆ i◦ i0, i.e., there is a monomorphism s : R→ T with r = t ◦ s and, for
the intersection (T ∩ I, i′, t ′) of t and i, there is a monomorphism s′ : T ∩ I→ I0 with t∩ i = i◦ i0 ◦s′.

T ∩ I I0

R T I

B

s′

i′t ′

t∩i

=

=

i0
=

r
=

s

t
i

4. The result of a reaction a on a state t is resa(t) = pa for ena(t) and resa(t) = emptyB otherwise.

5. Given a state t : T → B, the result of a set of reactions A on t is resA(t) = union({resa(t) | a ∈ A}).
6. A reaction system over C is a pair A = (B,A) consisting of some finite object B, called back-

ground, and a finite set A of reactions over B.

7. Given a state t : T → B, the result of A on t is the result of A on t. It is denoted by resA (t).

Remark 1 Some basic properties of enabledness and results which are known for set- and graph-based
reaction systems carry over to reaction systems over a category.

1. A current state vanishes completely. But it or some subobject of it may be reproduced by the
products of enabled reactions.

2. resA (t) is uniquely defined for every state t so that resA (t) is a function on the set of states of B.

3. All reactions contribute to resA (t) in a maximally parallel and cumulative way. There is never any
conflict.

4. As the addition of the empty subobject to a union of subobjects does not change the union, resA(t)=
res{a∈A|ena(t)}(t) holds for all states t.

5. As the intersection of a subobject and the empty subobject is empty, a reaction with an empty
inhibitor, i.e., a = (r,(emptyB,1INIT), p) is enabled on a state t if r ⊆ t. The empty inhibitor has no
effect. Therefore, the reaction is called uninhibited.

Set-based and graph-based reaction systems can be transformed into reaction systems over the cate-
gories of sets and graphs, respectively. The transformations preserve the semantics so that set-based and
graph-based reaction systems fit fully into the categorical framework. In the following we discuss two
reaction systems over Σ-Hypergraphs.

3.2 Two Reaction Systems over Σ-Hypergraphs

As a first example, we model a vertex-coverability test by a family of reaction systems over the category
Σ-Hypergraphs.

Let H = (V,E,att, l) be a Σ-hypergraph with l(e) = ∗ for some label ∗ ∈ Σ for all e ∈ E (this means
that all hyperedges are equally labeled and, hence, can be considered as unlabeled). Then X ⊆ V is a



H.-J. Kreowski & A. Lye 79

vertex cover of H if each hyperedge has some attachment vertex in X . H is k-vertex-coverable for some
k ∈ N if there is a hyperedge vertex cover of H with k elements.

The k-vertex-coverability test employs the reaction system Am,n = (Bm,n,Am,n) for some m,n ∈ N

with m≤ n defined as follows. Let
[

n
m

]
be the set of all strings over [n] of lengths up to m. Then the com-

plete hypergraph with twins is defined by CH(2)
m,n = ([n],

[
n
m

]
×{∗,+},attach, lab) with attach(u,∗) =

attach(u,+)= u and lab(u,∗) = ∗ and lab(u,+)=+ for all u∈
[

n
m

]
. The two parallel hyperedges (u,∗)

and (u,+) for u ∈
[

n
m

]
are called twins. The background hypergraph Bm,n is CH(2)

m,n extended by a ∗-flag

(type-1 hyperedge) at each vertex. The set of reactions Am,n contains the following elements, where, due
to the one-to-one correspondence of categorial subobjects of a Σ-hypergraph and sub-Σ-hypergraphs,
the subobjects are represented by the domain objects of the inclusion morphisms. The symbol “−” is a
shortcut for the inhibitor (emptyBm,n ,1MPT).

1. ( j ,−, j ) for all j ∈ [n].

2. (e•,−,e•) for all e ∈
[

n
m

]
×{∗,+} where e• is the sub-Σ-hypergraph of Bm,n induced by e, i.e.,

e• = ({v1, . . . ,vl},{e},attach|{e}, lab|{e}) with attach(e) = v1 · · ·vl , v j ∈ [n] for j = 1, . . . , l.

3. ( j ∗1
,−, j ∗1

) for all j ∈ [n].

4. ((u,∗)•∪v•,−,(u,+)•) for all u ∈
[

n
m

]
and v ∈V occurring in u where v• is the sub-Σ-hypergraph

of Bm,n with the vertex v and a ∗-flag at v.

The first three types of reactions applied to a state make sure that the state is sustained. The only changing
reactions are of the fourth type. They add a +-labeled twin hyperedge whenever some attachment vertex
of a ∗-labeled hyperedge has a ∗-flag. In the drawings, a circle represents a vertex and a box a flag. The
label is inside the box, and a line from a box to a circle represents the attachment.

The modeling is continued in Section 3.4.

The second example is less interesting from a computational point of view, but serves to illustrate
how non-trivial inhibitors work. Consider CH(2)

m,n as background and the following reactions: a(e) =

(e•,{v1, . . . ,vl} ⊂ ê•,e•) for all e ∈
[

n
m

]
×{∗} with attach(e) = v1 · · ·vl where ê is the twin of e,e•

and ê• are defined as in Point 1, and {v1, . . . ,vl} represents the discrete hypergraph with the attachment
vertices of e as vertices. A reaction a(e) is enabled on some state H if e∈ EH and ê /∈ EH . In other words,
the application of all reactions sustains all ∗-hyperedges of H that are not accompanied by their twins.

3.3 Interactive Processes

The definition of reaction systems over a category is chosen in such a way that the semantic notion of
interactive processes can be carried over directly from the set-based and graph-based cases.

Definition 2 1. Let A = (B,A) be a reaction system over C. An interactive process π = (γ,δ ) on A
consists of two sequences of subobjects of B γ = c0, . . . ,cn and δ = d0, . . . ,dn for some n ≥ 1
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such that di = resA (ci−1 ∪ di−1) for i = 1, . . . ,n. The sequence γ is called context sequence, the
sequence δ is called result sequence where d0 is called start, and the sequence τ = t0, . . . , tn with
ti = ci∪di for i = 0, . . . ,n is called state sequence.

2. π is called context-independent if ci ⊆ di for i = 0, . . . ,n.

Remark 2 Consider a context-independent process π = (c0, . . . ,cn,d0, . . . ,dn).

1. Using point 1b of Properties 1 in the previous section, ci⊆ di for i= 0, . . . ,n implies ti = ci∪di = di

meaning that the result sequence and state sequence coincide and that the state sequence describes
the whole process determined by its initial state t0 = d0. Therefore, whenever context-independent
processes are considered, one can focus on their state sequences.

2. Let τ = t0, . . . , tn for some n ≥ 1 be a state sequence. Then τ is either repetition-free, i.e., ti 6= t j

for all i, j with 0 ≤ i < j ≤ n, or there is a smallest pair ti0 , t j0 with 0 ≤ i0 < j0 ≤ n and ti0 = t j0
such that τ = t0, . . . , ti0 ,(ti0+1, . . . , t j0)

mtk, . . . , tn for some m ∈ N where k = i0 +1+m( j0− i0)+1
and tk, . . . , tn is an initial section of ti0+1, . . . , t j0 . According to the choice of i0 and j0, the section
t0, . . . , t j0−1 is repetition-free.

3. Using the pigeonhole principle, the pair i0, j0 exists if n− 1 is greater than the number of states.
Therefore, every state sequence runs into a unique cycle eventually.

3.4 An Interactive Process for Σ-Hypergraphs

Let H ⊆ CH(2)
m,n be a sub-Σ-hypergraph with ∗-labeled hyperedges only. Let i1, . . . , ik be a combination

of k elements of [n] for some k ∈ N. Then one can consider the interactive process π(H, i1 · · · ik) =

(γ(H, i1 · · · ik),δ (H, i1 · · · ik)) with γ(H, i1 · · · ik) = i1 ∗1
, . . . , ik ∗1

,MPT and H as start. Then

{i1, . . . , ik} is a k-vertex-cover of H if and only if each hyperedge of H has a twin in the final result.
Consequently, to test whether H is k-vertex-coverable, one may run the interactive process π(H, i1 · · · ik)
for all combinations of k elements of [n].

Example 2 Let γ(B3,5,2,4) = 2 ∗1
, 4 ∗1

,MPT. The result sequence is

3

2
1

5
4

∗

∗∗

1 2
31

2
3

1
2 3

,

3

2
1

5
4

∗

∗∗

∗
+

,

3

2
1

5
4

∗

∗∗

∗

∗

+

+

+

.

The lines connecting a box with vertex circle provide the attachment where the numbering establishes its
order. In the second and third hypergraph the numbering is omitted to clarify the drawing. c0 enables
the reaction ((123,∗)• ∪ 2•,−,(123,+)•) and c1 enables the reaction ((134,∗)• ∪ 4•,−,(134,+)•) as
well as the reaction ((145,∗)•∪4•,−,(145,+)•).

Note that it is also possible to choose both in parallel, e.g., choose c′0 to be c0∪c1 = 2 ∗1
4 ∗1

and c′1 = MPT meaning that the test can be done in one step.
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4 Diagram Categories are eiu-categories

Many categories follow a common building principle, called diagram categories, providing a reservoir of
potential example categories over which reaction systems are defined because certain diagram categories
turn out to be eiu-categories if the underlying category is an eiu-category.

Let Scm = (C,A,s : A→C, t : A→C) be a directed graph (without labeling), called scheme, where
the vertices are also called components and the edges arrows. Then Scm induces the diagram category
CScm over C. Its objects are graph morphisms δ : Scm→ gr(C), where the domain is the scheme Scm
and the codomain is the underlying graph of the category C, i.e., gr(C) = (ObC, ∑

X ,Y∈ObC

MorC(X ,Y ), ŝ, t̂)

with objects of C as vertices and the disjoint union of all sets of morphisms as set of edges, and ŝ( f : X→
Y ) = X and t̂( f : X →Y ) =Y for all f ∈MorC(X ,Y ) and all X ,Y ∈ObC. The objects of CScm are called
diagrams. Given two diagrams δ ,δ ′ : Scm→ gr(C), a morphism g : δ → δ ′ is given by a family of
C-morphisms {gc : δV (c)→ δ ′V (c)}c∈C such that gt(a) ◦ δE(a) = δ ′E(a) ◦ gs(a) for all a ∈ A. This means
that the following diagram commutes:

δV (s(a)) δV (t(a))

δ ′V (s(a)) δ ′V (t(a))

gs(a)

δE (a)

= gt(a)

δ ′E (a)

The composition and the identities are defined componentwise in the category C. The components of
Scm are placeholders for objects, the arrows for morphisms. To avoid an extra handling of labeling and
typing functions or such, we also allow fixed components meaning that such a component is instantiated
by some fixed object in each diagram and each morphism in a fixed component is always the identity.

Schemes may be drawn in the usual way: Bullets represent components connected by arrows from
source bullet to target bullet each. In the case of a fixed component, the bullet is replaced by the associated
fixed object.

Often used categories turn out to be diagram categories:

1. The product category Sets×Sets = Sets•• of ordered pairs of sets.

2. The category Σ-Sets = Sets•→Σ of Σ-labeled sets for some alphabet Σ.

3. The category Maps = Sets•→• of mappings.

4. The category Graphs = Sets•−−⇒• of directed (unlabeled) graphs.

5. The category Σ-Graphs = SetsΣ←•−−⇒• of Σ-graphs for some alphabet Σ.

6. The category (ΣV ,ΣE)-Graphs = SetsΣE←•−−⇒•→ΣV of directed vertex- and edge-labeled graphs.

7. The category BipartiteGraphs = Sets of bipartite directed graphs. Let G = (V1,V2,E1,E2,
s1 : E1→ V1,s2 : E2→ V2, t1 : E1→ V2, t2 : E2→ V1) be an object. There are two sets of vertices
and two sets of edges. Edges have sources in V1 and targets in V2 or the other way round.

8. The category 3-Hypergraphs = Sets•
−→
−→
−→• of hypergraphs with hyperedges of type 3. Let the three

arrows be l,r, t respectively, and let H = (V,E, lH ,rH , tH) be an object. Then each e ∈ E is attached
to a “left”, a “right”, and a “top” vertex so that e can be seen as a triangle.
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9. The category 4-Hypergraphs = Sets
•
−−⇒−−⇒
•

of hypergraphs with hyperedges of type 4. Let the four
arrows be north,east,south,west, then the hyperedges are of type 4 and can be seen as “cells” with
“tentacles” to the respective directions.

10. An interesting example where the underlying category is not Sets is the category Graphs•→TG of
TG-typed graphs for some type graph TG. They are often used in the area of graph transforma-
tion as a well-working generalization of labeled graphs. A TG-typed graph is represented by a
pair (G, t), where G is a directed (unlabeled) graph and t : G→ TG is a graph morphism speci-
fying the structure of G. A TG-type-graph morphism f : (G1, t1)→ (G2, t2) is a graph morphism
fG : G1→ G2 such that t2 ◦ fG = t1.
Indeed, Σ-Graphs is in a one-to-one correspondence to Graphs•→TG(Σ) where TG(Σ) has a single
vertex and, for each x ∈ Σ, an x-labeled loop at the vertex. Similarly, (ΣV ,ΣE)-Graphs is in a one-
to-one correspondence to Graphs•→TG(ΣV ,ΣE ) where TG(ΣV ,ΣE) = (ΣV ,ΣV ×ΣE ×ΣV , pr1, pr3)
with the first and third projections pr1 and pr3 as source and target mappings respectively.

Concerning diagram categories, it may be noted that categories of the form C•→X for some fixed
object X are also called slice categories. Two of our examples, Σ-Sets = Sets•→Σ and TypedGraphs =
Graphs•→TG are slice categories.

The main result of this section is that diagram categories are eiu-categories if the underlying category
is an eiu-category and the fixed components of the considered schemes have no out-going arrows.

Theorem 1 Let C be an eiu-category and Scm be a scheme where no fixed component is a source of an
arrow. Then CScm is an eiu-category.

Proof It is known that limits and colimits in diagram categories without fixed components can be con-
structed componentwise by limits and colimits of the underlying category. It is also known that limits
and colimits in slice categories (with a scheme of the form • → Σ) can be constructed by the limits and
colimits of the free component in the underlying category. The statement can be proved for diagram
categories with fixed components in the same way by combining the arguments for the two known cases.

Remark 3 The proof of the theorem is not only analogous to the proof for diagram categories without
fixed components and slice categories, but it also may be that a diagram category with fixed components
is isomorphic to a slice category with an underlying diagram category witout fixed components so that
the theorem follows directly from the known results.

If one allows to replace a bullet in a scheme Scm by a ∗ and uses it in SetsScm in such a way
that the ∗ is not replaced by a set X , but by the set of strings X∗ over X , then even the category of
Σ-Hypergraphs can be obtained as a diagram category: Σ-Hypergraphs = SetsΣ←•→∗. We know al-
ready that Σ-Hypergraphs is an eiu-category. But it is open whether Theorem 1 holds using this kind of
schemes.

It is not difficult to see that all our explicit examples listed above and many like these meet the
assumptions of the theorem.

5 Towards a Category of Reaction Systems over a Category

So far, everything we have discussed concerns reactions systems over categories. But there are more
ways to bring reaction systems and category theory together. Whenever one has a class of entities, one
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may try to use them as objects of a category by choosing suitable morphisms. Therefore, one may ask
how reaction systems over a category may be provided with a meaningful notion of morphisms.

In this section, we show that, given a reaction system A =(B,A) over C, a monomorphism f : B→B′

induces a reaction system f (A ) by composing all the components of reactions with f . This observation
motivates us to consider such a morphism as morphism from A to A ′= (B′,A′) provided that f (A)⊆ A′.

Theorem 2 Given a reaction system A = (B,A) and a monomorphism f : B→ B′. Then f induces a
reaction system f (A ) = (B′, f (A)) where f (A) = { f (a) | a ∈ A} and f (a) = ( f ◦ r : R→ B′,( f ◦ i : I→
B′, i0 : I0→ I), f ◦ p : P→ B′) for a = (r : R→ B,(i : I→ B, i0 : I0→ I), p : P→ B).

f (A ) has the following properties.

1. ena(t) on a state t : T → B if and only if en f (a)( f ◦ t),

2. f ◦ resa(t) = res f (a)( f ◦ t),

3. f ◦ resA (t) = res f (A )( f ◦ t).

The following diagram shows a and f (a).

I0

R I P

B

B′

i0

r

f◦r

=
i

f◦i
=

p

f◦p

=

f

The proof uses the following lemma.

Lemma 1 1. Let p : P→ B, p : P→ B and f : B→ B′ be monomorphisms. Let L = (PB, p′ : PB→
P, p′ : PB→ P) be a triple of an object PB and two monomorphisms p′ and p′. Then L is a pullback
of p and p if and only if L is a pullback of f ◦ p and f ◦ p.

2. Let S be a set of subobjects of B and f : B → B′ be a monomorphism. Then f ◦ union(S) =
union({ f ◦ p | p ∈ S}).

Proof Point 1 follows immediately from the observation that a monomorphism is a limit and that limits
compose.

2. Using Point 1, one get PB(S) = PB({ f ◦ p | p ∈ S}) so that UNION(S)∼= UNION({ f ◦ p | p ∈ S})
and f ◦union(S) = union({ f ◦ p | p ∈ S}) as subobjects.
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The situation of Point 1 of the lemma is depicted in the following diagram.

Y

PB(p, p)

P P

B

B′

u

=
p′′ p′′

=

p′p′

=
p

f◦p
=

p

f◦p
=

f

And the situation of Point 2 where S = {p1, p2, p3} is depicted in the following diagram.

PB(p1, p2) PB(p1, p3) PB(p2, p3)

P1 P2 P3

UNION({p1, p2, p3})

B

B′

X

p′1

p′2p′1 p′3p′2

p′3

q1

f◦p1

p1

p′′1

q2

f◦p2

p2p′′2

q3

f◦p3

p3

p′′3

union({p1, p2, p3})

m f

Proof of Theorem 2. 1. Given a reaction a = (r,(i, i0), p) and a state t in A , ena(t) means r ⊆ t and
t∩ i⊆ i◦ i0. By definition, there are monomorphisms s and s′ with r = t ◦s and t∩ i= i◦ i0◦s′. This implies
f ◦ r = f ◦ t ◦ s and by Point 1 of Lemma 1 also f ◦ r⊆ f ◦ t and ( f ◦ t)∩ ( f ◦ i) = f ◦ (t∩ i) = f ◦ i◦ i0 ◦ s′.
This means ( f ◦ t)∩ ( f ◦ i)⊆ f ◦ i◦ i0, and, therefore, en f (a)( f ◦ t).

Conversely. en f (a)( f ◦ t) means f ◦ r ⊆ f ◦ t and ( f ◦ t)∩ ( f ◦ i) ⊆ f ◦ i ◦ i0. By definition, there are
monomorphisms s and s′ with f ◦r = f ◦t ◦s and ( f ◦t)∩( f ◦ i) = f ◦ i◦ i0◦s′. By the Point 1 of Lemma 1
one has f ◦ (t ∩ i) = ( f ◦ t)∩ ( f ◦ i) so that the monomorphisms of f yields r = t ◦ s and t ∩ i = i◦ i0 ◦ s′.
This means r ⊆ t and t ∩ i⊆ i◦ i0 and, therefore, ena(t).

2. According to Point 1, there are two cases to consider using the definition of results: f ◦ resa(t) =
f ◦ p = res f (a)( f ◦ t) provided that a is enabled on t and f (a) on f ◦ t; and f ◦ resa(t) = f ◦ emptyB =
emptyB′ = res f (a)( f ◦ t) otherwise.

3. Using the definition of results of reaction systems and sets of reactions as well as Points 1 and 2 of
Lemma 1, one gets as stated: f ◦resA (t)= f ◦resA(t)= f ◦union({resa(t) | a∈A})= union({ f ◦resa(t) |
a ∈ A}) = res f (A)( f ◦ t) = res f (A )( f ◦ t).
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Using Point 3 of the theorem and Point 3 of Properties 1, one gets the following result.

Corollary 1 Let A = (B,A) and A ′ = (B′,A′) be two reaction systems over C with f (A)⊆ A′ for some
monomorphism f : B→ B′. Then f ◦ resA (t)⊆ resA ′( f ◦ t) for all states t : T → B.

This motivates to define the category RS(C).

Definition 3 Let C be an eiu-category.

1. The category RS(C) is defined as follows. Its objects are reactions systems over C. Given two
reaction systems A = (B,A) and A ′ = (B′,A′) over C, a morphisms f : A → A ′ is given by
monomorphisms f : B→ B′ provided that f (A)⊆ A′. Compositions and identities are given by the
underlying morphisms.

2. If f ◦ resA (t) = resA ′( f ◦ t) for all states t : T → B, then f : A →A ′ is called strong.

The definition of composition and identities is meaningful as, for reaction systems A = (B,A),
A ′ = (B′,A′) and A ′′ = (B′′,A′′) and for morphisms f : A → A ′ and g : A ′ → A ′′, (g ◦ f )(A) =
g( f (A))⊆ g(A′)⊆ A′′ and 1B(A) = A.

Example 3 Consider the two reaction systems over Σ-Hypergraphs Am,n,Am′,n′ with m≤m′ and n≤ n′

as defined in Section 3.2.
The inclusion of Bm,n into Bm′,n′ induces a morphism from Am,n to Am′,n′ as Am,n ⊆ Am′,n′ . This

morphism is strong as one can see as follows. Let T be a sub-Σ-hypergraph of Bm,n representing
a state of Am,n. Then T represents also a state of Am′,n′ . According to Corollary 1 we know that
resAm,n(T ) ⊆ resAm′,n′ (T ). Let now (R′,−,P′) be a reaction in Am′,n′ that is not in Am,n. As Bm,n is
complete with respect to hyperedges including flags, R′ and P′ must contain a vertex k′ > n. Conse-
quently, R′ 6⊆ T such that the reaction is not enabled and none of those can contribute to resAm,n(T )
meaning that resAm,n(T ) = resAm′,n′ (T ). Summarizing, the family {Am,n}m,n∈N forms a two-dimensional
grid connected by strong morphisms along growing indices. This is interesting with respect to the vertex-
coverability of hypergraphs. Each hypergraph can be transformed into a sub-Σ-hypergraph of Bm,n for
some m,n by numbering the vertices and removing labels, multiples of hyperedges and multiples of ver-
tex attachments within a hyperedge in such a way that its vertex-coverability is preserved. Then the
grid of strong morphisms makes sure that the result of the vertex-coverability test is independent of the
choice of the Bm,n as long as the transformation works. In this sense, the family {Am,n}m,n∈N models a
vertex-coverability test for all hypergraphs.

6 Conclusion

In this paper, we have proposed a categorical framework for the modeling of reaction systems. We
have provided appropriate categorical notions including finite objects, subobjects, subobject inclusions,
empty subobjects, intersections and unions of subobjects that allow the definition of reaction systems
over eiu-categories and their interactive-process semantics in a quite similar way to the known set- and
graph-based reactions systems. Moreover, we have shown that many categories meet the categorical
requirements so that many structures become available on which reaction systems may be based on. This
includes, in particular, quite a variety of graphs, hypergraphs, and other graph-like structures. But we
have only done the very first steps into a categorical approach. To shine more light on the significance of
the framework, the investigation should be continued including the following topics.
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1. As pointed out at the end of Section 2, it would be interesting to clarify the relationship between
eiu-categories and the well-studied adhesive categories that are successfully applied in the area of
graph transformation in various variants (cf., e.g., [13, 7, 4, 2, 8]).

2. In Section 4, we have shown that diagram categories provide a reservoir of eiu-categories. Another
way to find appropriate categories is the restriction of eiu-categories to subcategories. For exam-
ple, if one restricts the category Σ-Graphs to simple graphs, then this category is closed under
empty subobjects, intersections and unions so that this category inherits all reaction systems over
Σ-Graphs if the background graph is simple. How do general restriction principles look like that
yield such subcategories?

3. In Section 5, we have shown that monomorphisms on the background objects provide suitable
morphisms between reaction systems over a category. What about further possibilities?

4. Another direction of research of this kind may be to consider functors. For instance, the usual
embedding of Σ-graphs into Σ-hypergraphs induces such a functor. The other way round, the usual
transformation of a hypergraph into a graph can be extended to morphisms. The question is which
properties of a functor F : C→C′ are sufficient such that a reaction system A over C is translated
into a reaction system F(A ) over C′. Whenever this works, one can compare reaction systems
over different categories.
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