
B. Hoffmann and M. Minas (Eds.): Eleventh International

Workshop on Graph Computation Models (GCM 2020)

EPTCS 330, 2020, pp. 88–107, doi:10.4204/EPTCS.330.6

© A. Corradini, M. Ghaffari Saadat & R. Heckel

This work is licensed under the

Creative Commons Attribution License.

Encoding Incremental NACs in Safe Graph Grammars

using Complementation

Andrea Corradini

Dipartimento di Informatica, University of Pisa, Italy

andrea@di.unipi.it

Maryam Ghaffari Saadat Reiko Heckel

Department of Informatics, University of Leicester, UK

{mgs17,rh122}@leicester.ac.uk

In modelling complex systems with graph grammars (GGs), it is convenient to restrict the application

of rules using attribute constraints and negative application conditions (NACs). However, having

both attributes and NACs in GGs renders the behavioural analysis (e.g. unfolding) of such systems

more complicated. We address this issue by an approach to encode NACs using a complementation

technique. We consider the correctness of our encoding under the assumption that the grammar is

safe and NACs are incremental, and outline how this result can be extended to unsafe, attributed

grammars.

1 Introduction

Motivation. Graph grammars (GGs) can model complex systems or networks where data transforma-

tions are tightly coupled with structural changes. A defining feature of complex systems is that they

show emergent behaviour arising from the actions of decentralised, distributed, often autonomous agents

individually described by means of simple rules [22, 17, 16]. One purpose of modelling such systems

is to investigate this emergent behaviour. This requires semantic models and analysis techniques able to

account for concurrency properties, such as the unfolding, which captures in a single structure the full

behaviour of the system, and its partial approximations [3, 1].

It is often natural to impose conditions on the rules governing the actions of individual agents to

restrict their application using both constraints on data attributes and negative application conditions

(NACs). Although allowing for both attributes and NACs enhances the expressiveness of rules and

facilitates a concise style of modelling, it renders semantics and behavioural analysis more complicated.

In previous work, authors of this paper have generalised the theory of unfolding from plain graph

grammars separately to the case with NACs and to the attributed case [5, 13]. While in the plain case,

conflicts and dependencies between transformation steps are based on how nodes and edges are used,

created or deleted by these steps, e.g. if created by one step and used by another, in the case with NACs

we have to account for additional sources of conflicts and dependencies, e.g. when a rule deletes part of a

structure that inhibits the application of another due to a NAC. Also, in the attributed case, dependencies

can be based on attributes updated by one step and then read by another. Hence both generalisations give

rise to additional complexity both conceptually and in terms of the construction of unfolding.

Our ultimate goal is to provide a comprehensive semantics and analysis approach based on a theory

of unfolding that supports both attribution and NACs. As a first contribution, we investigate here the

possibility of encoding incremental NACs of a safe grammar (where, up to renaming, all reachable

http://dx.doi.org/10.4204/EPTCS.330.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Corradini, M. Ghaffari Saadat & R. Heckel 89

graphs are subgraphs of the type graph) by exploiting structural properties of the graphs. We also sketch

how this technique could be extended to unsafe grammars by exploiting attributes.

Related work. In [10] the authors translate graph grammars with NACs and attributes into event-B

models, a state-based formalism based on first-order logic with set theory. The authors prove in two

stages that the encoded model is semantically equivalent to the input grammar: 1) encoding NACs only,

2) extending the encoding to attributes. Their goal is to be able to use theorem proving instead of model

checking to show behavioural correctness without exploring the state space. Even if our approach is

different, our motivations overlap with theirs in attempting to reduce complexity of behavioural analysis.

Another example for transforming negative application conditions over attributed graphs into a se-

mantics-preserving way is [20]. Here, the motivation is to simplify rather than encode the conditions,

but the technique of transforming rules in order to ensure that certain constraints are preserved is quite

similar to the construction presented later in Section 3.

Methodology. Our problem can be expressed generically as follows: Given a conditional graph grammar

C G , that is a graph grammar where rules may be equipped with NACs constraining their applicability,

construct an unconditional grammar DE(CG) that is equivalent to CG in both the derivations generated

and their dependency relations. That means, if two consecutive steps in a derivation of DE(CG) are

sequentially dependent (cannot be swapped), the same should hold for the corresponding steps in the

derivation over CG , and vice versa.

To express relations between grammars we rely on a notion of grammar morphism that preserves

the behaviour of the source grammar, inducing a mapping of derivations and, moreover, preserves the

relation of sequential independence between steps within a derivation. Such a morphism is based on a

relation between the type graphs of the grammars that allows, among other things, to drop or rename

types, and a mapping of rules that permits to reduce rules by dropping context and NACs.

The transformation of a given conditional grammar C G to its encoding DE(CG) without NACs

consists of two steps. First, we define a grammar E(CG) whose NACs are essentially the same as in

C G but are also encoded in a suitable way in the graphs to be transformed. Grammar E(CG) is related

to the original grammar by a morphism e : E(C G)→ C G . It can be shown that the NACs of E(CG)
are redundant thanks to their encoding, thus we can remove them from E(C G) obtaining a grammar

DE(CG), and we can show that there is a morphism d : E(CG)→ DE(CG) which is the identity on

types, constraints, rules and input graph. Our goal then is to show that both grammar morphisms of the

span C G
e
← E(C G)

d
→ DE(CG) not only preserve derivations and sequential independence, as every

morphism, but also reflect them. In particular, this means that

1. the NACs dropped by d do not restrict the applicability of rules in E(CG) nor create dependencies

and conflicts that do not exist on the underlying transformations;

2. the encoding of C G in E(CG) via e does not restrict the applicability of rules nor create new

dependencies and conflicts.

Since preservation of independence implies reflection of causality and conflicts, it ensures that DE(CG)
and C G have not only the same sequential behaviour, but also that their computations have the same

branching structure, and thus equivalent unfoldings.

Our approach for showing that morphisms d and e reflect derivations relies on showing that (1) the

NACs are redundant in E(CG) so dropping them in DE(CG) does not change the behaviour and that

(2) the structure resulting from the encoding of the NACs in E(CG) does not restrict the behaviour more

than it was already restricted by the NACs in C G . Concerning independence, it is trivially reflected by

d but for morphism e the property is at present only conjectured. Both arguments will rely on suitable

90 Encoding Incremental NACs

properties satisfied by the reachable graphs in grammar E(C G). To express such properties formally

we introduce a set of graph constraints and require that such constraints are invariants, that is, they are

satisfied in the start graph and preserved by the application of rules, and hence hold for all reachable

graphs. This will play an important role in verifying the correctness of the encoding.

Realisation. In particular, we propose an approach to encode incremental NACs (i.e. NACs that can only

be created or destroyed in a certain order [7]) into additional rule context. The restriction to incremental

NACs is motivated by the fact that only with this restriction the notion of sequential independence (and

therefore of causality) among steps enjoys some expected properties, which guarantee that a concurrent

semantics can be defined properly [6]. Our construction can be considered as a generalisation of the

well-known technique of complementation for Elementary Net Systems [23], which transforms a system

with possible situations of contact (where we try to place tokens on places that are already marked) into

an equivalent one which is contact-free.

We consider the encoding in detail for safe conditional graph grammars. This is a prerequisite to a

semantic comparison between notions of unfolding with [5] and without NACs [2], all resulting in safe

(i.e., occurrence) graph grammars. After the presentation of the relevant background in Section 2, the

complementation construction is described in Section 3. The main results, showing the equivalence of

the original grammar with the one obtained by encoding the NACs and then forgetting them are pre-

sented in Section 4. A simple safe grammar modeling a client-server architecture for online meetings is

used to illustrate concepts and constructions. Then in Section 5 we discuss informally the general case

of (unsafe) conditional attributed graph grammars and their encoding. Here we introduce the idea of

using attributes as counters for NAC occurrences reminiscent of reference counters in garbage collection

algorithms. We also rely on rules with multiobjects [16] to manage the creation and deletion of comple-

mented edges, but consider such rules as rule schemata that can be instantiated to countable sets of basic

rules. This is described with an example of a Token-Curated Registry (TCR), an architectural pattern for

smart contracts. In Section 6 we summarise our contributions and outline future work.

2 Background: Conditional Graph Grammars and Their Morphisms

This section first summarizes the basic definitions of typed graph grammars [8] based on the DPO ap-

proach [11, 12] extended by negative application conditions (NACs) [14]. In the second part we introduce

a quite general definition of conditional grammar morphisms and we prove that they preserve derivations

and independence.

Graphs and typed graphs. Formally, a (directed, unlabelled) graph is a tuple G = 〈N,E,s, t〉, where

N is a set of nodes, E is a set of arcs, and s, t : E → N are the source and target functions. A (graph)

morphism f : G→G′ is a pair of functions f = 〈 fN : N→N ′, fE : E→E ′〉 preserving sources and targets,

i.e., such that fN ◦ s = s′ ◦ fE and fN ◦ t = t ′ ◦ fE . Morphism f is a mono(morphism) if both components

are injective, and is an iso(morphism) if both are bijective.

The category of graphs and graph morphisms is denoted by Graphs. Given a graph T G, called

type graph, a T G-typed (instance) graph is a pair 〈G, tG〉, where G is a graph and tG : G→ T G is a

(typing) morphism. A morphism between typed graphs f : 〈G1, tG1
〉 → 〈G2, tG2

〉 is a graph morphisms

f : G1→ G2 consistent with the typing, i.e., such that tG1
= tG2

◦ f . The category of T G-typed graphs

and typed graph morphisms is denoted by GraphsTG.

Double-pushout rewriting. A (graph transformation) rule p = (L
l
← K

r
→ R) is a span of monos in

GraphsT G. A match of rule p in a graph G is a mono m : L→ G. Given a match m of p in G, a double-

A. Corradini, M. Ghaffari Saadat & R. Heckel 91

pushout (DPO) transformation G
p,m
=⇒ H from G to H exists if we can construct a diagram such as (1)

where both squares are pushouts in GraphsTG.

Derived and ancestor rules. If two rules p = (L
l
← K

r
→ R) and

p′ = (G
g
←D

h
→H) are related by a DPO diagram as in (1), then we

say that p′ is derived from p and p is an ancestor of p′.

L

m
��

K
loo r //

d
��

R

m∗

��
G D

g
oo

h
// H

(1)

Negative constraints and incrementality. The applicability of rules can be restricted by (negative) con-

straints. A constraint over a rule p is a mono n : L→ N. A match m : L→ G satisfies n (written m |= n)

if there is no mono q : N → G such that q◦n = m (see Diagram (2) (left)). If N is a set of constraints

we write m |= N if m |= n for each n ∈N . If n and n′ are constraints over p we say that n subsumes n′

(written n |= n′) if for every match m : L→ G, m |= n implies m |= n′.

N

q
/

��

L
noo

m

��
G

N L
noo

A

ff▼▼▼▼▼▼▼
Boo

ff▲▲▲▲▲▲▲

N−

OO

88r
r

r
L−

n−oo

OO

99r
r

r

(2)

We will often refer, for a constraint n : L→ N, to its “negative items”, that is, to the nodes and edges of

N that are not in the image of L. The smallest subgraph of N containing those items will be denoted N−,

and is characterized as in Diagram (2) (right) by an initial pushout: The square made of morphisms n

and n− : L−→ N− and of the vertical morphisms is an initial pushout over n if for each pushout square

N← A← B→ L
n
→ N with B→ L mono, there are unique morphisms N−→ A and L−→ B making the

diagram commute. For a constraint n we will call n− its shape, L− its border and N− its body. Note that

a shape would be an iso iff n is an iso, but in this case the rule is never applicable and can be dropped.

Thus we will safely assume that the shape of a constraint is not an iso. For a set of constraints N we

denote by sh(N) its set of shapes.

A constraint n : L→ N is incremental if whenever it can be decomposed in two different ways, i.e.

L
n
→N = L

a1→ X1
b1→N = L

a2→ X2
b2→N where all morphisms are mono, then there exists either a morphism

from X1 to X2 or one in the opposite direction making the two triangles commute. For untyped graphs

it is possible to show that if n is incremental then its shape n− can only be one of those shown in (3),

where nodes are boxes, L− is made of the black items, while the red “negative” items belong to N− \L−.

For T G-typed graphs, for every shape in (3) each distinct typing morphism tN− : N−→ T G determines a

different incremental shape.

shape IN: shape OUT: shape E: shape L: shape N: shape NL:

(3)

Grammars and derivations. A (typed) graph grammar (GG) G = 〈T G,Gin,P,π〉 consists of a type graph

T G, a T G-typed input graph Gin, a set of rule names P and a function π assigning to each p ∈ P a rule

π(p) = (Lp← Kp→ Rp).
A conditional graph grammar (CGG) C G = 〈T G,Gin,P,π,N 〉 adds to its underlying graph gram-

mar 〈T G,Gin,P,π〉 a function N providing for each p∈P a negative application condition (NAC) N (p)
over π(p), that is a set of constraints over π(p). Given a rule1 p ∈ P and a match m : L→ G, there is

1For the sake of simplicity, we often identify a rule with its name, leaving the application of π implicit.

92 Encoding Incremental NACs

a conditional transformation G
p,m
=⇒ H if the match m : L→ G satisfies all the constraints in N (p) and

a double-pushout diagram such as (1) can be constructed. Sometimes we will call the pair 〈p,N (p)〉 a

conditional rule.

A derivation in G is a finite sequence of transformations s = (Gin = G0
p1,m1
=⇒ ···

pn,mn
=⇒ Gn) with pi ∈ P.

A conditional derivation in C G is defined similarly as a sequence of conditional transformations. A

graph H ∈GraphsTG is reachable in a (C)GG if there exists a (conditional) derivation ending with H .

A (conditional) graph grammar is safe if all rules (including their constraints, if any) and all reach-

able graphs have an injective typing morphism to T G. A simple safe conditional grammar is presented in

Example 2.1. In a safe grammar, since w.l.o.g. we can consider all typing morphisms as inclusions, we

can assume that Gin and all reachable graphs are subgraphs of T G. Even if safe grammars enjoy quite a

limited expressive power, certain variants of them (occurrence grammars) are exploited as semantic do-

main able to represent, through an unfolding construction, causality and independence among transitions

of (conditional) grammars, as well as the branching structure of their computations [3, 5].

type graph T G:

C1

C2

C3

M2

M1

S2

S1

in12

in21

in32

in31

by1

by2

start graph G0:

:C1

:C2

:C3

rule pc(C1):

:C1

:M2

:in12
:S1

rule pc(C2):

:C2

:M1

:in21
:S2

rule sm(S1):

:S1

:M1

:by1

:M1

:by1

rule sm(S2):

:S2

:M2

:by2

:M2

:by2

rule jm(C1,M2):

:C1

:M2

:in12:in12

rule jm(C2,M1):

:C2

:M1

:in21:in21

rule jm(C3,M1):

:C3

:M1

:in31:in31

rule jm(C3,M2):

:C3

:M2

:in32:in32

Example 2.1 (Client-Server). The figure above shows a safe grammar which depicts a simple Client-

Server model. Rather than providing typing in the usual sense, in a safe grammar such as this one

the type graph T G plays the role of a global name space for all graphs reachable from the start graph.

This is common in models where we have an upper limit on the number of nodes and edges that may

exist during the lifetime of the system, or where the grammar represents a semantic object, such as an

occurrence grammar obtained by unfolding where rules represent transformation occurrences.

We use an integrated notation merging left- and right- hand side graphs into a single rule graph L∪R.

We indicate by colours and labels which elements are required and preserved (black), required but deleted

(blue), newly created (green), and forbidden (red). That means, the left-hand side L is given by all black

and blue elements with the forbidden elements of N in red, the right-hand side by all black and green

ones, and the interface K by the black elements only.2 A typical scenario is as follows: initially there are

three clients, one for each type. Two of the clients can be promoted to a server if they are not attached to

a meeting (using rules pc(C1) and pc(C2) respectively which have a constraint of shape OUT). A server

can start a meeting if it doesn’t already have one (using rules sm(S1) and sm(S2) respectively which

have a constraint of shape IN). A client can join a meeting if it is not already in that meeting (using rules

jm(C1,M2), jm(C2,M1), jm(C3,M1), and jm(C3,M2) respectively which have a constraint of shape

E).

2This notation could be ambiguous if a rule has more than one NAC: in that case an additional explanation is needed.

A. Corradini, M. Ghaffari Saadat & R. Heckel 93

N1 N2

L1

n1

OO

m1
��

K1
l1oo r1 //

n1

��

R1

m∗1 $$❍
❍❍❍

❍❍❍
❍

i

((

❫ ❪ ❭ ❬ ❨ ❲ ❯
❙ ❘ ◗

L2

n2

OO

m2zz✈✈✈
✈✈✈

✈✈j

vv

❵❛❜❝❡❣✐
❦❧♠

K2
l2oo r2 //

n2

��

R2

m∗2��
G D1g1

oo
h1

// H1 D2g2

oo
h2

// H2

(4)

Independence and causality among transformations. In the analysis of systems modeled as graph gram-

mars, it is often important to identify when two consecutive (conditional) transformations of a derivation

are sequentially independent, in the sense that their order can be switched obtaining an “equivalent”

derivation, and when instead there is a causal relationship among them. For plain transformations, se-

quential independence of two consecutive transformations like those in Diagram (4) (ignoring constraints

n1 and n2) is characterized (see e.g. [9]) by requiring the existence of two morphisms i : R1→ D2 and

j : L2→D1 such that m∗1 = g2 ◦ i and m2 = h1 ◦ j. For the conditional case [19] additionally it is required

that m′2 = g1 ◦ j |= n2 for each n2 ∈N (p2), and that the match of p1 in H ′1 induced by the transformation

G
p2,m

′
2=⇒ H ′1 satisfies each n1 ∈N (p1).

2.1 Morphisms of Conditional Grammars

The conditional grammar morphisms that we need in this paper are more general than, e.g., those of [5],

because we want to relate a grammar where NACs are encoded by adding complemented items to the

type graph of the original grammar. Thus retyping the graphs along the morphism should allow to delete

part of the structure. This can be obtained by relating the type graph of the source and the target grammar

with a span, as e.g. in [2]. Furthermore rules can be mapped to ancestor rules and constraints are reflected

only up to subsumption.

A morphism g : T G0→ T G1 induces a pullback functor g< : GraphsTG1
→GraphsTG0

mapping an

instance graph 〈G1, tG1
〉 over T G1 to the graph 〈G0, tG0

〉 obtained as the pullback T G0

tG0← G0→ G1 of

tG1
and g. Dually, a morphism h : T G0→ T G2 between type graphs induces a translation of instances

obtained by the covariant retyping functor h> : GraphsTG0
→GraphsTG2

, defined by post-composition

of h with the typing morphism. Note that this functor only affects the typing, hence h> acts as identity

on morphisms. Combining both actions, given a span f = (T G1
g
← T G0

h
→ T G2) relating T G1 and T G2

we define functor f<> : GraphsT G1
→GraphsT G2

by the composition h> ◦g<.

Definition 2.2 (Conditional grammar morphisms). Let C G i = 〈T Gi,Gin,i, Pi,πi,Ni〉 for i ∈ {1,2} be

conditional graph grammars. A CGG morphism f : C G 1→C G 2 is a pair 〈 fT G, fP〉where fTG =(T G1
f<
←

T G0
f>
→ T G2) is a span between type graphs T G1 and T G2 with f< mono, and fP : P1→ P2 is a mapping

of rule names such that

1. The input graph is preserved (up to retyping): f<>
T G (Gin,1) = Gin,2

2. Rules are mapped to ancestor rules: For all p ∈
P1, if fP(p) = p′ and π2(p′) = 〈L′ ← K′ → R′〉,
then there is a DPO diagram like (5) where the

vertical morphisms are mono.

L′

ip
��

K′oo //

��

R′

��
f<>
T G (Lp) f<>

TG (Kp)oo // f<>
T G (Rp)

(5)

94 Encoding Incremental NACs

3. Constraints are reflected: For each rule p ∈ P1

(with fP(p) = p′) and each mono h : Lp→N over

T G1, if there is a constraint n′ ∈N2(p′) such that

square (6) is a pushout, then there is a constraint

n ∈N1(p) such that n |= h.

L′

ip
��

n′ // N ′

��
f<>
T G (Lp)

f<>
T G (h)

// f<>
TG (N)

(6)

The definition of conditional grammar morphisms guarantees that morphisms preserve derivations:

this will be pivotal for the results presented later.

Proposition 2.3. Let 〈 fTG, fP〉 : C G 1→ C G 2 be a CGG morphism. Then for each derivation Gin,1 =

G0
p1
=⇒ ···

pn
=⇒ Gn of C G 1 there is a derivation Gin,2 = f<>

T G (G0)
fP(p1)
=⇒ ···

fP(pn)
=⇒ f<>

TG (Gn) of C G 2.

Proof. Let us denote by f< : GraphsT G1
→ GraphsTG0

the pullback functor induced by f< : T G0 →
T G1, by f> : GraphsT G0

→GraphsTG2
the functor obtained by post-composition with f> : T G0→ T G2,

and by f their composition.

We show that if G
p,m
=⇒ H is a conditional transformation in CG 1 then f(G)

p′,f(m)◦ip
=⇒ f(H) is a con-

ditional transformation in C G 2, where p′ = fP(p) and ip : Lp′ → f(Lp) is as in Diagram (5). This fact

extends to arbitrary derivations by concatenation and by observing that f(Gin,1) = Gin,2. For the DPO

diagram of transformation G
p,m
=⇒ H it is sufficient to observe that pushouts are preserved both by f<,

because Graphs is an adhesive category [18], and by functor f> because colimits are computed point-

wise in slice categories. Therefore we obtain the required DPO diagram witnessing f(G)
p′,f(m)◦ip
=⇒ f(H)

by composing the DPO of Diagram (5) with the image via f of G
p,m
=⇒ H .

N

2©
tN

q′

��

✏

✕

✚
✤

✩

✮

✳

X

�� ��

oo❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ N ′oo❴ ❴ ❴ ❴

q

ss

		

1©

Lp

m

��

h

OO✤
✤
✤

��

f(Lp)

f(m)

��

x

OO✤
✤
✤

oo

�� ��

Lp′
ipoo

n′

OO

��
T G1 T G0

f<oo f> // T G2

G

XX

f(G)

DDZZ

f ∗Goo

(7)

It remains to show that match f(m)◦ ip satisfies all the constraints in N2(p′), assuming that m satisfies

all those in N1(p). We proceed by contradiction, assuming that there is a constraint n′ : Lp′ → N ′ ∈
N2(p′) not satisfied by f(m)◦ ip, i.e., there exists an injective morphism q : N ′→ f(G) such that q◦n′ =
f(m)◦ ip. In Diagram (7) we show the relevant graphs and morphisms in Graphs, with the corresponding

typing morphisms.

Since q◦n′ = f(m)◦ ip commutes in GraphsTG2
, it also commutes in Graphs; also, its typing to T G2

factorizes through T G0: for f(m) by the definition of functor f, and for Lp′ and N ′ by composing q with

the typing of f(G). Let squares 1© and 2© be built as pushouts in Graphs. By the pushout property, since

the relevant squares are easily shown to commute, there are unique morphisms tN : N→ T G1 (such that

Lp→ T G1 = tN ◦h, showing that h is in GraphsT G1
) and q′ : N→ G, such that (†) m = q′ ◦h.

Recalling that Graphs is adhesive, observe that h is mono (because n′ is mono and pushouts preserve

monos) and that f(h) = x (up to an iso that we can safely ignore, because pushouts along monos are

pullbacks). Since 1© is a pushout, condition 3 of the definition of morphism applies, thus there is a

constraint n ∈ N1(p) such that n |= h. But (†) shows that m 6|= h and thus m 6|= n, contradicting the

assumption.

A. Corradini, M. Ghaffari Saadat & R. Heckel 95

Recall that that sequential independence of conditional transformations is defined in terms of (1) ex-

istence of certain morphisms between given graphs and commutativity requirements, and (2) satisfaction

of certain NACs by suitable matches. Properties (1) are easily shown to be preserved by any functor, and

Proposition 2.3 guarantees that (2) is preserved by grammar morphisms. Therefore grammar morphisms

preserve sequential independence.

Corollary 2.4. Let 〈 fT G, fP〉 : CG 1 → C G 2 be a CGG morphism. If G0
p1
=⇒ G1

p2
=⇒ G2 are sequen-

tial independent transformations for CG 1 then f<>
T G (G0)

fP(p1)
=⇒ f<>

T G (G1)
fP(p2)
=⇒ f<>

TG (G2) are sequential

independent transformations for C G 2.

3 Encoding NACs for Safe Conditional Grammars

Following the outline sketched in the Introduction, given a conditional grammar C G we define now

a grammar E(CG) where the NACs are encoded in the reachable graphs using suitable complemented

items. Grammar E(CG) keeps essentially the same NACs as CG , but they will be shown to be redundant

because of their encoding. For this section let C G = 〈T G,Gin,P,π,N 〉 be a fixed safe conditional

grammar, where all constraints are incremental. The first step consists of building an enriched type graph

T G which extends T G by adding complemented items for each constraint: intuitively, the presence of

such items in a graph guarantees that the constraint is satisfied.

Definition 3.1 (enriched type graph). Let sh(C G) = {n− : L−p → N− | p ∈ P,n ∈N (p)} be the set of

all shapes of constraints appearing in rules of CG . Consider the diagram in Graphs made of all arrows

of sh(C G), of T G, and for each shape n− : L−p → N− of the typing morphism tL−p : L−p → T G. Then the

enriched type graph T G is the colimit of this diagram.

Intuitively, the colimit adds to T G for each shape a copy of all

the red items (see Diagram (3)), their complement, typed over

T G. Diagram (8) shows that the body N− of shape n− has two

monos to T G: the colimit injection tN− as well as inT G ◦ tN− .

These monos are different (because the shape is not an iso by

assumption) but coincide on the border L−p .

N

tN

��

s
②

✁
✠
✎
✔
✙

tN

��

Lp

��

noo

N−

OO

tN−��

❥
✈

✞ tN− $$

L−p

t
L−p

{{

n−oo

OO

T G T G
inT Goo❴ ❴ ❴ ❴ ❴ ❴ ❴

(8)

They determine two different objects of GraphsTG that we shall denote N− (= 〈N−, inT G ◦ tN−〉) and

N
−

(= 〈N−, tN−〉), respectively, calling the second the body’s complement. Similarly, since the square

in (8) is a pushout, there is a mediating morphism tn from N to T G (which is a mono by adhesivity),

besides the mono inT G ◦ tN , giving rise to two objects in GraphsTG that we will denote N and N, respec-

tively. We call n : Lp→ N the complemented constraint of n.

We now introduce a property on obiects of GraphsT G, called the complementation invariant. Intu-

itively, a graph G over T G satisfies the invariant if for each constraint n : L→ N of the original grammar,

whenever the border of its shape (L−) is present in G, then the body N− of the shape is present as well if

and only if its complement N
−

is not present.

Definition 3.2 (complementation invariant). Let sh(C G) and T G be as in Definition 3.1. Then, using

a syntax reminiscent of nested application conditions [15], the complementation invariant is defined as

Φinv = ∀(n
− : L−→ N−) ∈ sh(C G) .∀L− .∃(L−→ N−) XOR ∃(L−→ N

−
)

Given a graph G over T G we can enrich it with the needed complemented items in order to obtain a

graph inv(G) over T G that satisfies the invariant.

96 Encoding Incremental NACs

Definition 3.3 (invariant closure). Given a graph G typed over T G, its invariant closure inv(G) is the

graph typed over T G obtained as the colimit of the diagram including (a) graph G typed over T G by

inT G ◦ tG, (b) for each shape n− : L−→ N− ∈ sh(C G), the complemented shape n− : L−→ N
−

and the

inclusion L−→ G if and only if the border L− is contained in G but the body N− is not.

It is easy to check that for each graph G over T G, in<T G(inv(G))∼= G. Thus inv(_) is an inverse to the

object component of the retyping functor along inT G, but it is not itself a functor.

Example 3.4 (Complemented Client-Server). The grammar of the figure below is obtained by applying

to the Client-Server grammar of Example 2.1 the transformations described in this section. The NACs are

not represented (they are redundant, as we will see). The type graph T G and the start graph G0 = inv(G0)
are obtained according to Defs. 3.1 and 3.3. The rules will be illustrated later on.

type graph T G:

C1

C2

C3

M2

M21 M22

M1

M11 M12

S2

S1

in12

in21

in31

in32

by1

by2

in121

in211

in12

in21

in32

in31
by1

by2

start graph G0:

:C1

:C2

:C3

M21

M11

:in121

:in211

rule pc(C1):

:M21:C1 :in121

:S1 :M12:by1

rule pc(C2):

:M11:C2 :in211

:M22:S2 :by2

rule sm(S1):

:S1

:C2

:C3

:M12:by1

:M1

:by1

:in21
:in31

rule sm(S2):

:S2

:C1

:C3

:M22:by2

:M2

:by2

:in12
:in32

rule jm(C1,M2):

:C1

:M2

:in12

:M21:in121

:in12

rule jm(C2,M1):

:C2

:M1

:in21

:M11:in211

:in21

rule jm(C3,M1):

:C3

:M1

:in31:in31

rule jm(C3,M2):

:C3

:M2

:in32:in32

As examples, the invariants for the constraints of rules pc(C1) and jm(C1,M2) of Example 2.1 (which

coincide with their shapes) are the following:

invariant for pc(C1): ∀ :C1 . ∃
(

:C1 :M2:in12
)

xor ∃
(

:C1 :M21:in121

)

invariant for jm(C1,M2): ∀
:C1 :M2 . ∃

(

:C1 :M2:in12
)

xor ∃
(

:C1 :M2:in12
)

For example a graph satisfies the first invariant if, whenever it contains node :C1, then it contains an

outgoing edge in12 to node :M2 if and only if it does not contain an outgoing edge in121 to node :M21.

We proceed now describing how the rules of C G have to be modified exploiting the complemented

items in T G to encode the constraints in the reachable graphs. We first complement all rules, making

them applicable only if the complement of the shape of each constraint is present, which means that the

constraint cannot be violated. Next we enrich the resulting rules to ensure that the invariant is preserved.

Construction 3.5 (complemented rules). Given a conditional rule 〈p,Np〉 over T G its complementation

is the conditional rule compl(〈p,Np〉) over T G returned by the following procedure.

1. Set p̃ = p, Ntodo = Np, Ndone = /0.

2. While Ntodo is not empty, perform the following step:

3. Let n : L→ N ∈Ntodo be a constraint for p̃ = (L
l
← K→ R). We assume that (†) the typing

over T G of the body N− of n’s shape is tN− ; inT G, i.e. it factorizes through T G. Then

A. Corradini, M. Ghaffari Saadat & R. Heckel 97

(a) If there is a DPO diagram N
p̃,n
=⇒H , where n : L→N is the complemented constraint, and

there is no arrow N−→ R, then set p̃ to be the derived rule (its bottom span). Otherwise,

set p̃ = (N
n◦l
← K→ R).

(b) Set Ntodo = Ntodo \{n}, and Ndone = Ndone∪{n}.
(c) Lift each constraint in Ntodo or Ndone along n, i.e., replace each constraint n′ : L→ N ′

with the morphism obtained by pushing out n′ along n : L→ N.

4. Return 〈p̃,Ndone〉

Note that assumption (†) above is satisfied by the constraints of the starting rule p because it is typed

over T G. Furthermore it is preserved by the modification of constraints in step 3.(c) because the shape of

a constraint does not change when pushing it out along a morphism, as it is defined as an initial pushout.

Note that Construction 3.5 was phrased exploiting pushouts in category GraphsT G. The assumption

of safety would allow us to work directly in the category of subgraphs of T G, using the standard set-

theoretical operations of intersection and union of subgraphs (corresponding to pullback over the type

graph, and to pushout over the pullback). We refrain from this and continue exploiting categorical

constructions in view of generalizing the theory to the unsafe case.

We enrich now the complemented rules just obtained in order to guarantee the preservation of the

complementation invariant of Definition 3.2. Recall that the invariant requires that whenever the border

L− of the shape of a constraint is present, then either its body N− or its body complement N
−

is present

as well. For the shapes of constraints of a rule p, it is easy to check that such property is preserved,

by construction, by the rule compl(〈p,Np〉) returned by Construction 3.5. With the following construc-

tion we replace each rule with one or more rules (all equivalent as far as the items typed over T G are

concerned) which preserve the invariant also for the shapes of constraints of other rules.

The following four cases are possible for a rule p and a shape n− : L−→ N− not in sh(Np): (1) If

rule p deletes the body N− preserving its border L−, then p is enriched to create the corresponding body

complement N
−

. (2) Dually, if p creates the body N− preserving the border L−, then it is extended to

delete the body complement N
−

. (3) If p creates the border L− but not the body N−, then it is extended

to create the body complement N
−

. (4) Finally, in the case of constraints of shape E , the border (which is

made of two nodes, see Diagram (3)) can also be created or deleted only in part (just one node). If a rule

creates only one node of the border L− (i.e. the second node is not in R), then to preserve the invariant

we need two rules: if the other node is already present in the current graph, we need to add the body

complement, but if it is not present we don’t need to add anything.

Construction 3.6 (making the rules invariant-preserving). Let CPCG = {compl(〈p,N (p)〉) | p ∈ P} be

the set of complemented rules of grammar C G typed over T G. Also, for p ∈ P let sh(C G p) be the

set of all shapes of constraints of rules different from p: as observed above, shapes are not affected by

complementation.

For each conditional rule 〈p = L← K → R,Np〉 in CPCG we obtain a set of invariant preserving

conditional rules IP(p) by applying in sequence the following transformations.

1. [Compensate body deletion] For each shape n−i : L−i → N−i in sh(C G p) such that there is an arrow

N−i → L, check if in Diagram (9) (left) the top arrow of pullback (1) is not an isomorphism (the

body N−i is deleted), but the top arrow of pullback (1) + (2) is an iso (the border L−i is preserved). In

this case take the pushout (3) of arrows L−i
∼=Y →K→ R and Y → N

−
i , and set p′ := L←K→ R′.

98 Encoding Incremental NACs

After all shapes are considered, continue to the next step with 〈p′,Np〉.

L−i

��

��

Y
∼=oo //

��

��

N
−
i

��✤
✤

(3)

N−i

��

X
6∼=oo

��
(1)

(2)

R′

L Koo // R

OO✤
✤

X
6∼= //

��
(4)

L−i
//

��
(5)

N
−
i

��✤
✤

K // R //❴❴❴ R′

Y
6∼= //

��

//

(6)

X

��

6∼= //

(7)

L−i
//

��✤
✤

(8)

��

N
−
i

��✤
✤

L

!!❇
❇❇

❇❇
❇ K //oo

""❉
❉❉

❉❉
❉

(9)

R //❴❴❴

(10) ##

R′ //❴❴❴ R′′

L′ K′oo

22

r
♦ ♠ ❦ ✐ ❣ ❡

T G

(9)

2. [Compensate body creation] This step can be formalized with a diagram symmetric to the previous

one: if p creates the body N−i of a shape and preserves its border L−i , p is enriched in order to delete

the body’s complement by replacing L with the graph L′ obtained as pushout of L−i → N−i and

L−i →K→ L. Also, all constraints have to be lifted along L→ L′ as in step (c) of Construction 3.5.

3. [Complete border creation] Continuing with the conditional rule 〈p,Np〉 resulting from the previ-

ous step, for each shape n−i : L−i → N−i in sh(C G p) consider Diagram (9) (middle): if there is an

arrow L−i → R and (4) is a pullback where the top morphism is not an iso (the rule completes the

creation of the border), then build the pushout (5) and continue with 〈L← K→ R′,Np〉.

4. [Complete partial border creation] Let R = {〈p,Np〉} be a set of conditional rules, initialized

with the rule resulting from the previous step. For each shape n−i of type E in sh(C G p), do the

following for each rule p = L← K → R in R: Consider Diagram (9) (right). Graph X is the

intersection of R and L−i , obtained as the pullback of the typing morphisms (because the grammar

is safe). If it is not isomorphic to L−i and also the top morphism of pullback (6) is not an iso, then

the rule creates part of the border, but not all of it. In this case add to R rule 〈L′← K′→ R′′,N ′〉,
obtained as follows: build (7) and (8) as pushouts, (10) as pushout complement, (9) as pushout,

while N ′ is obtained by lifting all the constraint of N along L→ L′.

Note that the last step could generate for each conditional rule a large set of derived rules needed to

cover all the possible situations (presence or absence of nodes of E shapes). Whenever p has a match in a

graph G, only the largest derived rule of the set having a match in G should be applied. This requirement

of maximality of the match will be needed to guarantee correctness.

For example, rule jm(C2,M1) of Example 3.4 is obtained by first complementing rule jm(C2,M1)
of Example 2.1, which adds edge in21 to L, and then applying step 2, because the rule creates in21 which

is also the body of the shape of the constraint of rule pc(C2). In Example 3.4 for each group of rules

generated according to step 4 above only the maximal rule is depicted. For example, rule sm(S1) also

has three subrules, obtained by deleting node C2, C3 or both from L, K and R, and the corresponding

complemented edges to M1 from R. Such rules are obtained starting from rule sm(S1) of Example 2.1,

which generates a node, M1, belonging to the border of two shapes.

Exploiting the constructions just described, we can complete the definition of grammar E(C G).

Definition 3.7 (the enriched grammar). Given C G = 〈T G,Gin,P,π,N 〉, its enriched grammar is defined

as E(CG) = 〈T G, inv(Gin),P
′,π ′,N ′〉where T G is as for Defintion 3.1, inv(Gin) is as for Definition 3.3,

and the conditional rules determined by P′, π
′ and N ′ are obtained from those of C G by applying

Constructions 3.5 and 3.6.

As desired, all the reachable graphs of grammar E(CG) satisfy the invariant Φinv. In fact this is

obvious for the start graph by construction, and each of the rules can be shown to preserve the invariant by

a detailed analysis of Constructions 3.5 and 3.6, also exploiting the maximality requirement of matches

mentioned above.

A. Corradini, M. Ghaffari Saadat & R. Heckel 99

Fact 3.8 (the complementation invariant is satisfied). All the reachable graphs of conditional grammar

E(C G) satisfy the complementation invariant Φinv.

4 Equivalence of enriched and original grammars

All along this section let CG = 〈T G,Gin,P,π,N 〉 be a grammar and E(CG) = 〈T G,Gin,P
′,π ′,N ′〉

be the corresponding enriched grammar of Definition 3.7. We show that there is a grammar morphism

from E(CG) to C G . Interestingly, this morphism not only preserves but also reflects derivations and,

we conjecture, sequential independence.

Proposition 4.1. Let eT G : (T G
inT G← T G

id
→ T G) be a span of type graphs, and eP : P′→ P be the mapping

that associates each rule obtained from Construction 3.6 with the original rule in P. Then e = 〈eT G,eP〉 :

E(C G)→ C G is a well-defined morphism.

Proof sketch. Note that the pullback functor in<T G deletes from a graph all the complemented items,

which are typed over T G but not over T G. The proof proceeds by analyzing all the transformations of

the previous section showing that only complemented items are ever added (to the left- and right-hand

sides of rules, to constraints and to the start graph). Only the transformation for shape E in step 4 of

Construction 3.6 may add new non-complemented nodes to a rule p. Such nodes are preserved by p, and

become isolated after retyping along inT G. Therefore the retyped rule e<>
T G (p) is derived from the target

rule eP(p), as desired.

Furthermore the NACs are reflected by e: this follows from the observation that the NACs of a rule p of

E(C G) can be obtained by lifting all and only the NACs of the original rule eP(p) along the morphism

embedding the left-hand side LeP(p) in Lp.

The next result essentially shows that the encoding of NACs is correct: the NACs in E(C G) are

redundant as they can never be violated by a match to a graph satisfying the invariant.

Lemma 4.2 (extended NACs are redundant). Let p ∈ P′ be a rule of E(CG), G ∈GraphTG be a graph

such that G |= Φinv, and m : Lp→ G be a match. Then m |= N ′(p).

Proof sketch. By Construction 3.5, each constraint n : Lp → N is lifted along Lp → N obtaining an

extended constraint N→ Ñ. Therefore Ñ contains both the body N− of the shape n− and its complement

N
−

, violating the invariant Φinv, and this fact cannot be changed by other possible transformations of the

constraint in Construction 3.6, because they can only extend it further. We can conclude that G cannot

violate the constraint because there cannot be an injective morphism from a graph that doesn’t satisfy

Φinv to a graph that satisfies it, and G satisfies the invariant by assumption.

We now show that, as desired, morphism e also reflect derivations.

Theorem 4.3 (reflection of derivations). The conditional grammar morphism e : E(CG)→ CG reflects

derivations: if G
p,m
=⇒ H in C G , then there are graphs G′ and H ′ over T G, a rule p′ ∈ P′ and a match

m′ : Lp′ → G′ such that G′
p′,m′
=⇒ H ′ in E(C G), e<>

T G (G′)∼= G, e<>
T G (H ′)∼= H, and ep(p′) = p.

Proof sketch. Let G′ = inv(G). Since G
p,m
=⇒ H in CG , it is possible to show that the rule obtained by

complementing 〈p,N (p)〉 according to Construction 3.5 has a match m′ in G. In fact, all the constraints

of p are satisfied by m by assumption, meaning that the corresponding shape bodies are not present in

inv(G), and thus by the invariant their complement bodies are present in inv(G). The complemented rule

100 Encoding Incremental NACs

could have been transformed further by Construction 3.6: a case analysis shows that its left-hand side

may only be extended, and in such case the match m′ can be extended as well because the additional

structure must be present in inv(G) by the invariant. Finally if p has a corresponding family of enriched

rules by step 4 of Construction 3.6 then the representative having the largest match in inv(G) has to be

chosen. If p′ and m′ are the rule and match found via this procedure, then inv(G)
p′,m′
=⇒H ′ because (a) the

applicability to the T G-typed part of inv(G) is given by assumption; (b) the addition of complemented

items in Constructions 3.5 and 3.6 does not introduce new constraints, and (c) the NACs of E(CG)
are redundant by Lemma 4.2. Finally, e<>

T G (inv(G)) ∼= G by the properties of inv(_), ep(p′) = p by

construction, and e<>
T G (H ′)∼= H because e is a grammar morphism.

We conjecture that the two grammars are equivalent in an even stronger sense, because sequential

independence is not only preserved by morphism e, but also reflected. This will be a topic of future

investigation. To complete the picture sketched in the introduction, we formalize the idea of “dropping

the redundant NACs” from E(CG) with a grammar morphism, useful to guarantee that the resulting

grammar is equivalent in the strong sense described above.

Proposition 4.4 (forgetting the NACs preserves and reflects derivations and independence). Let DE(CG)
be the conditional grammar obtained from E(CG) by deleting all NACs, i.e., such that N (p) = /0 for

each rule p. Let d : E(C G)→ DE(CG) be defined as d = 〈(T G
id
← T G

id
→ T G), idP′〉. Then d is a

well-defined morphism. Furthermore it reflects derivations and sequential independence.

Proof sketch. Conditions 1 and 2 of grammar morphism hold trivially, and condition 3 holds vacuously

because DE(CG) has no NACs. Reflection of derivations holds for the double-pushout part trivially, and

for the satisfaction of NACs because they are redundant in E(C G). Reflection of sequential indepen-

dence holds for the existence of certain morphims and commutativity requirements because retyping is

along an iso, and for the additional conditions involving NACs again because they cannot be violated by

graphs satisfying the invariant.

5 Encoding of NACs in Unsafe Attributed Graph Grammars

Many complex models require a formalism more expressive than safe grammars over typed graphs. In

particular, safety limits instance graphs to be subgraphs of the type graph and hence, assuming this is

finite, only allows us to model systems with a finite state space. Real-world applications also usually

require that structural features, conveniently represented by nodes and edges in a graph, are augmented

by data. This combination of structure and data leads us to attributed graph grammars.

In this section we will discuss the problem of encoding a conditional attributed graph grammar into

an attributed graph grammar without NACs. The constructions proposed are applicable to all main-

stream notions of attributed graph transformation, in particular those based on E-graphs [12] and ground

symbolic attributed graphs [21].

As in the non-attributed case we work with typed graphs over a given type graph declaring, apart

from node and edge types, also the attributes for nodes and edges and their respective domains given by

the sorts of a given data algebra. The data algebra is fixed across all grammars, representing predefined

basic data types such as strings and numbers.

Attributed graph transformation is defined based on the transformation of the underlying graph struc-

ture with the possibility of attribute constraints restricting possible matches and attribute assignments de-

A. Corradini, M. Ghaffari Saadat & R. Heckel 101

termining the update of attribute values. In the following subsections we consider an example, describe

the encoding for attributed condition grammars first in general and then apply it to the example.

5.1 Case Study: Token Curated Registry

In this section we show how our encoding applies to an unsafe grammar using a model of a Token-

Curated Registry (TCR) based on [24]. TCR is an architectural pattern for smart contracts where a set of

curators ensure the quality of the entries in a list of services or products. A typical scenario starts with a

candidate applying to a registry to be listed, if they are not on the list yet. A curator of the registry can

challenge a candidate if they are not being challenged at the time. Every curator of the registry hosting a

challenge can vote provided that they are not the challenger and have not already voted.

For simplicity, we assume there is a single registry, and we have majority voting. That means, for

the challenge ch to succeed, the number of voters in support of the challenge must be larger than half of

the number of potential voters (all curators of the registry except the challenger), that is ma j(r,ch) :=
1 i f

(

ch.noVotes > r.noCurs−1
2

)

else 0. Note that by this definition in the event of a tie the challenged

candidate is considered the winner.

Curators who supported the majority position receive a reward. In the start graph G0, all reward

attributes are initialised with zero. For all objects, the rwds attribute value must be non-negative at all

times. We left this condition implicit here but it can easily be asserted for every rule that subtracts from

rwds of an object.

type graph T G:

Registry

noCurs:Int

Candidate

rwds:Int

Curator

rwds:Int

Challenge

noVotes:Int

noRwds:Int

on

o f

voteYay

ch′ed

ch′er

rwd

start graph G0:

r:Registry

noCurs = 4

c:Candidate t1:Curator

t2:Curator

t3:Curator

t4:Curator

:o f
:o f
:o f
:o f

In a challenge, either the challenger (curator) wins or the challenged (candidate). In the first case the

candidate is dropped from the list whereas in the second case it stays on. In any case the winner and

curators who supported the winning party get a reward. In this example all constraints are incremental,

thus if in a rule there is more than one red edge, each of them has to be considered as a distinct constraint.

rule apply:

:Candidate

r:Registry

:on:on

rule challenge:

:Curatorr:Registry

:Candidate

:on

:o f

:Challenge

:ch′ed
:Challenge

noVoters = 0

noRwds = 0

:ch′ed

:ch′er

rule voteYay:

:Curator:Registry

:Candidate
:Challenge

noVotes→ noVotes+1
:ch′ed

:on

:o f

:ch′er:voteYay :voteYay

rule rewardCh′er:
:Curator

rwds→ rwds+1
r:Registry

:Candidatech:Challenge

:o f

:ch′er

:ch′ed

:on

ma j(r,ch) == 1

rule rewardCh′ed:

:Curator r:Registry

:Candidate

rwds→ rwds+1
ch:Challenge

:o f

:on:ch′er

:ch′ed

ma j(r,ch) == 0

102 Encoding Incremental NACs

The vote rule is disabled once either the challenger or the challenged candidate is rewarded by the

above rules since the link from the challenged candidate to the challenge is deleted at this stage. By

deleting this link, the rules for rewarding the challenger or challenged also enable the rewards for curators

who voted in favour or against the proposal.

rule rewardVoter:

t:Curator

rwds→ rwds+1

r:Registry

ch:Challenge

:o f

:Candidate :on

:voteYay

:ch′ed

ma j(r,ch) == 1

rule rewardNonVoter:

t:Curator

rwds→ rwds+1

r:Registry

ch:Challenge

noRwds→ noRwds+1

:o f

:Candidate :on

:ch′ed

:voteYay

:rwd

:ch′er

:rwd

ma j(r,ch) == 0

rule resolveChallenge:

r:Registry

:Curator

:o f

ch:Challenge

:ch′er

rule delVoteLink:

t:Curator r:Registry

ch:Challenge

:o f

:voteYay

ma j(r,ch) == 0

rule delRwdLink:

t:Curator r:Registry

ch:Challenge

:o f

:rwd

ma j(r,ch) == 0

ch.noRwds == r.noCurs−ch.noVotes

There are two scenarios after voting has finished. If the challenge succeeds, i.e. ma j(ch,r) == 1

• Every voter is rewarded and the corresponding vote link is deleted.

• Once all vote links are deleted, the challenge can be resolved by rule resolveChallenge. Due to

the dangling condition, this rule is only enabled once all vote links are deleted.

If the challenge fails, i.e. ma j(ch,r) == 0

• Every non-voter who isn’t the challenger is rewarded and a reward link is pointed to them from the

challenge to make sure none is rewarded more than once. Here, the vote links are intact through

the rewarding process.

• To safely resolve the challenge, we delete all reward and vote edges by applying delRwdLink and

delVoteLink repeatedly. The order does not matter. delRwdLink is only enabled once all non-

voters have been rewarded (i.e. ch.noRwds == r.noCurs− ch.noVotes). This condition does not

change when delRwdLink is applied so the rule remains enabled until all reward edges are deleted.

• And finally apply resolveChallenge as before.

5.2 Encoding of NACs

Next, we discuss how the NACs of a conditional attributed grammar like the TCR model can be encoded.

This encoding extends the analogous construction for safe unattributed grammars. First, let us look at the

simpler case of complementation in the case of incremental NACs that have unique occurrences. A NAC

n : L→ N has unique occurrences if for every reachable graph G and match m : L→ G there is at most

A. Corradini, M. Ghaffari Saadat & R. Heckel 103

one occurrence q : N→G of n such that m◦n = q. This can be seen as a form of local safety, permitting

an encoding using complement edges similar to the safe case. That means, for all NACs n with unique

occurrences we add complement types to the type graph and derive constraints and complemented start

graph as described in Definitions 3.1, 3.2 and 3.3. Similarly, we replace each rule p with NAC n by

its derived rule obtained by applying p to the complemented version of n as in Construction 3.5. Then,

if a rule p deletes/creates an occurrence of n, we extend p to create/delete a parallel occurrence of n’s

complement as described in Construction 3.6 1/2.

The encoding starts to diverge from the safe case where deletion and creation of boundary nodes is

concerned. If n is of shape IN or OUT and p creates/deletes a boundary node in v ∈ Ln, we extend p

to create/delete the complement structure N− \n−(Ln) with it. If n is of shape E and p creates/deletes a

boundary node in v ∈ Ln, we extend p by an occurrence of the complement of the negative edge e ∈ N−
attached to v, and add the other boundary node u ∈ Ln as a multiobject such that edge e between v and u

is created/deleted along with v.

To address the full TCR example, we also have to consider cases where the NACs do not have unique

occurrences only. In this case, we introduce reference counters to keep track of how many occurrences

there are. That means, we compute the body of the NAC as before, but then, if n is of shape E:

(1) We add to T G a complement type tN−(e)
n− for the type tN−(e) of the edge e ∈ EN− and introduce

an attribute #n− : nat to the new edge type. We add a constraint #n− = card(n−) as an invariant,

where card(n−) is the number of occurrences of n− parallel to n̄−.3

(2) If there exists a rule that creates or deletes a boundary node in v ∈ L−, we add an attribute #n̄−

to the type of v, subject to the invariant #n̄− = card{ē | e is the edge attached to v in N−} (this is

counting the complement edges attached to v).

If n is of shape IN or OUT:

(3) We introduce an attribute #n− : nat to the type of the single boundary node v in L−.

(4) We add constraint #n− = card(n−) as invariant (card(n−) is the number of occurrences of n−).

Then, for each NAC n and rule p:

(5) If n ∈N (p) we replace p by the derived rule resulting from p’s application to n̄ with #n− := 0.

(6) If p creates/deletes k occurrences of the NAC, we extend p to increase/decrease #n− by k.

(7) If n is of shape IN or OUT and p creates a boundary node in v ∈ L−, we extend p by the attribute

assignment #n− := 0.

(8) If n is of shape E and p creates/deletes a boundary node in v ∈ L−, extend p by an occurrence of

the complement of the negative edge e ∈ N− attached to v, add the other boundary node u ∈ Ln as

a multiobject such that edge e between v and u is created/deleted along with v. Set #n̄− := 0 when

v is created.

Finally, extend the start graph to include complements of all missing NAC occurrences, add all

newly declared attributes and initialise them such that their constraints are satisfied. Together with the

adaptations to the rules, this ensures that the constraints are invariants.

Note that we consider rules with multiobjects as rule schemata that unfold into a set of instance rules

using amalgamation [4], such that for each rule instance with k copies of a multiobject arising from a

boundary node of a NAC n, the value of the attribute #n̄− on the other boundary node of n is k.

3Formally, such a constraint is satisfied in a graph if for all occurrences o : L−→ G of the shared boundary of n− and n̄−,

the number of compatible occurrences of n− equals #n−.

104 Encoding Incremental NACs

5.3 Encoding the NACs of the TCR

We apply this construction to the TCR grammar as follows (see the figures below). As before, the

attributes not mentioned in G0 are initialised with zero. There are five rules with NACs, namely apply,

challenge, voteYay, rewardVoter, and rewardNonVoter. With the exception of challenge which has a

NAC of shape IN, all NACs are of shape E for which we add an attributed complement edge in T G

(step (1) in the encoding). Since the boundary node Challenge is created by challenge and deleted

by resolveChallenge, following step (2), we add attributes to Challenge with invariants requiring that

each attribute always reflects the number of corresponding edges (e.g. ch.noVoteBar == card{voteL :

vote | tar(voteL) == ch}). For the NAC in challenge, we follow step (3) and add attribute noCh to the

boundary node Candidate that counts the number of arcs of type ch′ed that target it. Based on (4), we

assert the invariant c.noCh == card{chL : ch′ed | tar(chL) == c} for every Candidate c. Conditions

on attributes are below each rule.

type graph T G:

Registry

noCurs:Int

Candidate

rwds:Int

noCh:Nat

Curator

rwds:Int

Challenge

noVotes:Int

noRwds:Int

noRwdBar:Nat

noVoteBar:Nat

noCh’erBar:Nat

on

on [n : Nat]

o f

voteYay

voteYay [n : Nat]

ch′ed ch′ed [n : Nat]

ch′er

rwd

rwd [n : Nat]

ch′er [n : Nat]

rule apply:

c:Candidate

r:Registry

:on:on[n→ n+1]

c.on.n == 0

rule voteYay:

t:Curatorr:Registry

ch:Challenge

noVotes→ noVotes+1
:Candidate

:o f

ch′ed

on :voteYay voteL:voteYay [n→ n+1]

voteL.n == 0

start graph G0:

r:Registry

noCurs = 4

c:Candidate

noCh = 0
t1:Curator

t2:Curator

t3:Curator

t4:Curator

:o f

:o f

:o f

:o f

on [n = 0]

rule challenge:

t:Curator

r:Registry

c:Candidate

noCh→ noCh+1

:Curator:Curator

:on

:o f
:o f

ch:Challenge

noVoters = 0

noRwds = 0

noRwdBar = r.noCurs−1

noVoteBar = r.noCurs−1

noCh′erBar = r.noCurs−1

:ch′ed

:ch′ed [n = 1]

:ch′er:ch′er [n = 1]
:voteYay [n = 0]

:rwd [n = 0]

:ch′er [n = 0]

c.noCh == 0

In apply, if there is no edge of type on present (i.e. attribute n of on is zero), such an edge is created

and the attribute of on is incremented by one to reflect this change (cf. (1) and (2) of the encoding). In

rule challenge, if the candidate c is not currently challenged (i.e. c.noCh == 0), a challenge is created

and c.noCh is incremented by one. In addition to the creation of the ch′ed edge, its complement ch′ed

is created with counter initialised to n = 1. Since Challenge is a boundary node for complement edges

corresponding to NACs in voteYay and rewardNonVoter, we have a multiobject for curators in rule

challenge (creates a Challenge node) and resolveChallenge (deletes a Challenge node) (step (8)). Rules

that contain multiobjects can be interepreted as interaction schemes [4] which expand into countably

infinite set of rules with reference count attributes ensuring that the rule with the correct number of

instances of the multiobjects is applied in each case.

In the rewarding phase, the rules are the following:

A. Corradini, M. Ghaffari Saadat & R. Heckel 105

rule rewardCh′er:
:Curator

rwds→ rwds+1
r:Registry

:Candidate

noCh→ noCh−1
ch:Challenge

:o f

:ch′er
:ch′ed [n→ n−1]

:ch′ed

:onon [n→ n−1]

ma j(r,ch) == 1

rule rewardCh′ed:

:Curator r:Registry

:Candidate

noCh→ noCh−1

rwds→ rwds+1

ch:Challenge

:o f

:on
:ch′er

:ch′ed [n→ n−1]

:ch′ed

ma j(r,ch) == 0

In rewardCh′ed, we decrement by one the Candidate’s reference counter for challenges. In rewardCh′er,

in addition to decrementing noCh, we need to decrement the attribute of on to reflect deletion of on par-

allel to it (point 2). Both rules decrement the ch′ed counter to reflect the deletion of a ch′ed edge.

rule rewardVoter:

t:Curator

rwds→ rwds+1

r:Registry

ch:Challenge

:o f

:Candidate :on

chd:ch′ed

:voteYay

:voteYay [n→ n−1]

ma j(r,ch) == 1

chd.n == 0

rule rewardNonVoter:

t:Curator

rwds→ rwds+1

r:Registry

ch:Challenge

noRwds→ noRwds+1

:o f
rwdL:rwd [n→ n+1]

voteL:voteYay

chL:ch′er

:Candidate :on

chd:ch′ed

:rwd

ma j(r,ch) == 0

voteL.n == 0

rwdL.n == 0

chL.n == 0

chd.n == 0

rule delVoteLink:

t:Curator r:Registry

ch:Challenge

:o f

:voteYay:voteYay [n→ n−1]

ma j(r,ch) == 0

rule delRwdLink:

t:Curator r:Registry

ch:Challenge

:o f

:rwd
:rwd [n→ n−1]

ma j(r,ch) == 0

ch.noRwds == r.noCurs−ch.noVotes

rule resolveChallenge:

r:Registry

:Curator

:Curator:Curator

:o f

:o f

:Candidate

ch:Challenge

:ch′er

chrL:ch′er

rwdL:rwd

nchrL:ch′er

voteL:voteYay

chd:ch′ed

rwdL.n == 0

chrL.n == 1

nchrL.n == 0

voteL.n == 0

chd.n == 0

ch.noCh′erBar == r.noCurs−1

ch.noRwdBar == r.noCurs−1

ch.noVoteBar == r.noCurs−1

In rewardNonVoter, conditions voteL.n == 0, rwdL.n == 0, chL.n == 0, and chd.n == 0 ensure

that the curator has not voted, has not been rewarded, is not the challenger and that the candidate is

no longer linked to the challenge. We increment the attribute of rwdL by one to reflect the creation of

an edge of type rwd. The encoding of resolveChallenge gives rise to a multiobject because Challenge

is a boundary node for a constraint of shape E in voteYay and rewardNonVoter rules (point 4). The

challenger has an edge of type ch′er and a complement edge of type ch′er whose attribute is 1 whereas

every non-challenger curator has three complement edges of types ch′er, voteYay, and rwd each with an

attribute value of 0. The candidate has a ch′ed complement edge with counter attribute 0.

106 Encoding Incremental NACs

6 Conclusion and Future Work

As a contribution towards a comprehensive unfolding semantics applicable also to graph grammars en-

riched with both attributes and NAC’s, in this paper we addressed the problem of encoding the NACs

into the graphical structure of the states. We presented this construction formally for the restricted case

of unattributed safe grammars and incremental NACs, for which we proved that the construction gen-

erates an unconditional grammar having equivalent derivations of the original one and, we conjecture,

manifesting the same sequential independence among transformations. This construction is reminiscent

of the complementation of Elementary Net Systems [23], a construction known to preserve the branch-

ing behavior, thus supporting our confidence that the unfolding semantics of the encoded grammar will

correspond precisely to that of the original one. A formal comparison with complementation of nets is

left as future work, together with the proof of preservation and reflection of independence.

The key ideas of how to generalize the construction to attributed, possibly unsafe grammars was

presented informally. Unsafety requires to count the number of items that could cause the violation of

a NAC, and thus it requires the encoded grammar to be attributed. More interestingly, certain shapes of

NACs require to encode a rule of the original grammar with a family of rules, that can be generated via

an amalgamation. As future work we plan to provide a formalization of the construction in this more

general case, and to study to what extent the concurrent semantics is preserved through the construction.

We would also like to generalize our construction to the case of non-incremental NACs, motivated by

the observation that in the attributed case incremental NACs have limited expressiveness. But previous

work [7] showed that the notion of independence among transitions is not well defined in case of general

NACs, thus weakening our overall motivations in this case.

References

[1] Paolo Baldan, Andrea Corradini & Barbara König (2008): A framework for the verification of infinite-state

graph transformation systems. Inf. Comput. 206(7), pp. 869–907, doi:10.1016/j.ic.2008.04.002.

[2] Paolo Baldan, Andrea Corradini & Ugo Montanari (1998): Unfolding of Double-Pushout Graph Grammars

is a Coreflection. In: TAGT, LNCS 1764, Springer, pp. 145–163, doi:10.1007/978-3-540-46464-8_11.

[3] Paolo Baldan, Andrea Corradini, Ugo Montanari & Leila Ribeiro (2007): Unfolding semantics of graph

transformation. Inf. Comput. 205(5), pp. 733–782, doi:10.1016/j.ic.2006.11.004.

[4] Enrico Biermann, Hartmut Ehrig, Claudia Ermel, Ulrike Golas & Gabriele Taentzer (2010): Parallel indepen-

dence of amalgamated graph transformations applied to model transformation. In: Graph transformations

and model-driven engineering, Springer, pp. 121–140, doi:10.1007/978-3-642-17322-6_7.

[5] Andrea Corradini, Maryam Ghaffari Saadat & Reiko Heckel (2019): Unfolding Graph Grammars with Neg-

ative Application Conditions. In: ICGT, Springer, pp. 93–110, doi:10.1007/978-3-030-23611-3_6.

[6] Andrea Corradini & Reiko Heckel (2014): Canonical Derivations with Negative Application Conditions. In:

ICGT, LNCS 8571, Springer, pp. 207–221, doi:10.1007/978-3-319-09108-2_14.

[7] Andrea Corradini, Reiko Heckel, Frank Hermann, Susann Gottmann & Nico Nachtigall (2012): Transfor-

mation systems with incremental negative application conditions. In: International Workshop on Algebraic

Development Techniques, Springer, pp. 127–142, doi:10.1007/978-3-642-37635-1_8.

[8] Andrea Corradini, Ugo Montanari & Francesca Rossi (1996): Graph processes. Fundamenta Informaticae

26(3, 4), pp. 241–265, doi:10.3233/FI-1996-263402.

[9] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel & Michael Löwe (1997):

Algebraic approaches to graph transformation–part i: Basic concepts and double pushout approach. In:

http://dx.doi.org/10.1016/j.ic.2008.04.002
http://dx.doi.org/10.1007/978-3-540-46464-8_11
http://dx.doi.org/10.1016/j.ic.2006.11.004
http://dx.doi.org/10.1007/978-3-642-17322-6_7
http://dx.doi.org/10.1007/978-3-030-23611-3_6
http://dx.doi.org/10.1007/978-3-319-09108-2_14
http://dx.doi.org/10.1007/978-3-642-37635-1_8
http://dx.doi.org/10.3233/FI-1996-263402

A. Corradini, M. Ghaffari Saadat & R. Heckel 107

Handbook Of Graph Grammars And Computing By Graph Transformation: Volume 1: Foundations, World

Scientific, pp. 163–245, doi:10.1142/3303.

[10] Simone André da Costa Cavalheiro, Luciana Foss & Leila Ribeiro (2017): Theorem proving graph grammars

with attributes and negative application conditions. TCS 686, pp. 25–77, doi:10.1016/j.tcs.2017.04.010.

[11] Hartmut Ehrig, Michael Pfender & Hans Jürgen Schneider (1973): Graph-Grammars: An Algebraic Ap-

proach. In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, October

15-17, 1973, IEEE Computer Society, pp. 167–180, doi:10.1109/SWAT.1973.11.

[12] Hartmut Ehrig, Karsten Ehrig ande Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Alge-

braic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series, Springer,

doi:10.1007/3-540-31188-2.

[13] Maryam Ghaffari Saadat, Reiko Heckel & Fernando Orejas (2020): Unfolding Symbolic Attributed Graph

Grammars. In: ICGT, LNCS 12150, Springer, pp. 75–90, doi:10.1007/978-3-030-51372-6_5.

[14] Annegret Habel, Reiko Heckel & Gabriele Taentzer (1996): Graph Grammars with Negative Application

Conditions. Fundam. Inform. 26(3/4), pp. 287–313, doi:10.3233/FI-1996-263404.

[15] Annegret Habel & Karl-Heinz Pennemann (2009): Correctness of high-level transformation systems relative

to nested conditions. Math. Struct. Comput. Sci. 19(2), pp. 245–296, doi:10.1017/S0960129508007202.

[16] Reiko Heckel & Gabriele Taentzer (2020): Graph Transformation for Software Engineers: With Applica-

tions to Model-Based Development and Domain-Specific Language Engineering. 1, Springer International

Publishing, doi:10.1007/978-3-030-43916-3.

[17] Manuel Koch & Francesco Parisi-Presicce (2002): Describing policies with graph constraints and rules. In:

International Conference on Graph Transformation, Springer, pp. 223–238, doi:10.1007/3-540-45832-8_18.

[18] Stephen Lack & Paweł Sobociński (2004): Adhesive categories. In: FOSSACS, Springer, pp. 273–288,

doi:10.1007/978-3-540-24727-2_20.

[19] Leen Lambers (2009): Certifying rule-based models using graph transformation. Ph.D. thesis, Berlin Insti-

tute of Technology.

[20] Nebras Nassar, Jens Kosiol, Thorsten Arendt & Gabriele Taentzer (2020): Constructing optimized constraint-

preserving application conditions for model transformation rules. J. Log. Algebraic Methods Program. 114,

doi:10.1016/j.jlamp.2020.100564.

[21] Fernando Orejas & Leen Lambers (2010): Symbolic Attributed Graphs for Attributed Graph Transformation.

ECEASST 30, doi:10.14279/tuj.eceasst.30.405.

[22] Bruno Pinaud, Guy Melançon & Jonathan Dubois (2012): PORGY: a visual graph rewriting environ-

ment for complex systems. In: Computer Graphics Forum, 31, Wiley Online Library, pp. 1265–1274,

doi:10.1111/j.1467-8659.2012.03119.x.

[23] Grzegorz Rozenberg (1986): Behaviour of Elementary Net Systems. In: ACPN, LNCS 254, Springer, pp.

60–94, doi:10.1007/BFb0046836.

[24] Fabian Vogelsteller & Vitalik Buterin (2015): ERC-20 Token Standard: A standard interface for tokens.

Available at https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md.

http://dx.doi.org/10.1142/3303
http://dx.doi.org/10.1016/j.tcs.2017.04.010
http://dx.doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/978-3-030-51372-6_5
http://dx.doi.org/10.3233/FI-1996-263404
http://dx.doi.org/10.1017/S0960129508007202
http://dx.doi.org/10.1007/978-3-030-43916-3
http://dx.doi.org/10.1007/3-540-45832-8_18
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1016/j.jlamp.2020.100564
http://dx.doi.org/10.14279/tuj.eceasst.30.405
http://dx.doi.org/10.1111/j.1467-8659.2012.03119.x
http://dx.doi.org/10.1007/BFb0046836
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

	1 Introduction
	2 Background: Conditional Graph Grammars and Their Morphisms
	2.1 Morphisms of Conditional Grammars

	3 Encoding NACs for Safe Conditional Grammars
	4 Equivalence of enriched and original grammars
	5 Encoding of NACs in Unsafe Attributed Graph Grammars
	5.1 Case Study: Token Curated Registry
	5.2 Encoding of NACs
	5.3 Encoding the NACs of the TCR

	6 Conclusion and Future Work

