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Graph transformation theory relies upon the composition of rules to express the effects of sequences
of rules. In practice, graphs are often subject to constraints, ruling out many candidates for composed
rules. Focusing on the case of sesqui-pushout (SqPO) semantics, we develop a number of alternative
strategies for computing compositions, each theoretically and with an implementation via the Python
API of the Z3 theorem prover. The strategies comprise a straightforward generate-and-test strategy
based on forbidden graph patterns, a variant with a more implicit logical encoding of the negative
constraints, and a modular strategy, where the patterns are decomposed as forbidden relation patterns.
For a toy model of polymer formation in organic chemistry, we compare the performance of the three
strategies in terms of execution times and memory consumption.

1 Introduction

When applying graph transformation rules sequentially or in parallel, we are often interested in capturing
their combined preconditions and effects in a single composed rule, e.g. to compare the effects of deriva-
tions during confluence analysis [22], to show the preservation of behaviour under different composition
operations on rules [36, 39], or to define morphisms between systems that map individual to composed
rules [29]. Usually, a notion of rule composition, such as concurrent productions in the algebraic ap-
proaches, relies on a specification of the relation or overlap of the given rules followed by a construction
of the combined rule. A particular application scenario for such types of computations are stochas-
tic graph rewrite systems (SRS) [8, 3, 5, 9], a categorical notion of stochastic rewrite systems such as
Kappa [20, 18, 12], using an algebraic structure on rewrite steps to support the analysis of biological sys-
tems. Instead of stochastic simulation or model checking with their well-known scalability issues, SRS
aim at the derivation of a system of evolution equations which, for a set of graph patterns as observables,
predict their number of occurrences over time. For example in models of biochemistry [21, 28, 17], a
pattern could represent a type of molecule, such that the number of occurrences of the pattern in a given
graph that models the number of molecules of this type in a given cell. In the semantics of SRS based
upon rule algebras [8, 3, 5, 9], the evolution equations for such average expected pattern counts are deriv-
able via so-called commutators, which are computed by counting the distinct sequential compositions of
rules representing transitions and rules representing pattern observables.

In many such application scenarios graphs are subject to structural constraints. This means that
when composing rules, we have to ensure that any resulting composed rule respects these constraints,
in the sense that an application of the composed rule reflects a sequential application of two given rules
with a legal intermediate graph. This causes the algorithmic challenge of avoiding where possible the
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construction of rule compositions forbidden by the constraints. Since a composition of two rules is
defined based on a relation between the first rule’s right-hand side and the second rule’s left-hand side,
we have to determine the set of all such relations that lead to composed rules respecting the structural
constraints.

In this paper, we develop a number of alternative strategies for addressing this challenge, both theo-
retically and using the Z3 theorem prover with its Python interface. Specifically we tackle the computa-
tion of rule compositions in the Sesqui-Pushout (SqPO) approach [14], which provides the right level of
generality for applications in biochemistry.

We first consider a direct or “generate-and-test” strategy, whereby in a “generation” phase all monic
partial overlaps without taking into account the structural constraints are determined, and where in an
ensuing “testing” phase each candidate overlap is scrutinised for whether or not its pushout object admits
the embedding of any of the forbidden graph patterns used to express the structural constraints.

As an alternative, a more modular strategy is based on a decomposition of the aforementioned forbid-
den graph patterns as forbidden relation patterns, which may then be utilised to design a search algorithm
for monic partial overlaps that combines the search and the constraint-checking into a single operation,
and thus in principle permits to avoid constructing a potentially enormous number of candidate overlaps
not respecting the structural constraints. Mathematically, this second option is based upon an original
contribution of this paper in terms of the theory of constraints: while the verification of a negative con-
straint is traditionally formulated in terms of a non-embedding condition of a forbidden pattern into the
target graph, for the special case that the target graph is the pushout of a monic span one may equiv-
alently reformulate this verification task as a non-embedding condition of a forbidden relation into the
span. We explicitly demonstrate the equivalence of the two approaches, i.e. given a graph pattern P and
all its relational decompositions S, for any composed graph G over a span s there exists an embedding of
P iff there exists a span in S with a triple of compatible embeddings into s.

Our third strategy for determining constraint-preserving rule overlaps is a variant of the “generate-
and-test” strategy that is based upon a more implicit encoding of the condition that the pushout of a
given candidate rule overlap should respect the structural constraints. Approaches to the implementation
of analysis techniques on graph transformation systems can be divided into native, translation-based,
and hybrid [31]. We follow a hybrid approach where all three strategies are implemented in Python
using the Z3 SMT solver and theorem prover [37] for computing decompositions and embeddings. Our
approach was inspired by an active research area in graph rewriting that features a number of other
implementations of analysis techniques, e.g., for termination, confluence, or reachability as discussed in
[31]. At the core of our implementation, we precisely mirror the category-theoretical structures encoding
graphs, morphisms, overlaps, compositions of graphs and constraints in terms of a class architecture in
Python and utilising the Z3 Python API. The declarative nature of SMT solving, where models are only
determined up to isomorphism, is a good fit for the categorical theory of graph rewriting, allowing a very
direct translation. The aim of this implementation is to evaluate the relative performance in terms of
time and space requirements of our three strategies. As a case study, we consider an example of SqPO
rewriting of rigid multigraphs representing polymers in organic chemistry. A multigraph (which, in
general, allows parallel edges) is rigid if it does not contain edges of the same type in parallel, starting or
ending in the same node, or as parallel loops (see definition of patterns in Example 2). Based on a simple
set of rules for creating and deleting edges we can model polymer formation, such that the evolution
equations derivable via the commutators computed could predict the number of polymers of a particular
length and shape at any time of the reaction. The particular contribution of this paper is in developing
the theory and experimental implementation of rule compositions with graph constraints following the
three alternative strategies and a preliminary comparative evaluation of their scalability.
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2 Rule Compositions for Conditional SqPO Rewriting

We provide some background on the recent extension of Sesqui-Pushout (SqPO) rewriting [14] to the
setting of rules with application conditions [6] and describe the additional assumptions on the underlying
category to admit a rule algebra construction [3, 7]. We refer the readers to [7] for the extended discussion
of the mathematical concepts.

2.1 Categorical Setting

Assumption 1 ([6]). We assume that C ≡ (C,M ) is a finitary M -adhesive category with M -effective
unions, M -initial object, an epi-M -factorisation, existence of final pullback complements (FPCs) for all
pairs of composable M -morphisms and with stability of M -morphisms under FPCs.

While a full discussion of these technical concepts is out of the scope of the present paper, we
will comment at various points on some of the salient ideas and uses of the various assumptions made.
Suffice it here to note that M is a class of monomorphisms, and that we impose the finitarity-constraint
for practical reasons, in that in our intended applications only finite structures and their transformations
are of interest, with a prominent example given as follows:

Example 1. The prototypical category suited for rewriting in the above sense is the category FinGraph
of finite directed multigraphs. It is well-known [34] that the category Graph of all (not necessarily finite)
multigraphs is adhesive (i.e. M -adhesive for M =mono(Graph)), and thus due to results of [26] so is its
finitary restriction FinGraph. The finitary restriction preserves the epi-mono-factorisation, the property
of mono-effective unions as well as the mono-initial object ∅ (the empty graph). Finally, according
to [14], FPCs exist for arbitrary pairs of composable monos, and monos are stable under FPCs.

2.2 Conditions in SqPO Rewriting

For the readers’ convenience, we recall some of the relevant background material and standard notations
(including a convenient shorthand notation for simple, i.e. non-nested conditions). Conceptually, ap-
plication conditions are defined such as to constrain the matches of rewriting rules. Another important
special case are conditions over the M -initial object ∅. Such global constraints describe properties of
all objects, such as invariants.

Definition 1 (cf. e.g. [27, 23]). Given an M -adhesive category C satisfying Assumption 1, (nested)
conditions cond(C) over C are recursively defined as follows:

1. For all objects X ∈ obj(C), trueX is a condition.

2. For every M -morphism ( f : X ↪→Y ) ∈M and for every condition cY ∈ cond(C) over Y , ∃( f ,cY )
is a condition.

3. If cX ∈ cond(C) is a condition over X , so is ¬cX .

4. If c(1)X ,c
(2)
X ∈ cond(C) are conditions over X , so is c(1)X ∧ c

(2)
X .

The satisfaction of a condition cX by an M -morphism (h : X ↪→ Z)∈M is recursively defined as follows:

1. h � trueX .

2. h � ∃( f : X ↪→ Y,cY ) iff there exists (g : Y ↪→ Z) ∈M such that h = g◦ f and g � cY .

3. h � ¬cX iff h¬ � cX .
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4. h � c(1)X ∧ c
(2)
X iff h � c(1)X and h � c(2)X .

Two conditions cX ,c
′
X ∈ cond(C) are equivalent, denoted cX ≡ c′X , iff for every (h : X ↪→ Z) ∈M we

find that h � cX implies h � c′X and vice versa.

We will employ the following standard shorthand notations:

∃( f : X ↪→ Y ) := ∃( f : X ↪→ Y, trueY ) , ∀( f : X ↪→ Y,cY ) := ¬∃( f : X ↪→ Y,¬cY ) .

An auxiliary construction [27] permits to extend conditions into a larger context.

Theorem 1. With notations as above and for ( f : X ↪→ Y ) ∈M , there exists a shift construction Shift
such that

∀cX ∈ cond(C),∀(h : X ↪→ Z) ∈M : ∃(g : Y ↪→ Z) ∈M : h = g◦ f

⇒ (h � cX ⇔ g � Shift( f ,cX)) .
(1)

For the computation of SqPO rule compositions for rules with conditions, we need an additional
auxiliary construction for the calculus of conditions:

Theorem 2 ([6], Thm. 7). Given a linear rule r = (O←↩ K ↪→ I)∈ Lin(C) and a condition cO ∈ cond(C)
over O, there exists a transport construction Trans such that for any object X ∈ obj(C) and for any
SqPO-admissible match m ∈Msq

r (X) of r into X, if (m∗ : O ↪→ rm(X)) ∈M denotes the comatch of m,
the following holds:

m∗ � cO ⇔ m � Trans(r,cO) . (2)

While an interesting set of theoretical results in its own right, the concrete implementation of the
Shift and Trans constructions are not of relevance to the present paper, so we refer the interested readers
to [6, Thms. 4 and 7] for the precise details and further technical discussions.

2.3 Rigidity

Example 2. Our running example throughout this paper will be the category rGraph of finite rigid
directed multigraphs. Referring to [19] for an extended discussion of the rigidity phenomenon, suffice
it here to introduce this category as a refinement of the category FinGraph via imposing the following
global constraint formulated via a set N of forbidden patterns:

cN :=
∧

N∈N
¬∃(∅ ↪→ N) , N := { , , , } . (3)

Connected components of graphs in rGraph are thus either individual vertices, “directed paths” πn of
edges (with lengths n≥ 1) or closed “directed loops” λn of edges (with lengths n≥ 2),

p1 = , p2 = , p3 = , p4 = , . . .

l2 = , l3 = , l4 = , . . .

possibly in addition with individual loops on vertices, albeit we will only consider loop-less graphs in
our applications. It is instructive to consider for this “self-loop-less” special case of graphs in rGraph
the numbers of isomorphism classes as a function of the number of vertices. Following standard com-
binatorial arguments along the lines of [25], we can construct an ordinary generating function for these
numbers by (1) dressing each vertex with a power of some formal variable x, each edge in a “path” with y
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and each edge in a “directed loop” with z, and (2) multiplying the OGFs for copies of the different types
of connected components:

G (x,y,z) := ∑
k,`,m≥0

xky`zm · (# of iso-classes with k vertices and `+m edges)

= 1
1−x ∏

p≥1

1
1−xp+1yp ∏

q≥2

1
1−(xz)q

y,z→1−−−→ 1−x
((x;x)∞)2 .

The expansion of G (x,1,1) (i.e. of the OGF of iso-classes counted by number of vertices) permits to
identify this series as the OGF of the integer sequence A000990 on the OEIS database1, with sequence
entries (for n = 0, . . . ,10, . . .)

1,1,3,5,10,16,29,45,75,115,181, . . . (4)

Comparing this to the sequence A000273 on the OEIS database, which gives the number of isomorphism
classes of directed simple graphs without self-loops counted by number of vertices, and which reads for
n = 0, . . . ,10

1,1,3,16,218,9608,1540944,882033440,1793359192848,

13027956824399552,341260431952972580352, . . . ,
(5)

it transpires that the rigid directed graphs are enormously constrained in their structure compared to gen-
eral simple directed graphs. This fact will in turn have a strong impact on the complexity of computing
compositions of transformation rules based upon rigid graphs, in that any computation strategy based
upon a “generate-and-test” approach will suffer from the enormous number of candidate rule overlaps.
The way rigid graphs are restricted in their structure as compared to generic simple graphs is furthermore
quite analogous to the way e.g. molecular graphs in the rewriting theory for organic chemistry [10, 1] or
for biochemistry [20, 17, 12] are restricted as compared to generic (typed) simple graphs, which is why
we take rGraph as a prototypical example of such types of applications of rewriting theory.

2.4 SqPO Direct Derivations and Rule Compositions

The theory of “compositional” SqPO rewriting as introduced in [3, 6, 7] is an extension of the traditional
SqPO theory [14] by concurrency and associativity theorems that hold under suitable assumptions on the
underlying categories.
Remark 1. Contrary to standard conventions we will read rewriting rules from input to output, i.e. in
particular from right to left. This is so as to be compatible with the standard mathematical convention
of left-multiplication for matrices (see e.g. [5] for an extended discussion).
Definition 2. Let C be an M -adhesive category satisfying Assumption 1, and let Lin(C) denote the class
of linear rewriting rules with (nested) conditions,

Lin(C) := {(O←↩ K ↪→ I;cI) | (K ↪→ O),(K ↪→ I) ∈M ,cI ∈ cond(C)} . (6)

Let Lin(C)∼ be the class of equivalence classes of linear rules with conditions under the equivalence
relation ∼ defined as follows:

(r,cI)∼ (r′,c′I) :⇔ r ∼= r′∧ cI ≡ c′I . (7)

Here, r ∼= r′ if and only if there exist isomorphisms (ω : O→O′), (κ : K→ K′) and (ι : I→ I′) ∈ iso(C)
such that the evident diagram commutes.

1N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (https://oeis.org)

https://oeis.org/A000990
https://oeis.org/A000273
https://oeis.org
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The following definition provides a notion of direct derivations for SqPO rules with conditions.

Definition 3 ([6], Def. 17; compare [14], Def. 4). Given an object X ∈ obj(C) and a linear rule with
condition R = (r,cI) ∈ Lin(C), we define the set of admissible matches Msq

R(X) as

Msq
R(X) := {(m : I→ X) ∈M | m � cI} . (8)

O K I

X ′ K X

m∗ kPO FPC m
(9)

A direct derivation of X along R with match m ∈ Msq
R(X) is de-

fined via constructing the diagram on the right, with final pull-
back complement marked FPC and pushout marked PO. We write
Rm(X) := X ′ for the object “produced” by the above diagram, and
we refer to m∗ as the comatch of m.

As is well-known in the graph-rewriting community, the notion of FPC along M -morphisms has
a very natural interpretation in the setting of C being some form of graph-based category, e.g. C =
FinGraph (for which M is the class of monomorphisms of finite graphs): considering a linear rule
(∅←↩ ∅ ↪→ •) encoding (read from right to left) the deletion of a vertex, choosing a match (i.e. an
embedding) of the input vertex of the rule into some finite graph X at a vertex with incident edges and
forming the FPC effectively results in an intermediate graph K that is obtained from X by removing
the matched vertex and all incident edges. In contrast, a pushout complement (POC) for the same rule
and match to a vertex in X with incident edges would not exist, highlighting a characteristic feature in
Double-Pushout (DPO) rewriting in that edges may not be “implicitly” deleted.

The second main definition of SqPO-type “compositional” rewriting theory is given by a notion of
sequential composition for rules with application conditions.

Definition 4 ([6]). With notations as above, let R j = (r j,cI j) ∈ Lin(C)∼ be two equivalence classes of
linear rules with conditions ( j = 1,2). Fixing representatives (O j←↩K j ↪→ I j;cI j) ( j = 1,2), a monic span
µ = (I2←↩ M21 ↪→ O1) is defined to be an SqPO-admissible match of R2 into R1, denoted µ ∈Msq

R2
(R1),

if the pushout complement marked POC in the diagram below exists2,

O2 K2 I2

cI2

M21 O1 K1 I1

cI1

O21 K′2 N21 K′1 I21

cI21

K21

FPCPO PO POC PO

PB
= =

(10)

and if in addition cI21 6≡ false, where

cI21 = Shift(I1 ↪→ I21,cI1)∧Trans(N21←↩ K′1 ↪→ I21,Shift(I2 ↪→ N21,cI2)) .

2Note that if the diagram is constructable, it follows from the properties of M -adhesive categories and from further prop-
erties stated in Assumption 1 that as indicated in the diagram all arrows are M -morphisms. More precisely, the technical
properties utilised to prove this claim are the stability of M -morphisms under pushouts and pullbacks [23] as well as the sta-
bility of M -morphisms under FPCs. The proof that this type of composition indeed leads to a suitable notion of concurrency
theorem hinges also upon M -effective unions and the existence of an M -initial object [3, 6]. See Section 2.2, Theorems 1
and 2 for notations and further details.
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In this case, we define the SqPO-type composition of R2 with R1 along µ21 as the following equivalence
class:

R2
µ
^ R1 := [(O21←↩ K21 ↪→ I21;cI21)]∼ . (11)

Example 3 (Ex. 2 continued). Seeing that rigid graphs as described in Example 2 may be considered as
a toy model of polymers that can form “directed chains” and “directed loops”, one might ask how one
could construct a stochastic dynamical model over rGaph. Referring the interested readers to [3, 5, 7]
for a more in-depth discussion and the precise theoretical setup, for the present paper we focus on two
types of contributions to a stochastic rewriting theory setup:

1. Transitions are modelled via rewriting rules with conditions R j = (r j,cI j) ∈ Lin(rGraph)∼, one
for each transition of the model. Choosing base rates κ j ∈ R≥0 (i.e. rates of “firings per second”)
for each transition, the so-called “mass-action semantics” [7] would render the likelihood of a
given transition “firing” in an infinitesimal step proportional to its base rate times the number of
matches of the rule into the current state.

2. Observables implementing the detection and counting of patterns are based upon rules of the
special form [7]

RP,cP = [(P
idP←−↩ P

idP
↪−→ P;cP)]∼ , (12)

where P ∈ obj(C)∼= is the “pattern”, and where the condition cP ∈ cond(C) in effect permits to
implement pattern counting e.g. of the sort “two vertices not linked by an edge”.

For our polymer example, one could start the construction of a stochastic model by considering a set of
transitions that in effect are capable of rendering arbitrary finite rigid graphs through repeated “firings” of
the transitions, i.e. the vertex deletion/creation and edge deletion/creation rules depicted in Figure 1(a).
Note that the application conditions necessary for these rules to respect the rigid graph constraints may
be derived e.g. according to the algorithm presented in Corollary 1 (Section 3). In order to model certain
physical effects such as saturation and steric hindrance effects, one might also consider to include more
sophisticated transitions involving larger input and output graphs, such as the ones depicted in Figure 1(b-
d). Typical observables for the rule-sets presented would then e.g. be constructed in the form RI j,cI j

, i.e.
from the input patterns and conditions (since these observables feature in the evolution equations of the
respective stochastic rewriting systems, cf. [7]).

3 Constraint-checking Strategies in Rule Compositions

When computing SqPO-type compositions of conditional rules, an algorithmically expensive step con-
sists in verifying the satisfaction of both the global and application conditions in a given overlap, followed
by computing the derived application conditions of the admissible composites. Both in order to exper-
iment with the implementations of such algorithms via Z3 (see next Section) and out of a theoretical
interest, we consider different implementation strategies for the steps involved in this rule composition
operation. We will present here the “direct” strategy (i.e. following precisely the traditional constructions
involving Shift and Trans) as well as an alternative strategy based upon certain span (non-) embedding
criteria. From this section onwards, we will fix a category C satisfying Assumption 1, and assume a
set of global conditions cN as in (2) on objects. Let us further assume that all rules are endowed with
application conditions that ensure the preservation of cN , and that the rules themselves are constructed
of objects satisfying the constraint cN .
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(a) rcreate-node :=
�

(?
�

rdelete-node :=
�
?(

�

rcreate-edge :=
⇣

(
⌘

rdelete-edge :=
⇣

(
⌘

(b) rc-c2 := ( ( ) rb-c2 := ( ( )

(c) rc-c4 :=
⇣

(
⌘

rb-c4 :=
⇣

(
⌘

(d) rc-c7 :=

 
(

!
rb-c7 :=

 
(

!

Figure 1: Examples of transitions R j = (r j,cI j) ∈ Lin(rGraph)∼ for rigid graph stochastic rewriting
models: (a) the “running example” as a minimal setup, and (b-d) additional transitions involving larger
graph patterns. Concretely, these rules model the two alternative options of closing a “chain“ of edges
into a loop (“create-cycle“), or breaking up a chain of edges (“break-chain“). The conditions cI j (not
explicitly depicted) are defined as the respective constraint-preserving application conditions computed
according to Corollary 1.

Definition 5 (Direct Strategy). Given two linear rules with conditions R j ≡ (r j,cI j) ∈ Lin(C) ( j = 1,2)
and a candidate match µ = (I2←↩ M21 ↪→ O1), the Direct Strategy to verify whether µ is an admissible
match is defined as follows:

1. Construct the pushout (I2 ↪→ N21←↩ O1) of µ . Verify that N21 � cN , and that (I2 ↪→ N21) � cI2 .

2. If the pushout complement of (N21←↩ O1,O1←↩ K1) exists, perform the SqPO-type composition
according to Definition 4, verifying that the application condition of the composite rule satisfies
cI21 6≡ false.

If both steps are successful, µ is an SqPO-admissible match of R2 into R1.

As an alternative strategy, let us restate the “forbidden patterns” N ∈N via their pushout decompo-
sitions, defined as follows:

Definition 6. We define the set of “forbidden relations” SN as3

SN := {s = (C1←↩ D ↪→C2) |C1,D,C2 � cN ∧∃N ∈N : PO(s)∼= N} . (13)

Example 4. For the category rGraph as introduced in Ex. 2, one may compute the set of “forbidden
relations” (with colours encoding the respective embeddings) as presented in Figure 2.

The pushout decompositions of forbidden patterns allow for a modular strategy to testing admis-
sibility of rule overlaps that does not require to find embeddings of patterns into the pushout of the
overlap, but double-pullback embeddings (DPEs) of forbidden spans into the monic spans representing
the overlaps.

3As a further optimisation (tacitly employed from hereon and in our implementation), one may reduce the size of SN by
only retaining one representative per isomorphism class of forbidden relations, with the same notion of isomorphism as the one
utilised for linear rules (cf. Definition 2).
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SN =

8
><
>:

 - ,! ,  - ,! ,  - ,! ,  - ,! ,

 - ,! ,  - ,! ,  - ,! ,  - ,! ,

 - ,! ,  - ,!

9
>=
>;

Figure 2: Set of “forbidden relations” for the category rGraph.

Theorem 3. With notations and assumptions as above, given a pushout P of a monic span (I1←↩ M21 ↪→
O1), the violation of cN is equivalently verified as

P 6� cN ⇔ ∃s = (C2←↩ D ↪→C1) ∈SN :

∃(C2 ↪→ I2),(D ↪→M21),(C1 ↪→ O1) ∈mono(C) :

(C2←↩ D ↪→M21) = PB(C2 ↪→ I2←↩ M21)

∧ (C2←↩ D ↪→M21) = PB(C2 ↪→ I2←↩ M21) .

(14)

Here, each DPE mentioned in (14) encodes a commutative diagram of the form

C2 D C1

I2 M21 O1

PB PB . (15)

Proof. The statement of the theorem follows from the M -vanKampen property of the category C.

C2 D

N C1

I2 M21

P O1

∃

For the ⇒ direction, suppose that P 6� cN , which entails that there exists
an N ∈N and an embedding (N ↪→ P). Construct the commutative cube
on the left via (1) taking pullbacks in order to obtain objects C2 and C2 and
(2) letting D be defined as the pullback of (C2 ↪→ N←↩C1). By stability of
M morphisms and by their decomposition properties, all arrows in the top
square and all vertical arrows are M -morphisms. Since the bottom square
is a pushout along M -morphisms and thus a pullback, and since the front

and top squares are pullbacks, by pullback-pullback decomposition the back square is a pullback, and
analogously so is the right square. Thus by the M -vanKampen property, the top square is a pushout, and
we have proved that (C2←↩ D ↪→C1) is in SN .

For the⇐ direction, suppose the bottom pushout square as well as the back and left pullback squares
were given (with all involved morphisms in M ), and such that (C2 ←↩ D ↪→ C1) ∈ SN . Then letting
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N be the pushout of (C2←↩ D ↪→C1) (which by definition of SN entails that N ∈N ), there exists by
universal property of the pushout a morphism (N ↪→ P).

C2 D D

I2 M21 D

P O1 C1

(1) (2)

(3) (4)

It remains to demonstrate that (N → P) is in M . To this end, let
us assemble the auxiliary on the left. By assumption, squares (1)
and (4) are pullbacks, square (3) a pushout along M -morphisms
(and thus a pullback), while squares of the form (2) are pullbacks
by universal category theory. Consequently, we find by composition
of pullbacks that D is the pullback of (C2 ↪→ P←↩C1). Thus finally
by virtue of the assumption of M -effective unions, we can confirm
that (N ↪→ P) is in M .

The alternative test for constraint satisfaction via DPEs of spans of SN according to Theorem 3
permits to formulate the following alternative SqPO-type rule composition strategy:

Definition 7 (DPE Strategy). Given two linear rules with conditions R j ≡ (r j,cI j) ∈ Lin(C) ( j = 1,2)
and a candidate match µ = (I2 ←↩ M21 ↪→ O1), the DPE Strategy to verify whether µ is an admissible
match is defined as follows:

1. Verify that there does not exist any double-pullback embedding of a span of SN into the span µ
(with DPEs as defined in (15)).

2. Verify that (I2 ↪→ N21) � cI2 .

3. If the pushout complement of (N21←↩ O1,O1←↩ K1) exists, perform the SqPO-type composition
according to Definition 4, verifying that the application condition cI21 of the composite rule satisfies
cI21 6≡ false.

If all steps are successful, µ is an admissible SqPO-type match of R2 into R1.

Finally, a useful corollary of Theorem 3 is the following alternative algorithm for minimal constraint-
preserving application conditions for SqPO-type rules (for the case as assumed in this section that rules
themselves are constructed from objects satisfying the global constraint):

Corollary 1. With notations as above, given a “plain” linear rule r = (O←↩ K ↪→ I) ∈ Lin(C), perform
the following steps: for each (C2←↩ D ↪→C1) ∈SN ,

1. find all pullback embeddings of (C2←↩ D) into (O←↩ K), i.e. pairs of M -morphisms (C2 ↪→ O)
and (D ↪→ K) s.th. D = PB(C2←↩ D ↪→ K), and

2. for each pullback embedding, construct (C1 ↪→ P←↩ I) by taking the pushout of the span (C1←↩
D ↪→ K ↪→ I); if P � cN , then this pullback embedding contributes a negative condition of the
form ¬∃(I ↪→ P, true).

The (minimal) constraint-preserving application condition cI is given by the conjunction over all individ-
ual contributions ¬∃(I ↪→ P, true) computed above.

Proof. For the ⇒ direction, let us assume that a given SqPO-type direct derivation along rule (O←↩
K ↪→ I) with candidate match (m : I ↪→ X0) ∈M results in an object X1 with X1 6� cN . By definition of
satisfiability and of cN , this entails that there exists an N ∈N and an M -morphism (N ↪→ X1) ∈M . In
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complete analogy to the proof of Theorem 3 as given in the previous section, construct the commutative
cube below over the SqPO-type direct derivation diagram:

C2 D

N C1

O K I

X1 X0 X0

∃

(16)

Here, C1 and C2 are constructed by taking pullbacks, which by stability of M -morphisms under pull-
backs entails that the newly constructed morphism are also in M . D is constructed as a pullback of
(C2 ↪→ N ←↩ C1) (with M -morphisms in the resulting span), while the morphism (D→ K) is an M -
morphism by the decomposition property of M -morphisms. Since the bottom left square is a pushout
along M -morphisms and thus a pullback, we find via pullback-pullback decomposition that also the
squares �D,C2,O,K (back left) and �D,C1,X0,K (middle vertical) are pullbacks, and thus by the M -VK
property the top left square is a pushout. Next, construct the following three pushouts:

D := PO(C1←↩ D ↪→ K) , C2 := PO(O←↩ K↪→ D) , P := PO(D←↩K ↪→ I) .

As depicted in the diagram below left, by the universal properties of the relevant pushouts and via M -
effective unions, there exist morphisms (drawn below with dotted lines) that are in fact M -morphisms:

C2 D

N C1

O K I

C2 D P

X1 X0 X0

C2 D

N C1

O K I

D P

X1 X0 X0

∃

(17)

Finally, there are two cases to consider: if P � cN , we have exhibited a M -morphism (I ↪→ P) through
which (I ↪→ X0) factors, and which thus by the above construction proves that the rewrite will lead to
an X1 with at least one embedding of a “forbidden pattern” N ∈N . If on the other hand P 6� cN , we
have proved that X0 6� cN ; consequently, the M -morphism (I ↪→ P) would in this case not contribute to
a constraint-preserving application condition for (O←↩ K ↪→ I).

For the ⇐ direction, let us assume we were given the data of the diagram below (i.e. a SqPO-type
direct derivation of X0 along candidate match (I ↪→ X0) ∈M as well as a pattern P such that (I ↪→ X0)
factors through some (I ↪→ P) constructed according to the statement of the Corollary) as depicted in the
diagram on the right of (17). Here, in order to demonstrate the existence of the morphism (D→ X0), let
us first introduce a useful auxiliary formula: given a commutative diagram of M -morphisms as below
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left,
A B

C D E

PO
=

 
A B B

C D E

PO (18)

this data yields the diagram above right. Since the right square is a pullback and the left square a pushout
along M -morphisms and thus also a pullback, we find by composition of pullbacks that �A,C,E,B is a
pullback.

Back to the diagram on the right of (17), since �K,X0,X0,I is by assumption a final pullback comple-
ment and�K,D,X0,I is a pullback by virtue of the auxiliary formula, the universal property of FPCs entails
the existence of (D→X0), which by the decomposition property of M -morphisms is an M -morphism.
Moreover, by FPC-pushout decomposition [6], �D,X0,X0,P is an FPC.

It then suffices to construct the pushout C2 :=PO(O←↩ K↪→ D), which through the universal proper-
ties of the various pushouts involved yields the existence of morphisms (N→C) and (C→X1) (resulting
in a diagram of the form in (17). Utilising pushout-pushout decompositions (yielding that �C2,N,C2,O and
�D,C2,X1,X0

are pushouts), stability of M -morphisms under pushouts, the above auxiliary formula (i.e.
to demonstrate that �C2,N,X1,O and �D,C1,X0,K are pullbacks) and the property of M -effective unions, we
find that (N→C2) ∈M and (C2→ X1) ∈M , such that we have in summary exhibited a M -morphism
(N ↪→ X1) ∈M , which verifies that X1 6� cN .

A heuristic solution for the problem of computing minimal constraint-preserving application condi-
tions has been proposed in [38]. For the case of forbidden graph patterns N and negative conditions cN ,
our result permits to avoid the use of the computationally expensive Shift and Trans constructions and
subsequent minimisation [27, 23], yielding an equivalent solution for minimal cN -preserving constraints
via directly taking advantage of the “forbidden relations” in SN .

4 Implementation and Experimental Evaluation

We provide a Python package called ReSMT (author: N. Behr) as an open-source project via GitLab4,
whose current version 0.0.3 contains both a full online documentation5 as well as dedicated GCM 2020
Supplementary Information materials6. The computational core of our implementation is a theory (a
set of definitions and constraints) in the Z3 theorem prover7 [37], which due to its declarative nature
allows for a direct encoding of our categorical constructions. Using Z3 through its Python API, we
can reflect the structure of the theory in an object-oriented design, where classes represent concepts of
the problem domain, such as graphs and graph morphisms, spans, rules, pushouts, etc., and generate
assertions in Z3 encoding the defining properties of these categorical structures. However, a major
challenge in implementing high-performance algorithms consists in evaluating and choosing between
a number of alternative encodings of sets and set operations provided by the Z3 API. We first review
these challenges in Section 4.1, followed by a description of the key design choices taken for ReSMT in
Section 4.2 and a presentation and evaluation of some experimental results in Section 4.3. Section 4.4
comments on the correctness of the approach.

4Official ReSMT repository: https://gitlab.com/nicolasbehr/ReSMT
5Documentation: https://nicolasbehr.gitlab.io/ReSMT/
6GCM 2020 SI materials: https://nicolasbehr.gitlab.io/ReSMT/py and ipynb examples/GCM2020.html
7Z3 solver GitHub repository: https://github.com/Z3Prover/z3

https://gitlab.com/nicolasbehr/ReSMT
https://nicolasbehr.gitlab.io/ReSMT/
https://nicolasbehr.gitlab.io/ReSMT/py_and_ipynb_examples/GCM2020.html
https://github.com/Z3Prover/z3
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4.1 Key Challenge: Implementation of Finite Set Constructs

Albeit finite sets are evidently a well-understood and fundamental theoretical concept, choosing an al-
gorithmically advantageous representation of finite sets within Z3 is a non-trivial matter. As described
in detail in the excellent Z3 tutorial [11], the performance of Z3 when computing on sets of assertions
encoding a search over set structures hinges on the precise way in which the finiteness of the sets in-
volved is communicated to the solver. In our prototypical early 2020 implementation, we had opted for
what appeared to be a natural choice: a finite set such as S = {x1,x2,x3}may be encoded by declaring an
abstract Z3 sort, instantiating Z3 constants of this sort for each element and asserting that any constant
of these sorts must be equal to one of the explicitly instantiated constants:

1 import z3 # load the Z3 API package
2 S = z3.Solver() # instantiate a Z3 solver
3 X = z3.DeclareSort('X', S.ctx) # declare a sort in the context of S
4 x1, x2, x3 = z3.Consts('x1 x2 x3', X) # instantiate one constant of sort X per set element
5 x = z3.Const('x', X) # instantiate an auxiliary constant
6 S.add(z3.ForAll(x, z3.Or([x == x1, x == x2, x == x3]))) # add the finiteness assertion to S

Unfortunately, while of course logically correct, we found that this particular design choice results in
poor performance of our algorithms for curating rule overlaps, both in execution time and memory con-
sumption. As a remedy, our ReSMT package is based upon an alternative encoding of finite sets utilising
the enumeration sorts8 provided by Z3. For the aforementioned example, this alternative encoding reads
as follows:

7 set, els = z3.EnumSort('set', ('x1', 'x2', 'x3'), S.ctx)

The above code yields an instantiation of a Z3 enumeration sort set called ’set’ as well as a list of Z3
constants els (containing three constants of sort set with names ’x1’, ’x2’ and ’x3’). After the above
call, the enumeration sort set as well as the individual constants may be utilised in a fully analogous
fashion to other types of Z3 sorts and constants, yet internally provide additional information to the
Z3 solver instance, encoding the finiteness axiom. We refer the reader to a dedicated section9 of the
ReSMT online documentation for in-detail performance experiments and simplified versions of the ReSMT
algorithms for finding rule overlaps, demonstrating in particular the feasibility of using enumeration sorts
for curating injective partial set overlaps with or without additional cardinality constraints.

4.2 Implementation Strategies for Curating Rule Overlaps

Our current ReSMT implementation (version 0.0.3) consists of approximately 1800 lines of Python 3
source code and is provided with an in-depth API documentation10. The core task implemented in
the form of three alternative variants of algorithms is the curation of rule overlaps modulo structural
constraints, currently supported already for the general data structure of typed directed multigraphs.
We will present here some of the key aspects of our implementation in the setting of untyped directed
multigraphs G = (VG,EG,sG : EG→VG, tG : EG→VG) of relevance to the present paper. Assuming that
the sets of vertices and edges of a given graph G have been encoded as enumeration sorts vG and eG (cf.
Section 4.1), the source and target functions of G are instantiated as Z3 functions:

8 srcG = z3.Function('srcG', eG, vG)
9 trgtG = z3.Function('trgtG', eG, vG)

8See e.g. this tutorial: https://ericpony.github.io/z3py-tutorial/advanced-examples.htm
9API experiments: https://nicolasbehr.gitlab.io/ReSMT/py and ipynb examples/ReSMT-API-experiments.html

10ReSMT API documentation: https://nicolasbehr.gitlab.io/ReSMT/API-reference/Reference.html

https://ericpony.github.io/z3py-tutorial/advanced-examples.htm
https://nicolasbehr.gitlab.io/ReSMT/py_and_ipynb_examples/ReSMT-API-experiments.html
https://nicolasbehr.gitlab.io/ReSMT/API-reference/Reference.html
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(Injective) graph homomorphisms ϕ ≡ (ϕV ,ϕE) : GA→ GB may then be encoded as follows:

10 phiV = z3.Function('phiV', vGA, vGB); phiE = z3.Function('phiE', eGA, eGB)
11 v1, v2 = z3.Consts('v1 v2', vGA); e, e1, e2 = z3.Consts('e e1 e2', eGA)
12 S.add(z3.ForAll(eA, z3.And(srcB(phiE(e)) == phiV(srcA(e)), trgtB(phiE(e)) == phiV(trgtA(e))))
13 S.add(z3.ForAll([v1,v2], z3.Implies(phiV(v1) == phiV(v2), v1 == v2))) # phiV injectivity
14 S.add(z3.ForAll([e1,e2], z3.Implies(phiE(e1) == phiE(e2), e1 == e2))) # phiE injectivity

Finally, injective partial overlaps of finite multigraphs may be efficiently implemented as bi-injective
Boolean span predicates Φ : GA ×GB → {>,⊥}, which is particularly advantageous compared to a
more direct encoding of monic spans of graphs in our exhaustive overlap-finding algorithms. The span
predicate must satisfy the following logical assertions (i.e. bi-injectivity and a variant of a graph homo-
morphism property):

15 PhiV = z3.Function(vGA, vGB, z3.BoolSort); PhiE = z3.Function(eGA, eGB, z3.BoolSort)
16 vA, vA1, vA2 = z3.Consts('vA vA1 vA2', vGA); eA, eA1, eA2 = z3.Consts('eA eA1 eA2', eGA);
17 vB, vB1, vB2 = z3.Consts('vB vB1 vB2', vGB); eB, eB1, eB2 = z3.Consts('eB eB1 eB2', eGB);
18 astsBiInj = [z3.ForAll([vA1, vA2, vB],
19 z3.Implies(z3.And(PhiV(vA1,vB)==True, PhiV(vA2,vB)==True), vA1==vA2)),
20 z3.ForAll([eA1, eA2, eB],
21 z3.Implies(z3.And(PhiE(eA1,eB)==True, PhiE(eA2, eB)==True), eA1==eA2)),
22 z3.ForAll([vA, vB1, vB2],
23 z3.Implies(z3.And(PhiV(vA,vB1)==True, PhiV(vA, vB2)==True), vB1==vB2)),
24 z3.ForAll([eA,eB1,eB2],
25 z3.Implies(z3.And(PhiE(eA,eB1)==True, PhiE(eA, eB2)==True), eB1==eB2))]
26 astsPhiHom = [z3.ForAll([eA, eB],
27 z3.Implies(PhiE(eA,eB)==True,
28 z3.And(PhiV(srcA(eA),srcB(eB))==True,
29 PhiV(trgtA(eA),trgtB(eB))==True)))
30 S.add(astsBiInj + astsPhiHom)

In order to encode the necessary constructs for our three different strategies, we require a number of addi-
tional data structures and logical assertion generation methods, all of which are documented in full detail
both in the ReSMT API reference as well as in several sets of tutorial examples on the documentation page
of the package. For brevity, suffice it here to highlight the key conceptual difference between the di-
rect aka “generate-and-test” strategy resmt.datatypes.generateTDGoverlapsDirectstrategy and
its implicit strategy variant resmt.datatypes.generateTDGoverlapsImplicitstrategy. The direct
strategy consists of a phase wherein all possible injective partial overlaps are determined via searching
with Z3 for all possible monic Boolean span predicates as described above, followed by a second phase
of forming a pushout object for each individual overlap and testing the pushouts for compliance with
the structural constraints. In the implicit strategy, both tasks are combined into a single set of logical
assertions by instantiating ordinary sorts (i.e. not enumeration sorts) for the vertex and edge sets of the
tentative pushout graphs GP, and in addition asserting the existence of injective graph homomorphisms
α : GA ↪→ GP and β : GB ↪→ GP as well as the properties that α and β should be jointly surjective as
well es compatible with the Boolean span predicate Φ (in the sense that Φ(a,b) = >⇒ α(a) = β (b)).
What at first looks like a rather baroque tautology for the structure of the equivalent direct strategy def-
inition has in fact dramatic consequences for the performance of the overlap-finding algorithm, since
the implicit encoding of the pushout object permits the simultaneous formulation of the forbidden pat-
tern non-embedding constraints, such that in the implicit strategy no non-consistent overlaps are ever
constructed.
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Table 1: Experimental results of the three different strategies for the examples P1 to P4. For each experi-
ment, the average total run-time (over five complete runs) as well as the maximum RAM consumption are
provided. Here, a “complete run” consists in finding all admissible overlaps. Note that for the case of the
DPE strategy and example P3, we report here on exception only on the result of a single run (due to the
prohibitive run-time). All experiments were performed via our ReSMT Python package (version 0.0.3)
executed in Python 3.8.2 and with Z3-4.8.8.0 on a computer running macOS Catalina 10.15.6 with
a 2.30GHz Intel(R) Core(TM) i7-3615QM CPU and 16 GB of RAM. The entry n/a signals experiments
that were not possible to complete under the experimental conditions in an order of hours per run. Note
that for experiment P4, the number of candidate overlaps could only be estimated (cf. main text).

Experiment name P1 P2 P3 P4
(GA,GB) (Id-e,Oc-e) (Ib-c2 ,Oc-c2) (Ib-c4 ,Oc-c4) (Ib-c7 ,Oc-c7)

# candidate overlaps 8 49 2426 1.17 ·109 . . .3.02 ·1022

# correct overlaps 5 4 6 9

direct strategy 0.388 s (37.6 MB) 2.420 s (146.5 MB) 134.642 s (6466.2 MB) n/a (n/a)

DPE strategy 0.083 s (18.8 MB) 20.790 s (269.8 MB) 8205.913 s (5022.1 MB) n/a (n/a)

implicit strategy 0.093 s (16.8 MB) 0.242 s (19.5 MB) 1.079 s (30.1 MB) 5.390 s (57.8 MB)

4.3 Experiments and Evaluation

We present in Table 1 the experimental results for the computation of the full set of admissible overlaps
of rigid graphs for four different pairs of input graphs (GA,GB) (chosen from the in- and output interfaces
of the rules of Example 3), and for the three different strategies. We invite the readers to consult the GCM
2020 Supplementary Information section of the ReSMT online documentation for the precise specification
of each of the computational experiments. In particular, we provide precise instructions on how to
replicate these experiments by executing Jupyter notebook GCM2020.ipynb provided as part of the
ReSMT GitLab repository. The examples P1 to P4 were chosen to illustrate the fundamental effect that
graph constraints may have on the computational complexity determining injective partial graph overlaps,
and with the data type of rigid graphs as introduced in Example 2 providing a prototypical example of
a graph-like structure defined via negative constraints. It may be easily verified that the pushout of an
injective partial overlap of a “chain” of edges πn of length n and a “loop” of edges λn+1 (with both
notations as in Example 2) can only be a rigid graph if either the overlap was empty, or if the “chain”
fully embeds into the “loop” (in one of n+ 1 possible ways). This precisely explains the number of
“correct” overlaps for examples P2 (n = 2), P3 (n = 4) and P4 (n = 7), with a similar argument resulting
in 5 overlaps for example P1. However, for the direct strategy also the numbers of all injective partial
overlaps without taking into account the constraints is highly relevant, which as indicated in Table 1
exhibits an extreme growth with growing size of the graphs. Notably, while for examples P1, P2 and
P3 it was possible to explicitly use our code for the case without constraints to experimentally find
the precise numbers of constraint-less overlaps, in example P4 this number could only be very roughly
estimated (with a lower and upper bound provided by the number of vertex-only overlaps and the number
of overlaps of the joint sets of vertices and edges without taking into account the graph homomorphism
structure, respectively).

Inspecting the experimental results of Table 1, it becomes immediately evident from a comparison
of run-times and maximal memory usages that, while the DPE strategy poses a theoretical advantage
over the direct strategy in that it avoids computing the many overlap candidates inconsistent with the
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constraints (and for small examples such as P1 indeed shows slightly better performance), this theoretical
advantage is in practice effectively voided by prohibitive memory consumption and a run-time of the
order of several hours already for the relatively small example P3. Both strategies are incapable of
computing all admissible overlaps for example P4, where the reason in the case of the direct strategy is
clearly the prohibitive number of candidate overlaps. On the other hand, the implicit strategy appears
to provide by far the most performant and robust implementation, with run-times and maximal memory
consumptions for this strategy scaling rather favourably with the problem size. We thus posit that it is this
type of strategy that will be capable of efficiently tackling the problem of computing rule compositions
also in the highly relevant application fields of bio- and organo-chemistry, where one encounters graph
constraints for the specification of the respective data types akin to the prototypical model of rigid graphs,
and which we have thus identified as a viable avenue for future work and software developments.

4.4 Correctness

We discuss the correctness of the strategies and their implementations. The correctness of the direct and
implicit strategies is obvious from their definitions because they both encode the original statement of the
problem of finding all spans between two given graphs whose pushout object does not contain any of the
forbidden patters. The correctness of the DPE strategy is established by Theorem 3. The implementation
of these strategies has not been formally verified, but their encoding by logical constraints reflects directly
the definition of the categorical constructions involved.

The implementation has been tested by a number of small examples where it is easy to calculate the
expected results by hand. This provides validation that the basic constructions are implemented correctly.
Where all three strategies have produced results we have compared them to establish that they are indeed
functionally equivalent. In particular, when applied to the same example, they produced the same number
of spans.

5 Related Work

In [31] two of the authors contributed to a review of applications of SAT and SMT solvers in graph
transformation. In summary, their use in analysing graph transformation systems has increased over the
last years, e.g. for the computation of strongest post-conditions [15, 16], the implementation of graph
computation problems and algorithms [33, 24], model checking [32], the verification of graph properties
(shapes) as invariants [40, 41], and termination analysis [13]. While these approaches share our general
approach, they address very different analysis problems. i.e. none of the above compute rule overlaps.

Apart from other references already discussed, there has been work on the derivation of differential
equations from rewrite rules in the context of or inspired by Kappa [18, 2, 17]. We share their motiva-
tions and aims in enabling a wealth of mathematical analysis for graph transformation systems. Such
approaches are generalised by the rule algebra construction [4, 8, 5, 3, 7, 9], which provides the con-
text for our work. The computation of relations between rules subject to constraints is also an element
of critical pair analysis [30]. Recent work in this area [35] has focused on the level of granularity at
which such relations are computed and presented. For example, in many applications it is not necessary
to compute all relations, but instead to focus only on essential ones with minimal conflicting overlap.
When computing relations to derive commutators, the only meaningful abstraction is by isomorphism
classes, but it may be interesting to explore the use of our implementation in critical pair and dependency
analysis where often only selected relations are required.
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6 Conclusion

We have presented results of both theoretical and experimental nature on the efficient construction of
overlap spans with constraints for the computation of commutators for stochastic rewrite systems. On
the theoretical side, we showed how for compositions of SqPO rules with application conditions, the
constraint checking step in this construction can be modularised, avoiding the direct generate-and-test
strategy (of first composing rules and then validating them) by replacing checks for forbidden graph
patterns by checks for forbidden relation patterns, and how the same technique can be used to efficiently
derive minimal negative conditions preserving forbidden graph constraints. On the experimental side,
we have designed a prototypical implementation of our three alternative strategies in Z3 based on the
categorical concepts and constructions of the theory. We evaluated the correctness of our algorithms by
testing them against each other and compared their performance through a series of experiments, which
permitted us to identify the implicit strategy as the most robust and best performing one, which in contrast
to the other two strategies scaled very well with increasing problem complexity.

We plan to implement the complete commutator computation, including constructing rules with con-
ditions and counting their isomorphism classes, and to explore applications in rule-based models of
biochemistry and adaptive networks to derive their evolution equations.
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[10] Gil Benkö, Christoph Flamm & Peter F. Stadler (2003): A Graph-Based Toy Model of Chemistry. J. Chem.
Inf. Comput. Sci. 43(4), pp. 1085–1093, doi:10.1021/ci0200570.

http://dx.doi.org/10.1007/978-3-319-40530-8_5
http://dx.doi.org/10.14279/tuj.eceasst.30.431
http://dx.doi.org/10.4204/eptcs.309.2
http://dx.doi.org/10.1145/2933575.2934537
https://lmcs.episciences.org/6628
https://arxiv.org/abs/1904.09322
http://dx.doi.org/10.1007/978-3-030-51372-6_11
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.11
https://lmcs.episciences.org/6615
http://dx.doi.org/10.1021/ci0200570


N. Behr, R. Heckel & M. Ghaffari Saadat 143

[11] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson & Christoph M. Wintersteiger (2019): Program-
ming Z3. In: Engineering Trustworthy Software Systems, Springer International Publishing, pp. 148–201,
doi:10.1007/978-3-030-17601-3 4.
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