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In this paper, we study how graph transformations based on sesqui-pushout rewriting can be reversed
and how the composition of rewrites can be constructed. We illustrate how such reversibility and
composition can be used to design an audit trail system for individual graphs and graph hierarchies.
This provides us with a compact way to maintain the history of updates of an object, including
its multiple versions. The main application of the designed framework is an audit trail of updates to
knowledge represented by hierarchies of graphs. Therefore, we introduce the notion of rule hierarchy
that represents a transformation of the entire hierarchy, study how rule hierarchies can be applied to
hierarchies and analyse the conditions under which this application is reversible. We then present a
theory for constructing the composition of consecutive hierarchy rewrites. The prototype audit trail
system for transformations in hierarchies of simple graphs with attributes is implemented as part of
the ReGraph Python library.

1 Introduction

The main goal of this work is to design a system for maintaining an audit trail for the knowledge rep-
resentation (KR) framework based on hierarchies of graphs presented in [16]. We would like to use this
system to record the history of predominantly small localized updates of a large knowledge corpus rep-
resented with graphs and graph hierarchies, where storing the corpus at each point in the history is not
feasible. The aforementioned requirement for the transformations to be reversible in the context of our
practical application does not restrict the set of operations that can be performed for updating a corpus,
but rather introduces a reasonably small overhead on storing additional information that allows us to
revert the applied transformations. Furthermore, we design means for maintaining multiple versions of
the corpus, crucial when accommodating different versions of knowledge that, for example, correspond
to different view-points of knowledge curators or some intrinsic knowledge conflicts (e.g. contradicting
experimental results, alternative hypotheses). The main use cases of audit trails for KRs based on hier-
archies of graphs include version control for updates in schema-aware graph databases presented in [4]
and updates to the knowledge corpora provided by the bio-curation framework KAMI [15].

An audit trail system with the desired capabilities heavily relies on: (1) the existence of an efficient
semantic representation of object transformations (or deltas), which frees us from the necessity to store
the state of the object at each point of its transformation history; (2) the reversibility of transformations,
which guarantees that any sequence of transformations can be ‘undone’; and (3) the existence of sound
means for composing a pair of successive transformations, which allows us to efficiently store and switch
between different versions of the same object. In this work we formulate the three above-mentioned
ingredients with respect to both individual objects (Section 2), for instance graphs, and hierarchies of
objects (Section 3) and discuss how these ingredients can be used to construct an efficient audit trail
(Section 4).
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146 Reversibility and composition of rewriting in hierarchies

We present a mathematical framework for building a traceable history of transformations based on
the sesqui-pushout (SqPO) approach [7] operating on individual objects and hierarchies of objects from
appropriately structured categories. A transparent audit trail provides insight into the history of object
transformations and allows us to revert to an arbitrary point in this history. The latter feature is extremely
useful, when, for example, trying to fix an erroneous transformation. Moreover, such an audit trail
provides means for efficient accommodation of multiple versions of the same object arising, for example,
as the result of inconsistent transformations.

Related work

SqPO rewriting is a generalization of the double (DPO) and single (SPO) pushout approaches to graph
transformation that allows for the cloning of graph elements in addition to the familiar operations of
adding, deleting and merging of graph elements. While the reversibility of SqPO rewriting has been
previously studied [9], the composition of consecutive (and not necessarily sequentially independent)
SqPO rewrites has been less fully developed. The construction of such compositions has been given for
the DPO approach (see D-concurrent productions in [12]) and for special cases of the SqPO approach
(where rules are linear [3] and where the right-hand side of the first applied rule is exactly the left-
hand side of the second rule [21]). In this work, we present such a construction for two consecutive
applications of general SqPO rules, where the first is required to be reversible. This was inspired by
[12] and adapted to SqPO rewriting. For the composition to be well-defined, we require the underlying
category to have structure allowing for well-behaved generalized unions of objects (more formally, we
require for our category to be adhesive [19]). The notion of rule hierarchy and the question of the
reversibility and composition of hierarchy rewrites represent a novel direction that generalizes SqPO
rewriting of individual objects to hierarchies of objects [16].

The main application of interest to us, a transformation audit trail, is closely related to the version
control systems (VCSs) used in software development. While such systems typically provide control
over different versions of software source code (represented by text files), our audit trail provides such
control for different versions of a graph or a graph hierarchy. Similarly to VCSs, the transformation
audit trail avoids maintaining the state of an object at the time of every transformation by keeping only
its current state together with a compact representation of a history of transformations. Moreover, by
using a mechanism similar to delta compression in VCSs, such audit trails allow for the maintenance of
multiple versions of the same object and for switching between these versions.

The versioning of diagrams expressing object-oriented data modes in the domain of model-driven
engineering is closely related to audit trails for graph transformations because such model diagrams can
be seen as graphs with attributes. However, work in this domain [24, 2] typically considers the operations
of addition and deletion of graph elements (including attributes), to express changes to the data model,
but largely omits those of cloning and merging, as these operations are hard to interpret in the context of
data modelling, whereas these operations are highly interesting in the context of KR.

There exists an extensive body of work on versioning for database systems [23], including graph
databases1 [5, 17]. Such systems are usually divided into snapshot- and delta-based classes (also called
copy and log), where the first store snapshots of the entire database at different points of the revision
history, while the second preserve the transformation log. In this context, our system falls into a rather
hybrid category: while the audit trail stores a representations of transformations (logs), these logs them-
selves consists of subgraphs, i.e. graph patterns that are affected as the result of transformation.

1Versioning for the Neo4j database https://github.com/h-omer/neo4j-versioner-core

https://github.com/h-omer/neo4j-versioner-core
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A different classification of versioning systems for graph databases divides them into those that
provide the revision history from the point of view of individual nodes and edges (or relationships), and
those that use the graph point of view [5]. While existing tools, such as neo4j-versioner-core or
the one presented in [5], mostly tackle versioning from the point of view of individual elements, our
framework allows us to version the entire graph and even the hierarchy of graphs. Moreover, as is the
case with model versioning, existing database versioning techniques do not allow to record the operations
of cloning and merging of graph elements.

2 Preliminaries

In this section we briefly present some useful notions that serve as preliminaries for the rest of the paper
and allow us to construct the desired audit trail for SqPO rewriting of individual objects. We introduce
SqPO rewriting, its reversible version and add the audit trail ingredient by presenting in Section 2.2 how
the composition of two consecutive SqPO rewrites can be constructed when the first rewrite is reversible.
Finally, we conclude this section by presenting the principal KR model of interest, a hierarchy of objects.
The preliminaries, as well as the other technical parts of the paper, are presented using the rather formal
notions of pullback, pushout and pullback complement originating from category theory, which can be
thought of as generalized intersection, union and difference of objects (e.g. graphs) respectively.

2.1 SqPO Rewriting

L P R

G G− G+

(a)m

r−

m−

r+

(b) m+

g− g+

(1)

SqPO rewriting is an approach to abstract deterministic rewriting
in any category with POs and (final) pullback complements (PBCs)
over monos [7]. In typical concrete settings, it enables us to apply
operations of addition, deletion, cloning and merging of elements
where, by element, we mean any concrete constituent of an object
in a category of interest (such as nodes and edges in categories of
graphs). The rewrite of an object G is defined by a rule r : L←r−−P−r+→R and its instance given by a
mono m : L � G. The application of r is performed in two phases as in Diagram 1: (a) an object G− is
constructed as the PBC of r− and m and (b) the final result of rewriting G+ is constructed as the PO of m−

and r+. An arbitrary rewrite of an object in a category of interest can be decoupled into two phases: the
restrictive rewrite (Diagram 1a) performing deletion and cloning of elements and the expansive rewrite
(Diagram 1b) performing merging and addition of elements.

Transformations of individual objects through SqPO rewriting can be efficiently represented with
corresponding rewriting rules and their instances. However, such rewriting may introduce side-effects,
i.e. graph transformations not explicitly specified by the underlying rules and instances. The nature of
these side-effects depends on the category in which we are working. For example, in both simple and
non-simple graphs, edges not matched by the left-hand side of the rule can be removed as a side-effect of
a node removal. Due to such side-effects, having applied a rewriting rule to an object, we can no longer
restore this object by simply looking at the applied rule and its instance. The reversible variant of SqPO
rewriting that does not introduce side-effects was presented in [9]. It corresponds to the scenario where
the SqPO rewriting diagram can be read both forwards and backwards. More formally:

Definition 2.1. An SqPO rewriting as in Diagram 1 is reversible, if the square (a) is also a PO and
the square (b) is also a PBC, i.e. P�m−→ G−−g+→G+ is the final PBC of r+ and m+. We call r−1 :
R←r+−P−r−→L the reverse of r.
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Remark 2.2. When restricting SqPO rewriting to its reversible variant, we lose the capability to perform
deletions in an unknown context [7]. However, this does not reduce our rewriting to the DPO approach
[8] due to the operation of cloning, allowed by the PBC constituting the first phase of SqPO but not
realizable by DPO (or SPO). In the context of KR, the operation of cloning represents an important
update capability which allows us to perform concept refinement, as discussed in [4] and [16].

2.2 Composition of SqPO Rewriting

Let r1 : L1← P1→ R1 be a rewriting rule applied to an object G1 through an instance m1 : L1 � G1 and
let G2 be the result of application of this rule (corresponding to Diagram 2). Let r2 : L2← P2→ R2 be a
rule applied to the resulting object G2 through an instance m2 : L2 � G2 (as in Diagram 3).

L1 P1 R1

G1 G−1 G2

m1 m−1

r−1 r+1

m+
1

g−1 g+1

(2)

L2 P2 R2

G2 G−2 G3

m2 m−2

r−2 r+2

m+
2

g−2 g+2

(3)

L P R

G1 G	1 G3

m m−

r+ r−

m+

g− g+

(4)

Given these two consecutive rule applications, we would like
to find a rule L←r−−P−r+→R and an instance m : L � G1 that,
when applied to G1, directly produces the object G3, i.e. such that
Diagram 4 is an SqPO diagram. Apart from being well-structured
for SqPO rewriting, the construction of such a rule will require the
category in which we are working to be adhesive [19].

Let us first proceed by constructing the pullback (PB) R1←x�D�y→L2 from m+
1 and m2. Note that,

because PBs preserve monos, arrows x and y are monos. We will call the span given by this PB the
overlap of R1 and L2 given their matching inside G2, and we will denote it with o. The PB of x and
r+1 indicates whether the two rule applications are sequentially independent: if this PB is isomorphic to
D then the overlap is included in the preserved region P1 of r1 and the application of r2 did not depend
on the prior application of r1; otherwise, the application of r1 creates something that is tested by r2
so that its application is dependent on the prior application of r1 (see [9, 14] for more formal details).

D

R1 L2

H

G2

x y

rH
1

m+
1

m2

lH
2

mH

(5)

The PO R1�lH
1→H←lH

2�L2 from x and y as in Diagram 5 constructs
the object H that can be seen as the union of two patterns R1 and
L2 given their overlap. By the universal property (UP) of POs, there
exists a unique arrow mH : H → G2 that renders the diagram com-
mutative. This arrow gives us the PO factorization of the PB of m+

1
and m2. Because m+

1 and m2 are monos, by adhesivity, mH is also a
mono (see Theorem 5.1. in [19]).

Using the object H we now construct two objects PH
1 and PH

2
given by the final PBC P1�pH

1→PH
1 −h+1→H to r+1 and rH

1 and
P2�pH

2→ PH
2 −h−2→H to r−2 and lH

2 as in Diagrams 6 and 7.

P1 R1

PH
1 H

r+1

pH
1 rH

1

h+1

(6)

L2 P2

H PH
2

lH
2

r−2

pH
2

h−2

(7)
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For the first PBC to be ‘meaningful’, we need to make the assumption that the application of r1 is
reversible. Having made this assumption, the object PH

1 can be interpreted as the result of reverting the
rewrite specified by r+1 on H. On the other hand, the second PBC simply applies the rewrite specified
by the arrow r−2 to H. It is easy to demonstrate that, by the UP of final PBCs, there exist unique arrows
mH

1 : PH
1 → G−1 and mH

2 : PH
2 → G−2 that render Diagrams 8 and 9 commutative. Moreover, mH

1 and mH
2

are monos.

P1

PH
1 P1 R1

G−1 G2

r+1

IdP1pH
1

mH◦h+1mH
1

r+1

m+
1m−1

g+1

(8)

P2

L2 P2 PH
2

G2 G−2

r−2

IdP2 pH
2

m2

r−2

mH◦h−2 mH
2

m−2

g−2

(9)

To understand how the non-reversibility of the first rule prevents us from finding a ‘meaningful’ PH
1

consider the following example.
Example 2.2.1. In Figure 1a below, we give an example expansive phase of the first rewrite applied to
G−1 , as in the right-most square in Diagram 2 (different shapes are used to encode node identities and
maps.) It selects the circle and the triangle node from G−1 and merges them. This rewrite is not reversible,
i.e. we cannot restore G−1 by applying r+1 through m+

1 because the depicted square does not form a PBC:
the PBC of r+1 and m+

1 would need an additional edge, from the circle node to the square node, in G−1 .
Given the left-hand side L2 of a second rule and a matching into G2, we obtain the union H of R1 and

L2, given their overlap, as in Figure 1b. Reverting the rewrite specified by r+1 on H gives us the object
PH

1 depicted in Figure 1c, which splits the merged circle and triangle. This splitting reconnects the black
square to both circle and triangle which prevents us from constructing a match PH

1 � G−1 necessary to
obtain the desired composition—precisely because G−1 is not the PBC of r+1 and m+

1 .

P1 R1

G−
1 G2

r+1

m+
1

(a)

D

R1 L2

H

G2

(b)

P1 R1

G−
1 G2

HPH
1

r+1

×

(c)

Figure 1: Composition with an irreversible rule.

Next, let us construct two POs: L1�lH
1→ L←h−1−PH

1 from r−1 and pH
1 and R2�rH

2→ R←h+2−PH
2 from

r+2 and pH
2 . The first PO reverts the rewrite of PH

1 specified by r−1 , and the second performs the rewrite
of PH

2 using r+2 and pH
2 . The constructed object L represents the result of reversing the transformation of

the pattern PH
1 specified by r−1 and the instance pH

1 , precisely because the application of r1 is reversible.
By the UP of these POs we can construct unique matches m : L � G1 and m+ : R � G3.
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Finally, to construct the rule composition, we find the PB PH
1 ←p′−P−p′′→PH

2 from h+1 and h−2 . The
resulting rule corresponds to the span r : L←h−1 ◦p′−P−h+2 ◦p′′→R. We will refer to it as the composed rule
given the overlap o and write r =⊗(r1,o,r2).
Theorem 2.3 (Synthesis). In adhesive categories, if rewriting given by r1 is reversible, application of
the rule r given by ⊗(r1,o,r2) with the instance m : L � G1 produces the object G3, i.e. Diagram 4 with
r− = h−1 ◦ p′ and r+ = h+2 ◦ p′′ is an SqPO diagram.
Proposition 2.4. In adhesive categories, the composition of two reversible rewrites is reversible.

2.3 Hierarchies and SqPO Rewriting in Hierarchies

A hierarchy of objects in a category C is a directed acyclic graph (DAG) whose nodes are objects and
whose edges are arrows from C such that all paths between each pair of objects are equal [16]. We refer
to the latter condition as the commutativity condition. In the rest of this paper we assume that we are
working in a fixed category C that has an appropriate structure for SqPO rewriting. For the commutativity
of a hierarchy to be maintained, an SqPO rewrite of an object situated inside the hierarchy may require
updates to other objects and arrows called propagation.

The main model of interest to us operates on hierarchies of (simple) graphs and uses both hierarchy
objects and arrows to represent knowledge. Hierarchies provide a powerful formalism for representation
and update of fragmented knowledge on different interrelated abstraction levels. In this model, an edge
of a hierarchy associated to an arrow h : G→ T is often interpreted as typing, i.e. the graph T defines the
kinds of nodes and edges that can exist in G. We can further interpret moving in a hierarchy along the
direction of its edges as moving away from more concrete to more abstract representation. In this context,
the commutativity condition guarantees that the representation of knowledge on different abstraction
levels is consistent, i.e. the representation of knowledge from some concrete graph obtained by moving
along alternative paths leading to the same abstract graph is consistent. The propagation framework
presented in [16] allows us to transform individual graphs inside a hierarchy and perform the co-evolution
of its different layers, which guarantees the consistency of knowledge at all times.

When the knowledge represented in a hierarchy may be frequently updated by potentially different
curators, it is often desirable to maintain the history of updates and be able to store multiple versions
of knowledge at the same time. The design of a mathematical system providing such features, thus,
constitutes the principal motivation for this work, and this system relies on the existence of a compact
representation of object transformations. SqPO rewriting enables an efficient representation of object
transformations using rules. To be able to build and study such a representation for transformations in
hierarchies, let us briefly formulate the notions of rewriting and propagation in hierarchies (formal details
can be found in [16]).

Rewriting an individual object situated at a node of a hierarchy affects the objects associated at its
ancestor and the descendant nodes, while the rest of the objects stay unchanged. The restrictive phase
is propagated backwards to all the objects typed by the target of rewriting. For instance, let G be an
object corresponding to an ancestor of an object T in a hierarchy with an associated arrow h : G→ T . A
restrictive rewrite performing deletion and cloning of elements in T induces propagation to instances of
these elements in G. The expansive phase is propagated forward to all the objects typing the target. For
instance, for h : G→ T as before, an expansive rewrite performing addition and merging of elements in
G induces propagation to T affecting the types of these elements. Interestingly, merging of elements in
T induced by such forward propagation affects all the hierarchy objects typed by T (corresponding to
the hierarchy side effects described in Subsection 3.2). The commutativity of the updated hierarchy is
guaranteed by the composability conditions imposed on the performed propagations.
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3 Rule Hierarchies

In this section we formulate the notion of a rule hierarchy that serves us as a compact representation of
coupled transformations of objects in a hierarchy. Intuitively, a rule hierarchy is a description of how
every object situated in the hierarchy should be transformed and how the arrows between these objects
should be reconstructed. In the practical application of interest, we would like to use such descriptions
for recording the history of hierarchy updates.

We then define formally how a rule hierarchy can be applied to the corresponding hierarchy of objects
through specified instances and study the side-effects introduced by the application of a rule hierarchy.
Such side-effects, apart from the side-effects introduced by SqPO rewriting on objects, may include some
implicit changes to the arrows in the hierarchy. Thus, we formulate the conditions under which a given
application of a rule hierarchy is reversible. Finally, we present how consecutive rewrites of a hierarchy
can be composed. In this section we consider SqPO rewriting rules operating on objects from C. Such
rules are spans formed by objects and arrows from C.

Definition 3.1. A rule homomorphism f from r1 : L1←r−1− P1−r+1→R1 to r2 : L2←r−2− P2−r+2→R2 is
given by three arrows λ : L1→ L2, π : P1→ P2 and ρ : R1→ R2 from C such that λ ◦ r−1 = r−2 ◦π and
r+2 ◦π = ρ ◦ r+1 .

Using rules as objects and rule homomorphisms as arrows, we obtain the category of rules Rule[C]
over the category C.

Definition 3.2. A rule hierarchy is a hierarchy of objects in the category of rules.

Let H be a hierarchy of objects in C and R be a hierarchy of rules operating on objects in C both
defined over the same DAG G = (V,E ⊆ V ×V ). We refer to such G as the skeleton of H and R.
For the sake of simplicity, in the rest of this section we will assume that we are working on a fixed pair
(H ,R) defined over the same skeleton. As a short-hand, for every node v ∈V we will denote the object
associated to v in H with Gv and the rule associated to v in R with rv : Lv←r−v −Pv−r+v→Rv. For every
edge (s, t) ∈ E we will denote the associated arrows in H as h(s,t) and the arrows constituting the rule
homomorphism in R as λ(s,t), π(s,t) and ρ(s,t).

Definition 3.3. An instance of R in H is given by a function I : V →Monos(C) that associates every
node of the skeleton to an instance of the corresponding rule from R in the corresponding object from
H , i.e. I (v) : Lv � Gv for all v ∈V . For every node v ∈V we will denote the instance I (v) as mv.

Definition 3.4. R is applicable to H through an instance I , if for any pair of nodes s, t ∈V such that
(s, t) ∈ E:

• h(s,t) ◦ms = mt ◦λ(s,t), i.e. their instances commute;

• if G−s and G−t are the results of the restrictive phase
of rewriting given by the final PBC of r−s and ms,
and the final PBC of r−t and mt respectively, then
there exists a unique h−(s,t) : G−s → G−t that renders
Diagram 10 commutative.

Ls Ps

Gs G−s

Lt Pt

Gt G−t

ms

r−s

m−s π(s,t)

h(s,t)

s−

h−
(s,t)

λ(s,t)

mt

r−t

m−t

t−

(10)

Remark 3.5. Observe that, if the left face in Diagram 10 is a PB, R is always applicable to H as the
unique arrow h−(s,t) exists by the UP of final PBCs.
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To rewrite H using the rule hierarchy R, applicable through an instance I , for every node of the
skeleton we simply apply the associated rule to the associated object through the instance specified by
I . To restore the arrows of H , for every edge (s, t) ∈ E, we use the applicability condition and the UP
of POs as follows. Let the back and the front faces of the cube in Diagram 11 be two SqPO diagrams
corresponding to the above-mentioned rewriting of the objects Gs and Gt respectively. First of all, by
the applicability of R given I , there exists a unique arrow h−(s,t) such that h(s,t) ◦ s− = t− ◦ h−(s,t) and
h−(s,t) ◦m−s = m−t ◦π(s,t). This enables us to use the UP of the PO G+

s and show that there exists a unique
arrow h+(s,t) that renders Diagram 11 commutative.

Ls Ps Rs

Gs G−s G+
s

Lt Pt Rt

Gt G−t G+
t

ms

r−s

m−s

r+s

ρ(s,t)m+
s

h(s,t)

s−

h−
(s,t)

s+

h+
(s,t)

λ(s,t)

mt

π(s,t)

r−t

m−t

r+t
m+

t

t− t+

(11)

Therefore, the notion of a rule hierarchy can be used as a compact representation of coupled updates
in hierarchies of objects. Rules describe tranformations of hierarchy objects and rule homomorphisms
allow us to restore arrows between them. The commutativity condition imposed on the rule homomor-
phisms in a hierarchy guarantees that their application results in a valid hierarchy of objects.

3.1 Expressing Rewriting and Propagation in Hierarchies

In this subsection we will briefly discuss how the transformations of objects and arrows in a hierarchy
H induced by a rewrite of an object G with a rule r : L←r−−P−r+→R through m : L � G can be
represented as a rule hierarchy and its instance. Recall that, upon rewriting of an object in a hierarchy,
the objects associated to ancestors and descendants of the origin of rewriting are updated according to the
framework of backward and forward propagation [16], while the rest of the objects stay unaffected. We
would like to construct a rule hierarchy that is defined over the skeleton of H and, therefore, contains
rules for both affected and unaffected objects. For the sake of conciseness, here we will focus only on
non-trivial updates to objects, i.e. on the construction of a rule sub-hierarchy corresponding to the objects
updated as the result of backward or forward propagation. In this paper, we give only the high-level idea
behind these constructions; full technical details can be found in [22].

LH PH PH

H H−

L P R

G G− G+

m̂

r̂−

m̂−

IdPH

r+◦ĥ−

h
h−

ĥ

m
r−

m−
r+

ĥ−

m+

g− g+

(12)

Backward propagation rules. Let H be an object
corresponding to an ancestor of an object G in a hier-
archy with an associated arrow h : H → G. Backward
propagation of r− to H can be expressed as a rule r̂ :
LH←r̂−−PH−IdPH→PH with an instance m̂ : LH � H
that, when applied to H, results in an object H− that is
homomorphic to the result of the original rewriting of
G, in a way that makes Diagram 12 commute.
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Such a rule, called the lifting of r−, is constructed given a specification for backward propagation (i.e.
a rule factorization and a clean-up arrow [16]), and contains only restrictive updates (given by deletion
and cloning). Informally, this specification indicates which changes to G should be propagated to H and
how the updated H can be ‘retyped’ by the updated G. This typing is obtained as a composition g+ ◦h−

in the diagram. Together with the rule lifting, we obtain the arrows ĥ : LH → L and ĥ− : PH → P defining
the rule homomorphism given by (ĥ, ĥ−,r+ ◦ ĥ−) as in the diagram. Therefore, the backward propaga-
tion framework allows us to extract a rule representing the specified propagation for every ancestor of the
rewritten object together with homomorphisms to the original rule r. Moreover, under appropriate con-
ditions (see backward composability in [16]), we can construct the homomorphisms between backward
propagation rules required by the skeleton of the hierarchy.

L P R

G G− G+

PT PT RT

T T+

mĥ

r−

m−

r+

m+

g−

h◦g−

g+

h+

ĥ−

IdPT

m̂−

r̂+

m̂+

ĥ+

t+

(13)

Forward propagation rules. Let T be an object
corresponding to a descendant of an object G in a
given hierarchy with an associated arrow h : G→ T .
Forward propagation of r+ to T can be expressed as a
rule r̂ : PT ← PT → RT with an instance m̂− : PT � T
that, when applied to T , results in an object T+ to
which the result of the original rewriting of G is homo-
morphic, in a way renders Diagram 13 commutative.
Such a rule, called the projection of r+, is constructed
given a specification for forward propagation (i.e. a
rule factorization and a clean-up arrow [16]), and con-
tains only expansive updates (addition and merging).

Informally, this specifies which changes to G should be propagated to T and how the updated G
can be ‘retyped’ by the updated T . Together with the rule projection, we obtain three arrows ĥ : L→
PT , ĥ− : P→ PT and ĥ+ : R→ RT that define the rule homomorphism given by (ĥ, ĥ−, ĥ+). Forward
propagation thus allows us to extract a rule representing the specified propagation for every descendant
of the rewritten object together with homomorphisms from the original rule r and, under appropriate
conditions (see forward composability in [16]), we can also construct the required rule homomorphisms.
Example 3.5.1. Consider the hierarchy H depicted in Figure 2. Let G be the target of rewriting with
the rule highlighted in the grey area: this rule clones the circle into two semi-circles and merges one of
these circles with the square node. Let the rules delimited with dashed arrows be the objects of the rule
hierarchy representing respective rewriting and propagation. The rule LH ← PH → RH is a backward
propagation rule that specifies how the cloning in G is propagated to different instances of the circle: in
this case, the white circle in H is to be cloned but the black circle can still be typed by the right semi-
circle. The rule LT ← PT → RT is a forward propagation rule that describes the merging of the nodes
typing the semi-circle and the square in G. Finally, the hierarchy H ′ on the right represents the result
of the rule hierarchy application.

3.2 Reversible Rewriting in Hierarchies

In this subsection, we study the side-effects introduced by the application of a rule hierarchy. These side-
effects may induce some implicit changes to the arrows representing hierarchy edges, which may prevent
us from restoring the original hierarchy simply by looking at the applied rule hierarchy. In general, such
side-effects make the rewriting produced by reversing the original rule hierarchy not applicable. Let us
first consider the following example.
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LH PH RHH

L P RG

LT PT RTT

Original H Result H′Constructed rule hierarchy R

H ′

G′

T ′

Figure 2: Example of rewriting in a hierarchy represented with a rule hierarchy.

Example 3.5.2. Let G→ T in Figure 3a be two homomorphic objects and let PG → RG and PT → RT

specify expansive phases of rules applied to these objects. The rule PG → RG merges one of the white
circles of G with the black circle; the rule PT → RT merges the white and black circles. As a side-effect,
the other white circle is also now typed by the merged node in T+: we ‘forget’ that it was an instance of
the white circle in T . In Figure 3b, we reverse the rules and apply them to G+ and T+: the merged node
in T+ is cloned into two circle nodes and one instance of the merged node in G+ is cloned. We recover
G but cannot type it by T , precisely because we ‘forgot’ how the circle coloured grey was typed in T .

PG RG

G G+

RT

T T+

PT

(a) Application of the original rules

PGRG

GG+

RT

TT+

×
PT

(b) Application of the reversed rules

Figure 3: Example of side-effects affecting hierarchy arrows

Definition 3.6. The reverse R−1 of R is the rule hierarchy whose nodes correspond to the rules r−1
v

for all v ∈ V , and whose edges correspond to the rule homomorphisms (ρ(s,t),π(s,t),λ(s,t)) for all edges
(s, t) ∈ E.
Definition 3.7. Rewriting of H with R, applicable through an instance I , is reversible, if rewriting of
every individual object is reversible and the reverse R−1 is applicable, i.e. for any pair of nodes s, t ∈V
such that (s, t) ∈ E corresponding to objects and rules as in Diagram 11, if G−s is given as the final PBC
of r+s and m+

s and G−t as the final PBC of r+t and m+
t , there exists a unique arrow h−(s,t) : G−s → G−t that

makes the right cube in Diagram 11 commute.
Remark 3.8. Even though the latter definition imposes rather abstract requirements, some intuitive
sufficient conditions can be formulated. For example, if for every hierarchy edge the left-most face
in Diagram 11 is a PB, the rewriting is reversible. Informally, this condition guarantees that all the
instances of the elements selected by mt are also selected by ms. This means that the scenario from
Example 3.5.2 cannot be realized, because all the instances of the merged types are selected by the rule.
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3.3 Composition of Rewriting in Hierarchies

To study composition of rewriting in a hierarchy, we will focus on a simple hierarchy with two nodes
and one edge, corresponding to objects G1, T1 and an arrow h1 : G1→ T1. Composition of rewriting in
general hierarchies can be trivially obtained by applying this technique to every pair of hierarchy nodes
connected with an edge.

Let H be a hierarchy corresponding to an arrow G1−h1→T1 and let R1 be a rule hierarchy corre-
sponding to rules pG and pT , whose arrow f p : pG→ pT is given by arrows λ1, π1 and ρ1 as in Diagram
14. Let G2−h2→T2 correspond to the result of the application of R1 through the instances mG and mT

(we assume that R1 is applicable given mG and mT ). Let R2 be another rule hierarchy given by a ho-
momorphic pair of rules qG and qT as in Diagram 15. Their homomorphism f q : qG → qT is given by
arrows λ2, π2 and ρ2. Let G3−h3→T3 be the result of the application of R2 through the instances nG and
nT as in the diagram (similarly, we assume that R2 is applicable given the instances).

LG
1 PG

1 RG
1

G1 G−1 G2

LT
1 PT

1 RT
1

T1 T−1 T2

mG m−G

p−G p+G

ρ1m+
G

h1 h−1

g−1

g+1
h2

λ1

mT

π1

m−T

p−T

p+T
m+

T

t−1 t+1

(14)

LG
2 PG

2 RG
2

G2 G−2 G3

LT
2 PT

2 RT
2

T2 T−2 T3

nG n−G

q−G q+G

ρ2n+G

h2 h−2

g−2

g+2
h3

λ2

nT

π2

n−T

q−T

q+T
n+T

t−2 t+2

(15)

LX PX RX

X1 X	1 X3

lX

r−X r+X

l−X l+X

h−X h+X

(16)

We can compose these pairs of rewrites using the con-
structions presented in Subsection 2.2. Namely, if the rules
pG and pT are reversible, we can find a pair of rules, rG :
LG←r−G−PG−r+G→RG and rT : LT←r−T−PT−r+T→RT , and a
pair of instances, lG : LG � G1 and lT : LT � T1, such that
applying rG to G1 and rT to T1 through lG and lT respectively
(as in Diagram 16, where X stands for G or T ), we directly obtain G3 and T3 from Diagram 15.

DG

RG
1 DT LG

2

RT
1 LT

2

T2

d
xG yG

ρ1
xT yT

λ2

m+
T

nT

(17)

To be able to construct a rule homomorphism f : rG→ rT , we need
to make the assumption that the rewriting specified by R1 given mG

and mT is reversible, i.e. for G−1 being the PBC of p+G and m+
G and

T−1 being the PBC of p+T and m+
T , there always exists a unique arrow

h−1 that renders the right-most cube in Diagram 14 commutative. Let
DG, xG, yG, DT , xT and yT from Diagram 17 be the two overlaps of
respectively RG

1 with LG
2 and RT

1 with LT
2 , constructed as described in

Subsection 2.2 and denoted with oG and oT . By the UP of PBs, there
exists a unique arrow d : DG → DT using which we can construct a
hierarchy of such overlaps defined over the same skeleton as H , and
together with arrows xG, yG, xT and yT , this gives us the hierarchy
overlap O .

Lemma 3.9. If the rewriting of H given by R1 through mG and mT is reversible then, given the hierarchy
overlap O , there exists a unique rule homomorphism f : rG→ rT .
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Therefore, we can construct the rule hierarchy R corresponding to rG− f→rT . We will refer to it as
the composed rule hierarchy given the hierarchy overlap O and write R =⊗(R1,O,R2).

Theorem 3.10. In an adhesive category, if the rewriting given by R1 is reversible, R is applicable given
lG and lT , and its application results in G3−h3→T3.

Proposition 3.11. In an adhesive category, the composition of two reversible hierarchy rewrites is re-
versible.

4 Transformation Audit Trails

In this section we describe how reversibility and composition of rewriting can be used to construct the
audit trail for transformations of individual objects and hierarchies of objects. The proposed framework
is implemented as a part of the ReGraph2 Python library for building hierarchical knowledge represen-
tations based on simple graphs with attributes.

4.1 Audit Trails for Object Transformations

Li Pi Ri

Gi−1 Ḡi−1 Gi

mi

r−i

m−i

r+i

m+
i

ḡ−i ḡ+i

(18)

Let G0 be the starting object whose history of transformations we
would like to maintain and let 〈ri : Li←r−i −Pi−r+i→Ri | i ∈ [1 . . .n]〉 be
a sequence of rules consecutively applied to G0 through the instances
mi : Li � Gi−1, resulting in a sequence of objects 〈Gi | i ∈ [1 . . .n]〉
with m+

i : Ri � Gi for 1 ≤ i ≤ n, i.e. such that for every 1 ≤ i ≤ n,
Diagram 18 is a SqPO diagram. To be able to build a sound audit trail,
we additionally require such a sequence of rewrites to be reversible.

Definition 4.1. The audit trail for the object Gn consists of the sequence of rules 〈ri | i ∈ [1 . . .n]〉 and the
right-hand side instances m+

i : Ri � Gi for 1≤ i≤ n.

Example 4.1.1. Consider Figure 4 depicting an audit trail. Gray circles represent the states of a po-
tentially large graph whose history of transformations we record. The small graphs inside gray circles
represent the localized patterns affected by the transformations. The audit trail contains the SqPO rules
representing transformations and their instances. Only the elements highlighted with solid lines are
stored by the system at any time, i.e. the current state of the object, the rules and the instances represent-
ing the history of updates.

audit trail

L1 P1 R1 L2 P2 R2

G0 G1 G2

m+
1 m+

2

Figure 4: Example of an audit trail

2https://github.com/Kappa-Dev/ReGraph

https://github.com/Kappa-Dev/ReGraph
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Remark 4.2. The reader may wonder how rule instances (matches) are stored in the audit trail without
storing the domain objects of these matches (for example, how do we store m+

1 : R1 � G1 from Example
4.1.1 without storing G1 itself). In practice, we assume that graph elements (nodes and edges) are
uniquely identified (e.g. with shapes and colors as in our example), and instead of storing the domain of
our instances (e.g. G1), it is enough to store the mapping of unique element identifiers of the co-domain
and domain object constituting the rule instance (identifiers of nodes and edges of R1 and G1 in our
example).

Rollback. Using such an audit trail we can rollback to any point in the history of transformations
corresponding to some intermediate object Gi for 0≤ i≤ n−1 by applying the sequence rules 〈r−1

j | j ∈
[n . . . i+1]〉 with the corresponding instances m+

j : R j � G j for j ∈ [n . . . i+1].

Maintain diverged versions. To maintain multiple versions of an object in the audit trail, we use a
technique known from VCSs as delta compression, i.e. only the current version of the object is stored,
while the other versions are encoded in a delta, a representation of the ‘difference’ between the ver-
sions. Let v1 and v2 be two versions of the starting object G0 with v1 being the current version. Initial
delta ∆ from v1 to v2 is set to the identity rule (the rule that does not perform any transformations)
/0←Id /0− /0−Id /0→ /0 and the instance u : /0 � G0, where /0 stands for the initial object in C and u is the
unique arrow from the initial object to G0. Every rewrite of the current version of the object induces an
update of the delta that consists in the composition of the previous delta and the reverse of the applied
rule (recall that we assume that every rewriting in the audit trail is reversible).

As before, let v1 be the current version corresponding to some object G (e.g. obtained by transforming
of G0) and let r∆ : L∆←r−

∆−P∆−r+
∆→R∆ and m∆ : L∆ � G be respectively the rule and the instance given

by ∆. Let r : L←r−−P−r+→R be a rule applied to G through the instance m : L � G and G′ be the result
of application of r given m. To update the delta, we compute the composition ⊗(r−1,o,r∆) with o being
a span L←x�D−y→L∆ obtained as a PB from m and m∆. The new delta is, thus, set to the rule and the
instance given by the composition ⊗(r−1,o,r∆).

Example 4.2.1. Figure 5 illustrates how multiple version of the same object are maintained within the
proposed audit trail system. Figure 1a illustrates two versions, v1 and v2, of the same object. As in the
previous example, only the elements highlighted with solid lines are stored by the system. In this example
we store the current version v1 of the object and the difference between the two versions expressed with
the delta. The right-most rule in Figure 1a represents a transformation of the current version v1. In
Figure 1b, using the overlap between the delta and the transformation rule, we compute the new delta
representing the difference between the updated v1 and v2.

Switch versions. Switching between different versions of the object can be done by simply applying
the rule through the instance given by the delta. Namely, if v1 is the current version corresponding to
an object G with the delta to v2 given by ∆ = (r∆,m∆), switching to v2 is performed by applying r∆ to
G through the instance m∆. If G′ is the result of the above-mentioned rewriting and m+

∆
: R∆ � G′ is its

right-hand side instance, then v2 becomes the current version of the object and the new delta ∆ is set to
(r−1

∆
,m+

∆
).
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Original delta

r∆ :

D

R∆ P∆ L∆

L P R

version v2 version v1

m∆

(a)

Updated delta

r′∆ :
R′

∆ P ′
∆ L′

∆

version v2 updated v1

m′
∆

(b)

Figure 5: Update of a delta representing different versions of an object.

P∆ R∆

L∆ M̂

Ḡ G′

G Ĝ

r−
∆

r+
∆

r̂−

m∆

r̂+

m̂

m−
∆

g−

g+

m+
∆

ĝ−

ĝ+

(19)

Merge versions. Let v1 be the current version corresponding to
an object G, v2 be another version corresponding to an object G′

and the delta between v1 and v2 be given by ∆ = (r∆,m∆). The
left and top faces of the cube in Diagram 19 correspond to the
two phases of the application of r∆ through m∆.

The canonical merging rules for v1 and v2 are given by two
arrows r̂+ and r̂− constructed by the pushout L∆−r̂+→M̂←r̂−−R∆

from r−
∆

and r+
∆

(see the back face of the cube in the diagram). The
merging rule for the current object G is then applied by finding the
pushout G−ĝ+→Ĝ←m̂�M̂ from m∆ and r̂+ as in the bottom face
of Diagram 19. By the universal property of pushouts there exists
a unique arrow ĝ− : G′ → Ĝ that renders the cube commutative.
The object Ĝ is the result of the canonical merging of G and G′. Note that, because the application of r∆

is reversible, the left face is also a pushout, which implies that the right face of the cube is also a pushout.
We thus obtain the merged object Ĝ by applying the merging rule r̂− to G′ through the instance m+

∆
.

Non-canonical merging rules are given by two arrows r+M : L∆ → M and r−M : R∆ → M such that
r+M ◦ r−

∆
= r−M ◦ r+

∆
. The merged object GM is, thus, obtained by applying the rule r+M to G through the

instance m∆ or the rule r−M to G′ through the instance m+
∆

.

Example 4.2.2. Figure 6 illustrates how the operation of merge can be performed within the audit trail.
The delta depicted in the figure corresponds to the delta from Figure 5. Using this delta, we compute
the canonical merging rules for the two versions given by L∆ → M̂ and R∆ → M̂ respectively. In this
example, the merging rule merges the two semi-circles produced by the cloning in v1 (see the first rule
applied tot G0 in Figure 4), which results into the object represented with gray solid circle.

4.2 Audit Trails for Hierarchy Transformations

Let H 0 be the starting hierarchy of objects, defined over a skeleton G =(V,E), whose history of transfor-
mations we would like to maintain. Let 〈Ri | i ∈ [1 . . .n]〉 be a sequence of rule hierarchies consecutively
applied to H 0 through the instances Ii, resulting in a sequence of hierarchies 〈H i | i ∈ [1 . . .n]〉 with
the right-hand side instances given by I +

i for 1 ≤ i ≤ n, i.e. for every v ∈ V , I +
i (v) : Ri

v � Gi
v. As in

the case of individual objects, to be able to build an audit trail, we require all the rewrites to be reversible.
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r∆ : R∆

M̂

P∆

L∆

version v2

version v1 merged version

Figure 6: Merging different versions of an object.

Definition 4.3. The audit trail for H n consists of the sequence of rule hierarchies 〈Ri | i ∈ [1 . . .n]〉 and
the right-hand side instances I +

i for 1≤ i≤ n.

Rollback. Using the audit trail we can rollback to any point in the history of transformations corre-
sponding to some intermediate hierarchy H i for 0 ≤ i ≤ n− 1. This can be done by applying the rule
hierarchies 〈R−1

j | j ∈ [n . . . i+ 1]〉 with the corresponding instances I +
j , where I +

j (v) : R j
v � G j

v for
every v ∈V and j ∈ [n . . . i+1].

Maintain diverged versions. To accommodate multiple versions of a hierarchy, we use delta com-
pression. Let v1 and v2 be two versions of the starting hierarchy H 0 with v1 being the current version.
The initial delta ∆ from v1 to v2 is set to the identity rule hierarchy with the rule /0←Id /0− /0−Id /0→ /0 at
every node v ∈V . We set the instance I (v) for every v ∈V to be the unique arrow uv : /0 � G0

v . Every
rewrite of the current version of the hierarchy induces an update of the delta that consists in the compo-
sition of the previous delta and the reverse of the applied rule hierarchy. Let v1 be the current version
corresponding to some hierarchy H .

Ds

Ls Dt L∆
s

Lt L∆
t

Gt

xs ys

λ(s,t) xt

yt
λ ∆

(s,t)

mt m∆
t

(20)

Let R∆ and I∆ be the rule hierarchy and instance given by ∆, where
r∆

v : L∆
v←r−v,∆−P∆

v −r+v,∆→R∆
v and m∆

v : L∆
v � Gv are the rule and the in-

stance corresponding to a node v∈V . Let R be a rule hierarchy applied
to H through the instance I and H ′ be the result of the correspond-
ing rewriting. The new delta is given by the rule hierarchy and the
instance obtained as the composition⊗(R−1,O,R∆) with O being the
hierarchy overlap computed by finding the overlaps between Lv and L∆

v
for every node v ∈ V and the arrow Ds → Dt between overlaps given
by the UP of PBs as in Diagram 20 for every edge (s, t) ∈ E.

Switch versions. Switching between versions of the hierarchy is performed by applying the rule hier-
archy though the instance given by the delta. If v1 is the current version corresponding to a hierarchy H
with the delta given by ∆ = (R∆,I∆), switching to v2 is performed by applying R∆ to H through I∆.
For H ′ being the result of rewriting and I +

∆
being its right-hand side instance (where for every v ∈ V ,

I +
∆
(v) : R∆

v � G′v), v2 becomes the current version of the object and the new delta is (R−1
∆

,I +
∆
).
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Merge versions. Let v1 be the current version corresponding to a hierarchy H , v2 be another version
corresponding to a hierarchy H ′ and the delta between v1 and v2 be given by ∆ = (R∆,I∆).

The canonical merging rule hierarchy can be constructed in the following way. For every individual
hierarchy node we construct the canonical merging rule according to the framework described in Subsec-
tion 4.1. Let the back and front faces of the cube in Diagram 21 correspond to the POs defining pairs of
merging rules corresponding to nodes s, t ∈V such that (s, t)∈ E. We can apply the universal property of
the POs and show that there exists a unique arrow m(s,t) : M̂s→ M̂t that makes the diagram commute. The
merging rule hierarchy R̂+ for H is, thus, given by rules Lv←IdLv−Lv−r̂+v→M̂v, for all v ∈V , and rule
homomorphisms defined by arrows (λ(s,t),λ(s,t),m(s,t)), for all (s, t) ∈ E. On the other hand, the merging
rule hierarchy for H ′ is given by rules Rv←IdRv−Rv−r̂−v→M̂v, for all v ∈ V , and rule homomorphisms
defined by arrows (ρ(s,t),ρ(s,t),m(s,t)), for all (s, t) ∈ E. Let Ĝs and Ĝt be the result of merging corre-
sponding to the nodes s and t. By the universal property of POs there exists a unique arrow ĥ(s,t) that
renders Diagram 22 commutative. Therefore, using such objects Ĝv for every v ∈V and arrows h(s,t) for
every (s, t) ∈ E, we can construct the hierarchy Ĥ corresponding to the result of canonical merging of
H and H ′. Non-canonical merging can be specified using a hierarchy of objects M defined over the
same skeleton as H , and a pair of arrows r̄+v : Lv→Mv and r̄−v : Rv→Mv such that r̄+v ◦ r−v = r̄−v ◦ r+v for
every v ∈V .

Ps Rs

Ls M̂s

Pt Rt

Lt M̂t

r−s

r+s

r̂−s

λ(s,t)

r̂+s
m(s,t)

π(s,t)

r−t

r+t

ρ(s,t)

r̂−t

r̂+t

(21)

Ls M̂s

Gs Ĝs

Lt M̂t

Gt Ĝt

ms

r̂+s

m̂s

h(s,t)

ĝ+s
ĥ(s,t)

λ(s,t)

mt

r+t

m(s,t)

m̂t

ĝ+t

(22)

5 Conclusions

In this paper we have described how the reversibility and composition of SqPO rewriting can be used
to design an audit trail framework for individual objects and hierarchies of objects. In particular, we
have presented the construction that composes consecutive SqPO rewrites, provided the first rewrite
is reversible. We have also presented the notion of rule hierarchy, that generalizes SqPO rewriting to
hierarchies of objects, and allows for an efficient representation of rewriting and its propagation, as
previously presented in [16]. We have studied the conditions under which an arbitrary rule hierarchy can
be applied to the corresponding hierarchy of objects and described the conditions for such an application
to be reversible. We then briefly discussed the construction that can be used to compose consecutive
applications of two rule hierarchies. Finally, we have described how an audit trail for individual objects
and hierarchies of objects can be defined. Such an audit trail allows for the maintenance of the history
of transformations and provides the means for reverting sequences of such transformations. Moreover,
it enables the accommodation of multiple versions of the same object that have diverged as the result of
conflicting rewrites.
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As future work, we would like to study how an arbitrary transformation from a sequence of rewrites
can be undone for individual objects and hierarchies of objects. This question is directly related to the
theory of causality for SqPO rewriting and requires a generalization for such rewriting in hierarchies.
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Algebraic approaches to graph transformation–part I: basic concepts and double pushout approach. In:
Handbook Of Graph Grammars And Computing By Graph Transformation: Volume 1: Foundations, World
Scientific, pp. 163–245, doi:10.1142/9789812384720 0003.

[9] Vincent Danos, Tobias Heindel, Ricardo Honorato-Zimmer & Sandro Stucki (2014): Reversible sesqui-
pushout rewriting. In: Graph Transformation (ICGT), Springer, Cham, pp. 161–176, doi:10.1007/978-3-
319-09108-2 11.

[10] Roy Dyckhoff & Walter Tholen (1987): Exponentiable morphisms, partial products and pullback comple-
ments. Journal of Pure and Applied Algebra 49(1-2), pp. 103–116, doi:10.1016/0022-4049(87)90124-1.

[11] Hartmut Ehrig, Claudia Ermel & Gabriele Taentzer (2011): A formal resolution strategy for operation-based
conflicts in model versioning using graph modifications. In: Fundamental Approaches to Software Engineer-
ing (FASE), Springer, Berlin, Heidelberg, pp. 202–216, doi:10.1007/978-3-642-19811-3 15.

[12] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski & Francesco Parisi-Presicce (1991): Parallelism and
concurrency in high-level replacement systems. Mathematical Structures in Computer Science 1(3), pp. 361–
404, doi:10.1017/S0960129500001353.

[13] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault,
Stefan Plantikow, Mats Rydberg, Petra Selmer & Andrés Taylor (2018): Cypher: An evolving
query language for property graphs. In: Management of Data (SIGMOD), ACM, pp. 1433–1445,
doi:10.1145/3183713.3190657.

[14] Russ Harmer (2017): Rule-based meta-modelling for bio-curation. Habilitation à Diriger des Recherches,
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Université de Lyon. Available at https://tel.archives-ouvertes.fr/tel-02917559.

[23] Betty Salzberg & Vassilis J. Tsotras (1999): Comparison of access methods for time-evolving data. ACM
Computing Surveys (CSUR) 31(2), pp. 158–221, doi:10.1145/319806.319816.

[24] Christian Schneider, Albert Zündorf & Jörg Niere (2004): CoObRA–a small step for development tools to
collaborative environments. In: Workshop on Directions in Software Engineering Environments (WoDiSEE),
IET, doi:10.1049/ic:20040206.

[25] Gabriele Taentzer, Claudia Ermel, Philip Langer & Manuel Wimmer (2010): Conflict detection for model
versioning based on graph modifications. In: Graph Transformation (ICGT), Springer, Berlin, Heidelberg,
pp. 171–186, doi:10.1007/978-3-642-15928-2 12.

http://dx.doi.org/10.1016/j.jlamp.2020.100559
http://dx.doi.org/10.1109/ICDE.2013.6544892
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1051/ita:2005028
http://dx.doi.org/10.1007/3-540-44618-4_19
http://dx.doi.org/10.1007/978-3-319-21145-9_1
https://tel.archives-ouvertes.fr/tel-02917559
http://dx.doi.org/10.1145/319806.319816
http://dx.doi.org/10.1049/ic:20040206
http://dx.doi.org/10.1007/978-3-642-15928-2_12

	1 Introduction
	2 Preliminaries
	2.1 SqPO Rewriting
	2.2 Composition of SqPO Rewriting
	2.3 Hierarchies and SqPO Rewriting in Hierarchies

	3 Rule Hierarchies
	3.1 Expressing Rewriting and Propagation in Hierarchies
	3.2 Reversible Rewriting in Hierarchies
	3.3 Composition of Rewriting in Hierarchies

	4 Transformation Audit Trails
	4.1 Audit Trails for Object Transformations
	4.2 Audit Trails for Hierarchy Transformations

	5 Conclusions

