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We study multiplayer turn-based games played on a finite directed graph such that each player aims
at satisfying an ω-regular Boolean objective. Instead of the well-known notions of Nash equilibrium
(NE) and subgame perfect equilibrium (SPE), we focus on the recent notion of weak subgame per-
fect equilibrium (weak SPE), a refinement of SPE. In this setting, players who deviate can only use
the subclass of strategies that differ from the original one on a finite number of histories. We are
interested in the constrained existence problem for weak SPEs. We provide a complete characteriza-
tion of the computational complexity of this problem: it is P-complete for Explicit Muller objectives,
NP-complete for Co-Büchi, Parity, Muller, Rabin, and Streett objectives, and PSPACE-complete for
Reachability and Safety objectives (we only prove NP-membership for Büchi objectives). We also
show that the constrained existence problem is fixed parameter tractable and is polynomial when the
number of players is fixed. All these results are based on a fine analysis of a fixpoint algorithm that
computes the set of possible payoff profiles underlying weak SPEs.

1 Introduction

Two-player zero-sum graph games with ω-regular objectives are the classical mathematical model to
formalize the reactive synthesis problem [24, 25]. More recently, generalization from zero-sum to non
zero-sum, and from two players to n players have been considered in the literature, see e.g. [1, 3, 4, 5,
10, 12, 16, 21, 26] and the surveys [8, 20]. Those extensions are motivated by two main limitations
of the classical setting. First, zero-sum games assume a fully antagonistic environment while this is
often not the case in practice: the environment usually has its own goal. While the fully antagonistic
assumption is simple and sound (a winning strategy against an antagonistic environment is winning
against any environment that pursues its own objective), it may fail to find a winning strategy even if
solutions exist when the objective of the environment is accounted. Second, modern reactive systems are
often composed of several modules, and each module has its own specification and should be considered
as a player on its own right. This is why we need to consider n-player graph games.

For n-player graph games, solution concepts like Nash equilibria (NEs) [22] are natural to consider.
A strategy profile is an NE if no player has an incentive to deviate unilaterally from his strategy, i.e.
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no player can strictly improve on the outcome of the strategy profile by changing his strategy only. In
the context of sequential games (such as games played on graphs), NEs allow for non-credible threats
that rational players should not carry out. To avoid non-credible threats, refinements such as subgame
perfect equilibria (SPEs) [23] have been advocated. A strategy profile is an SPE if it is an NE in all the
subgames of the original game. So players need to play rationally in all subgames, and this ensures that
non-credible threats cannot exist. For applications of this concept to n-player graph games, we refer the
reader to [6, 12, 26].

In [7], the notion of weak subgame perfect equilibrium (weak SPE) is introduced, and it is shown
how it can be used to study the existence SPEs (possibly with contraints) in quantitative reachability
games. While an SPE must be resistant to any unilateral deviation of one player, a weak SPE must be
resistant to deviations restricted to deviating strategies that differ from the original one on a finite number
of histories only. In [11] the authors study general conditions on the structure of the game graph and on
the preference relations of the players that guarantee the existence of a weak SPE for quantitative games.
Weak SPEs retain most of the important properties of SPEs and they coincide with them when the payoff
function of each player is continuous (see e.g. [18]). Weak SPEs are also easier to characterize and to
manipulate algorithmically. We refer the interested reader to [7, 11] for further justifications of their
interest, as well as for related work on NEs and SPEs.

Main contributions In this paper, we concentrate on graph games with ω-regular Boolean objectives.
While SPEs, and thus weak SPEs, are always guaranteed to exist in such games, we here study the
computational complexity of the constrained existence problem for weak SPEs, i.e. equilibria in which
some designated players have to win and some other ones have to loose. More precisely, our main results
are as follows:

• We study the constrained existence problem for games with Reachability, Safety, Büchi, Co-Büchi,
Parity, Explicit Muller, Muller, Rabin, and Streett objectives. We provide a complete characteri-
zation of the computational complexity of this problem for all the classes of objectives with one
exception: Büchi objectives. The problem is P-complete for Explicit Muller objectives, it is NP-
complete for Co-Büchi, Parity, Muller, Rabin, and Streett objectives, and it is PSPACE-complete
for Reachability and Safety objectives. In case of Büchi objectives, we show membership to NP
but we fail to prove hardness.

• Our complexity results rely on the identification of a symbolic witness for the constrained ex-
istence of a weak SPE, the size of which allows us to prove NP/PSPACE-membership. As the
constrained existence problem is PSPACE-complete for Reachability and Safety objectives, sym-
bolic witnesses as compact as those for the other objectives cannot exist unless NP = PSPACE.
The identification of symbolic witnesses is obtained thanks to a fixpoint algorithm that computes
the set of all possible payoff profiles underlying weak SPEs.

• When the number of players is fixed, we show that the constrained existence problem can be
solved in polynomial time for all ω-regular objectives. We also prove that it is fixed parameter
tractable where the parameter is the number of players, for Reachability, Safety, Büchi, Co-Büchi,
and Parity objectives. For Rabin, Streett, and Muller objectives, we still establish fixed parame-
ter tractability but we need to consider some additional parameters depending on the objectives.
These tractability results are obtained by a fine analysis of the complexity of the fixpoint algorithm
mentioned previously.
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Related work and additional contributions In [20, 26], a tree automata-based algorithm is given to
decide the constrained existence problem for SPEs on graph games with ω-regular objectives defined
by parity conditions. A complexity gap is left open: this algorithm executes in EXPTIME and NP-
hardness of the decision problem is proved. In this paper, we focus on weak SPEs for which we provide
precise complexity results for the constrained existence problem. We also observe that our results on
Reachabilty and Safety objectives transfer from weak SPEs to SPEs: the constrained existence problem
for SPEs is PSPACE-complete for those objectives. Quantitative Reachability objectives are investigated
in [7] where it is proved that the constrained existence problem for weak SPEs and SPEs is decidable,
but its exact complexity is left open.

In [7, 11, 17], the existence of (weak) SPEs in graph games is established using a construction based
on a fixpoint. Our fixpoint algorithm is mainly inspired by the fixpoint technique of [11]. However, we
provide complexity results based on this fixpoint while transfinite induction is used in [11]. Furthermore,
we have modified the technique of [11] in a way to get a fixpoint that contains exactly all the possible
payoff profiles of weak SPEs. This is necessary to get a decision algorithm for the constrained existence
problem.

Profiles of strategies with finite-memory are more appealing from a practical point of view. It is
shown in [26] that when there exists an SPE in a graph game with ω-regular objectives, then there exists
one that uses finite-memory strategies and has the same payoff profile. Thanks to the symbolic witnesses,
we have refined those results for weak SPEs.

Structure of the paper In Section 2, we recall the notions of n-player graph games and of (weak) SPE,
and we state the studied constrained existence problem. In Section 3, we provide a fixpoint algorithm that
computes all the possible payoff profiles for weak SPEs on a given graph game. From this fixpoint, we
derive symbolic witnesses of weak SPEs. In Section 4, we study the complexity classes of the constrained
existence problem for all objectives. We also prove the fixed parameter tractability of the constrained
existence problem and we show that it is in polynomial time when the number of players is fixed. In
Section 5, we give a conclusion and propose future work.

2 Preliminaries

In this section, we introduce multiplayer graph games in which each player aims to achieve his Boolean
objective. We focus on classical ω-regular objectives, like Reachability, Büchi, aso. We recall two
classical concepts of equilibria: Nash equilibrium and subgame perfect equilibrium (see [20]). We also
recall weak variants of these equilibria as proposed in [7, 11]. We conclude the section by the constrained
existence problem that is studied in this paper.

Multiplayer Boolean games A multiplayer Boolean game is a tuple G = (Π,V,(Vi)i∈Π,E,(Gaini)i∈Π)
where Π = {1,2, . . . ,n} is a finite set of n players, G = (V,E) is a finite directed graph and for all v ∈V
there exists v′ ∈ V such that (v,v′) ∈ E, (Vi)i∈Π is a partition of V between the players, and Gain =
(Gaini)i∈Π is a tuple of functions Gaini : V ω → {0,1} that assigns a Boolean value to each infinite path
of G for player i.

A play in G is an infinite sequence of vertices ρ = ρ0ρ1 . . . such that for all k ∈ N, (ρk,ρk+1) ∈ E. A
history is a finite sequence h = h0h1 . . .hn (n ∈ N) defined similarly. We denote the set of plays by Plays
and the set of histories by Hist. Moreover, the set Histi is the set of histories such that the last vertex v is
a vertex of player i, i.e. v ∈Vi. The length |h| of h is the number n of its edges. A play ρ is called a lasso
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if it is of the form ρ = h`ω with h` ∈ Hist. Notice that ` is not necessary a simple cycle. The length of
a lasso h`ω is the length of h`. For all h ∈ Hist, we denote by First(h) the first vertex h0 of h. We use
notation h < ρ when a history h is prefix of a play (or a history) ρ . Given a play ρ = ρ0ρ1 . . ., the set
Occ(ρ) = {v∈V | ∃k,ρk = v} is the set of vertices visited by ρ , and Inf(ρ) = {v∈V | ∀k,∃ j≥ k,ρ j = v}
is the set of vertices infinitely often visited by ρ . Given a vertex v ∈V , Succ(v) = {v′ | (v,v′) ∈ E} is the
set of successors of v, and Succ∗(v) is the set of vertices reachable from v in G.

When an initial vertex v0 ∈V is fixed, we call (G ,v0) an initialized game. A play (resp. a history) of
(G ,v0) is a play (resp. a history) of G starting in v0. The set of such plays (resp. histories) is denoted by
Plays(v0) (resp. Hist(v0)). We also use notation Histi(v0) when these histories end in a vertex v ∈Vi.

The goal of each player i is to achieve his objective, i.e., to maximize his gain.

Definition 1 (Objective). For each player i ∈ Π, let Obji ⊆ V ω be his objective. In the setting of multi-
player Boolean game, the gain function Gaini is defined such that Gaini(ρ) = 1 (resp. Gaini(ρ) = 0) if
and only if ρ ∈ Obji (resp. ρ 6∈ Obji).

An objective Obji (or the related gain function Gaini) is prefix-independent if for all h ∈ V ∗ and
ρ ∈ V ω , we have ρ ∈ Obji if and only if hρ ∈ Obji. In this paper, we focus on classical ω-regular
objectives: Reachability, Safety, Büchi, Co-Büchi, Parity, Explicit Muller, Muller, Rabin, and Streett and
we suppose that each player has the same type of objective. For instance, we say that G is a Boolean
game with Büchi objectives to express that all players have a Büchi objective.

Definition 2 (Classical ω-regular objective). The set Obji is a Reachability, Safety, Büchi, Co-Büchi,
Parity, Explicit Muller, Muller, Rabin, or Streett objective for player i if and only if Obji is composed of
the plays ρ satisfying:

• Reachability: given F ⊆V , Occ(ρ)∩F 6= /0;

• Safety: given F ⊆V , Occ(ρ)∩F = /0;

• Büchi: given F ⊆V , Inf(ρ)∩F 6= /0;

• Co-Büchi: given F ⊆V , Inf(ρ)∩F = /0;

• Parity: given a coloring function Ω : V →{1, . . . ,d}, max(Inf(Ω(ρ)))1 is even;

• Explicit Muller: given F ⊆ 2V , Inf(ρ) ∈F ;

• Muller: given a coloring function Ω : V →{1, . . . ,d}, and F ⊆ 2Ω(V ), Inf(Ω(ρ)) ∈F ;

• Rabin: given (G j,R j)1≤ j≤k a family of pair of sets G j,R j ⊆V ,
there exists j ∈ 1, . . . ,k such that Inf(ρ)∩G j 6= /0 and Inf(ρ)∩R j = /0;

• Streett: given (G j,R j)1≤ j≤k a family of pair of sets G j,R j ⊆V ,
for all j ∈ 1, . . . ,k, Inf(ρ)∩G j = /0 or Inf(ρ)∩R j 6= /0.

All these objectives are prefix-independent except Reachability and Safety objectives.
A strategy of a player i ∈ Π is a function σi : Histi → V . This function assigns to each history hv

with v ∈ Vi, a vertex v′ such that (v,v′) ∈ E. In an initialized game (G ,v0), σi needs only to be defined
for histories starting in v0. A play ρ = ρ0ρ1 . . . is consistent with σi if for all ρk ∈ Vi we have that
σi(ρ0 . . .ρk) = ρk+1. A strategy σi is positional if it only depends on the last vertex of the history, i.e.,
σi(hv) = σi(v) for all hv ∈ Histi. It is finite-memory if it can be encoded by a deterministic Moore
machine M = (M,m0,αu,αn) where M is a finite set of states (the memory of the strategy), m0 ∈ M

1Where Ω(ρ) = Ω(ρ0)Ω(ρ1) . . .Ω(ρn) . . ..
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Figure 1: Example of a Boolean game with Büchi objectives

is the initial memory state, αu : M×V → M is the update function, and αn : M×Vi → V is the next-
action function. The Moore machine M defines a strategy σi such that σi(hv) = αn(α̂u(m0,h),v) for all
histories hv ∈ Histi, where α̂u extends αu to histories as expected. The size of the strategy σi is the size
|M| of its machine M . Note that σi is positional when |M|= 1.

A strategy profile is a tuple σ = (σi)i∈Π of strategies, one for each player. It is called positional (resp.
finite-memory) if for all i ∈ Π, σi is positional (resp. finite-memory). Given an initialized game (G ,v0)
and a strategy profile σ , there exists an unique play from v0 consistent with each strategy σi. We call this
play the outcome of σ and it is denoted by 〈σ〉v0 . Let p = (pi)i∈Π ∈ {0,1}|Π|, we say that σ is a strategy
profile with payoff p or that 〈σ〉v0 has payoff p if pi = Gaini(〈σ〉v0) for all i ∈Π.

Solution concepts In the multiplayer game setting, the solution concepts usually studied are equilibria
(see [20]). We here recall the concepts of Nash equilibrium and subgame perfect equilibrium, as well as
some variants. We begin with the notion of deviating strategy.

Let σ = (σi)i∈Π be a strategy profile in an initialized Boolean game (G ,v0). Given i ∈Π, a strategy
σ ′i 6= σi is a deviating strategy of player i, and (σ ′i ,σ−i) denotes the strategy profile σ where σ ′i replaces
σi. Such a strategy is a profitable deviation for player i if Gaini(〈σ〉v0) < Gaini(〈σ ′i ,σ−i〉v0). We say
that σ ′i is finitely deviating from σi if σ ′i and σi only differ on a finite number of histories, and that σ ′i is
one-shot deviating from σi if σ ′i and σi only differ on v0 [7, 11].

The notion of Nash equilibrium (NE) is classical: a strategy profile σ in an initialized game (G ,v0)
is a Nash equilibrium if no player has an incentive to deviate unilaterally from his strategy since he
has no profitable deviation, i.e., for each i ∈ Π and each deviating strategy σ ′i of player i from σi, the
following inequality holds: Gaini(〈σ〉v0)≥ Gaini(〈σ ′i ,σ−i〉v0). In this paper we focus on two variants of
NE: weak/very weak NE [7, 11].

Definition 3 (Weak/very weak Nash equilibrium). A strategy profile σ is a weak NE (resp. very weak
NE) in (G ,v0) if, for each player i ∈Π, for each finitely deviating (resp. one-shot) strategy σ ′i of player i
from σi, we have Gaini(〈σ〉v0)≥ Gaini(〈σ ′i ,σ−i〉v0).

Example 4. Figure 1 illustrates an initialized Boolean game (G ,v0) with Büchi objectives in which there
exists a weak NE that is not an NE. In this game, player 1 (resp. player 2) owns round (resp. square)
vertices and wants to visits v1 (resp. v3 or v5) infinitely often. The positional strategy profile σ = (σ1,σ2)
is depicted by dashed arrows, its outcome is equal to 〈σ〉v0 = v0v1v2vω

3 , and σ has payoff (0,1). Notice
that player 1 has an incentive to deviate from his strategy σ1 with a strategy σ ′1 that goes to v1 for all
histories ending in v2. This is indeed a profitable deviation for him since Gain(〈(σ ′1,σ2)〉v0) = (1,0). So,
σ is not an NE. Nevertheless, it is a weak NE because σ ′1 is the only profitable deviation and it is not
finitely deviating (it differs from σ1 on all histories of the form v0(v1v2)

k for k ∈ N\{0}).
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When considering games played on graphs, a well-known refinement of NE is the concept of sub-
game perfect equilibrium (SPE) which a strategy profile being an NE in each subgame. Variants of
weak/very weak SPE can also be studied as done with NEs. Formally, given an initialized Boolean game
(G ,v0) and a history hv ∈Hist(v0), the initialized game (G�h,v) is called a subgame2 of (G ,v0) such that
G�h = (Π,V,(Vi)i∈Π,E,Gain�h) and Gaini�h(ρ) = Gaini(hρ) for all i ∈ Π and ρ ∈ V ω . Moreover if σi

is a strategy for player i in (G ,v0), then σi�h denotes the strategy in (G�h,v) such that for all histories
h′ ∈ Histi(v), σi�h(h′) = σi(hh′). Similarly, from a strategy profile σ in (G ,v0), we derive the strategy
profile σ�h in (G�h,v). The play 〈σ�h〉v is called a subgame outcome of σ .
Definition 5 (Subgame perfect equilibrium and weak/very weak subgame perfect equilibrium). A strat-
egy profile σ is a (resp. weak, very weak) subgame perfect equilibrium in (G ,v0) if for all hv ∈Hist(v0),
σ�h is a (resp. weak, very weak) NE in (G�h,v).

When one needs to show that a strategy profile is a weak SPE, the next proposition is very useful
because it states that it is enough to consider one-shot deviating strategies.
Proposition 6 ([7]). A strategy profile σ is a weak SPE if and only if σ is a very weak SPE.
Example 7. In Example 4 is given a weak NE σ in the game (G ,v0) depicted in Figure 1. This strategy
profile is also a very weak SPE (and thus a weak SPE by Proposition 6). For instance, in the subgame
(G�h,v) with h = v0v1 and v = v2, the only one-shot deviating strategy σ ′1 is such that σ ′1 coincides with
σ1�h except that σ ′1(v2) = v1. This is not a profitable deviation for player 1 in (G�h,v). Notice that σ is
not an SPE since it is not an NE as explained in Example 4.

Constraint problem It is proved in [11] that there always exists a weak SPE in Boolean games. In this
paper, we are interested in solving the following constraint problem:
Definition 8 (Constraint problem). Given (G ,v0) an initialized Boolean game and thresholds x,y ∈
{0,1}|Π|, decide whether there exists a weak SPE in (G ,v0) with payoff p such that x≤ p≤ y.3

In the next sections, we solve the constraint problem for the classical ω-regular objectives. The
complexity classes that we obtain are shown in Table 1; they are detailed in Section 4. The case of Büchi
objectives remains open, since we only propose a non-deterministic algorithm in polynomial time but no
matching lower bound. In Section 4, we also prove that the constraint problem for weak SPEs is fixed
parameter tractable and becomes polynomial when the number of players is fixed. All these results are
based on a characterization of the set of possible payoffs of a weak SPE, that is described in Section 3.

Table 1: Complexity classes of the constraint problem for ω-regular objectives

Explicit Muller Co-Büchi Parity Muller Rabin Streett Reachability Safety
P-complete ×
NP-complete × × × × ×
PSPACE-complete × ×

3 Characterization

In this section our aim is twofold: first, we characterize the set of possible payoffs of weak SPEs and sec-
ond, we show how it is possible to build a weak SPE given a set of lassoes with some “good properties”.

2Notice that (G ,v0) is subgame of itself.
3The order ≤ is the componentwise order, that is, xi ≤ pi ≤ yi, for all i ∈Π.
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Those characterizations work for Boolean games with prefix-independent gain functions. We make this
hypothesis all along Section 3.

Remove-Adjust procedure Let (G ,v0) be an initialized Boolean game with prefix-independent gain
functions. The computation of the set of all the payoffs of weak SPEs in (G ,v0) is inspired by a fixpoint
procedure explained in [11]. Each vertex v is labeled by a set of payoffs p ∈ {0,1}|Π|. Initially, these
payoffs are those for which there exists a play in Plays(v) with payoff p. Then step by step, some payoffs
are removed for the labeling of v as soon as we are sure they cannot be the payoff of σ�h in a subgame
(G�h,v) for some weak SPE σ . (Notice that the value of h is not important since the gain functions are
prefix independent. This is why we only focus on v and not on hv.) When a fixpoint is reached, the
labeling of the initial vertex v0 exactly contains all the payoffs of weak SPEs in (G ,v0).

We formally proceed as follows. For all v ∈V , we define the initial labeling of v as:

P0(v) = {p ∈ {0,1}|Π| | there exists ρ ∈ Plays(v) such that Gain(ρ) = p}.

Then for each step k ∈ N \ {0}, we compute the set Pk(v) by alternating between two operations:
Remove and Adjust. To this end, we need to introduce the notion of (p,k)-labeled play. Let p be a payoff
and k be a step, a play ρ = ρ0ρ1ρ2 . . . is (p,k)-labeled if for all j ∈N we have p∈ Pk(ρ j), that is, ρ visits
only vertices that are labeled by p at step k. We first give the definition of the Remove-Adjust procedure
and then give some intuition about it.

Definition 9 (Remove-Adjust procedure). Let k ∈ N\{0}.
• If k is odd, process the Remove operation:

– If for some v ∈ Vi there exists p ∈ Pk−1(v) and v′ ∈ Succ(v) such that pi < p′i for all p′ ∈
Pk−1(v′), then Pk(v) = Pk−1(v)\{p} and for all u 6= v, Pk(u) = Pk−1(u).

– If such a vertex v does not exist, then Pk(u) = Pk−1(u) for all u ∈V .

• If k is even, process the Adjust operation:

– If some payoff p was removed from Pk−2(v) (that is, Pk−1(v) = Pk−2(v)\{p}), then
∗ For all u ∈V such that p ∈ Pk−1(u), check whether there still exists a (p,k−1)-labeled

play with payoff p from u. If it is the case, then Pk(u) = Pk−1(u), otherwise Pk(u) =
Pk−1(u)\{p}.
∗ For all u ∈V such that p /∈ Pk−1(u): Pk(u) = Pk−1(u).

– Otherwise Pk(u) = Pk−1(u) for all u ∈V .

Let us explain the Remove operation. Let p that labels vertex v. This means that it is the payoff of a
potential subgame outcome of a weak SPE that starts in v. Suppose that v is a vertex of player i and v has
a successor v′ such that pi < p′i for all p′ labeling v′. Then p cannot be the payoff of σ�h in the subgame
(G�h,v) for some weak SPE σ and some history h, otherwise player i would have a profitable (one-shot)
deviation by moving from v to v′ in this subgame.

Now it may happen that for another vertex u having p in its labeling, all potential subgame outcomes
of a weak SPE from u with payoff p necessarily visit vertex v. As p has been removed from the labeling
of v, these potential plays do no longer survive and p is also removed from the labeling of u by the Adjust
operation.

We can state the existence of a fixpoint of the sequences (Pk(v))k∈N, v∈V , in the following meaning:

Proposition 10 (Existence of a fixpoint). There exists an even natural number k∗ ∈ N such that for all
v ∈V , Pk∗(v) = Pk∗+1(v) = Pk∗+2(v).
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Example 11. We illustrate the different steps of the Remove-Adjust procedure on the example depicted
in Figure 1, and we display the result of this computation in Table 2. Initially, the sets P0(v), v ∈ V ,
contains all payoffs p such that there exists a play ρ ∈ Plays(v) with Gain(ρ) = p. At step k = 1, we
apply a Remove operation to v = v4 (this is the only possible v): v is a vertex of player i = 2 and v has
a successor v′ = v5 such that (0,1) ∈ P0(v5). Therefore (0,0) is removed from P0(v4) to get P1(v4). By
definition of the Remove operation, the other sets P0(u) are not modified and are thus equal to P1(u). At
step k = 2, we apply an Adjust operation. The only way to obtain the payoff (0,0) from v0 is by visiting
v4 with the play v0v4vω

6 . As there does not exist a ((0,0),1)-labeled play with payoff (0,0) anymore, we
have to remove (0,0) from P1(v0). The other sets P1(v) remain unchanged. At step k = 3, the Remove
operation removes payoff (1,0) from P2(v0) due to the unique payoff (0,1) in P2(v4). At step k = 4, the
Adjust operation leaves all sets P3(v) unchanged. Finally at step k = 5, the Remove operation also leaves
all sets P4(v) unchanged, and the fixpoint is reached.

Table 2: Computation of the fixpoint on the example of Figure 1

v0 v1 v2 v3 v4 v5 v6

P0(v) {(0,0),(1,0),(0,1)} {(1,0),(0,1)} {(1,0),(0,1)} {(0,1)} {(0,0),(0,1)} {(0,1)} {(0,0)}
P1(v) {(0,0),(1,0),(0,1)} {(1,0),(0,1)} {(1,0),(0,1)} {(0,1)} {(0,1)} {(0,1)} {(0,0)}
P2(v) {(1,0),(0,1)} {(1,0),(0,1)} {(1,0),(0,1)} {(0,1)} {(0,1)} {(0,1)} {(0,0)}
P3(v) {(0,1)} {(1,0),(0,1)} {(1,0),(0,1)} {(0,1)} {(0,1)} {(0,1)} {(0,0)}
P4(v) = Pk∗(v) {(0,1)} {(1,0),(0,1)} {(1,0),(0,1)} {(0,1)} {(0,1)} {(0,1)} {(0,0)}

Characterization and good symbolic witness The fixpoint Pk∗(v), v ∈V , provides a characterization
of the payoffs of all weak SPEs as described in the following theorem. This result is in the spirit of the
classical Folk Theorem which characterizes the payoffs of all NEs in infinitely repeated games (see for
instance [18, Chapter 8]).

Theorem 12 (Characterization). Let (G ,v0) be an initialized Boolean game with prefix-independent
gain functions. Then there exists a weak SPE σ with payoff p in (G ,v0) if and only if Pk∗(v) 6= /0 for all
v ∈ Succ∗(v0) and p ∈ Pk∗(v0).

In this theorem, only sets Pk∗(v) with v ∈ Succ∗(v0) are considered. Indeed subgames (G�h,v) of
(G ,v0) deals with histories hv ∈ Hist(v0), that is, with vertices v reachable from v0. The proof of Theo-
rem 12 uses the concept of (good) symbolic witness defined hereafter. Some intuition about it is given
after the definitions.

Definition 13 (Symbolic witness). Let (G ,v0) be an initialized Boolean game with prefix-independent
gain functions. Let I ⊆ (Π∪{0})×V be the set

I = {(0,v0)} ∪ {(i,v′) | there exists (v,v′) ∈ E such that v,v′ ∈ Succ∗(v0) and v ∈Vi}.

A symbolic witness is a set P = {ρi,v | (i,v)∈ I} such that each ρi,v ∈P is a lasso of G with First(ρi,v) =
v and with length bounded by 2 · |V |2.

A symbolic witness has thus at most |V | · |Π|+1 lassoes (by definition of I) with polynomial length.

Definition 14 (Good symbolic witness). A symbolic witness P is good if for all ρ j,u, ρi,v′ ∈P , for all
vertices v ∈ ρ j,u such that v ∈Vi and v′ ∈ Succ(v), we have Gaini(ρ j,u)≥ Gaini(ρi,v′).

The condition of Definition 14 is depicted in Figure 2.
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u . . . v

∈Vi

v′ . . . . . . ρi,v′

. . . . . . ρ j,u

Figure 2: The condition of Definition 14

Let us now give some intuition. A strategy profile σ in (G ,v0) induces an infinite number of subgame
outcomes 〈σ�h〉v, hv ∈ Hist(v0). A symbolic witness P is a compact representation of σ . It is a finite
set of lassoes that represent some subgame outcomes of σ : the lasso ρ0,v0 of P represents the outcome
〈σ〉v0 , and its other lassoes ρi,v′ represents the subgame outcome 〈σ�h〉v′ for some particular histories
hv′ ∈ Hist(v0). The index i records that player i can move from v (the last vertex of h) to v′ (with the
convention that i = 0 for the outcome 〈σ〉v0). When σ is a weak SPE, the related symbolic witness P is
good, that is, its lassoes avoid profitable one-shot deviations between them.

Example 15. We come back to our running example. The weak SPE of Example 7 depicted in Figure 1
has payoff p = (0,1). A symbolic witness P of σ is given in Table 3 which is here composed of all
the subgame outcomes of σ . One can check that P is a good symbolic witness. For instance, consider
its lassoes ρ0,v0 = v0v1v2vω

3 and ρ1,v1 = v1v2vω
3 , the vertex v2 ∈ V1 of ρ0,v0 and the edge (v2,v1). We

have Gain1(ρ0,v0)≥Gain1(ρ1,v1). Indeed in the subgame (G�v0v1 ,v2), player 1 has no profitable one-shot
deviation by using the edge (v2,v1).

Table 3: An example of good symbolic witness

(i,v) (0,v0) (2,v4) (1,v2) (1,v1) (1,v3) (2,v5) (2,v6) (1,v5) (1,v6)

lasso v0v1v2vω
3 v4vω

5 v2vω
3 v1v2vω

3 vω
3 vω

5 vω
6 vω

5 vω
6

payoff (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,0) (0,1) (0,0)

Theorem 12 is a direct consequence of the next proposition.

Proposition 16. Let (G ,v0) be an initialized Boolean game with prefix-independent gain functions. The
following assertions are equivalent:

1. There exists a weak SPE with payoff p in (G ,v0);

2. Pk∗(v) 6= /0 for all v ∈ Succ∗(v0) and p ∈ Pk∗(v0);

3. There exists a good symbolic witness P that contains a lasso ρ0,v0 with payoff p;

4. There exists a finite-memory weak SPE σ with payoff p in (G ,v0) such that the size of each strategy
σi is in O(|V |3 · |Π|).

Let us give a sketch of proof. For (1⇒ 2), if there exists a weak SPE σ , then for all hv ∈ Hist(v0)
and all k, the payoff Gain(〈σ�h〉v) survives in Pk(v) after both a Remove and an Adjust operation. This
shows that the fixpoint is non empty. For (2⇒ 3), if each Pk∗(v) contains some payoff p, then there
exists a (p,k∗)-labeled play ρ ∈ Plays(v) such that Gain(ρ) = p, and this play can be supposed to be a
lasso of size at most 2 · |V |2 by [2, Proposition 3.1]. We then construct a symbolic witness P composed
of some of those lassoes: ρ0,v0 ∈P is a lasso extracted from Pk∗(v0), and each other lasso ρi,v′ ∈P is
extracted from Pk∗(v′) such that its payoff p′ satisfies p′i = min{qi | q ∈ Pk∗(v′)}. The way the fixpoint is
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constructed guarantees that if p ∈ Pk∗(v) with v ∈ Vi, we have pi ≥ p′i (by the Remove operation). The
latter property implies that P is good. For (3⇒ 4), from the existence of a good symbolic witness P ,
it is possible to construct a strategy profile σ such that its subgame outcomes are the lassoes of P , and
that is a weak SPE because P is good. Moreover the strategies of σ are finite-memory with size in
O(|V |3 · |Π|) because σ is constructed from at most |V | · |Π|+1 lassoes with length bounded by 2 · |V |2.
Finally (4⇒ 1) is immediate.

Recall that Proposition 16 only works for prefix-independent gain functions. Nevertheless a Boolean
game with Reachability (resp. Safety) objectives can be transformed into a Boolean game with Büchi
(resp. Co-Büchi) objectives. The construction is classical: it stores inside the vertices the set of players i
who have already visited Fi, where Fi is the set they want to visit (resp. to avoid). Consequently we have
the next result from equivalence (1⇔ 4) of Proposition 16.

Corollary 17. Let (G ,v0) be an initialized Boolean game. There exists a weak SPE in (G ,v0) if and only
if there exists a finite-memory weak SPE σ with the same payoff. Moreover, the size of each strategy σi is

• in O(|V |3 · |Π|) for Büchi, Co-Büchi, Parity, Explicit Muller, Muller, Rabin, and Streett objectives,

• in O(|V |3 · |Π| ·23·|Π|) for Reachability and Safety objectives.

4 Complexity of the constraint problem

In this section, we first study the complexity classes of the constraint problem for Boolean games with
all classical ω-regular objectives (except Explicit Muller objectives). The concept of good symbolic
witness is essential in this study. Second, we show that the constraint problem is P-complete for Explicit
Muller objectives, that it is fixed parameter tractable for the other classical ω-regular objectives, and that
it becomes polynomial when the number of players is fixed. Those results rely on the fixpoint algorithm
given in the previous section.

Complexity classes of the constraint problem The exact complexities of the constraint problem are
stated in the following theorem.

Theorem 18. The constraint problem for Boolean games

• is PSPACE-complete for Reachability and Safety objectives;

• is NP-complete for co-Büchi, Parity, Muller, Rabin, and Streett objectives; it is in NP for Büchi
objectives.

Let us give a sketch of proof. For Part 2 of Theorem 18, as the considered objectives are prefix-
independent, we can apply Proposition 16, in particular equivalence (1⇔ 3). To prove NP-membership,
given thresholds x,y ∈ {0,1}|Π|, a nondeterministic polynomial algorithm works as follows: guess a
set P composed of at most |Π| · |V |+ 1 lassoes of length bounded by 2 · |V |2 and check that P is a
good symbolic witness that contains a lasso ρ0,v0 with payoff p such that x ≤ p ≤ y. The NP-hardness
is obtained thanks to a polynomial reduction from SAT, using exactly the same reduction as proposed
in [27] for the constraint problem for NEs in Boolean games with co-Büchi objectives. Notice that this
reduction does not work for Büchi objectives. For Part 1 of Theorem 18, we transform a given Boolean
game with Reachability (resp. Safety) objectives into a Boolean game with Büchi (resp. Co-Büchi)
objectives (as explained at the end of Section 3). With this transformation, a good symbolic witness has
an exponential number of lassoes however still with polynomial size. To prove PSPACE-membership,
we here consider an alternating Turing machine such that along each execution, the players ∨ and ∧ play
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in a turned based way during a polynomial number of turns: player ∨ proposes lassoes (taken in a good
symbolic witness P if it exists) and player ∧ tries to show that P is not good (by proposing a deviation
between two lassoes that do not respect Definition 14). This Turing machine works in polynomial time,
and as PSPACE = APTIME, we get PSPACE-membership. The PSPACE-hardness is obtained with a
polynomial reduction from QBF. This reduction is more involved than the one used to prove NP-hardness.
Indeed the reduction for NP-hardness already works for NEs whereas the reduction for PSPACE-hardness
really exploits the subgame perfect aspects.

Notice that the constraint problem for SPEs (instead of weak SPEs) for Boolean games with Reach-
ability and Safety objectives is also PSPACE-complete. Indeed one can prove that weak SPEs and SPEs
are equivalent notions for Reachability objectives. The case of Safety objectives needs another approach,
it results from the proof of Theorem 18.
Corollary 19. The constraint problem for SPEs in Boolean games with Reachability and Safety objec-
tives is PSPACE-complete.

Fixed parameter tractability and Explicit Muller objectives We now study the complexity of the
constraint problem for Explicit Muller objectives, and its fixed parameter tractability for the other objec-
tives. We recall that a parameterized language L is a subset of Σ∗×N, where Σ is a finite alphabet, the
second component being the parameter of the language. It is called fixed parameter tractable if there is
an algorithm that determines whether (x, t)∈ L in f (t) · |x|c time, where c is a constant independent of the
parameter t and f is a computable function depending on t only. We also say that L belongs to the class
FPT. Intuitively, a language is in FPT if there is an algorithm running in polynomial time with respect to
the input size times some computable function on the parameter. We refer the interested reader to [14]
for more details on parameterized complexity.
Theorem 20. The constraint problem for multiplayer Boolean games with Explicit Muller objectives is
P-complete.
Theorem 21. Let G be a Boolean game.

1. The constraint problem is in FPT for Reachability, Safety, Büchi, co-Büchi, Parity, Muller, Rabin,
and Streett objectives. The parameters are
• the number |Π| of players for Reachability, Safety, Büchi, co-Büchi, and Parity objectives,
• the number |Π| of players and the numbers ki, i ∈ Π, of pairs (Gi

j,R
i
j)1≤ j≤ki , for Rabin and

Streett objectives, and
• the number |Π| of players, the numbers di, i ∈ Π, of colors and the sizes |Fi|, i ∈ Π, of the

families of subsets of colors for Muller objectives.

2. When the number |Π| of players is fixed, for all these kinds of objectives, the constraint problem
can be solved in polynomial time.

Notice that in Theorem 21, to obtain fixed parameter tractability for Rabin, Streett, and Muller ob-
jectives, in addition to the number of players, we also have to consider the parameter equal to the size
of the objective description. Nevertheless, when the number of players is fixed, we get polynomial time
complexity for all types of objectives.

The results of Theorems 20 and 21 do not rely on the concept of good symbolic witness (as for The-
orem 18) but rather on the following algorithm based on Theorem 12 and called the decision algorithm.
Given a Boolean game (G ,v0) and thresholds x,y ∈ {0,1}|Π|,
• Compute the initial sets P0(v), v ∈V , and repeat the Remove-Adjust procedure (see Definition 9)

until reaching the fixpoint Pk∗(v), v ∈V ,
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• Then check whether Pk∗(v) 6= /0 for all v ∈ Succ∗(v0) and whether there exists a payoff p ∈ Pk∗(v0)
such that x≤ p≤ y.

Time complexity of the decision algorithm Let us study the time complexity of the decision algorithm
in terms of three parameters: (i) O(init): the complexity of computing P0(v) for some given vertex v,
(ii) m = maxv∈V |P0(v)|: the maximum number of payoffs in the sets P0(v), v ∈ V , and (iii) O(path):
the complexity of determining whether there exists a play with a given payoff p from a given vertex v.
(This test is required in both the computation of P0(v) and the Adjust operation.)

Lemma 22. The time complexity of the decision algorithm is in O(m3 · |V | · |Π| · init · path · (|V |+ |E|)).

Expressing the complexity in this way is useful in the proof of both Theorem 20 and 21. We do not
claim that the given complexity is the tightest one but this is enough for our purpose.

Let us focus on parameter O(path). We have the next lemma.

Lemma 23. Let G be a Boolean game. Let p ∈ {0,1}|Π| and v ∈V .

1. Determining whether there exists a play with payoff p from v is

• in polynomial time for Büchi, co-Büchi, Explicit Muller, and Parity objectives,
• in O(2|Π|(|V |+ |E|)) time for Reachability and Safety objectives, and
• in O(2L ·M+(LL · |V |)5) time for Rabin, Streett, and Muller objectives, where L = 2` and

– `= Σ
|Π|
i=12 · ki and M = O(Σ

|Π|
i=12 · ki) such that for each player i ∈Π, ki is the number of

his pairs (Gi
j,R

i
j)1≤ j≤ki in the case of Rabin and Streett objectives, and

– ` = Σ
|Π|
i=1di and M = O(Σ

|Π|
i=1|Fi| ·di) such that for each player i ∈ Π, di (resp. |Fi|), is

the number of his colors (the size of his family of subsets of colors) in the case of Muller
objectives.

2. When the number |Π| of players is fixed, for all these kinds of objectives, the existence of a play
with payoff p from v can be solved in polynomial time.

The general approach to prove this lemma is the following one. A play with payoff p from v in a
Boolean game G is a play satisfying an objective Ω equal to the conjunction of objectives Obji (when
pi = 1) and of objectives V ω \Obji (when pi = 0). It is nothing else than an infinite path in the underlying
graph G = (V,E) satisfying some particular ω-regular objective Ω. The existence of such paths is a well
studied problem. For instance, if each Obji is a Parity objective, as V ω \Obji is again a Parity objective, Ω

is thus a conjunction of Parity objectives which is a Streett objective [13]. Deciding the existence of a path
satisfying a Streett objective can be done in polynomial time [15]. Now for the other classes of objectives
Obji, we use known results about two-player zero-sum games (G,Ω), where player A aims at satisfying
a certain objective Ω whereas player B tries to prevent him to satisfy it. A classical problem is to decide
whether player A has a winning strategy that allows him to satisfy Ω against any strategy of player B, see
for instance [8, 19]. When player A is the only one to play, the existence of a winning strategy for him
is equivalent to the existence of a path satisfying Ω (see [8, Section 3.1]). This is exactly the problem
considered in Lemma 23. Notice that when each Obji is a Rabin (resp. Streett, Muller) objective, the
objective Ω is a Boolean combination of Büchi objectives. Deciding the existence of a winning strategy
for player A in the game (G,Ω) when Ω is such an objective can be done in O(2L ·M+(LL · |V |)5) time
with L = 2`, such that M is the number of disjunctions and conjunctions in the Boolean combination of
Büchi objectives and ` is the number of its Büchi objectives [9]. Finally, the proof of part 2 of Lemma 23
requires a fine complexity analysis to get polynomial time complexity.
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Let us conclude this section with the sketches of proof for Theorems 20 and 21. Theorem 21 is easy
to obtain from Lemmas 22 and 23 and the following observations on parameters m and O(init). As each
gain function Gaini takes its values in {0,1}, m is bounded by 2|Π|, and by definition of P0(v), O(init) is
in O(2|Π| · path). For the proof of Theorem 20, to get P-membership, we also apply Lemmas 22 and 23
but we need to show that O(m) and O(init) are polynomial. This possible by showing that m is linearly
bounded by the sum of the sizes |Fi|, where Fi it the Explicit Muller objective of each player i.

5 Conclusion and future work

In this paper, we have studied the computational complexity of the constraint problem for weak SPEs.
We were able to obtain precise complexities for all the classical classes of ω-regular objectives (see
Table 1), with one exception: we have proved NP-membership for Büchi objectives and failed to prove
NP-hardness. We have also shown that the constraint problem can be solved in polynomial time when
the number of players is fixed. Finally, we have provided some fixed parameter tractable algorithms
when the number of players is considered as a parameter of the problem, for Reachability, Safety, Büchi,
Co-Büchi, and Parity objectives. For the other Rabin, Streett, and Muller objectives, we also had to
consider the size of the objective description as a parameter to obtain fixed parameter tractability. In a
future work, we want to understand if the use of this second parameter is really necessary.

By characterizing the exact complexity of the constraint problem for Reachability and Safety objec-
tives, we have obtained that this problem for SPEs (as for weak SPEs) is PSPACE-complete for those
objectives. In the future, we intend to investigate the complexity of the other classes of ω-regular objec-
tives for SPEs. It would be also interesting to extend the study to quantitative games. For instance the
constraint problem for (weak) SPEs in reachability quantitative games is decidable [7] but its complexity
is unknown.
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[10] Véronique Bruyère, Noémie Meunier & Jean-François Raskin (2014): Secure equilibria in weighted games.
In: CSL-LICS, ACM, pp. 26:1–26:26, doi:10.1145/2603088.2603109.
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[19] Erich Grädel, Wolfgang Thomas & Thomas Wilke, editors (2002): Automata, Logics, and Infinite Games: A

Guide to Current Research. LNCS 2500, Springer, doi:10.1007/3-540-36387-4.
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