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Parity games are two player games with omega-winning conditions, played on finite graphs. Such

games play an important role in verification, satisfiability and synthesis. It is therefore important to

identify algorithms that can efficiently deal with large games that arise from such applications. In this

paper, we describe our experiments with BDD-based implementations of four parity game solving

algorithms, viz. Zielonka’s recursive algorithm, the more recent Priority Promotion algorithm, the

Fixpoint-Iteration algorithm and the automata based APT algorithm. We compare their performance

on several types of random games and on a number of cases taken from the Keiren benchmark set.

1 Introduction

Parity games [16, 26, 30] are infinite duration games played by two players on a finite directed graph.

Each vertex in the game graph is owned by one of the two players and vertices are assigned a colour, or

priority. The game is played by pushing a token along the edges in the graph; the choice to which vertex

the token is to move next is decided by the player owning the vertex currently holding the token. A parity

condition determines the winner of this infinite play. A vertex in the game is won by the player that has

a strategy for which, no matter how the opponent plays, every play from that vertex is won by her; the

winner of each vertex is uniquely determined [26].

The parity game solving problem is to compute the set of vertices won by each player. This problem

is known to be in UP∩ coUP, a class that indicates that the problem is unlikely to be hard for NP. While

subexponential solving algorithms have been devised, despite the (deceptive) simplicity of the game and

a continuous research effort, no polynomial time algorithm for solving parity games has been found.

However, only recently the problem was shown to be solvable in quasi-polynomial time [10, 22, 17].

From a practical viewpoint, parity games are interesting since they underlie typical verification, sat-

isfiability and synthesis problems, see [12, 16, 2] and the references therein. For instance, in the mCRL2

toolset [13], parity games, derived from parameterised Boolean equation systems [20], are used to solve

modal µ-calculus model checking problems for reactive systems. Games originating from such model

checking problems often contain a large number of vertices (typically exceeding 106), whereas the num-

ber of distinct priorities in the games is typically very small (often at most 3). Consequently, these

applications require algorithms and techniques that can efficiently deal with such magnitudes.

Most parity game solving algorithms fall in one of two categories: ‘strategy identification’ (SI) algo-

rithms and ‘dominion identification’ (DI) algorithms. Algorithms from the SI category directly compute

the winning strategies for both players; e.g., by means of policy iteration or by maintaining some statis-

tics about the plays that can emerge from a vertex. The recent quasi-polynomial algorithms [10, 22, 17]

all fall in this category, but also classical algorithms such as Jurdziński’s small progress measures al-

gorithm [21], and, to some extent, the Fixpoint-Iteration (FI) algorithm [8], which is closely related to

the small progress measures algorithm, see ibid. The DI category of algorithms proceed by (recursively)

decomposing the game graph in dominions: small subgraphs that are won by a single player and from

which the opponent cannot escape. A classical exponent of the latter category is Zielonka’s recursive
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algorithm [30] but also the recently introduced Priority Promotion (PP) algorithm [6]. While DI algo-

rithms typically have a worst-case running time complexity that is theoretically less attractive than that

of SI algorithms, in practice, the SI are significantly outperformed by DI algorithms [14].

Since parity games that originate from practical verification problems can become quite large, it is

natural to study whether existing algorithms can be implemented efficiently using symbolic representa-

tions of the game graph, i.e., using Binary Decision Diagrams (BDDs). While the size of BDDs may

depend very much on the BDD variable ordering, when the compression ratio (the number of BDD nodes

versus the number of satisfying assignments) is favourable, BDDs can be used to concisely represent

large graphs. DI algorithms typically exploit set-based operations, which can be implemented straight-

forwardly and efficiently using BDDs. The same applies to SI algorithms such as the FI algorithm [8]

and the automata-based APT algorithm [28].

In this paper, we describe and study four set-based algorithms, viz. Zielonka’s algorithm, the PP

algorithm, the FI implementation and the APT algorithm. In particular, we reassess the conclusions

from [14] in which Zielonka’s algorithm and the PP algorithm are shown to have similar performance

when computing with explicit representations of the game graph. Moreover, we revisit the observation

of [28] that for games in which the number of vertices is exponentially larger (given a sufficiently large

enough base) than the number of distinct priorities in the game, the APT algorithm significantly out-

performs Zielonka’s algorithm. Like the aforementioned works, we base our observations on random

games, which we convert to BDDs using a binary encoding. Such an encoding typically yields BDDs

with a poor compression ratio. While this does not reflect scenarios in which BDDs excel, this does yield

important insights into which symbolic algorithms are more sensitive to BDDs with poor compression

ratios. Finally, we compare the performance of all four algorithms on several of the larger cases taken

from the Keiren benchmark set [24] of parity games and demonstrate that our symbolic algorithms can

solve games that cannot be solved using explicit techniques.

We find that the symbolic Zielonka and PP algorithms perform mostly similarly; the observations

of [14] thus seem to largely carry over to the symbolic setting. However, in our setting we cannot

faithfully reproduce the observations of [28] regarding the superior performance of the APT algorithm

for favourable vertex/priority ratios. While APT’s performance improves with more favourable ratios,

it (and also the FI algorithm) suffers more than Zielonka and PP when handling graphs represented

by BDDs with a poor compression ratio. Yet, when the BDDs remain small, both APT and FI often

outperform Zielonka and PP, as witnessed by the cases taken from the Keiren benchmark set.

Related Work. BDD-based implementations for parity game solving have been studied in the past. In [3],

an algorithm that is inspired by Zielonka’s algorithm is used to solve planning problems, whereas in [23],

a symbolic version of Zielonka’s algorithm is implemented in an effort to solve model checking prob-

lems represented by parameterised Boolean equation systems [20]. We note that the focus of the latter

work is to extract symbolic parity games, represented by List Decision Diagrams (LDDs) underlying

parameterised Boolean equation systems using a reachability analysis and solving the thus constructed

parity games. Since our primary aim is to compare the performance of various symbolic parity game

solving algorithms, we have followed a slightly different and less general route in our experiments on

model checking, converting all finite data types occurring in such equation systems to Booleans. This al-

lows us to avoid a costly reachability analysis. Obviously, our insights into which algorithms can be used

best to solve a given parity game can be combined with the technique of [23] to obtain faster end-to-end

verification tooling. Another line of research has concentrated on giving set-based versions of classical

algorithms such as the small progress measures algorithm, the bigstep algorithm and the subexponential

dominion decomposition algorithm, see e.g. [9, 11]. Symbolic algorithms studied for more restricted
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types of games include [1, 7].

Outline. In Section 2, we introduce parity games and the relevant concepts. The four algorithms that

we compare are then introduced and discussed in Section 3 and we describe how these can be imple-

mented using BDD techniques in Section 4. In Section 5, we describe our experimental evaluation of our

implementations and we finish with conclusions in Section 6.

2 Parity Games

A parity game is an infinite duration game, played by players odd, denoted by 1 and even, denoted by 0,

on a directed, finite graph. This game graph is formally defined as follows.

Definition 1 A parity game is a tuple (V,E, p,(V0,V1)), where:

• V is a finite set of vertices, partitioned in a set V0 of vertices owned by player 0, and a set of

vertices V1 owned by player 1,

• E ⊆ V ×V is the edge relation; we assume that E is left-total, i.e., for all v ∈ V , there is some

w ∈V such that (v,w) ∈ E,

• p:V → N is a priority function that assigns priorities to vertices.

We depict parity games as graphs in which diamond-shaped vertices represent vertices owned by player

0 and box-shaped vertices represent vertices owned by player 1. Priorities, associated with vertices, are

typically written inside vertices, see Figure 1.
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Figure 1: A game with 6 different priorities, 3 vertices owned by player 0 and 5 owned by player 1.

Plays, Strategies and Winning. We write v→ w whenever (v,w) ∈ E; vE denotes the set {w ∈ V |
v→ w} and Ew denotes the set {v ∈V | v→ w}. Henceforth, α ∈ {0,1} denotes an arbitrary player. We

write ᾱ for α’s opponent; i.e., 0̄ = 1 and 1̄ = 0. A sequence of vertices v1, . . . ,vn is a path if vm→ vm+1

for all 1≤m < n. Infinite paths are defined in a similar manner. The nth vertex of a path π is denoted πn.

A game starts by placing a token on vertex v ∈V . Players move the token indefinitely according to a

single simple rule: if the token is on some vertex v ∈Vα , player α gets to move the token to an adjacent

vertex. We refer to the infinite path through the graph, obtained this way, as a play. A play is won by

player 0 iff the maximal priority that occurs infinitely often along that play is even.

The moves of players 0 and 1 are determined by their respective strategies. A strategy for a player α

determines, for a vertex πi ∈Vα the next vertex πi+1 that will be visited if the token visits πi. In general,

a strategy is a partial function σ :V ∗×Vα →V which, given a history of vertices visited by the token and

a vertex on which the token currently resides, determines the next vertex. However, due to the positional

determinacy theorem for parity games [16] it suffices to consider positional strategies: partial functions

of the form σ :Vα →V that are compatible with E , i.e., for all v ∈Vα for which σ is defined, it is the case

that σ(v) ∈ vE . An infinite path π is compatible with a given strategy σ if for all vertices πi for which σ
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is defined, we have πi+1 = σ(πi). A strategy σ is closed on a set of vertices U iff every play compatible

with σ remains within U . We say that a set of vertices U is α-closed iff α has a strategy that is closed

on U .

A strategy σ for player α is winning from a vertex v if and only if α is the winner of every play

starting in v that is compatible with σ . A set of vertices Wα is won by α if for each vertex v ∈Wα , player

α has some winning strategy from v. Another consequence of the aforementioned positional determinacy

theorem is that the set of vertices W0 won by player 0 and the set of vertices W1, won by player 1, forms

a partition of the set V : every vertex is won by exactly one player.

Example 1 Consider the parity game depicted in Fig. 1. The vertices u1,u2,u3,u5,u6 are won by player 0

whereas vertices u4,u7 and u8 are won by player 1. To see why vertices u4 and u8 are won by player 1,

consider her strategy σ (that is closed on {u4,u8}) defined by σ(u4) = u8 and σ(u8) = u4. Any play that

is compatible with σ infinitely often visits a dominating odd priority and is thus won by player 1. 2

Subgames, Attractors and Dominions. For a game G = (V,E, p,(V0,V1)) and a set U ⊆V , we define

the subgame of G, denoted G∩U , as the maximal substructure (V ′,E ′, p′,(V ′0,V
′

1)) that is obtained by

restricting the graph (V,E) to U and imposing the restriction on the other elements of G, i.e., V ′ = U ,

E ′ = E ∩ (U×U), p′(v) = p(v) for all v ∈U , and V ′0 =V0∩U and V ′1 =V1∩U . If the edge relation E ′ of

G∩U is again left-total, then the subgame is again a parity game. We furthermore use the abbreviation

G\A to denote the subgame G∩ (V \A).

Parity game solving can essentially be reduced to identifying or computing appropriate subgraphs

that are entirely won by a single player and from which the opponent cannot escape. A subgame that has

this property for a player α is called an α-dominion. Technically, an α-dominion is a non-empty set of

vertices Dα ⊆V such that player α has a winning strategy, closed on Dα , from all vertices in the set Dα .

The pre-image preα(U) (or single-step force [28]) for a given non-empty set U ⊆ V and player α

is defined as preα(U) = {v ∈ Vα | vE ∩U 6= /0}∪ {v ∈ Vᾱ | vE ⊆U}. The α-attractor into U , denoted

Attrα(U), is the set of vertices for which player α can force play into U . Formally, Attrα(U) is the least

set A⊇U to which α can force play: Attrα(U) = µA.(U ∪preα(A)). The confined α-attractor, denoted

Attrα(T,U), is defined analogously by limiting the set of vertices to those from T . That is, it represents

the subset of vertices T ′ ⊆ T from which α can force play to U while remaining in T . We note that for

arbitrary set U ⊆ V , the subgame G \Attrα(U) is again a parity game; that is, the edge relation of the

subgame is again total. Furthermore, the α-attractor into an α-dominion Dα is again an α-dominion.

Finally, observe that the set V \Attrα(U) is ᾱ-closed.

Example 2 Reconsider the parity game from Fig. 1. We already identified a closed strategy that is

winning for player 1 on the set of vertices {u4,u8}. So this set is a 1-dominion. It is not a maximal

1-dominion: we can add u7 to extend it. The 0-attractor into the set {u2} contains the vertices u1 (which

is owned by 1 but trivially attracted to u2 since it has but one successor vertex), u3,u5 and u6. Vertex u4

does not belong to the 0-attractor into {u2} as player 1 can choose to move to u7. For similar reasons,

vertices u7 and u8 do not belong to the 0-attractor into {u2}. 2

3 Parity Game Solving Algorithms

We consider four set-based algorithms for solving parity games. These algorithms will be introduced in

some detail in the next subsections.
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3.1 Zielonka’s Recursive Algorithm

The algorithm by Zielonka is a divide and conquer algorithm that searches for dominions in subgames.

This algorithm is essentially distilled from a constructive proof of the positional determinacy of parity

games by, among others, Zielonka [30]. Despite the fact that the algorithm has a relatively bad theoretical

worst-case complexity (it runs in O(mnd) where n is the number of vertices, m the number of edges and

d is the number of different priorities in the game) and exponential worst-case examples are known for

various classes of special games [19], the algorithm remains among the most successful solvers for parity

games in practice, see [18] and the recent exploration [14].

Zielonka’s algorithm (see Algorithm 1) constructs winning regions for both players out of the solu-

tion of subgames with fewer different priorities and vertices. For this, the algorithm relies on the fact

that higher priorities in the game dominate lower priorities, and that any forced revisit of these higher

priorities is beneficial to the player associated with the parity of the priority. For non-trivial games, the

algorithm relies on attractor set computations (see lines 8 and 10) to identify those vertices that can be

forced to visit the maximal priority; the remaining vertices are then solved recursively (see line 9).

Assuming that the maximal priority is of parity α , the outcome of the first recursion yields a dominion

for ᾱ in the subgame. In case this dominion is ᾱ-maximal in the entire game, α wins all vertices outside

the dominion of player ᾱ (lines 11-12). This can be seen as follows: since the game restricted to V \B

(where B is computed in line 10) is ᾱ-closed, the opponent can choose to stay within the subgame Wα ;

choosing to do so means she will lose. So the only option she has is to escape. But the only escape she

has leads, via A, to the maximal priority which has the parity of α . Note that if α is forced to leave this

maximal priority she will again end up in the same subgame; any play that does so ad infinitum visits

the maximal priority infinitely often and is therefore won by α . In case ᾱ’s dominion is not maximal,

we can remove its ᾱ-attractor B from the game and recursively solve the remaining subgame and use its

solution to construct the solution of the entire game (lines 14 and 15).

Algorithm 1 Zielonka’s Algorithm

1: function ZIELONKA(G)

2: if V = /0 then

3: (W0,W1)← ( /0, /0)
4: else

5: m←max{p(v) | v ∈V}
6: α ← m mod 2

7: U ← {v ∈V | p(v) = m}
8: A← Attrα (U)
9: (W ′0,W

′
1)← ZIELONKA(G\A)

10: B← Attr
ᾱ
(W ′

ᾱ
)

11: if B =W ′
ᾱ

then

12: (Wα ,Wᾱ )← (A∪W ′α ,B)
13: else

14: (W ′0,W
′
1)← ZIELONKA(G\B)

15: (Wα ,Wᾱ )← (W ′α ,W
′
ᾱ
∪B)

16: end if

17: end if

18: return (W0,W1)
19: end function

Note that rather than solving the entire game at once, one can first decompose a game into its strongly

connected components (SCCs) and first solve the bottom SCCs. The SCC decomposition can be inte-

grated tightly in the algorithm so that in each recursive call first an SCC decomposition is performed.

While this may sound expensive, in [19] it is shown that this actually allows the algorithm to run in

polynomial time on many practically relevant classes of special games such as solitaire and dull games

for which the original algorithm might require exponential time otherwise.



108 A Comparison of BDD-Based Parity Game Solvers

3.2 Priority Promotion

The recent Priority Promotion (PP) algorithm [6] starts, like Zielonka’s recursive algorithm, with a game

decomposition that aims at identifying dominions for a given player. In contrast to Zielonka’s algorithm,

however, the PP algorithm does not explicitly solve subgames. Instead, within a fixed game, it uses a

dominion searcher that maintains a set of vertices, along with an updated (promoted) priority mapping

and zooms in on a dominion within that set of vertices. Once an α-dominion is returned by the dominion

searcher, the search for another dominion continues until the entire game is solved, see Algorithm 2.

Algorithm 2 Priority Promotion Solver

1: function SOLVEPP(G)

2: (W0,W1)← ( /0, /0)
3: U ←V

4: while U 6= /0 do

5: m←max{p(v) | v ∈U}
6: (W ′0,W

′
1)← SEARCHDOMINION(G∩U,U, p,m)

7: (W0,W1)← (W0 ∪W ′0,W1 ∪W ′1)
8: U ←U \ (W ′0 ∪W ′1)
9: end while

10: return (W0,W1)
11: end function

The main complexity and novelty of the PP algorithm lies in the way it identifies a dominion. To

this end, it relaxes the notion of a dominion to a quasi α-dominion. A quasi α-dominion is a set U of

vertices for which α has a strategy that guarantees that every play that remains within U is won by α , or

that exits U via the ᾱ-escape of U . The α-escape of a set U , denoted escα
G(U) is the set of vertices from

which α can force play out of U in a single move; i.e., escα
G(U) = preα(V \U)∩U . A quasi α-dominion

U in a game G is said to be α-closed iff escᾱ
G(U) = /0; otherwise it is said to be α-open. Note that

an α-closed quasi α-dominion is an α-dominion. When the ᾱ-escape set of a quasi α-dominion only

contains vertices with the highest priority in the game, the α quasi-dominion is called an α-region.

By searching for quasi-dominions, the algorithm avoids the ‘hard’ problem of identifying the (set of)

priorities that lead to a player winning its dominion. Under certain conditions, these quasi-dominions of-

fer just enough guarantees that when composed, the result is a dominion. Regions meet these conditions.

The dominion searcher, see Algorithm 3, essentially traverses a partial order of states which contain

information about the open regions the searcher has computed up to that point. Once the searcher finds a

closed region it terminates and returns this dominion to the solver. Conceptually the searcher assigns to

each α-region it finds a priority that under-approximates the best value the opponent ᾱ must visit when

escaping from the α-region. A higher α-region U1 can then be merged with a lower region U2, yielding

a new α-region and improving the under-approximation of U2 by promoting its best escape value.

The searcher first checks whether the set of vertices U that dominate the current state induces a closed

region A within the entire game; if so, the region is returned and the search is finished (lines 2-8). If the

region is open, the opponent ᾱ may escape. When the region is open in the current state, she may try to

escape to some inferior priority within the subgraph; if the region is closed in the current state, she can

only escape to some region in the larger game and end up in a priority that dominates mg.

In case the region is open in the current state (line 11-14), the priority function of the current state

is updated to set all vertices in A to the currently dominating priority mg. This is achieved by the update

p∗g← pg[U 7→ mg] which is defined as p∗g(v) = mg in case v ∈U and p∗g(v) = pg(v) otherwise. The new

priority for the subgraph that will be explored is set to the next largest priority in the graph (line 13) and

A is removed from the subgraph (line 14). This new state is then explored recursively (see line 20). In

case the region is closed in the current state (line 16-18), the opponent must escape (if she wants to) to

vertices in the larger game. The best escape priority she can force is the minimal priority among the set
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Algorithm 3 Priority Promotion Dominion Searcher

1: function SEARCHDOMINION(G,Vg, pg,mg)

2: α ← mg mod 2

3: U ←{v ∈Vg | pg(v) = mg}
4: A← Attrα (Vg,U)
5: X ← escᾱ

G(A)
6: if X = /0 then

7: (W ′α ,W
′
ᾱ
)← (Attrα (A), /0)

8: return (W ′0,W
′
1)

9: else

10: X ← escᾱ
G∩Vg

(A)

11: if X 6= /0 then

12: p∗g← pg[A 7→ mg]
13: m∗g←max{p∗g(v) | v ∈Vg ∧ p∗g(v)< mg}
14: V ∗g ←Vg \A

15: else

16: m∗g← bepᾱ
pg
(A)

17: p∗g← (p⊎ p
≥m∗g
g )[A 7→ m∗g]

18: V ∗g ←{v ∈V | p∗g(v)≤ m∗g}
19: end if

20: return SEARCHDOMINION(G,V ∗g , p∗g,m
∗
g)

21: end if

22: end function

of vertices that she can force to reach in a single step. This is given by the function bepα
pg
(A) which yields

the minimum priority (according to pg) of the set {w ∈V \A | ∃v ∈ A∩Vα : w ∈ vE}. The dominating

priority mg is updated to m∗g to reflect this best escape priority (see line 16) after which pg is updated to

p∗g. In this update, all vertices in A are set to priority m∗g while all vertices with priorities exceeding m∗g
remain unchanged. All vertices with priorities dominated by m∗g are reset to their original value. This

is achieved by the update in line 17. Here, p≥m
g yields the partial function that coincides with pg on the

(maximal) domain V ′ ⊆V for which pg(v) ≥ m for all v ∈ V ′, and is undefined elsewhere. The update

p⊎ pg, for a partial function pg is then defined as (p⊎ pg)(v) = p(v) in case v /∈ dom(pg) and pg(v)
otherwise. The subgraph of G that is explored next is set to all vertices with (promoted) priority no larger

than m∗g. This newly constructed state is then again recursively explored (see line 20).

The PP algorithm resets all information in lower regions when promoting vertices. As observed

in [4, 5], this can be improved by only resetting regions of the opponent, or even a subset of that. While

this affects the performance for some artificial worst-case examples, these improvements do not lead to

improvements on games stemming from practical applications, nor on random games [14].

3.3 The Fixpoint-Iteration Algorithm

The third algorithm we consider is the so-called Fixpoint-Iteration (FI) algorithm. It is essentially based

on the reduction of the parity game solving problem to the modal µ-calculus model checking problem.

This transformation views a parity game as a graph with state labels indicating the owner (by associating

a proposition Even or Odd to a state) and priority of a vertex (by associating a proposition prioi to a state

representing a vertex with priority i), while the winning regions W0 and W1 of the game are characterised

by a so-called Walukiewicz µ-calculus formula.

Rather than using a general-purpose modal µ-calculus model checker for model checking a parity

game, we here recall the algorithm given by Bruse et al. [8], see Algorithm 4. This algorithm works

directly on a (pre-processed) parity game, essentially checking the following formula1 for games with

least priority 0, and a similar formula for games with least priority 1:

σXd−1 . . .µX1.νX0.((Even∧
d−1
∨

i=0

⋄(prioi∧Xi))∨ (Odd∧
d−1
∧

i=0

2(prioi∨Xi))

1Here, µ and ν are the least and greatest fixpoint, respectively, ⋄ is the may modality, 2 is the must modality, Even, Odd

and prioi are propositions and prioi is the negation of prioi.
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The pre-processing guarantees that the parity game is compressed: i.e., it ensures that the set of priorities

occurring in the game constitute an integer interval with least priority 0 or 1. Note that converting a

parity game to a compressed parity game can be done without changing the solution to the game. The

Algorithm 4 Fixpoint-Iteration algorithm for compressed parity games with least priority 0 and maximal

priority d−1. The algorithm for compressed parity games with least priority 1 is analogous.

1: function FI(G)

2: function DIAMOND BOX

3: U0←{v ∈V0 | ∃w ∈ vE : w ∈ Xp(w)}
4: U1←{v ∈V1 | ∀w ∈ vE : w ∈ Xp(w)}
5: return U0 ∪U1

6: end function

7: for i← d−1, . . . ,0 do

8: Xi← if i is even then V else /0

9: end for

10: repeat

11: X ′0,X0← X0,DIAMOND BOX()
12: i← 0

13: while Xi = X ′i and i < d−1 do

14: i← i+1

15: X ′i ,Xi← Xi,Xi−1

16: Xi−1← if i is odd then V else /0

17: end while

18: until i = d−1 and Xd−1 = X ′d−1

19: return (Xd−1,V \Xd−1)
20: end function

main loop of the algorithm evaluates the fixpoint-free part of the Walukiewicz formula using the current

values for the variables X0 . . .Xd−1. The evaluation gives rise to new values for these variables until a

fixpoint is reached for all variables; at that moment, variable Xd−1 contains all vertices that satisfy the

formula, and, by construction, are won by player 0.

Note that the re-initialisation of all variables X0 . . .Xd−1 can be optimised by exploiting monotonicity

of the formula, reducing the overall complexity from exponential in d to exponential in ⌈d/2⌉, see

e.g. [27]. This can be done by first computing the smallest index i for which Xi is not yet stable, and only

resetting Xi−1,Xi−3, . . . afterwards, thus yielding an algorithm that is closely related to the small progress

measures algorithm, see [8]. We have included this optimisation in our implementation.

3.4 The APT Algorithm

The APT2 algorithm, introduced by Kupferman and Vardi [25], is studied and implemented in [28]. This

algorithm solves parity games by solving the emptiness problem of a corresponding alternating parity

word automaton, which, in turn, is solved by checking the emptiness of an equivalent weak alternating

word automaton. Rather than explicitly constructing this weak alternating word automaton, the APT

algorithm, see Algorithm 5, constructs this automaton implicitly, checking emptiness on-the-fly.

APT uses two disjoint sets of vertices VV (Visiting vertices) and VA (Avoiding vertices) for solving a

parity game. It declares a vertex Visiting for a player just whenever by reaching that vertex she can force a

winning play; dually, a vertex is Avoiding for a player whenever by reaching that vertex she cannot force

any winning play. These sets derive their meaning from a generalisation of the parity game winning

condition, in which player 0 wins a play as soon as VV is visited, player 1 wins as soon as VA is visited,

and the traditional parity game condition applies if neither VV nor VA are ever visited. Furthermore, the

algorithm keeps track of an index i, representing the most significant priority in the game for which the

winners of the vertices with that priority have not yet been decided for the given sets VV and VA.

2The description of the algorithm in [28] seems to contain several small mistakes and implementing it that way yields

incorrect solutions; our exposition is based on their actual OCaml implementation in PGSolver.
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Algorithm 5 The APT algorithm for compressed parity games with minimal priority m and maximal

priority d.

1: function APT(G)

2: function WIN(α, i,VV ,VA)

3: return V \FP(ᾱ , i,VV ,VA) if i≥ m else preα(VV )
4: end function

5: function FP(α, i,VV ,VA)

6: X ,F ← /0,{v ∈V | p(v) = i}
7: Y ←WIN(α, i−1,VA ∪ (F \X),VV ∪ (F ∩X))
8: while Y 6= X do

9: X ←Y

10: Y ←WIN(α, i−1,VA∪ (F ∩X),VV ∪ (F \X))
11: end while

12: end function

13: α ← (d+1) mod 2

14: X ←WIN(α,d, /0, /0)
15: return (X ,V \X) if α = 0 else (V \X ,X)
16: end function

4 Implementing Parity Game Solvers Using BDDs

Using an efficient data structure to explicitly represent a graph, one may be able to represent parity

games up to 225 vertices on a 16Gb main memory machine. Parity games encoding verification problems

of (software or hardware) systems easily require more memory. A symbolic representation of the game

graph may then help to sidestep this problem. Binary Decision Diagrams (BDDs) provide just such a

representation. We assume that the reader is familiar with BDDs and the algorithms manipulating these;

for a comprehensive treatment we refer to [29, 15].

BDDs can be used to canonically (and often concisely) represent propositional formulae, which in

turn can be used to characterise sets. In our setting we have to represent the following sets: the set of

vertices V of a game, the edges E , the partition (V0,V1) of V and the priority function p. For most parity

games stemming from practical verification problems, the number of distinct priorities in the game is

small. For that reason, it suffices to represent p as a mapping from priorities to sets of vertices. For the

computations involved in the parity game solving algorithms of the previous section we provide the key

ingredients below; each operation is described using an expression for the BDD-based implementation.

Henceforward we assume that ~x is the vector of Boolean variables used to span the set of vertices

V of a given parity game; we assume ι is a total injective mapping from V to truth-assignments for ~x.

The i-th Boolean variable of~x is denoted ~xi; this notation extends to other vectors of Boolean variables.

We represent a set U ⊆ V by a propositional formula encoded as a BDD U(~x) that ranges over ~x; as is

standard, for a truth-assignment ~u for~x we have U(~u) = 1 iff ι(v) =~u for some v ∈U . This way, we can

represent, e.g., the sets V0 and V1 by BDDs V0(~x) and V1(~x). The set of edges is given by a BDD E(~x,~x′)
that ranges over~x and~x′, where~x′ is the vector of Boolean variables used to represent a successor vertex.

Finally, the collection of BDDs Pi(~x) represents the set of vertices with priority i.

Set comparison, intersection, union and complement are easily expressed as BDD operations using

equivalence, conjunction, disjunction and negation. The pre-image preα(U), which is the basis for the

APT algorithm, can then be encoded using existential quantification and the above operations:

preα(U(~x)) = (Vα(~x)∧∃~x
′.(E(~x,~x′)∧U(~x′)))∨ (Vᾱ(~x)∧¬∃~x

′.(E(~x,~x′)∧¬U(~x′)))

Using the pre-image, the α-attractor Attrα(U(~x)) and the confined α-attractor Attrα(T(~x),U(~x)) can

then be implemented effectively as a least fixpoint computation. Note also that the operation escα
G(A),

used in lines 5 and 10 of the PP algorithm, can be implemented using the pre-image operation. The

DIAMONDBOX() function of the FI algorithm can be implemented in a similar manner:

(V0(~x)∧
∨

i

(∃~x′.(E(~x,~x′)∧Pi(~x
′)∧Xi(~x

′))))∨ (V1(~x)∧¬
∨

i

(∃~x′.(E(~x,~x′)∧Pi(~x
′)∧¬Xi(~x

′))))
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where, for each i, Xi(~x) is the set of vertices represented by approximation Xi in Algorithm 4.

The operations in the PP algorithm that remain to be encoded involve the computation of the best

escape priority and the computation of new priority mappings. For the best escape priority we are

required to compute the minimal priority among a set of successor vertices of a given set of ver-

tices U . We split this computation in two parts. First we identify the set of successor vertices us-

ing the operation post(U) defined as the union of uE , for all u ∈ U ; its BDD encoding is standard:

post(U(~x)) = (∃~x.E(~x,~x′)∧U(~x))[~x′ 7→ ~x], where [~x′ 7→ ~x] denotes a variable renaming. Computing

bepα
pg
(A), done in line 16 of Alg. 3, then can be implemented by searching for the least value m

in the domain of mapping pg (assuming that we have BDDs Pg,i(~x) representing the set of vertices

{v ∈V | pg = i}) for which the BDD ¬A(~x)∧Pg,m(~x)∧post(A(~x)∧Vα(~x)) is satisfiable. This can be

done using a simple iteration.

Finally, the computations of p∗g in lines 12 and 17 of Alg. 3 are simple updates of the function pg

which can be done by iterating over the domain of the mapping p (resp. pg) and computing new BDDs

using conjunction and disjunction of the BDDs given by p and pg. More specifically, for updates of the

form (p⊎ p≥m
g )[A 7→ m], we first compute the set of vertices in the domain of pg that are above m:

Above≥m(~x) =
∨

{Pg,i(~x) | i≥ m}

The updated priority function p∗g coinciding with (p⊎ p≥m
g )[A 7→ m], where A is encoded by BDD A(~x)

and the set of vertices {v ∈V | p(v) = i} is encoded by Pi(~x) is then given by:

P
∗
g,i(~x) =

{

¬A(~x)∧ ((Pi(~x)∧¬Above≥m(~x))∨ (Pg,i(~x)∧Above≥m(~x))) if i 6= m

A(~x)∨ (Pi(~x)∧¬Above≥m(~x))∨ (Pg,i(~x)∧Above≥m(~x)) else

5 Experimental Evaluation

We have implemented all four algorithms in Python, utilising the BDD package dd3 which, next to a

native Python BDD implementation, offers wrappers to C-based BDD implementations such as CUDD,

Sylvan and BuDDy. For the timings we report on for our experiments we rely on the native Python imple-

mentation as our independent experiments suggest that its performance is comparable to that of CUDD.

Note that the choice of programming language is secondary given that all essential time-consuming com-

putations involve BDD creation and manipulation. We conducted all experiments on a Macbook Pro, 3.5

GHz Intel Core i7 (13-inch, 2017 model, i.e., dual core), with 16 Gb 2133 MHz LPDDR3 main memory,

running macOS 10.13.4.

We compare the performance of the implementation of all four algorithms as described in Sec-

tion 4, and, for reference, we also compare these to explicit-state state-of-the-art C++ implementations

of both the Zielonka and priority promotion algorithms offered by the pbespgsolve tool of the mCRL2

toolset [13]. First, we assess their performance on random games with different characteristic. Such

games, however, may be poor predictors for the performance of the algorithms on practical problems.

Second, since one of our aims is to assess the scalability and the speed at which BDD-based solvers can

solve parity games that encode practical verification problems, we also compare their performance on

some of the larger cases of the Keiren benchmark set [24].

3See https://github.com/johnyf/dd , version 0.5.4, by Ioannis Filippidis

https://github.com/johnyf/dd
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5.1 Random Parity Games

PGSolver [18] is a collection of parity game solving algorithms programmed in OCaml, which includes

a tool randomgame to generate (possibly self-loop-free) random parity games with a fixed number of

vertices. Running randomgame N P L H x generates a game with N vertices; each vertex v is assigned

a priority that is chosen uniformly from the interval [0,P− 1], and ownership 0 with probability 1
2

and

ownership 1 with probability 1
2
. Each vertex is connected to d distinct neighbours, where d is chosen

uniformly from the interval [L,H]. Since the tool generates explicit graphs in the PGSolver format, we

automatically converted these games to BDDs using a binary encoding for the vertices.

For our first batch of experiments, we considered both dense and low out-degree, self-loop-free

random games with a high number of distinct priorities, varying N ∈ {250,500,1000,2000,4000}:

• low out-degree random games generated using randomgame N N 1 2 x;

• dense random games generated using randomgame N N 1 N x;

For each class of random games and each value of N we generated 20 parity games. Table 1 lists the

cumulative runtime (in seconds) for solving these parity games. We set a timeout of 12 000 (cumulative)

seconds for each experiment; a timeout is denoted by †T. Experiments requiring over 15Gb memory are

aborted; we indicate this by †M.

low out-degree games dense games

Solver 250 500 1 000 2 000 4 000 250 500 1 000 2 000 4 000

Zielonka 9 53 302 1 130 3 463 43 228 1 004 †M †M

PP 10 63 316 815 3 048 50 227 1 039 †M †M

FI †T †T †T †T †T †T †T †T †M †M

APT †T †T †T †T †T †T †T †T †M †M

Zielonka (explicit) 0 0 0 0 1 0 0 0 0 5

PP (explicit) 0 0 0 0 0 0 0 0 0 3

Table 1: Cumulative time (in seconds) to solve the random games for a given value of N. We set a timeout

of 12 000 seconds (indicated by †T) for the cumulative solving time; †M indicates out-of-memory.

We observe that for both types of games, the explicit Zielonka and PP solvers substantially outper-

form the symbolic solvers, see Table 1. Of note is that both APT and FI fail on all accounts, which we

believe is due to the large number of distinct priorities in the random games, causing both algorithms

to require an excessively large number of iterations. The symbolic PP implementation outperforms the

symbolic Zielonka implementation for low out-degree games that have large number of vertices and dif-

ferent priorities, but for smaller number of vertices and small number of different priorities, Zielonka

performs better, but only marginally so. For games that consist of more than 2 000 vertices, the BDD

approach fails dramatically, especially in the case of dense games.

We can trace the poor performance of the symbolic solvers to the overly complex and unstructured

BDDs underlying the random graphs. These unwieldy BDD representations are caused by the lack of

structure provided by the binary encoding of vertices and edges, leading to a poor compression ratio:

typically, BDDs remain concise if two adjacent vertices (i.e., vertices related by E) only differ in their

representation by a relatively small number of bits. The binary encoding, however, does not guarantee

this. Variable-reordering heuristics may help in some cases but are not guaranteed to do so. As a result,

the BDDs themselves require an excessive amount of memory (as witnessed by the out-of-memory issues

in modest-sized dense random graphs), and operations on these BDDs lead to excessive running times.

As such, these experiments may not be good predictors for running times of the symbolic algorithms on

games encoding practical verification problems. However, they do suggest that FI and APT both suffer
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significantly from a poor compression ratio. Zielonka and PP, on the other hand, are (relatively) less

susceptible to a poor compression ratio.

For our next batch of random experiments, we repeat the experiments conducted in [28]. In that

work, the authors observe that the APT algorithm outperforms Zielonka’s algorithm for games in which

the number of vertices is exponential in the number of priorities in a game, as long as the base is suffi-

ciently large: they show that APT outperforms Zielonka for N ≈ cP, for c = e or c = 10, but for c = 2,

Zielonka outperforms APT. Games in which the number of vertices is exponential in the number of dis-

tinct priorities are typical of games encoding practical verification and synthesis problems. We generate

dense random games with a priority/vertex ratio given by the relation N≈ cP, for c ∈ {2,e,10,13}, using

randomgame N P 1 N x; i.e., we extend the experiments of [28] by also considering c = 13. We again

generate 20 random games per experiment, and set a timeout at 12 000 seconds (cumulative), see Table 2.

N= 2P games N≈ eP games N= 10P games N= 13P games

Solver 128 256 512 1 024 2 048 21 55 149 404 1 097 10 100 1 000 13 169 2197

Zielonka 9 33 127 559 2 203 1 2 14 88 646 0 7 514 0 18 3099

PP 10 37 132 543 2 355 1 2 15 91 717 0 8 544 0 19 4299

FI 348 2 212 †T †T †T 1 6 89 955 10 695 0 6 530 0 12 2912

APT 173 1 092 8 195 †T †T 1 4 61 659 7 526 0 5 545 0 13 3982

Zielonka (explicit) 0 0 0 0 1 0 0 0 1 4 0 0 3 0 0 17

PP (explicit) 0 0 0 0 1 0 0 0 1 4 0 0 3 0 0 17

Table 2: Cumulative time (in seconds) to solve the random games for a given value of N. A timeout (a

cumulative time of 12 000 seconds or more) is indicated by †T.

Table 2 illustrates that Zielonka has a slight edge over PP. Comparing the results in Table 2 to the

experimental outcomes in [28], we find some interesting differences. First, whereas in [28], the APT

algorithm is found to significantly outperform Zielonka’s algorithm for c = e and c = 10, our results

do not provide such clear indications. We do see that for c = 10 and c = 13, the running times of the

APT algorithm becomes more in line with that of Zielonka and PP. The behaviour of FI illustrates a

more pronounced correlation between the number of vertices and the number of priorities in a game,

suggesting that in a symbolic setting, the FI algorithm may actually perform quite well on games that

encode verification problems that typically result in only a few distinct priorities. We test this hypothesis

by comparing the performance on a number of (large) parity games originating from model checking

problems, mostly taken from the Keiren Benchmark set.

5.2 The Keiren Parity Game Solving Benchmark Set

In [24], Keiren describes and provides a set of parity games that originate from over 300 model check-

ing problems, originating from 21 specifications. The main obstacle in reusing the data set is that the

games are encoded as explicit graphs in the PGSolver format. This means that most of the structure that

a BDD solver can typically exploit for compactly representing the game graph is lost. As we concluded

from the random games generated by PGSolver, a binary encoding of the sets involved leads to severe

performance degradation of the solvers, and given the size of the graphs, there is little hope the running

times of our algorithms on such encoded BDDs provide meaningful information. We have coped with

this by generating BDDs from the original specifications for several of the model checking games in-

cluded in the Keiren benchmark set.4 Note that the conversion of the original specifications to BDDs

4To this end, we developed a special-purpose pbes2bdd tool for converting (a fragment of) parameterised Boolean equation

systems in Standard Recursive Form, containing only Boolean data parameters, to BDDs. The tool currently does not guarantee
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is not straightforward: most games stem from model checking problems for system models that employ

(unbounded) lists, natural numbers, etcetera, for which no trivial bounds can be established. The results

can be found in Table 3; here, †M indicates that the computation was aborted because it needed more

than 15Gb of memory.

Model Property #prio Zielonka

(sym/exp)

PP

(sym/exp)

FI APT #~x

Chatbox Absence of Deadlock 2 0.04/0.02 0.05/0.01 0.00 0.01 18

It is possible to JOIN infinitely often 2 0.02/0.02 0.02/0.01 0.00 0.01 18

Invariantly LEAVE can follow JOIN 3 0.04/0.07 0.05/0.02 0.01 0.02 18

Onebit2 Infinitely often send and receive 3 0.59/0.14 0.58/0.04 0.64 0.69 26

Absence of Deadlock 2 0.16/0.11 0.19/0.03 0.04 0.09 26

Onebit8 Infinitely often send and receive 3 3.30/24.17 3.28/4.49 3.36 3.19 38

Absence of Deadlock 2 0.86/22.70 1.02/6.82 0.19 0.47 38

Onebit32 Infinitely often send and receive 3 10.93/†M 10.68/†M 10.22 9.81 50

Absence of Deadlock 2 2.42/†M 3.16/†M 0.52 1.65 50

Hesselink4 Absence of Deadlock 2 1.97/†M 1.87/†M 1.21 1.31 60

Cache consistency 2 3.47/†M 3.55/†M 1.55 1.93 61

Dining13 Absence of Deadlock 2 1.45/8.40 1.46/7.68 0.20 0.19 89

Aristotle can eat infinitely often 2 7.58/3.44 8.00/1.18 4.24 4.03 89

Aristotle can, and thus will eat infinitely often 3 1.69/10.35 1.56/4.74 0.43 0.37 90

Cumulative: 34.52/†M 35.47/†M 22.61 23.77

Table 3: Running times (in seconds) for selected model checking problems; †M indicates an out-of-

memory error; #~x indicates the number of Boolean variables needed to encode the set of vertices.

We again compared our BDD-based implementations of the four parity game solving algorithms to

the explicit Zielonka and PP solvers of the pbespgsolve tool5 (indicated by the ‘exp’ fields in Table 3).

First, observe that all four symbolic solvers perform quite well on all games, sometimes significantly

outperforming the two explicit solvers. In particular, none of the symbolic solvers run out-of-memory;

in fact, memory usage for all games stays well below 500Mb. This sharply contrasts the explicit solvers,

which, for the larger games that can be solved consume 8Gb or more. We furthermore note that the

runtime performance of the symbolic solvers appears to be more robust than that of the explicit solvers.

Second, we observe that both FI and APT clearly outperform Zielonka and PP. The PP and Zielonka

algorithms perform comparably on these games, with Zielonka having an insignificant edge over PP;

in this regard, the outcomes of these experiments are largely similar to the collective outcome of our

experiments using random games.

6 Discussion and Conclusions

We studied four algorithms for solving parity games, viz. Zielonka’s recursive algorithm, the recently in-

troduced Priority Promotion (PP) algorithm, the Fixpoint-Iteration (FI) algorithm and the APT algorithm,

and compared the performance of their symbolic implementations.

totality of the generated parity game; instead, it relies on the user to guarantee that this is the case.
5Of note is the fact that for our explicit solvers, we only compute the solution to the vertices reachable from a designated

vertex (typically the vertex that indicates whether the modal µ-calculus formula holds for the initial state of a system); we have

excluded the (typically significant) time required for constructing this reachable subgame and only list the time required to

solve the resulting (sub)game. The game that is solved by the explicit solvers can thus be orders of magnitude smaller than the

games solved by our symbolic solvers, as these do not conduct a reachability analysis.
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Our results indicate that, overall, the symbolic implementations of Zielonka’s algorithm and the PP

algorithm have very similar performance characteristics. The experiments using random games indicate

that Zielonka’s algorithm performs slightly better than PP for games with a small number of priorities,

and for games in which the number of vertices is exponentially larger than the number of distinct priori-

ties, but the differences are not significant in most cases. The same observation applies to the cases taken

from Keiren’s benchmark set.

The symbolic implementations of the APT and FI algorithms both perform poorly on most of our

random games. There are indications that also in the symbolic case, these algorithms are more suited

for games in which the number of vertices is exponentially larger than the number of distinct priorities,

but the results are not as pronounced as reported in [28] for the explicit case. We believe that part of

this difference is due to the susceptibility both algorithms demonstrate on the size of the BDDs. This

is further supported by the cases taken from Keiren’s benchmark set, in which the BDDs remain rather

small and both FI and APT outperform Zielonka and PP, but further research is needed to confirm this

hypothesis and to see if there are ways to sidestep such issues.

While our experimental results on the Keiren benchmark set show that both FI and APT beat Zielonka

and PP on games stemming from verification problems, their unpredictability in the presence of large

BDDs makes them less reliable for solving such problems as one cannot upfront predict the size of

BDDs in practice. Given that all solvers require at most seconds for even the largest models, containing

up to 290 vertices, any of the four algorithms would work in practice, and one may therefore favour the

more robust PP or Zielonka algorithms in practice.

Finally, comparing the performance of our symbolic Zielonka and PP solvers to the explicit solvers,

we find that there are only few cases in which the explicit solvers have an edge over the symbolic solvers.

More importantly, the explicit solvers are unable to solve games which are readily solved by the symbolic

solvers, indicating the practical significance of BDD-based solvers.
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