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In this paper we address the decision problem for a fragment of set theory with restricted quan-
tification which extends the language studied in [4] with pair related quantifiers and constructs, in
view of possible applications in the field ofknowledge representation. We will also show that the
decision problem for our language has a non-deterministic exponential time complexity. However,
for the restricted case of formulae whose quantifier prefixeshave length bounded by a constant, the
decision problem becomes NP-complete. We also observe thatin spite of such restriction, several
useful set-theoretic constructs, mostly related to maps, are expressible. Finally, we present some
undecidable extensions of our language, involving any of the operators domain, range, image, and
map composition.

1 Introduction

The intuitive formalism of set theory has helped providing solid and unifying foundations to such diverse
areas of mathematics as geometry, arithmetic, analysis, and so on. Hence, positive solutions to the
decision problem for fragments of set theory can have considerable applications to the automation of
mathematical reasoning and therefore in any area which can take advantage of automated deduction
capabilities.

The decision problem in set theory has been intensively studied in the context ofComputable Set
Theory(see [5, 9, 18]), and decision procedures or undecidabilityresults have been provided for several
sublanguages of set theory.Multi-Level Syllogistic(in shortMLS, cf. [12]) was the first unquantified
sublanguage of set theory that has been shown to have a solvable satisfiability problem. We recall that
MLS is the Boolean combinations of atomic formulae involving the set predicates∈, ⊆, =, and the
Boolean set operators∪, ∩, \. Numerous extensions ofMLS with various combinations of operators
(such as singleton, powerset, unionset, etc.) and predicates (on finiteness, transitivity, etc.) have been
proved to be decidable. Sublanguages of set theory admitting explicit quantification (see for example
[4, 16, 17, 6]) are of particular interest, since, as reported in [4], they allow one to express several set-
theoretical constructs using only the basic predicates of membership and equality among sets.

Applications of Computable Set Theory toknowledge representationhave been recently investigated
in [8, 6], where some interrelationships between (decidable) fragments of set theory and description
logics have been exploited.1 As knowledge representation mainly focuses on representing relationships
among items of a particular domain, any set-theoretical language of interest to knowledge representation
should include a suitable collection of operators onmulti-valued maps. 2

∗Work partially supported by the INdAM/GNCS 2012 project“Specifiche insiemistiche eseguibili e loro verifica formale”
and by Network Consulting Engineering Srl.

1We recall that description logics are a well-established framework for knowledge representation; see [1] for an introduction.
2According to [19], we use the term ‘maps’ to denote sets of ordered pairs.
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Non-deterministic exponential time decision procedures for two unquantified fragments of set theory
involving map related constructs have been provided in [13,10]. As in both cases the map domain opera-
tor is allowed together with all the constructs ofMLS, it turns out that both fragments have an EXPTIME-
hard decision problem (cf. [7]). On the other hand, the somewhat less expressive fragmentMLSS×2,m has
been shown to have an NP-complete decision problem in [7], whereMLSS×2,m is a two-sorted language
with set and map variables, which involves various map constructs like Cartesian product, map restric-
tions, map inverse, and Boolean operators among maps, and predicates for single-valuedness, injectivity,
and bijectivity of maps.

In [4], an extension of the quantified fragment∀0 (studied in the same paper—here the subscript ‘0’
denotes that quantification is restricted) withsingle-valuedmaps, the map domain operator, and terms of
the form f (t), with t a function-free term, was considered. We recall that∀0-formulae are propositional
combinations of restricted quantified prenex formulae(∀y1 ∈ z1) · · · (∀yn ∈ zn)p , wherep is a Boolean
combination of atoms of the typesx ∈ y, x = y, andquantified variables nestingis not allowed, in the
sense that any quantified variableyi can not occur at the right-hand side of a membership symbol∈ in
the same quantifier prefix (roughly speaking, nozj can be ayi). More recently, a decision procedure
for a new fragment of set theory, called∀π

0 , has been presented in [6]. The superscript “π” denotes the
presence of operators related to ordered pairs. Formulae ofthe fragment∀π

0 , to be reviewed in Section
4, involve the operator̄π(·), which intuitively represents the collection of the non-pair members of its
argument, and terms of the form[x,y], for ordered pairs. The predicates= and∈ allowed in it can occur
only within atoms of the formsx= y, x∈ π̄(y), and[x,y] ∈ z; quantifiers in∀π

0-formulae are restricted to
the forms(∀x∈ π̄(y)) and(∀[x,y] ∈ z), and, much as in the case of the fragment∀0, quantified variables
nesting is not allowed.

In this paper we solve the decision problem for the extension∀π
0,2 of the fragment∀0 with ordered

pairs and prove that, under particular conditions, our decision procedure runs in non-deterministic poly-
nomial time. ∀π

0,2 is a two-sorted (as indicated by the second subscript “2”) quantified fragment of set
theory which allows restricted quantifiers of the forms(∀x ∈ y), (∃x ∈ y), (∀[x,y] ∈ f ), (∃[x,y] ∈ f ),
and literals of the formsx ∈ y, [x,y] ∈ f , x = y, f = g, wherex, y are set variables andf , g are map
variables. Considerably many set-theoretic constructs are expressible in it, as shown in Table 1. In fact,
the language∀π

0,2 is also an extension ofMLSS×2,m. However, as will be shown in Section 5, it is not
strong enough to express inclusions likex ⊆ dom( f ), x ⊆ range( f ), x ⊆ f [y], andh ⊆ f ◦g, but only
those in which the operators domain, range, (multi-)image,and map composition are allowed to appear
on the left-hand side of the inclusion operator⊆.

The paper is organized as follows. Section 2 provides some preliminary notions and definitions. In
Section 3 we give the precise syntax and semantics of the language∀π

0,2. Decidability and complexity of
reasoning in the language∀π

0,2 are addressed in Section 4. Some undecidable extensions of∀π
0,2 are then

presented in Section 5. Finally, in Section 6 we draw our conclusions and provide some hints for future
works.

2 Preliminaries

We briefly review basic notions from set theory and introducealso some definitions which will be used
throughout the paper.

Let SVars=Def {x,y,z, . . .} andMVars =Def { f ,g,h, . . .} be two infinite disjoint collections ofsetand
map variables, respectively. As we will see, map variables will be interpreted as maps (i.e., sets of
ordered pairs). We putVars =Def SVars∪MVars. For a formulaϕ , we writeVars(ϕ) for the collection of
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x= /0 (∀x′ ∈ x)(x′ 6= x′)
x⊆ y (∀x′ ∈ x)(x′ ∈ y)

x= y∪z y⊆ x∧z⊆ x∧ (∀x′ ∈ x)(x′ ∈ y∨x′ ∈ z)
x= y∩z x⊆ y∧x⊆ z∧ (∀y′ ∈ y)(y′ ∈ z→ y′ ∈ x)
x= y\ z x⊆ y∧ (∀y′ ∈ y)(y′ ∈ x↔ y′ /∈ z)
x= {y} y∈ x∧ (∀x′ ∈ x)(x′ = y)
f = /0 (∀[x,y] ∈ f )(x 6= x)
f ⊆ g (∀[x,y] ∈ f )([x,y] ∈ g)

f = g∪h g⊆ f ∧h⊆ f ∧ (∀[x,y] ∈ f )([x,y] ∈ g∨ [x,y] ∈ h)
f = g∩h f ⊆ g∧ f ⊆ h∧ (∀[x,y] ∈ g)([x,y] ∈ h→ [x,y] ∈ f )
f = g\h f ⊆ g∧ (∀[x,y] ∈ g)([x,y] ∈ f ↔ [x,y] /∈ h)

f = {[x,y]} [x,y] ∈ f ∧ (∀[x′,y′] ∈ f )(x′ = x∧y′ = y)
f = g−1 (∀[x,y] ∈ f )([y,x] ∈ g)∧ (∀[x,y] ∈ g)([y,x] ∈ f )
f = x× y (∀x′ ∈ x)(∀y′ ∈ y)([x′,y′] ∈ f )∧ (∀[x′,y′] ∈ f )(x′ ∈ x∧y′ ∈ y)
f = gx| f ⊆ g∧ (∀[x′,y′] ∈ g)([x′,y′] ∈ f ↔ x′ ∈ x)
f = g|y f ⊆ g∧ (∀[x′,y′] ∈ g)([x′,y′] ∈ f ↔ y′ ∈ y)
f = gx|y f ⊆ g∧ (∀[x′,y′] ∈ g)([x′,y′] ∈ f ↔ x′ ∈ x∧y′ ∈ y)
f = id(x) (∀x′ ∈ x)([x′,x′] ∈ f )∧ (∀[x′,y′] ∈ f )(x′ = y′∧x′ ∈ x)

f = sym(g) (∀[x,y] ∈ f )([x,y] ∈ g∨ [y,x] ∈ g)∧ (∀[x,y] ∈ g)([x,y] ∈ f ∧ [y,x] ∈ f )
single valued( f ) (∀[x,y] ∈ f )(∀[x′,y′] ∈ f )(x= x′ → y= y′)
injective( f ) (∀[x,y] ∈ f )(∀[x′,y′] ∈ f )(y= y′ → x= x′)
bijective( f ) (∀[x,y] ∈ f )(∀[x′,y′] ∈ f )(x= x′ ↔ y= y′)

is transitive( f ) (∀[x,y] ∈ f )(∀[x′,y′] ∈ f )(y= x′ → [x,y′] ∈ f )
is irreflexive( f ) (∀[x,y] ∈ f )(x 6= y)
is asym( f ) (∀[x,y] ∈ f )(x= y∨ [y,x] /∈ f )

f ◦g⊆ h (∀[x,y] ∈ f )(∀[x′,y′] ∈ g)(y= x′ → [x,y′] ∈ h)
dom( f ) ⊆ x (∀[x′,y′] ∈ f )(x′ ∈ x)
range( f ) ⊆ y (∀[x′,y′] ∈ f )(y′ ∈ y)

f [x]⊆ y (∀[x′,y′] ∈ f )(x′ ∈ x→ y′ ∈ y)

Table 1: Set-theoretic constructs expressible in∀π
0,2.

variables occurring free (i.e., not bound by any quantifier)in ϕ , and putSVars(ϕ) =Def Vars(ϕ)∩SVars
andMVars(ϕ) =Def Vars(ϕ)∩MVars.

Semantics of most of the languages studied in the context of Computable Set Theory are based on
thevon Neumann standard cumulative hierarchy of setsV , which is the class containing all thepuresets
(i.e., all sets whose members are recursively based on the empty set /0). The von Neumann hierarchyV

is defined as follows:
V0 =Def /0

Vγ+1 =Def P(Vγ) , for each ordinalγ
Vλ =Def

⋃

µ<λ Vµ , for each limit ordinalλ
V =Def

⋃

γ∈OnVγ ,

whereP(·) is the powerset operator andOn denotes the class of all ordinals. Therank rank(u) of a set
u ∈ V is defined as the least ordinalγ such thatu∈ Vγ . We will refer to mappings fromVars to V as
assignments.

Next we introduce some notions related to pairing functionsand ordered pairs. Letπ(·, ·) be a binary
operation over the universeV . TheCartesian product u×π v of two setsu,v∈V , relative toπ, is defined
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asu×π v =Def {π(u′,v′) : u′ ∈ u∧v′ ∈ v}. When it is clear from the context, for the sake of conciseness
we will omit to specify the binary operationπ and simply write ‘×’ in place of ‘×π ’. A binary operation
π over sets inV is said to be apairing functionif

(i) π(u,v) = π(u′,v′) ⇐⇒ u= u′∧v= v′ , for all u,u′,v,v′ ∈ V , and

(ii) the Cartesian productu×v (relative toπ) is a set ofV , for all u,v∈ V .

In view of the replacement axiom, condition (ii) is obvioulsy met whenπ(u,v) is expressible by a set-
theoretic term. This, for instance, is the case for Kuratowski’s ordered pairs, defined byπKur(u,v) =Def

{{u},{u,v}}, for all u,v∈ V . Given a pairing functionπ and a sets, we denote with Pairsπ (s) the col-
lection of thepairs in s (with respect toπ), namely Pairsπ (s) =Def {u∈ s : (∃v1,v2 ∈ V )(u= π(v1,v2))}.

A pair-aware interpretation I= (MI ,π I ) consists of a pairing functionπ I and an assignmentMI

such that Pairsπ I (MI f ) = MI f holds for every map variablef ∈ MVars (i.e., map variables can only
be assigned sets of ordered pairs, or the empty set). For conciseness, in the rest of the paper we will
refer topair-aware interpretations just as interpretations. An interpretation I = (MI ,π I ) associates sets
to variables and pair terms, respectively, as follows:

Ix =Def MIx,
I [x,y] =Def π I (Ix, Iy),

(1)

for all x,y∈ Vars. LetW ⊆ Varsbe a finite collection of variables, and letM,M′ be two assignments. We
say thatM′ is aW-variantof M if Mx= M′x for all x∈ Vars\W. For two interpretationsI = (MI ,π I )
andJ = (MJ,πJ), we say thatJ is aW-variant ofI if MJ is aW-variant ofMI andπJ = π I .

In the next section we introduce the precise syntax and semantics of the language∀π
0,2.

3 The language∀π
0,2

The language∀π
0,2 consists of the denumerable infinity of variablesVars= SVars∪MVars, the binary

pairing operator[·, ·], the predicate symbols∈,=, the Boolean connectives of propositional logic¬,
∧, ∨, →, ↔, parentheses, andrestrictedquantifiers of the forms(∀x ∈ y), (∀[x,y] ∈ f ), (∃x ∈ y), and
(∃[x,y] ∈ f ). Atomic∀π

0,2 -formulaeare expressions of the following four types

x∈ y, x= y, [x,y] ∈ f , f = g, (2)

with x,y ∈ SVarsand f ,g ∈ MVars. Quantifier-free∀π
0,2 -formulaeare propositional combinations of

atomic∀π
0,2-formulae.Prenex∀π

0,2 -formulaeare expressions of the following two forms

(∀x1 ∈ z1) . . . (∀xh ∈ zh)(∀[xh+1,yh+1] ∈ fh+1) . . . (∀[xn,yn] ∈ fn)δ , (3)

(∃x1 ∈ z1) . . . (∃xh ∈ zh)(∃[xh+1,yh+1] ∈ fh+1) . . . (∃[xn,yn] ∈ fn)δ , (4)

wherexi ,yi ,zi ∈ SVars, f j ∈ MVars, andδ is a quantifier-free∀π
0,2-formula. We will refer to the variables

z1, . . . ,zh as thedomain variablesof the formulae (3) and (4). Notice that quantifier-free∀π
0,2-formulae

can also be regarded as prenex∀π
0,2-formulae with an empty quantifier prefix. A prenex∀π

0,2-formula
is said to besimpleif nesting among quantified variables is not allowed, i.e., if no quantified variable
can occur also as a domain variable. Finally,∀π

0,2 -formulaeare Boolean combinations of simple-prenex
∀π

0,2-formulae.
Semantics of∀π

0,2-formulae is given in terms of interpretations. An interpretation I = (MI ,π I )
evaluatesa ∀π

0,2-formula ϕ into a truth valueIϕ ∈ {true, false} in the following recursive manner.
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First of all, interpretation of quantifier-free∀π
0,2-formulae is carried out following the rules of propo-

sitional logic, where atomic formulae (2) are interpreted according to the standard meaning of the pred-
icates∈ and= in set theory and the pair operator[·, ·] is interpreted as in (1). Thus, for instance,
I([x,y] ∈ f → x∈ y) = true, provided that eitherπ I (Ix, Iy) /∈ I f or Ix ∈ Iy. Then, evaluation of simple-
prenex∀π

0,2-formulae is defined recursively as follows:

• I(∀x∈ z)ϕ = true, provided thatJϕ = true, for every{x}-variantJ of I such thatJx∈ Jz;

• I(∀[x,y]∈ f )ϕ = true, provided thatJϕ = true, for every{x,y}-variantJ of I such thatJ[x,y]∈ J f ;

• I(∃x∈ z)ϕ = true, provided thatI(∀x∈ z)¬ϕ = false; and

• I(∃[x,y] ∈ f )ϕ = true, provided thatI(∀[x,y] ∈ f )¬ϕ = false.

Finally, evaluation of∀π
0,2-formulae is carried out following the rules of propositional logic.

If an interpretationI evaluates a∀π
0,2-formula to true we say thatI is a model for ϕ (and write

I |= ϕ). A ∀π
0,2-formula ϕ is said to besatisfiableif and only if it admits a model. Two∀π

0,2-formulae
are said to beequivalentif they have exactly the same models. Two∀π

0,2-formulaeϕ andϕ ′ are said to
beequisatisfiableprovided thatϕ is satisfiable if and only if so isϕ ′. Thesatisfiability problem(s.p., for
short) for the theory∀π

0,2 is the problem of establishing algorithmically whether anygiven∀π
0,2-formula

is satisfiable or not.
By way of a simple normalization procedure based on disjunctive normal form, the s.p. for∀π

0,2-
formulae can be reduced to that forconjunctionsof simple-prenex∀π

0,2-formulae of the types (3) and (4).
Moreover, since any such conjunction of the form

ψ ∧ (∃x1 ∈ z1) . . . (∃xh ∈ zh)(∃[xh+1,yh+1] ∈ fh+1) . . . (∃[xn,yn] ∈ fn)δ

is equisatisfiable withψ ∧δ ′
+, whereδ ′

+ is obtained from the quantifier-free formula

δ+ =Def

h
∧

i=1

xi ∈ zi ∧
n
∧

j=h+1

[x j ,y j ] ∈ f j ∧δ

by a suitable renaming of the (quantified) variablesx1, . . . ,xn,yh+1, . . . ,yn, it turns out that the s.p. for
∀π

0,2-formulae can be reduced to the s.p. forconjunctionsof simple-prenex∀π
0,2-formulae of the type (3)

only, which we callnormalized∀π
0,2-conjunctions.

Satisfiability of normalized∀π
0,2-conjunctions does not depend strictly on the pairing function of the

interpretation, provided that suitable conditions hold, as proved in the following technical lemma.

Lemma 1. Letϕ be a normalized∀π
0,2-conjunction, and let I and J be two interpretations such that

(a) Ix= Jx, for all x∈ SVars,

(b) π I(u,v) ∈ I f ⇐⇒ πJ(u,v) ∈ J f , for all u,v∈ V and f ∈ MVars.

Then I|= ϕ ⇐⇒ J |= ϕ .

Proof. It is enough to prove that
I |= ψ ⇐⇒ J |= ψ (5)

holds, for every (universal) simple-prenex conjunctψ occurring inϕ . We shall proceed by induction on
the length of the quantifier prefix ofψ . We begin with observing that, by (a),I andJ evaluate to the same
truth values all atomic formulae of the typesx∈ y andx= y, for all x,y∈ SVars. Likewise,

I |= f = g ⇐⇒ J |= f = g and I |= [x,y] ∈ f ⇐⇒ J |= [x,y] ∈ f
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follow directly from (a) and (b). Thus (5) follows easily when ψ is quantifier-free, i.e., when the length
of its quantifier prefix is 0.

Next, letψ = (∀x∈ y)ψ0, for somex,y∈ SVars, whereψ0 is a universally quantified simple-prenex
∀π

0,2-formula with one less quantifier thanψ and containing no quantified occurrence ofy. We prove that
Iu is a model forψ0 if and only if so isJu, for everyu∈ Iy = Jy, whereIu andJu denote, respectively,
the{x}-variants ofI andJ such thatIux= Jux= u. But, for eachu∈ Iy = Jy, Iu andJu satisfy conditions
(a) and (b) of the lemma, so that, by inductive hypothesis, wehave Iu |= ψ0 ⇐⇒ Ju |= ψ0. Hence
I |= (∀x∈ y)ψ0 ⇐⇒ J |= (∀x∈ y)ψ0.

The case in whichψ = (∀[x,y] ∈ f )ψ0, with x,y∈ SVars, f ∈ MVars, andψ0 a universally quantified
simple-prenex∀π

0,2-formula containing no quantified occurrence ofx andy, can be dealt with much in
the same manner, thus concluding the proof of the lemma.

In the following section we show that the s.p. for normalized∀π
0,2-conjunctions is solvable.

4 A decision procedure for∀π
0,2

We solve the s.p. for∀π
0,2-formulae by reducing the s.p. for normalized∀π

0,2-conjunctions to the s.p. for
the fragment of set theory∀π

0 , studied in [6]. Following [6],∀π
0-formulae are finite conjunctions of

simple-prenex∀π
0-formulae, namely expressions of the form

(∀x1 ∈ π̄(z1)) . . . (∀xh ∈ π̄(zh))(∀[xh+1,yh+1] ∈ zh+1) . . . (∀[xn,yn] ∈ zn)δ ,

wherexi ,yi ,zi ∈ SVars, for i = 1, . . . ,n, no domain variablezi can occur quantified, andδ is a quantifier-
free Boolean combination of atomic formulae of the typesx∈ π̄(z), [x,y] ∈ z, x= y, with x,y,z∈ SVars.3

Intuitively, a term of the formπ̄(z) represents the set of thenon-pair members ofz. Notice that∀π
0-

formulae involve only set variables.
Semantics for∀π

0-formulae is given by extending interpretations also to terms of the formπ̄(x) as
indicated below:

I π̄(x) =Def Ix\Pairsπ I (Ix) ,

wherex∈ SVars. Evaluation of∀π
0-formulae is carried out much in the same way as for∀π

0,2-formulae.
In particular, we also putI(∀x∈ π̄(y))ϕ = true, provided thatJϕ = true, for every{x}-variantJ of I
such thatJx∈ I π̄(y).

We recall that satisfiability of∀π
0-formulae can be tested in non-deterministic exponential time. Ad-

ditionally, the s.p. for∀π
0-formulae with quantifier prefixes of length at mosth, for any fixed constant

h≥ 0, is NP-complete (cf. [6]).
The s.p. for normalized∀π

0,2-conjunctions can be reduced to the s.p. for∀π
0-formulae. To begin with,

we define a syntactic transformationτ(·) on normalized∀π
0,2-conjunctions. More specifically,τ(ϕ) is

obtained from a given normalized∀π
0,2-conjunctionϕ by replacing

• each restricted universal quantifier(∀x∈ y) in ϕ by the quantifier(∀x∈ π̄(y)),

• each atomic formulax∈ y in ϕ by the literalx∈ π̄(y), and

• each map variablef occurring inϕ by a fresh set variablexf , thus identifying an application
f 7→ xf from MVars(ϕ) into SVars, which will be referred to asmap-variable renaming forτ(ϕ).

3Thus, normalization is already built-in into∀π
0 -formulae, and we could have called themnormalized∀π

0 -conjunctions.
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Thus, for instance, if

ϕ = (∀x′ ∈ x)([x,x] ∈ f )∧ (∀[x′,y′] ∈ f )(x′ = y′∧x′ ∈ x)

then
τ(ϕ) = (∀x′ ∈ π̄(x))([x,x] ∈ xf )∧ (∀[x′,y′] ∈ xf )(x

′ = y′∧x′ ∈ π̄(x)) ,

wherexf is a set variable distinct fromx, x′, andy′.
The following lemma provides a useful semantic relation between universal simple-prenex∀π

0,2-
formulae and their corresponding∀π

0-formula viaτ .

Lemma 2. Let ψ be a universal simple-prenex∀π
0,2-formula and let I= (MI ,π I ) be an interpretation

such that

(i) Pairsπ I ({Ix : x∈ SVars(ψ)}) = /0 (i.e., Ix is not a pair, for any free variable x ofψ), and

(ii) Pairsπ I (Ix) = /0, for every domain variable x ofψ .

Then I|= ψ if and only if I |= τ(ψ).

Proof. We proceed by induction on the quantifier prefix lengthℓ ≥ 0 of the formulaψ . To begin with,
we observe that in force of (i) we haveIx ∈ Iy if and only if Ix ∈ I π̄(y), for any two free variablesx and
y of ψ , so that, given any atomic formulaα involving only variables inSVars(ψ), I |= α if and only if
I |= τ(α). Hence the lemma follows directly from propositional logicif ψ is quantifier-free, i.e.,ℓ= 0.

Next, letψ = (∀x∈ y)ψ0, whereψ0 is a universal simple-prenex∀π
0,2-formula withℓ−1 quantifiers,

x,y are set variables occurring neither as domain nor as bound variables inψ0. Observe that, by (ii),
Iy = I π̄(y), sincey is a domain variable ofψ . Thus it will be enough to prove that

Iu |= ψ0 ⇐⇒ Iu |= τ(ψ0) (6)

holds for every{x}-variantIu of I such thatIux= u, with u∈ Iy. But Iux can not be a pair (with respect
to the pairing functionπ I ), as it is a member ofIy andy is a domain variable ofϕ . Thus (6) follows by
applying the inductive hypothesis toψ0 and to every interpretationIu such thatu∈ Iy.

Finally, the case in whichψ = (∀[x,y] ∈ f )ψ0, whereψ0 is a universal simple-prenex∀π
0,2-formula,

x,y are set variables not occurring as domain variables inψ0, and f is a map variable, can be dealt with
much in the same way as the previous case, and is left to the reader.

In the following theorem we use the transformationτ(·) to reduce the s.p. for normalized∀π
0,2-

conjunctions to the s.p. for∀π
0-formulae.

Theorem 1. The s.p. for normalized∀π
0,2-conjunctions can be reduced in linear time to the s.p. for∀π

0-
formulae, and therefore it is inNEXPTIME.

Proof. We prove the theorem by showing that, given any normalized∀π
0,2-conjunctionψ , we can con-

struct in linear time a corresponding∀π
0-formulaψ ′ which is equisatisfiable withψ .

So, letψ be a normalized∀π
0,2-conjunction and letf 7→ xf be the map-variable renaming forτ(ψ).

We define the corresponding∀π
0-formulaψ ′ as follows:

ψ ′ =Def τ(ψ)∧
∧

z∈SVars(ψ)

(∀[x,y] ∈ z)(x 6= x)∧
∧

f∈MVars(ψ)

(∀x∈ π̄(xf ))(x 6= x)∧
∧

z∈SVars(ψ)

(z∈ π̄(U)) ,

whereU is a fresh set variable. Plainly, the size ofψ ′ is linear in the size ofψ .
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Let us first assume thatψ ′ admits a modelJ=(MJ,πJ). For eachz∈SVars(ψ) we have PairsπJ(Jz)=
/0, asJ(∀[x,y] ∈ z)(x 6= x) = true, for z∈ SVars(ψ). Likewise, for eachf ∈ MVars(ψ) we haveJxf =
PairsπJ(Jxf ), asJ(∀x∈ π̄(xf ))(x 6= x) = true, for f ∈MVars(ψ). Finally, for eachx∈SVars(ψ), we have
Jx∈ JU\PairsπJ(JU), so that PairsπJ({Jx : x∈ SVars(ψ)}) = /0. We defineI as theMVars(ψ)-variant of
J such thatI f = Jxf , for f ∈ MVars(ψ). Plainly, I |= τ(ψ) so that, by Lemma 2,I |= ψ as well.

For the converse direction, letI = (MI ,π I ) be a model forψ . We shall exhibit an interpretationJ′

which satisfiesψ ′. To begin with, we define a new pairing functionπJ by putting

πJ(u,v) =Def {πKur(u,v),{Dϕ}} ,

for everyu,v ∈ V , whereπKur is the Kuratowski’s pairing function andDϕ =Def {Ix : x ∈ SVars(ψ)}.
Then we defineMJ as theMVars(ψ)-variant of the assignmentMI such thatMJ f = {πJ(u,v) : u,v ∈
V andπ I(u,v) ∈ MI f}, for each f ∈ MVars(ψ). From Lemma 1, it follows that the interpretationJ =
(MJ,πJ) satisfiesψ . Moreover, we have

PairsπJ(Jz) = /0, (7)

for eachz∈ SVars(ψ). Indeed, if for someu,v∈ V andz∈ SVars(ψ) we hadπJ(u,v) ∈ Jz, then

Iz∈ Dϕ ∈ {Dϕ} ∈ {πKur(u,v),{Dϕ}}= πJ(u,v) ∈ Jz= Iz,

contradicting the regularity axiom of set theory. Next, letW =Def {xf : f ∈ MVars(ψ)}∪{U} and letJ′

be theW-variant ofJ, whereJ′xf = J f , for f ∈ MVars(ψ), andJ′U = {Jz: z∈ SVars(ψ)} . In view of
(7), it is an easy matter to verify that

J′ |= τ(ψ) . (8)

From (7), we have immediately that PairsπJ′ (J′z) = /0, so that

J′ |=
∧

z∈SVars(ψ)

(∀[x,y] ∈ z)(x 6= x) . (9)

Likewise, by reasoning much in the same manner as for the proof of (7), one can prove that

J′ |=
∧

f∈MVars(ψ)

(∀x∈ π̄(xf ))(x 6= x)∧
∧

z∈SVars(ψ)

(z∈ π̄(U)) . (10)

From (8), (9), and (10), it follows at once thatJ′ |= ψ ′, completing the proof thatψ andψ ′ are equisatis-
fiable.

Since the s.p. for∀π
0-formulae is in NEXPTIME, as was shown in [6, Section 3.1], it readily follows

that the s.p. for normalized∀π
0,2-conjunctions is in NEXPTIME as well.

Corollary 1. The s.p. for∀π
0,2-formulae is inNEXPTIME.

Proof. Let ϕ be a satisfiable∀π
0,2-formula. We may assume without loss of generality that all existential

simple-prenex∀π
0,2-formulae of the form (4) have already been rewritten in terms of equivalent universal

simple-prenex∀π
0,2-formulae of the form (3), so thatϕ is a propositional combination of universal simple-

prenex∀π
0,2-formulae. In addition, by suitably renaming variables, wemay assume that all quantified

variables inϕ are pairwise distinct and that they are also distinct from free variables.
Let Σϕ = {ψ1, . . . ,ψn} be the collection of the universal simple-prenex∀π

0,2-formulae occurring inϕ .
By traversing the syntax tree ofϕ , one can find in linear time the propositional skeletonPϕ of ϕ and a
substitutionσ from the propositional variablesp1, . . . ,pn of Pϕ into Σϕ , such thatPϕσ = ϕ , wherePϕσ is
the result of substituting each propositional variablepi in Pϕ by the universal simple-prenex∀π

0,2-formula
σ(pi). Then to check the satisfiability ofϕ one can perform the following non-deterministic procedure:
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• guess a Boolean valuationν of the propositional variablesp1, . . . ,pn of Pϕ such thatν(Pϕ) = true;

• form the∀π
0,2-conjunction

∧

ν(pi)=true

σ(pi) ∧
∧

ν(pi)=false

¬σ(pi) ; (11)

• transform each conjunct

¬(∀x1 ∈ z1) . . . (∀xh ∈ zh)(∀[xh+1,yh+1] ∈ fh+1) . . . (∀[xn,yn] ∈ fn)δ

of the form¬σ(pi) in (11), whereν(pi) = false, into the equisatisfiable formula

h
∧

i=1

xi ∈ zi ∧
n
∧

j=h+1

[x j ,y j ] ∈ f j ∧¬δ .

Let ϕ ′ be the normalized∀π
0,2-conjunction so obtained. Plainly,ϕ ′ → ϕ is satisfied by any inter-

pretation.

• Check thatϕ ′ is satisfiable by a NEXPTIME procedure for normalized∀π
0,2-conjunctions (cf. The-

orem 1).

Sinceϕ ′ can be constructed in non-deterministic linear time, the corollary follows.

Next we consider(∀π
0,2)

≤h-formulae, namely∀π
0,2-formulae whose simple-prenex subformulae have

quantifier-prefix lengths bounded by the constanth≥ 0. By reasoning much as in the proofs of Theorem 1
and Corollary 1, it is immediate to check that the s.p. for(∀π

0,2)
≤h-formulae can be reduced in non-

deterministic linear time to the s.p. of(∀π
0)

≤h-formulae, and thus, by [6, Corollary 4], it can be decided
in non-deterministic polynomial time. On the other hand, itis an easy matter to show that the s.p. for
(∀π

0,2)
≤h-formulae is NP-hard. Indeed, given a propositional formula Q, consider the(∀π

0,2)
≤0-formula

ψQ, obtained fromQ by replacing each propositional variablep in Q with the atomic∀π
0,2-formulaxp ∈X,

whereX and thexp’s are distinct set variables. Plainly,Q is propositionally satisfiable if and only if the
∀π

0,2-formulaψQ is satisfiable. The following lemma summarizes the above considerations.

Lemma 3. For any integer constant h≥ 0, the s.p. for(∀π
0,2)

≤h-formulae isNP-complete.

It is noticeable that, despite of the large collection of set-theoretic constructs which are expressible
by ∀π

0,2-formulae (see Table 1), some very common map-related operators like domain, range, and map
image can not be expressed by∀π

0,2-formulae in full generality, but only in restricted contexts. In the next
section we prove that dropping any of such restrictions triggers undecidability.

5 Some undecidable extensions of∀π
0,2

In this section we prove the undecidability of any extensionof ∀π
0,2 which allows one to express literals of

the formx⊆ dom( f ). As we will see, analogous undecidability results hold alsofor similar extensions
of ∀π

0,2 in the case of other map related constructs such as range, mapimage, and map composition. Our
proof will be carried out via a reduction of theDomino Problem, a well-known undecidable problem
studied in [2] (see also [3]), which asks for a tiling of the quadrantN×N subject to a finite set of
constraints.
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Definition 1 (Domino problem). A domino systemis a tripleD= (D,H,V), where D= {d1, . . . ,dℓ} is a
finite nonempty set ofdomino types, and H and V , respectively thehorizontalandvertical compatibility
conditions, are two functions which associate to each domino type d∈D a subset of D, respectively H(d)
and V(d).

A tiling t for a domino systemD = (D,H,V) is any mapping which associates a domino type in D
to each ordered pair of natural numbers inN×N. A tiling t is said to becompatibleif and only if
t[m+ 1,n] ∈ H(t[m,n]) and t[m,n+ 1] ∈ V(t[m,n]) for all n,m∈ N. Thedomino problemconsists in
determining whether a domino system admits a compatible tiling.

In order to reformulate the domino problem in set-theoreticterms, we make use of the following
set-theoretic variant of Peano systems (see, for instance,[14]).

Definition 2 (Peano systems). Let π be a pairing-function and letN ,Z ,S be three sets in the von
Neumann hierarchy of sets. The tupleS = (N ,Z ,S ,π) is said to be a Peano system if it satisfies the
following conditions:

(P1) N is a set to whichZ belongs;

(P2) S ⊆ N ×π N is a total function overN , i.e., a single-valued map with domainN ;

(P3) S is injective;

(P4) Z is not in the range ofS ;

(P5) for each X⊆ N the following holds:

(Z ∈ X∧ (∀n∈ N )(n∈ X −→ S n∈ X))−→ X = N .

The first Peano system was devised by G. Peano himself. It can be characterized asS0=(N0,S0, /0,πKur),
whereN0 is the minimal set containing the empty set /0 and satisfying(∀u∈ N0)({u} ∈ N0), andS0 is
the relation overN0 such thatπKur(u,v) ∈ S0 if and only if u∈ v.4

The domino problem can be easily reformulated in pure set-theoretic terms. To this purpose, we
observe that any tilingt for a domino system induces a partitioning of the integer plane N×N, as it
associates exactly one domino type to each pair〈n,m〉 ∈ N×N. Hence, given a domino systemD =
({d1, . . . ,dℓ},H,V), the domino problem forD can be expressed in set-theoretic terms as the problem of
deciding whether there exists a partitioningP= (A1, . . . ,Aℓ) of N ×π N , for some fixed Peano system
S = (N ,Z ,S ,π), such that for allu,v,u′,v′ ∈ N , and for all 1≤ i, j ≤ ℓ such thatπ(u,v) ∈ Ai and
π(u′,v′) ∈ A j ,

(D1) if π(u,u′) ∈ S (i.e.,u′ is the successor ofu) andv= v′ thend j ∈ H(di), and

(D2) if π(v,v′) ∈ S (i.e.,v′ is the successor ofv) andu= u′ thend j ∈V(di).

Notice that from the properties of Peano systems it follows that if a domino systemD admits a
compatible tilingt then we can construct a partitioning of the integer plane which satisfies(D1) and(D2)
however the Peano system is chosen.

All instances of the domino problem can be formalized with normalized∀π
0,2-conjunctions extended

with two positive literals of the formx ⊆ dom( f ), with x ∈ SVarsand f ∈ MVars, where the obvious
semantics for the operatordom(·) is I(dom( f )) =Def {u ∈ V : [u,v] ∈ I f , for somev ∈ V } , for any
interpretationI . In view of the undecidability of the domino problem, this yields the undecidability of
the s.p. for the class∀π+2dom

0,2 of normalized∀π
0,2-conjunctions extended with two positive literals of the

form x⊆ dom( f ), proved in the following theorem.

4In the original definition the pairing function was not specified.
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Theorem 2. The s.p. for∀π+2dom
0,2 , namely the class of normalized∀π

0,2-conjunctions extended with two
positive literals of the form x⊆ dom( f ), is undecidable.

Proof. Let D = (D,H,V), with D = {d1, . . . ,dℓ}, be a domino system. We will show how to construct
in polynomial time a formulaϕD of ∀π+2dom

0,2 which is satisfiable if and only if there exists a partitioning
of the integer plane which satisfies conditions(D1) and (D2), so that the undecidability of the s.p. for
∀π+2dom

0,2 will follow directly from the undecidability of the domino problem.
Let N, Z be two distinct set variables, and letS be a map variable. In addition, letQ1, . . . ,Qℓ be

pairwise distinct map variables, which are also distinct from S. These are intended to represent the
blocks of the partition of the integer plane induced by a tiling. To enhance the readability of the formula
ϕD we are about to construct, we introduce some abbreviations which will also make use of some map
constructs defined in Table 1. To begin with, we put

partition(Q1, . . . ,Qℓ;N×N) =Def N×N⊆ Q1∪ . . .∪Qℓ ∧
∧

i 6= j

(Qi ∩Q j = /0) .

Plainly, for every interpretation I, we haveI |= partition(Q1, . . . ,Qℓ;N×N) if and only if (IQ1, . . . , IQℓ)
partitions I(N×N). Next we define the formulaehori and veri , for i = 1, . . . , ℓ, which will encode
respectively the horizontal and the vertical compatibility constraints:

hori =Def S
−1◦Qi ⊆

⋃

dj∈H(di )

Q j , veri =Def Qi ◦S⊆
⋃

dj∈V(di)

Q j .

Finally, we denote withis Peano(N,Z,S) the following formula:

is Peano(N,Z,S) =Def Z∈N∧bijective(S)∧dom(S) =N∧ range(S) = (N\{Z})∧(∀[x,y] ∈ S)(x∈ y).

Notice thatrange(S) = (N \ {Z}) is equivalent todom(S−1) = (N \ {Z}). In addition, a literal of the
form x= dom( f ) can obviously be expressed by the conjunction(∀[x′,y′] ∈ f )(x′ ∈ x) ∧ x⊆ dom( f ) .

Next we show that the formulais Peano(N,Z,S) is satisfiable and correctly characterizes Peano
systems, in the sense that ifI |= is Peano(N,Z,S) for an interpretationI , then (IN, IZ, IS,π I ) is a
Peano system. Given any interpretationI such thatIN = N0, IS = S0, IZ = /0, andπ I = πKur, I |=
is Peano(N,Z,S) follows from the very definition ofS0, so thatis Peano(N,Z,S) is satisfiable. In
addition, if I |= is Peano(N,Z,S) for an interpretationI , it can easily be proved that(IN, IZ, IS,π I )
is a Peano system. Indeed(P1), (P2), (P3), and (P4) follow readily from the first four conjuncts of
is Peano(N,Z,S). Concerning(P5), we proceed by contradiction. Thus, let us assume that thereexists
a proper subsetX of IN such that the following holds

IZ ∈ X∧ (∀n,n′ ∈ IN)
(

(n∈ X∧π I (n,n′) ∈ IS)−→ n′ ∈ X
)

(12)

and letu be a set inIN \X with minimal rank. We must haveu 6= IZ, in force of the first conjunct of
(12), and thusu∈ range(IS) must hold, as we assumed thatI correctly models the conjunctrange(S) =
(N\{Z}) of the formulais Peano(N,Z,S). Hence, there must exist a setv such thatπ(v,u) ∈ IS. Since
I |= (∀[x,y] ∈ S)(x∈ y), v must have rank strictly less thanu, so thatv∈ X must hold, as by assumption
u has minimal rank inIN \X. But (12) would yieldu ∈ X, which contradicts our initial assumption
u∈ IX \N.

We are now ready to define the formulaϕD of ∀π+2dom
0,2 intended to express that the domino system

D= (D,H,V) admits a compatible tiling. This is:

ϕD =Def is Peano(N,Z,S)∧partition(Q1, . . . ,Qℓ;N×N)∧
ℓ
∧

i=1

hori ∧
ℓ
∧

i=1

veri .
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Observe thatϕD can be expanded so as to involve only two literals of the formx⊆ dom( f ).
We show next thatϕD is satisfiable if and only if the domino systemD admits a compatible tiling.

Let us first assume thatϕD is satisfiable, and letI be a model forϕD. Plainly, (IN, IZ, IS,π I ) is a Peano
system, asis Peano(N,Z,S) is a conjunct ofϕD. In addition,(IQ1, . . . , IQℓ) partitionsIN× IN, since
I |= partition(Q1, . . . ,Qℓ;N×N). It remains to prove that the partition(IQ1, . . . , IQℓ) is induced by a
compatible tiling of the domino systemD, i.e., that properties(D1) and(D2) hold. Thus letu,u′,v∈ IN
such thatπ I (u,v) ∈ IQi , π I (u′,v) ∈ IQ j , andπ I (u,u′) ∈ IS, for some 1≤ i, j ≤ ℓ. Plainly π I (u′,v) ∈
I(S−1 ◦Qi), so that fromI |= hori it follows d j ∈ H(di), proving(D1). Likewise, letu,v,v′ ∈ IN be such
thatπ I (u,v) ∈ IQi , π I (u,v′) ∈ IQ j , andπ I (v,v′) ∈ IS, for some 1≤ i, j ≤ ℓ. Thusπ I (u,v′) ∈ I(Qi ◦S), so
that fromI |= veri we obtaind j ∈V(di), proving(D2).

Conversely, let us suppose thatD admits a compatible tiling and let(A1, . . . ,Aℓ) be the induced par-
titioning of N0×N0 which satisfies(D1) and(D2), relative to the Peano systemS0 = (N0, /0,S0,πKur).
We prove thatϕD is satisfied be any interpretationI such that

π I = πKur , IN= N0 , IZ= /0, IS= S0 , IQi = Ai (for i = 1, . . . , ℓ) .

Plainly, I models correctlyis Peano(N,Z,S). In addition, I |= partition(Q1, . . . ,Qℓ,N×N), as we
assumed that(IQ1, . . . , IQℓ) = (A1, . . . ,Aℓ) is a partitioning ofIN× IN = N0×N0. Next we prove that
I models correctly the conjunctshori of ϕD, for i = 1, . . . , ℓ. To this purpose, letu, v be any two sets such
thatπ I (u,v)∈ I(S−1◦Qi), for some 1≤ i ≤ ℓ. Then, there must exist a setu′ such thatπ I (u′,v)∈ IQi, and
π I (u′,u) ∈ IS= S0. Henceπ I (u,v) must belong to someA j = IQ j , for 1≤ j ≤ ℓ, such thatd j ∈ H(di),
proving I |= hori . Analogously, one can show thatI |= veri , for i = 1, . . . , ℓ, thus proving thatI |= ϕD and
in turn concluding the proof of the theorem.

Because of the large number of set-theoretic constructs expressible in∀π
0,2, the undecidability of

various other extensions of normalized∀π
0,2-conjunctions easily follows from Theorem 2.

Corollary 2. The class of normalized∀π
0,2-conjunctions extended with two literals of any of the following

types is undecidable:
x⊆ range( f ) , h⊆ f ◦g, y⊆ f [x] , (13)

where x,y∈ SVars and f,g,h∈ MVars.

Proof. In view of Theorem 2, it is enough to show that any literal of the form x ⊆ dom( f ) can be ex-
pressed with normalized∀π

0,2-conjunctions extended withoneliteral of any of the types (13). Concerning
the case of literals of the typesx⊆ range( f ), h⊆ f ◦g it suffices to observe thatx⊆ dom( f ) is equivalent
to each of the two formulaex ⊆ range( f−1) and id(x) ⊆ f ◦ f−1, and that map identityid(x) and map
inverse f−1 are expressible by∀π

0,2-formulae, as shown in Table 1.
Finally, concerning literals of the formy⊆ f [x], it is enough to observe that for every set variableRf

distinct fromx we have

• I |= x⊆ f−1[Rf ]→ x⊆ dom( f ), for every interpretationI ;

• if I |= x⊆ dom( f ), for some interpretationI , thenJ |= x⊆ f−1[Rf ], whereJ is the{Rf}-variant of
I such thatJRf = range(I f ).

Therefore, a∀π+2dom
0,2 -formula ψ =Def ϕ ∧ x ⊆ dom( f )∧ y ⊆ dom(g), whereϕ is a normalized∀π

0,2-
conjunction, is equisatisfiable withϕ ∧x⊆ f−1[Rf ]∧y⊆ g−1[Rg], whereRf andRg are two fresh distinct
set variables not occurring inψ .
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In the proof of Theorem 1 we provided a reduction of the s.p. for normalized∀π
0,2-conjunctions to the

s.p. for∀π
0-formulae. Therefore, the undecidability results of Theorem 2 and Corollary 2 hold also for

the corresponding extensions of∀π
0-formulae.

6 Conclusions and plans for future works

In this paper we presented a quantified sublanguage of set theory, called∀π
0,2, which extends the language

∀0 studied in [4] with quantifiers involving ordered pairs. We reduced its satisfiability problem to the
same problem for formulae of the fragment studied in [6]. Theresulting decision procedure runs in non-
deterministic exponential time. However, if one restrictsto formulae with quantifier prefixes of length
bounded by a constant, the decision procedure runs in non-deterministic polynomial time. It turns out
that such restricted formulae still allow one to express a large number of useful set-theoretic constructs,
as reported in Table 1. Finally, we also proved that by slightly extending∀π

0,2-formulae with few literals
(at least two) of any of the typesx ⊆ dom( f ), x ⊆ range( f ), x ⊆ f [y], andh ⊆ f ◦ g, one runs into
undecidability.

Other extensions of∀π
0,2 are to be investigated, in particular those involving the transitive closure of

maps. Also, the effects of allowing nesting of quantifiers should be further studied, extending the recent
results [16, 17] to our context.

In contrast with description logics, the semantics of our language ismulti-level, as most of the lan-
guages studied in the context of Computable Set Theory. Thischaracteristic may play a central role when
applying set-theoretic languages to knowledge representation, with particular reference to themetamod-
eling issue (see [20, 15]), which affects the description logics framework. However, the multi-level
feature is limited in∀π

0,2-formulae, since clauses likef ∈ x, [ f ,g] ∈ h, with x a set variable andf , g, andh
map variables, are not expressible in it. In light of this, weintend to investigate extensions of the theory
∀π

0,2 which also admit constructs of these forms, and study applications of these in the field of knowledge
representation.

Finally, we intend to study correlations between our language∀π
0,2 andDisjunctive Datalog(cf. [11])

in order to use some of the machinery already available for the latter to simplify the implementation of
an optimized satisfiability test for the whole fragment∀π

0,2, or just for aHorn-like restriction of it.
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