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In this paper we revisit the regular-language representation of game semantics of second-order re-
cursion free Idealized Algol with infinite data types. By using symbolic values instead of concrete
ones we generalize the standard notion of regular-languageand automata representations to that of
corresponding symbolic representations. In this way termswith infinite data types, such as integers,
can be expressed as finite symbolic-automata although the standard automata interpretation is infi-
nite. Moreover, significant reductions of the state space ofgame semantics models are obtained. This
enables efficient verification of terms, which is illustrated with several examples.

1 Introduction

Game semantics [1, 2, 16] is a technique for compositional modelling of programming languages, which
gives both sound and complete (fully abstract) models. Types are interpreted bygames(or arenas)
between a Player, which represents the term being modelled,and an Opponent, which represents the
environment in which the term is used. The two participants strictly alternate to make moves, each of
which is either a question (a demand for information) or an answer (a supply of information). Compu-
tations (executions of terms) are interpreted asplaysof a game, while terms are expressed asstrategies,
i.e. sets of plays, for a game. It has been shown that game semantics model can be given certain kinds of
concrete automata-theoretic representations [9, 12, 13],and so it can serve as a basis for software model
checking and program analysis. However, the main limitation of model checking in general is that it can
be applied only if a finite-state model is available. This problem arises when we want to handle terms
with infinite data types.

Regular-language representation of game semantics of second-order recursion-free Idealized Algol
with finite data types provides algorithms for automatic verification of a range of properties, such as
observational-equivalence, approximation, and safety. It has the disadvantage that in the presence of
infinite integer data types the obtained automata become infinite state, i.e. regular-languages have infinite
summations, thus losing their algorithmic properties. Similarly, large finite data types are likely to make
the automata infeasible. In this paper we redefine the (standard) regular-language representation [12] at
a more abstract level so that terms with infinite data types can be represented as finite automata, and so
various program properties can be checked over them. The idea is to transfer attention from the standard
form of automata to what we call symbolic automata. The representation of values constitutes the main
difference between these two formalisms. In symbolic automata, instead of assigning concrete values to
identifiers occurring in terms, they are left as symbols. Operations involving such identifiers will also
be left as symbols. Some of the symbols will be guarded by boolean expressions, which indicate under
which conditions these symbols can be performed.

The paper is organised as follows. The language we consider here is introduced in Section 2. Sym-
bolic representation of algorithmic game semantics is defined in Section 3. Its correctness and suitability
for verification of safety properties are shown in Section 4.In Section 5 we discuss some extensions of

http://dx.doi.org/10.4204/EPTCS.96.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


100 Symbolic Representation of Algorithmic Game Semantics

the language, such as arrays, and how they can be representedin the symbolic model. A prototype tool,
which implements this translation, as well as some examplesare desribed in Section 6.

Related work. By representing game semantic models as symbolic automata,we obtain a predicate
abstraction [14, 6] based method for verification. In [3] it was also developed a predicate abstraction
from game semantics. This was enabled by extending the models produced using game semantics such
that the state (store) is recorded explicitly in the model byusing so-called stateful plays. However, in
our work we achieved predicate abstraction in a more naturalway without changing the game semantic
models, and also for terms with infinite data types.

Symbolic techniques, in which data is not represented explicitly but symbolically, have found a
number of applications. For example, symbolic execution and verification of programs [4], symbolic
program analysis [5], and symbolic operational semantics of process algebras [15].

2 The Language

Idealized Algol (IA) [1, 2] is a well studied language which combines call-by-nameλ -calculus with the
fundamental imperative features and locally-scoped variables. In this paper we work with its second-
order recursion-free fragment (IA2 for short).

The data typesD are integers and booleans (D ::= int | bool). The base typesB are expressions,
commands, and variables (B ::= expD | com | varD). We consider only first-order function typesT
(T ::= B | B→ T).

Terms are formed by the following grammar:

M ::=x | v | skip | M opM | M;M | ifM thenM elseM | whileM doM
| M := M |!M | newD x:=v inM |mkvarDMM |λ x.M | MM

wherev ranges over constants of typeD. Expression constants are infinite integers and booleans. The
standard arithmetic-logic operationsop are employed. We have the usual imperative constructs: sequen-
tial composition, conditional, iteration, assignment, de-referencing, and “do nothing” commandskip.
Block-allocated local variables are introduced by anewconstruct, which initializes a variable and makes
it local to a given block. The constructormkvar is used for creating “bad” variables. We have the stan-
dard functional constructs for function definition and application. Well-typed termsare given by typing
judgements of the formΓ ⊢ M : T, whereΓ is a typecontextconsisting of a finite number of typed free
identifiers, i.e. of the formx1 : T1, . . . ,xk : Tk. Typing rules of the language are given in [1, 2].

The operational semantics of our language is given for termsΓ ⊢ M : T, such that all identifiers inΓ
are variables, i.e.Γ = x1 : varD1, . . . ,xk : varDk. It is defined by a big-step reduction relation:

Γ ⊢ M,s=⇒ V,s′

where s, s′ represent thestatebefore and after reduction. The state is a function assigning data values
to the variables inΓ. We denote byV terms incanonical formdefined byV ::= x | v | λ x.M | skip |
mkvarDMN. Reduction rules are standard (see [1, 2] for details).

Given a termΓ ⊢ M : com, where all identifiers inΓ are variables, we say thatM terminatesin state
s, writtenM,s⇓, if Γ ⊢ M,s=⇒ skip,s′ for some state s′. If M is a closed term then we abbreviate the
relationM, /0⇓ with M ⇓. We say that a termΓ ⊢ M : T is anapproximateof a termΓ ⊢ N : T, denoted by
Γ ⊢ M⊏

∼ N, if and only if for all terms-with-holeC[−] : com, such that⊢ C[M] : com and⊢ C[N] : com
are well-typed closed terms of typecom, if C[M] ⇓ thenC[N] ⇓. If two terms approximate each other
they are consideredobservationally-equivalent, denoted byΓ ⊢ M ∼= N.
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3 Symbolic Game Semantics

We start by introducing a number of syntactic categories necessary for construction of symbolic au-
tomata. LetSymbe a countable set of symbolic names, ranged over by upper case letters X, Y, Z. For
any finiteW⊆ Sym, the functionnew(W) returns a minimal symbolic name which does not occur inW,
and setsW := W∪ new(W). A minimal symbolic name not inW is the one which occurs earliest in a
fixed enumerationX1,X2, . . . of all possible symbolic names. A set of expressionsExp, ranged over bye,
is defined as follows:

e ::=a | b
a ::=n | Xint | aopa
b ::= tt | ff | Xbool | a = a | a ≤ a | ¬b | b∧ b

wherea ranges over arithmetic expressions (AExp), andb over boolean expressions (BExp). We use
superscripts to denote the data type of a symbolic nameX. We will often omit to write them, when they
are clear from the context.

Let A be an alphabet of letters. We define asymbolic alphabetA sym induced byA as follows:

A
sym= A ∪{?X,e | X ∈ Sym,e∈ Exp}

The letters of the form ?X are calledinput symbols. They generate new symbolic names, i.e. ?X means
letX = new(W) in . . .. We useα to range overA sym. Next we define aguarded alphabetA gu induced
by A as the set of pairs of boolean conditions and symbolic letters, i.e. we have:

A
gu = {[b,α〉 | b∈ BExp,α ∈ A

sym}

A guarded letter[b,α〉 means that the symbolic letterα occurs only if the booleanb evaluates to true, i.e.
if (b= tt) thenα else/0. We useβ to range overA gu. We will often writeα for the guarded letter[tt,α〉.
A word [b1,α1〉 · [b2,α2〉 . . . [bn,αn〉 over guarded alphabetA gu can be represented as a pair[b,w〉, where
b= b1 ∧ b2 ∧ . . . ∧ bn is a boolean andw= α1 ·α2 . . .αn is a word of symbolic letters.

We now show how IA2 with infinite integers is interpreted by symbolic automata,which will be
denoted by extended regular expressions. For simplicity the translation is defined for terms inβ -normal
form. If a term hasβ -redexes, it is first reduced toβ -normal form syntactically by substitution. In this
setting, types (arenas) are represented asguarded alphabetsof moves, plays of a game aswordsover a
guarded alphabet, and strategies assymbolic automata(regular languages) over a guarded alphabet. The
symbolic automata and regular languages, denoted byS (R) andL (R) respectively, are specified using
extended regular expressions R. They are defined inductively over finite guarded alphabetsA gu using
the following operations:

/0 ε β R·R′ R∗ R+R′ R∩R′

R |A ′gu R[R′/w] R〈α〉 R′ o
9Bgu R R⊲⊳ R′

whereR,R′ ranges over extended regular expressions,A gu,Bgu over finite guarded alphabets,β ∈ A gu,
α ∈ A sym, A ′gu ⊆ A gu andw∈ A gu∗.

Constants /0,ε andβ denote the languages /0,{ε} and{β}, respectively. ConcatenationR·R′, Kleene
starR∗, unionR+R′ and intersectionR∩R′ are the standard operations. RestrictionR |A ′gu replaces all
symbolic letters fromA ′gu with ε in all words of R, but keeps all boolean conditions. Substitution
R[R′/w] is the language ofR where all occurrences of the subwordw have been replaced by the words
of R′. Given two symbolsα ∈ A sym, β ∈ A gu, β 〈α〉 is a new letter obtained by tagging the latter with
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the former. If a letter is tagged more than once, we write(β 〈α1〉)〈α2〉 = β 〈α2,α1〉. We define the alphabet
A gu〈α〉 = {β 〈α〉 | β ∈ A gu}. Composition of regular expressionsR′ defined overA gu〈1〉+Bgu〈2〉 andR
overBgu〈2〉+C gu〈3〉 is given as follows:

R′ o
9Bgu〈2〉 R= {w

[

[b∧ b1 ∧ b2 ∧ b′1 ∧ b′2 ∧ α1 = α ′
1 ∧ α2 = α ′

2,s〉
〈1〉/

[b1,α1〉
〈2〉 · [b2,α2〉

〈2〉
]

| w∈ R, [b′1,α ′
1〉

〈2〉 · [b,s〉〈1〉 · [b′2,α ′
2〉

〈2〉 ∈ R′}

whereR′ is a set of words of form[b′1,α ′
1〉

〈2〉 · [b,s〉〈1〉 · [b′2,α ′
2〉

〈2〉, such that[b′1,α ′
1〉

〈2〉, [b′2,α ′
2〉

〈2〉 ∈Bgu〈2〉

and[b,s〉 contains only letters fromA gu〈1〉. So all letters ofBgu〈2〉 are removed from the composition,
which is defined over the alphabetA gu〈1〉+C gu〈3〉. The shuffle operation of two regular languages is
defined asL (R) ⊲⊳L (R′) =

⋃

w1∈L (R),w2∈L (R′)w1 ⊲⊳w2, wherew⊲⊳ ε = ε ⊲⊳w=w anda·w1 ⊲⊳ b·w2 =
a· (w1 ⊲⊳ b·w2)+b· (a·w1 ⊲⊳ w2). It is a standard result that any extended regular expression obtained
from the operations above denotes a regular language [12, pp. 11–12], which can be recognised by a
finite (symbolic) automaton [17].

Each typeT is interpreted by a guarded alphabet of movesA
gu
[[T]] induced byA[[T]]. The alphabetA[[T]]

contains two kinds of moves:questionsandanswers. They are defined as follows.

A[[int]] = {. . . ,−n,−n+1, . . . ,n,n+1, . . .} A[[bool]] = {tt, ff}

A[[expD]] = {q}∪A[[D]] A[[com]] = {run,done}

A[[varD]] = {read,write(a),a,ok | a∈ A[[D]]}

A
gu

[[B〈1〉
1 →...→B〈k〉

k →B]]
= ∑

1≤i≤k

A
gu〈i〉
[[Bi ]]

+A
gu
[[B]]

Note that function types are tagged by a superscript (〈i〉) in order to keep record from which type,
i.e. which component of the disjoint union, each move comes from. The letters in the alphabetA[[T]]

representmoves(observable actions) that a term of typeT can perform. For example, inA[[expD]] there is
a question moveq to ask for the value of the expression, and values fromA[[D]] to answer the question.
For commands, inA[[com]] there is a question moverun to initiate a command, and an answer movedone
to signal successful termination of a command. For variables, we have moves for writing to the variable,
write(a), acknowledged by the moveok, and for reading from the variable, a question moveread, and
corresponding to it an answer fromA[[D]].

For any (β -normal) term, we define a regular-language which represents its game semantics, i.e. its
set of complete plays. Every complete play represents the observable effects of a completed computation
of the given term. It is given as a guarded word[b,w〉, where the booleanb is also calledplay condition.
Assumptions about a play (computation) to be feasible are recorded in the play condition. For infeasible
plays, the play condition is inconsistent (unsatisfiable),thus no assignment of concrete values to symbolic
names exists that makes the play condition true. So it is desirable for any play to check the consistency
(satisfiability) of its play condition. If the play condition is found to be inconsistent, this play is discarded
from the final model of the corresponding term. The regular expression forΓ ⊢ M : T is denoted[[Γ ⊢
M : T]], and it is defined over the guarded alphabetA

gu
[[Γ⊢T]] defined as:

A
gu
[[Γ⊢T]] =

(

∑
x:T′∈Γ

A
gu〈x〉
[[T′]]

)

+A
gu
[[T]]

Free identifiersx : T ∈ Γ are represented by the copy-cat regular expressions given in Table 1, which
contain all possible behaviours of terms of that type. They provide a generic closure of an open program
term. For example,x : expD〈x〉 ⊢ x : expD is modelled by the wordq ·q〈x〉·?X〈x〉 ·X. Its meaning is that
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[[Γ,x : B〈x,1〉
1 → . . .B〈x,k〉

k → expD〈x〉 ⊢ x : B〈1〉
1 → . . .B〈k〉

k → expD]] = q·q〈x〉 ·
(

∑1≤i≤k R〈x,i〉
Bi

)∗
·?X〈x〉 ·X

[[Γ,x : B〈x,1〉
1 → . . .B〈x,k〉

k → com〈x〉 ⊢ x : B〈1〉
1 → . . .B〈k〉

k → com]] =

run · run〈x〉 ·
(

∑1≤i≤kR〈x,i〉
Bi

)∗
·done〈x〉 ·done

[[Γ,x : B〈x,1〉
1 → . . .B〈x,k〉

k → varD〈x〉 ⊢ x : B〈1〉
1 → . . .B〈k〉

k → varD]] =
(

read· read〈x〉 ·
(

∑1≤i≤k R〈x,i〉
Bi

)∗
·?Z〈x〉 ·Z

)

+
(

write(?Z′) ·write(Z′)〈x〉 ·
(

∑1≤i≤k R〈x,i〉
Bi

)∗
·ok〈x〉 ·ok

)

R〈x,i〉
expD = q〈x,i〉 ·q〈i〉·?Z〈i〉 ·Z〈x,i〉

R〈x,i〉
com = run〈x,i〉 · run〈i〉 ·done〈i〉 ·done〈x,i〉

R〈x,i〉
varD =(read〈x,i〉 · read〈i〉·?Z〈i〉 ·Z〈x,i〉)+(write(?Z′)〈x,i〉 ·write(Z′)〈i〉 ·ok〈i〉 ·ok〈x,i〉)

Table 1: Free Identifiers

[[Γ ⊢ v : expD]] = q ·v
[[Γ ⊢ skip : com]] = run ·done

[[Γ ⊢ c(M1, . . . ,Mk) : B′]] = [[Γ ⊢ M1 : B〈1〉
1 ]] o

9A
gu〈1〉
[[B1]]

· · ·

· · · [[Γ ⊢ Mk : B〈k〉
k ]] o

9A
gu〈k〉
[[Bk]]

[[c : B〈1〉
1 × . . .B〈k〉

k → B′]]

[[Γ ⊢ MN : T]] = [[Γ ⊢ N : B〈1〉]] o
9A

gu〈1〉
[[B]]

[[Γ ⊢ M : B〈1〉 → T]]

[[Γ ⊢ newD x := vinM : B]] =
(

[[Γ,x:varD ⊢ M]]∩ (γx
v ⊲⊳ A[[Γ⊢B]]gu∗)

)

|
A

〈x〉
[[varD]]

γx
v = (read〈x〉 ·v〈x〉)∗ ·

(

write(?Z)〈x〉 ·ok〈x〉 · (read〈x〉 ·Z〈x〉)∗
)∗

Table 2: Language terms

Opponent starts the play by asking what is the value of this expression with the moveq, and Player re-
sponds by playingq〈x〉 (i.e. what is the value of the non-local expressionx). Then Opponent provides the
value ofx by using a new symbolic nameX, which will be also the value of this expression. Languages
R〈x,i〉

B contain plays representing a function which evaluates itsi-th argument.
Note that whenever an input symbol ?X is met in a play, a new symbolic name is created, which

binds all occurrences ofX that follow in the play until a new ?X is met. For example,[[f : expint〈f ,1〉 →
expint〈f 〉 ⊢ f : expint〈1〉 → expint]] = q · q〈f 〉 ·

(

q〈f ,1〉 · q〈1〉·?Z〈1〉 ·Z〈f ,1〉
)∗
·?X〈f 〉 ·X is a model for a non-

local functionf which may evaluate its argument zero or more times. The play corresponding tof which
evaluates its argument two times is given as:q·q〈f 〉 ·q〈f ,1〉 ·q〈1〉 ·Z〈1〉

1 ·Z〈f ,1〉
1 ·q〈f ,1〉 ·q〈1〉 ·Z〈1〉

2 ·Z〈f ,1〉
2 ·X〈f 〉 ·X.

Note that letters tagged withf represent the actions of calling and returning from the function, while
letters tagged withf .1 are the actions caused by evaluating the first argument off .

In Table 2 terms are interpreted by regular expressions describing their sets of complete plays. An
integer or boolean constant is modeled by a play where the initial questionq is answered by the value
of that constant. The only play forskip responds torun with done. A composite termc(M1, . . . ,Mk)
consisting of a language construct ‘c’ and subtermsM1, . . . ,Mk is interpreted by composing the regular
expressions forM1, . . . ,Mk, and a regular expression for ‘c’. The representation of language constructs
‘c’ is given in Table 3. In the definition for local variables, a ‘cell’ regular expressionγx

v is used to
remember the initial and the most-recently written value into the variablex. Notice that all symbols used
in Tables 1,2,3 are of data typeD, except the symbolZ in if andwhile constructs, which is of data type
bool.

We define an effective alphabet of a regular expression to be the set of all letters appearing in the
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[[op : expD〈1〉
1 × expD〈2〉

2 → expD]] = q·q〈1〉·?Z〈1〉 ·q〈2〉·?Z′〈2〉 · (ZopZ′)

[[; : com〈1〉× com〈2〉 → com]] = run · run〈1〉 ·done〈1〉 · run〈2〉 ·done〈2〉 ·done

[[if : expbool〈1〉× com
〈2〉
1 × com

〈3〉
2 → com]] = [tt, run〉 · [tt,q〈1〉〉 · [tt,?Z〈1〉〉·

(

[Z, run〈2〉〉 · [tt,done〈2〉〉+[¬Z, run〈3〉〉 · [tt,done〈3〉〉
)

· [tt,done〉
[[while : expbool〈1〉× com〈2〉 → com]] = [tt, run〉 · [tt,q〈1〉〉 · [tt,?Z〈1〉〉·

(

[Z, run〈2〉〉 · [tt,done〈2〉〉 · [tt,q〈1〉〉 · [tt,?Z〈1〉〉
)∗

· [¬Z,done〉
[[:= : varD〈1〉× expD〈2〉 → com]] = run ·q〈2〉·?Z〈2〉 ·write(Z)〈1〉 ·ok〈1〉 ·done
[[! : varD〈1〉 → expD]] = q· read〈1〉·?Z〈1〉 ·Z

Table 3: Language constructs

language denoted by that regular expression. Then we can show.

Proposition 1. For any termΓ ⊢ M : T, the effective alphabet of[[Γ ⊢ M : T]] is a finite subset ofA gu
[[Γ⊢T]].

Any term Γ ⊢ M : T from IA2 with infinite integers is interpreted by extended regular expression
without infinite summations defined over finite alphabet. So the following is immediate.

Theorem 1. For any IA2 term, the setL [[Γ ⊢ M : T]] is a symbolic regular-language without infinite
summations over finite alphabet. Moreover, a finite symbolicautomataS [[Γ ⊢ M : T]] which recognizes
it is effectively constructible.

Proof. The proof is by induction on the structure ofΓ ⊢ M : T.
An automaton is a tuple(Q, i,δ ,F) whereQ is the finite set of states,i ∈ Q is the initial state,δ is the

transition function, andF ⊆ Q is the set of final states. We now introduce two auxiliary operations. Let
A′ = (Q′, i′,δ ′,F′) be an automaton, thenA= rename(A′, tag) is defined as:
Q= Q′ i = i′ F = F′

δ = {q1
[b,m〉
−→ q2 ∈ δ ′ | q1 6= i′,q2 6∈ F′}+

{i′
[b,m〈tag〉〉
−→ q | i′

[b,m〉
−→ q∈ δ ′} +{q1

[b,m〈tag〉〉
−→ q2 | q1

[b,m〉
−→ q2 ∈ δ ′,q2 ∈ F′}

Let A1 = (Q1, i1,δ1,F1) andA2 = (Q2, i2,δ2,F2) be two automata, such that all transitions going out
of i2 and going to a state fromF2 are tagged withtag. DefineA= compose(A1,A2, tag) as follows:
Q= Q1+Q2\{i2,F2} i = i1 F = F1

δ = {q1
[b,m〉
−→ q′1 ∈ δ1 | m 6= n〈tag〉} + {q2

[b,m〉
−→ q′2 ∈ δ2 | m 6= n〈tag〉}+

{q1
[b1∧b2∧m1=m2,ε〉

−→ q′2 | q1
[b1,m

〈tag〉
1 〉

−→ q′1 ∈ δ1, i2
[b2,m

〈tag〉
2 〉

−→ q′2 ∈ δ2,{m1,m2}are questions}+

{q2
[b1∧b2∧m1=m2,ε〉

−→ q′1 | q1
[b1,m

〈tag〉
1 〉

−→ q′1 ∈ δ1,q2
[b2,m

〈tag〉
2 〉

−→ q′2 ∈ δ2, q′2 ∈ F2,{m1,m2}are answers}
LetAM, AN, andAo

9
be automata representingΓ⊢M, Γ⊢N, and construct ; (see Table 3), respectively.

The unique automaton representingΓ ⊢ M ; N is defined as:

AM ; N = compose(compose(Ao
9
, rename(AM ,1),1), rename(AN ,2),2)

The other cases for constructs are similar.
The automatonA = (Q, i,δ ,F) for [[Γ ⊢ newD x := vinM]] is constructed in two stages. First we

eliminatex-tagged symbolic letters fromAM = (QM, iM,δM ,FM), which represents[[Γ,x : varD ⊢ M]], by
replacing them withε . We introduce a new symbolic nameX to keep track of what changes tox are
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run

done

runf runf,1

q x

f

?X
x q y ?Y

y

done

X=Y, donef,1

X Y, run¹ abort
doneabort

donef,1

Figure 1: The symbolic representation of the strategy forM1.

made by eachx-tagged move.
Qε = QM iε = iM Fε = FM

δε ={iM
[?X=v∧b,m〉

−→ q | iM
[b,m〉
−→ q∈ δM} +

{q1
[b,m〉
−→ q2 | q1

[b,m〉
−→ q2 ∈ δM,m 6∈{write(a)〈x〉,ok〈x〉, read〈x〉,a〈x〉}}

{q1
[?X=a′∧b1∧b2,ε〉

−→ q2 | ∃q.(q1
[b1,write(a′)〈x〉〉

−→ q∈ δM,q
[b2,ok〈x〉〉
−→ q2 ∈ δM)}

{q1
[a′=X∧b1∧b2,ε〉

−→ q2 | ∃q.(q1
[b1,read〈x〉〉
−→ q∈ δM,q

[b2,a′
〈x〉〉

−→ q2 ∈ δM)}
The final automaton is obtained by eliminatingε-letters fromAε . Note that conditions associated to

ε-letters are not removed.
Q= Qε i = iε F = Fε

δ =
(

{δε\{q1
[b,ε〉
−→ q2 | q1,q2 ∈ Qε}

)

+ {q1
[b∧bε ,m〉
−→ q2 | ∃q′ ∈ Qε .(q1

[bε ,ε〉∗
−→ q′,q′

[b,m〉
−→ q2)}

We write q1
[bε ,ε〉∗
−→ q2 if q2 is reachable fromq1 by a series ofε-transitions[b1,ε〉, . . . , [bk,ε〉, where

bε = b1 ∧ . . .bk.

Example 1. Consider the termM1:

f : comf ,1 → comf ,abort : comabort,x : expintx,y : expinty ⊢ f
(

if (x 6= y)thenabort
)

: com

in which f is a non-local procedure, andx, y are non-local expressions.
The strategy for this term represented as a finite symbolic automaton is shown in Figure 1. The model

illustrates only the possible behaviors of this term: the non-local proceduref may call its argument, zero
or more times, then the term terminates successfully withdone. If f calls its argument, arbitrary values
for x andy are read from the environment by using symbolsX andY. If they are different (X 6= Y),
then theabort command is executed. The standard regular-language representation [12] ofM1, where
concrete values are employed, is given in Figure 2. It represents an infinite-state automaton, and so it is
not suitable for automatic verification (model checking). Note that, the values for non-local expressions
x andy can be any possible integer.✷

4 Formal Properties

In [12, pp. 28–32], it was shown the correctness of the standard regular-language representation for
finitary IA2 by showing that it is isomorphic to the game semantics model [1]. As a corollary, it was
obtained that the standard regular-language representation is fully abstract.

Let [[Γ ⊢ M : T]]CR denotes the set of all complete plays in the strategy for a term Γ ⊢ M : T from
IA2 with infinite integers obtained as in [12], where concrete values in moves and infinite summations in
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run

done

runf runf,1

q x

f

1
x q y

done

done f,1

runabort

0
x

¼
¼

q y 0
y

1
y

...,-1, 1, ...
y y

...,0, 2, ...
y y¼

¼

doneabort

Figure 2: The standard representation of the strategy forM1.

regular expressions are used. Suppose that there is a special free identifierabort of type com. A term
is abort-free if it has no occurrence ofabort. We say that a term issafeif for any abort-free term-with-
hole C[−], the termC[M] does not execute theabort command. Since the standard regular-language
semantics is fully abstract, the following result is easy toshow.

Proposition 2. A term M is safe if[[Γ ⊢ M]]CR does not contain moves fromA abort
[[com]].

Let Evalbe the set of evaluations, i.e. the set of total functions from W toA[[int]]∪A[[bool]]. We useρ to
range overEval. So we haveρ(XD) ∈A[[D]] for any evaluationρ andXD ∈ W. Given a word of symbolic
lettersw, let ρ(w) be a word where every symbolic name is replaced by the corresponding concrete
value as defined byρ . Given a guarded word[b,w〉, defineρ([b,w〉) = ρ(w) if ρ(b) = tt; otherwise
ρ([b,w〉) = /0 if ρ(b) = ff . The concretization of a symbolic regular-language over a guarded alphabet is
defined as follows:γ L (R) = {ρ [b,w〉 | [b,w〉 ∈ L (R),ρ ∈ Eval}. Let [[Γ ⊢ M : T]]SR= L [[Γ ⊢ M : T]]
be the strategy obtained as in Section 3, where symbols instead of concrete values are used.

Theorem 2. For any IA2 term

γ [[Γ ⊢ M : T]]SR = [[Γ ⊢ M : T]]CR

Proof. By induction on the typing rules. The definitions of expression and command constructs are the
same.

Consider the case of free identifiers.
γ [[x : expD〈x〉 ⊢ x : expD]]SR= γ{q·q〈x〉 ·XD〈x〉 ·XD}

= {q·q〈x〉 ·ρ(XD)〈x〉 ·ρ(XD) | ρ : {XD} → A[[D]]}

= {q·q〈x〉 ·v〈x〉 ·v | v∈ A[[D]]}= [[x : expD〈x〉 ⊢ x : expD]]CR

The other cases are similar to prove.

As a corollary we obtain the following result.

Theorem 3. [[Γ ⊢ M : T]]SR is safe iff[[Γ ⊢ N : T]]CR is safe.

By Proposition 2 and Theorem 3 it follows that a term is safe ifits symbolic regular-language seman-
tics is safe. Since symbolic automata are finite state, it follows that we can use model-checking to verify
safety of IA2 terms with infinite data types.

In order to verify safety of a term we need to check whether thesymbolic automaton representing
a term contains unsafe plays. We use an external SMT solver Yices1 [11] to determine consistency of
the play conditions of the discovered unsafe plays. If some play condition is consistent, i.e. there exists
an evaluationρ that makes the play condition true, the corresponding unsafe play is feasible and it is
reported as a genuine counter-example.

1http://yices.csl.sri.com
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Figure 3: The strategy forM2.

Example 2. The termM1 from Example 1 isabort-unsafe, with the following counter-example:

run runf runf ,1 qx Xx qy Yy [X 6= Y, runabort〉 doneabort donef ,1 donef done

The consistency of the play condition is established by instructing Yices to check the formula:

(defineX:: int)
(defineY:: int)
(assert(/ = X Y))

The following satisfiable assignments to symbols are reported: X = 1 andY = 2, yielding a concrete
unsafe play:run runf runf ,1 qx 1x qy 2y runabort doneabort donef ,1 donef done. ✷

Example 3. Consider the termM2:

N : expintN,abort : comabort ⊢ newint x := 0 in

while(x< N) do x := x+1;
if (x> 0) then abort : com

The strategy for this term (suitably adapted for readability) is given in Figure 3. Observe that the
term communicates with its environment using non-local identifiers N andabort. So in the model will
only be represented actions ofN andabort. Notice that each time the term (Player) asks for a value of
N with the moveqN, the environment (Opponent) provides a new fresh value ?Z for it. The symbolX is
used to keep track of the current value ofx. Whenever a new value forN is provided, the term has three
possible options depending on the current values ofZ andX: it can terminate successfully withdone; it
can executeabort and terminate; or it can run the assignmentx:=x+1 and ask for a new value ofN.

The shortest unsafe play found in the model is:

[X = 0, run〉 qN ZN [X ≥ Z ∧ X > 0, runabort〉 doneabort done

But the play condition for it,X = 0∧ X ≥ Z ∧ X > 0, is inconsistent. The next unsafe play is:

[X1 = 0, run〉 qN Z1
N [X1 < Z1 ∧ X2 = X1+1,qN〉 Z2

N [X2 ≥ Z2 ∧ X2 > 0, runabort〉 doneabort done

Now Yices reports that the condition for this play is satisfiable, yielding a possible assignment of concrete
values to symbols that makes the condition true:X1 = 0, Z1 = 1, X2 = 1, Z2 = 0. So it is a genuine
counter-example, such that one corresponding concrete unsafe play is: run · qN · 1N · qN ·0N · runabort ·
doneabort ·done. This play corresponds to a computation which runs the body of while exactly once.
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Let us modify theM2 term as follows

newint x := 0 in while(x< N) do x := x+1; if (x> k) then abort

wherek> 0 is any positive integer. The model for this modified term is the same as shown in Figure 3,
except that conditions associated with lettersrunabort (resp.,done) areX ≥ Z ∧ X > k (resp.,X ≥ Z ∧
X ≤ k). In this case the (k+ 1)-shortest unsafe plays in the model are found to be inconsistent. The
first consistent unsafe play corresponds to executing the body of while (k+ 1)-times, and one possible
concrete representation of it (as generated by Yices) is:

run·qN ·1N ·qN ·2N · . . . ·qN · (k+1)N ·qN ·0N · runabort ·doneabort ·done

✷

5 Extensions

We now extend the language with arrays of lengthk> 0. They can be handled in two ways. Firstly, we
can introduce arrays as syntactic sugar by using existing term formers. An arrayx[k] is represented as a
set ofk distinct variablesx[0], x[1], . . ., x[k−1], such that

x[E] ≡
if E= 0thenx[0] else
. . .
if E= k−1thenx[k−1] else skip (abort)

If we want to verify whether array out-of-bounds errors are present in the term, i.e. there is an attempt
to access elements out of the bounds of an array, we executeabort instead ofskip whenE ≥ k. This
approach for handling arrays is taken by the standard representation of game semantics [12, 9].

Secondly, since we work with symbols we can have more efficient representation of arrays with
unconstrained length. While in the first approach the lengthof an arrayk must be a concrete positive
integer, in the second approachk can be represented by a symbol. We use the support that Yices provides
for arrays by enabling: function definitions, function updates, and lambda expressions. For each array
x[k] : varD, we can define a function symbolX (X : int → D) in Yices as:

(defineX:: (→ intD))

The function symbolX can be initialized and updated as follows:

(lambda(index:: int)val)
(updateX(index)val)

A non-local array element is expressed as follows.

[[Γ,x[k] ⊢ x[E] : varD]] = [[Γ ⊢ E : expint〈1〉]] o
9A

gu〈1〉
[[expint]]

[[Γ,x[k] ⊢ x[−] : varD]]

[[Γ,x[k] ⊢ x[−] : varD]] = read·q〈1〉·?Z〈1〉 · [Z < k, read〈x[Z]〉〉·?Z′〈x[Z]〉 ·Z′+

write(?Z′) ·q〈1〉·?Z〈1〉 · [Z < k,write(Z′)〈x[Z]〉〉 ·ok〈x[Z]〉 ·ok
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If we want to check for array out-of-bounds errors, we extendthis interpretation by including plays that
perform moves associated withabort command whenZ ≥ k. For example, the de-referencing (reading)
part of the interpretation will be given as follows:

read·q〈1〉·?Z〈1〉 ·
(

[Z < k, read〈x[Z]〉〉·?Z′〈x[Z]〉 ·Z′ + [Z ≥ k, run〈abort〉〉 ·done〈abort〉 ·0
)

The automatonA for [[Γ ⊢ newD x[k] := vinM]], whereAM represents[[Γ,x[k] ⊢ M]], is obtained as
follows. We first constructAε by eliminatingx-tagged moves fromAM.

Qε = QM iε = iM Fε = FM

δε ={iM
[X(j):=v∧b,m〉

−→ q | iM
[b,m〉
−→ q∈ δM} +

{q1
[b,m〉
−→ q2 | q1

[b,m〉
−→ q2 ∈ δM,m 6∈{write(a)〈x〉,ok〈x〉, read〈x〉,a〈x〉}}

{q1
[X(a′):=a∧b1∧b2,ε〉

−→ q2 | ∃q.(q1
[b1,write(a)〈x[a

′ ]〉〉
−→ q∈ δM,q

[b2,ok〈x[a
′ ]〉〉

−→ q2 ∈ δM)}

{q1
[a=X(a′)∧b1∧b2,ε〉

−→ q2 | ∃q.(q1
[b1,read〈x[a

′ ]〉〉
−→ q∈ δM,q

[b2,a〈x[a
′ ]〉〉

−→ q2 ∈ δM)}

We useX(j) := v to mean that the function symbolX is initialized to v for all its arguments, while
X(a′) := a means thatX at argumenta′ is updated toa. The final automatonA is generated by removing
ε-letters fromAε , similarly as it was done for the case ofnewD in Theorem 1.

6 Implementation

We have developed a prototype tool in Java, called SYMBOLIC GAMECHECKER, which automatically
converts an IA2 term with integers into a symbolic automaton which represents its game semantics. The
model is then used to verify safety of the term. Further examples as well as detailed reports of how they
execute on SYMBOLIC GAMECHECKER are available from:
http://www.dcs.warwick.ac.uk/~aleks/symbolicgc.htm.

Along with the tool we have also implemented in Java our own library of classes for working with
symbolic automata. We could not just reuse some of the existing libraries for finite-state automata, due to
the specific nature of symbolic automata we use. The symbolicautomata generated by the tool is checked
for safety. We use the breadth-first search algorithm to find the shortest unsafe play in the model. Then
the Yices is called to check consistency of its condition. Ifthe condition is found to be consistent, the
unsafe play is reported; otherwise we search for another unsafe play. If no unsafe play is discovered or
all unsafe plays are found to be inconsistent, then the term is deemed safe. The tool also uses a simple
forward reachability algorithm to remove all unreachable states of a symbolic automaton.

Let us consider the following implementation of the linear search algorithm.

x[k] : varintx[−], y : expinty, abort : comabort ⊢
newint i :=0in
newint p:=yin
while(i < k)do{

if (x[i] = p)thenabort;
i := i +1; }

: com

The program first remembers the input expressiony into a local variablep. The non-local arrayx is
then searched for an occurrence of the value stored inp. If the search succeeds, thenabort is executed.
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Figure 4: The symbolic model for linear search.

n= 2 n= 3
k Time Model Time Model
1 < 1 11 < 1 13
5 1 43 1 61

10 2 83 2 121
15 5 123 6 181

Table 4: Verification of the linear search with finite data

The symbolic model for this term is shown in Fig. 4, where for simplicity array out-of-bounds errors
are not taken in the consideration. If the value read from theenvironment fory has occurred inx, then an
unsafe behaviour of the term exists. So this term is unsafe, and the following counter-example is found:

[I1 = 0∧ k> 0, run〉 qy Yy [P= Y∧ I1 < k, readx[I1]〉 Zx[I1]

[Z = P, runabort〉 doneabort [I2 = I1+1∧ I2 ≥ k,done〉

This play corresponds to a term with an arrayx of sizek= 1, where the values read fromx[0] andy are
equal.

Overall, the symbolic model for linear search term has 9 states and the total time needed to generate
the model and test its safety is less than 1 sec. We can comparethis approach with the tool in [9], where
the standard representation based on CSP process algebra ofterms with finite data types is used. We
performed experiments for the linear search term with different sizes ofk and all integer types replaced
by finite data types. The types ofx, y, andp is intn, i.e. they containn distinct values{0, . . .n−1}, and
the type of the indexi is intk+1, i.e. one more than the size of the array. Such term was converted into
a CSP process [9], and then the FDR model checker was used to generate its model and test its safety.
Experimental results are shown in Table 4, where we list the execution time in seconds, and the size of
the final model in number of states. The model and the time increase very fast as we increase the sizes
of k andn. We ran FDR and SYMBOLIC GAMECHECKER on a Machine AMD Phenom II X4 940 with
4GB RAM.
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7 Conclusion

We have shown how to reduce the verification of safety of game-semantics infinite-state models of IA2

terms to the checking of the more abstract finite symbolic automata.
Counter-example guided abstraction refinement procedures(ARP) [7, 8] can also be used for verifi-

cation of terms with infinite integers. However, they find solutions after performing a few iterations in
order to adjust integer identifiers to suitable abstractions. In each iteration, one abstract term is checked.
If an abstract term needs larger abstractions, then it is likely to obtain a model with very large state space,
which is difficult (infeasible) to generate and check automatically. The symbolic approach presented in
this paper provides solutions in only one iteration, by checking symbolic models which are significantly
smaller than the abstract models in ARP. The possibility to handle arrays with unconstrained length is an-
other important benefit of this approach. Extensions to nondeterministic [10] and concurrent [13] terms
can be interesting to consider.
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