
Adriano Peron and Carla Piazza (Eds.):
Proceedings of the Fifth International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 2014)
EPTCS 161, 2014, pp. 231–244, doi:10.4204/EPTCS.161.20

Tree games with regular objectives

Marcin Przybyłko ∗
University of New Caledonia University of Warsaw

Noumea, New Caledonia Warsaw, Poland
M.Przybylko@mimuw.edu.pl

Abstract
We study tree games developed recently by Matteo Mio as a game interpretation of the probabilistic
µ-calculus. With expressive power comes complexity. Mio showed that tree games are able to encode
Blackwell games and, consequently, are not determined under deterministic strategies.

We show that non-stochastic tree games with objectives recognisable by so-called game au-
tomata are determined under deterministic, finite memory strategies. Moreover, we give an elemen-
tary algorithmic procedure which, for an arbitrary regular language L and a finite non-stochastic tree
game with a winning objective L decides if the game is determined under deterministic strategies.

1 Introduction

Tree games were developed by Matteo Mio as a framework in which one could provide a precise game
semantics of a certain extension of probabilistic µ-calculus (the logic pLµ�), cf. [8]. This goal was
achieved in the form of stochastic two-player meta-parity games, a special restriction of tree games that
coincides with the logic in question.

Tree games generalise standard turn based games (see, e.g. [2], [3]) by allowing the execution of a
play to be split into concurrent, independently executed sub-games. This is formalised by introducing a
new kind of vertices called branching vertices. When a play reaches one of those vertices, the game auto-
matically splits into several sub-games, one for each successor of the currently visited branching vertex,
and continues their execution independently. With arbitrary objectives this feature may deprive players
of some information and, therefore, result in the loss of determinacy under deterministic strategies, cf.
[8], section 4.1.

When studying two player games per se, we are mainly interested in two goals. To find winning
strategies, i.e., descriptions of moves of a player that will guarantee certain objectives. Or, when that is
not possible, to find relatively simple arguments implying that there are no such strategies. In this paper
we try to fulfil those goals in the setting of the tree games with regular objectives, i.e., objectives that are
expressed by non-deterministic tree automata, and deterministic strategies.

We consider regular objectives for several reasons. They allow us to describe non-trivial relations
between the concurrent sub-games, e.g., using regular tree languages we can request that exactly one
sub-game achieves the objective. They are powerful enough to deprive players of perfect information:
the reduction of Blackwell games presented in [8] is, in fact, obtained by enriching the original payoff
function with a condition that can be defined by a regular tree language. Last but not least, they are
defined by arguably simple, well behaved, and fairly well understood model of computation namely
parity tree automata.
∗The author is supported by the Expressiveness of Modal Fixpoint Logics project realized within the 5/2012 Homing Plus

programme of the Foundation for Polish Science, co-financed by the European Union from the Regional Development Fund
within the Operational Programme Innovative Economy (“Grants for Innovation”).

http://dx.doi.org/10.4204/EPTCS.161.20

232 Regular Branching Games

Our contribution. In this paper, we bring two results. The first one proves that regular objectives
defined by so called game automata (cf. [4], [5]) retain the determinacy under deterministic strategies.
The second one provides a simple algorithm that, for arbitrary regular objectives, decides in doubly
exponential time whether and which player has a winning strategy.

Outline. Section 2 provides basic definitions. In Section 3 we state the main result and describe the
intuition behind the proof, which can be found in Section 5. In Section 4 we discuss expressive power of
tree games, their relation to regular tree languages, and formulate a simple property of a tree languages
that causes the lack of determinacy under deterministic strategies. Section 6 provides a simple automata-
based algorithm to decide in doubly exponential time whether either of the players has a winning strategy.
Finally, in Section 7 we mention several possible directions of future research.

2 Basic definitions

By γ we understand the following polymorphic function

γ[x,y,z] :=
{

y if x is true,
z otherwise.

N is the set of natural numbers. An alphabet Γ ⊆ N is any finite subset of natural numbers. For
technical purposes, we will always assume that Γ contains special number [. By Γ∗ (resp. Γω) we
denote set of all finite (resp. infinite) sequences of elements from Γ. Γ+ is the set of all non-empty finite
sequences. For any two sequences u,v we write uv v if u is a prefix of v. We say that sequence u ∈ Nω

is winning if liminf
n→∞

u(n) is even. Any sequence that is not winning is called loosing.

We use record notation throughout this article. If t = 〈t1, t2, . . . , tk〉 is a tuple, then by t.tn we denote
component tn. By t[y := x] we denote tuple obtained from t by changing component y into x.

Whenever E is a binary relation, t is called a successor of s if 〈s, t〉 ∈ E. By E(s) we denote the
set of all successors of s. For every set L, χL denotes the indicator function of set L, i.e., function
χL(x) := γ[x ∈ L,1,0].

Labelled tree. A labelled tree t is any function t : 2∗ → Γ such that for every two words u,w ∈ 2∗

if t(u) = [, then t(uw) = [. Elements of the set 2∗ := {0,1}∗ are called nodes, and the set of all trees
labelled with alphabet Γ, i.e. the set of functions t : 2∗→ Γ, is denoted TΓ.

Let u ∈ 2∗ be a node and t be a tree, by t.u we denote the sub-tree of t rooted in node u, i.e, the tree t2
such that t2(v) = t(uv). If t2 is a tree, then by t[u := t2] we denote tree t with sub-tree t.u replaced by t2,
i.e., t[u := t2] satisfies

t[u := t2](x) =
{

t2(v) if x = uv,
t(x) otherwise.

A restriction of a tree t is any tree t ′ such that for every node u ∈ 2∗, t ′(u) = [or t ′(u) = t(u). Node
labelled [is called a blank node, and any sub-tree with only blank nodes is called a blank sub-tree.
Slightly abusing notation, we denote a blank tree by [. Intuitively, label [signifies that whole sub-tree
is missing, and a restriction is the same tree after some pruning.

The degree of a node is the number of non-blank children. Node u is fully branching if degree(u) = 2,
dead if degree(u) = 0, and redundant if degree(u) = 1.

M. Przybyłko 233

Parity game. A parity game is a tuple G = 〈V,E,α,rank,vI〉, where V is the set of vertices, vI is the
initial position, E ⊆ V ×V is the edge relation, α : V → {0,1} is the partition of the vertices between
Player 0’s and Player 1’s vertices, and rank : V →N is the labelling (or colouring) of the vertices assum-
ing only finite number of labels. We assume that every vertex has exactly two successors.1 Moreover,
we assume that for every vertex there is specified order on successors. Smaller of the two successors of a
vertex v∈G.V will be denoted v0, greater v1. This assumption infers function βG : V ×2∗→V , mapping
finite binary sequences to the ends of finite paths in graph 〈V,E〉. βG can be inductively defined as

βG(v,u) :=
{

v if u = ε,
βG(vi,w) if u = iw.

We extend βG to function β
p
G : V ×2∗→V ∗ relating binary sequences to paths originating from a given

vertex. Formally, β
p
G(〈v, j1 j2 · · · jn〉) := vv1v2 · · ·vn, where β (v, j1 j2 · · · ji) = vi, and i = 1,2, . . . ,n.

Players Player 0 and Player 1 play by moving a token, initially positioned in vI , along the edges
of the graph. If the token is in a vertex v such that α(v) = i, then Player i chooses the next location of the
token from the set E(v). A play is the path v0v1v2 . . . with v0 = vI that was taken by the token as a result
of the players’ moves. Since every vertex has at least one successor, every play is infinite. We say that
Player 0 wins if sequence rank(v0)rank(v1)rank(v2) · · · is winning.

Tree game. A (non-stochastic) tree game is a tuple G= 〈V,E,λ ,α,vI,Φ〉, where V is the set of vertices,
E ⊆ V ×V is the set of edges, λ : V → Γr {[} is a labelling of the vertices and α : V → {0,1,B} is
a partition of vertices between Player 0’s, Player 1’s and branching vertices. Vertex vI ∈V is the initial
vertex and Φ : TΓ → [0,1] is a payoff function. As in the definition of parity games, we assume that
every vertex v ∈ V has exactly two successors. By V0 and V1 we denote the set of vertices belonging to
Player 0 and to Player 1, respectively. Set VB is the set of branching vertices.

Players Player 0 and Player 1 play by moving a token, initially positioned in vI , along the edges
of the graph. If the token is in a vertex v such that α(v) = i ∈ {0,1}, then Player i chooses the next
location of the token from the set E(v). If the token is in a branching vertex v, then it splits into two
indistinguishable tokens, positioned in E(v), and we start two concurrent sub-games which continue
their execution independently. Therefore, result of the players’ moves, the play, is not a path, but a tree.

An unfolding of a game G is a labelled tree tG : 2∗→G.V such that tG(ε) = G.vI and tG(ui) = tG(u)i
for all u ∈ 2∗, i ∈ {0,1}. Notice that every game has only one unfolding. A pre-play t : 2∗→ G.V ∪{[}
is any restriction of the unfolding of a game G such that every node labelled with a branching vertex is
fully branching and the other nodes are redundant. The redundant nodes depict the moves of the players.
A play is a labelled tree p ∈ TΓ obtained as relabelling of some pre-play t so that p(u) = γ[t(u) 6=
[,G.λ (t(u)), [].

A deterministic strategy of Player 0 (resp. Player 1) is a function σ : 2∗ → {0,1}. The set of all
deterministic strategies of Player 0 (resp. Player 1) in game G will be denoted ΣG (resp. ΠG). We say
that a tree p corresponds to a strategy σ ∈ ΣG (resp. π ∈ΠG) of game G if p is a play in which Player 0
(resp. Player 1) moves accordingly to σ (resp. π). Notice that whenever we fix a game G and strategies
σ ∈ ΣG, π ∈ ΠG, there is exactly one play that corresponds to both strategies. We denote this tree as
G(σ ,π). Conversely, for every play t there are strategies σ ∈ ΣG, π ∈ΠG such that t = G(σ ,π).

1Notice that this assumption is not very restricting: if a vertex has only one successor, we can simply clone that successor.
This is why in the reminder of this paper, we may define (tree) games with positions that have only one successor and assume
that the definition is correct.

234 Regular Branching Games

It is important to notice that, in our setting, a deterministic strategy is equivalent to a function from
G.V+ into G.V , which is a strategy in the usual sense. This follows directly from the existence of function
β

p
G : G.V ×2∗→ G.V ∗ which relates paths in game G originating from vertex G.vI to binary sequences.

Let Σ0 be a subset of strategies of Player 0 in game G and Π0 be a subset of strategies of Player 1 in
game G. We say that game G is determined under a profile 〈Σ0,Π0〉 if the following two values are equal

sup
σ∈Σ0

inf
π∈Π0

G.Φ(G(σ ,π)) = inf
π∈Π0

sup
σ∈Σ0

G.Φ(G(σ ,π)).

In that case the unique value is called the value of game G under profile 〈Σ0,Π0〉. We say that game G is
determined under deterministic strategies (or simply, determined) if is determined under profile 〈Σ,Π〉.

In this paper we will only consider payoff functions defined by indicator functions of regular sets of
trees and profiles consisting of deterministic strategies. 2 In a tree game where the payoff function is an
indicator function χL, L is called the wining set. A tree game with regular objectives is any tree game
G = 〈V,E,λ ,α,vI,χL〉, where L is a regular tree language. We say that strategy σ ∈ ΣG (resp. π ∈ ΠG)
is a winning strategy in game G, if for every strategy π ∈ΠG (resp. σ ∈ ΣG) play G(σ ,π) belongs (resp.
does not belong) to the winning set.

Nondeterministic tree automaton (NTA) An NTA is a tuple 〈Γ,Q,qI,δ ,rank〉 consisting of a fi-
nite alphabet Γ, a finite set of states Q, a transition function δ : Q×Γ→ 2Q×Q, and a rank function
rank : Q→ N. A run of an NTA A on tree t is any labelled tree ρ ∈TQ such that ρ(ε) = qI and for every
node u ∈ 2∗

〈ρ(u0),ρ(u1)〉 ∈ δ (ρ(u), t(u)).

A run ρ is accepting, if for every infinite path p = u0,u1, . . . where ui ∈ 2∗ and u0 = ε sequence
n 7→ rank(ρ(un)) is winning. We say that an automaton is Wi, j-automaton if i = min(rank(Q)) and
j = max(rank(Q)). The pair (i, j) is called the (Rabin-Mostowski) index.

Alternating tree automaton (ATA). An ATA A is a tuple A = 〈Γ,Q,qI,δ ,rank〉, where Γ,Q,qI and
rank are as previously and δ : Q×Γ→B+({0,1}×Q) is the transition function, where B+({0,1}×Q)
denotes the positive boolean combinations of elements from the set {0,1}×Q. The ATA A accepts tree
t if Player 0 has a winning strategy in the parity game G(A, t) defined as:

• G.V := B+({0,1}×Q)×2∗,

• G.vI := 〈δ (qI, t(ε)),ε〉.
• If m = maxq∈Q rank(q), then α , rank, and E are defined as follows: for each 〈ψ,w〉 ∈V

– if ψ = ψ1∨ψ2, then α(〈ψ,w〉) = 0, E(〈ψ,w〉) = {〈ψ1,w〉,〈ψ2,w〉}, and rank(〈ψ,w〉) = m,
– if ψ = ψ1∧ψ2, then α(〈ψ,w〉) = 1, E(〈ψ,w〉) = {〈ψ1,w〉,〈ψ2,w〉}, and rank(〈ψ,w〉) = m,
– if ψ = 〈d,q〉, then α(〈ψ,w〉)= 0, E(〈ψ,w〉)= {〈δ (q, t(wd)),wd〉}, rank(〈ψ,w〉) = rank(q).

ATAs are a natural syntactic extension of NTAs, and define the same class of languages. For any
further reference reader can consult, e.g., [9], [7].

Game automata, defined in [4], are ATA with the transition function δ restricted in a way that for
every letter a and every state q, δ (q,a) has one of the four forms: (0, p),(1, p),(0, p)∧ (1,r),(0, p)∨
(1,r), for some p,r ∈ Q.

2For any further reference regarding general tree games, one can consult [8], chapter 4.

M. Przybyłko 235

Synchronised Deterministic Tree Transducers (SDTT) can be seen as yet another way to describe
families of regular tree languages. Every SDTT is a tuple D = 〈Γ,Q,qI,α,δ ,λ 〉 consisting of a finite
alphabet Γ, a finite set of states Q, an initial state qI , a transition function δ : Q×Γ→ Q×Q, a partition
of states α : Q×Γ→ {0,1} and a relabelling λ : Q→ N. As for NTA, a run of an SDTT D on tree t
is any labelled tree ρ ∈ TQ such that ρ(ε) = qI and 〈ρ(u0),ρ(u1)〉 = δ (ρ(u), t(u)), for every node u.
Since SDTT are deterministic, every tree t admits exactly one run, denoted ρD(t).

Slightly abusing the notation, every SDTT D defines a function D : TΓ→TD .λ (Q) such that D(t) =
D .λ (ρD(t)). We say that transducer D accepts tree t if Player 0 has a winning strategy in the par-
ity game induced by D and t, i.e, in game G(D , t) = 〈2∗,E,α,rank,ε〉 where E is the child relation,
G(D , t).α(u) = D .α(ρD(t)(u), t(u)), and rank(u) = D(t)(u). The language recognised by an SDTT D
(denoted L(D)) is the language of all trees accepted by the transducer.

Proposition 1 Class of languages recognised by the SDTTs is exactly the class of languages recognised
by the game automata.

The translation is simple. Let D be an SDTT, and ATA A be its equivalent. For all q ∈ D .Q and a∈D .Γ,
if D .α(q,a) = i and D .δ (q,a) = 〈q0,q1〉, then A.δ (q,a) = (0,q0)� (1,q1) where � := γ[i = 0,∨,∧].

Types. Given a tree t and node u ∈ 2∗, a context tu is a tree obtained from t by removing sub-trees t.u0
and t.u1. A grafting of trees t1, t2 into a context tu it the tree tu[t1, t2] = t[u0 := t1,u1 := t2]. If L is a tree
language, the set t−1

u L = {〈t1, t2〉 : tu[t1, t2] ∈ L} is called the L-type of the context tu.

3 Determinacy under deterministic strategies

Theorem 1 Every tree game with regular winning set defined by a game automaton is determined under
deterministic strategies. Deciding which player has a winning strategy can be done in UP ∩ co-UP.

This theorem is an immediate consequence of Lemma 4 (see sect. 5). Indeed, Lemma 4 provides
an explicit polynomial reduction to parity games. Since parity games are determined under positional
strategies and since for a given parity game we can decide in UP ∩ co-UP which player has a winning
strategy (see, [6]) the theorem holds.

As we promised in the introduction, the rest of this section explains the intuition behind the proof
of the determinacy. Formalisation of this intuition results in the reduction presented in Lemma 4.

Tree games with regular objectives can be seen as games that are played in two phases. First phase
creates tree t ∈TG.λ (G.V), in a game-like environment. Second phase checks whether that tree is accepted
by an ATA, say A. In other words, it checks whether Player 0 wins a game G(A, t) induced by automaton
A and tree t. Since every pre-play is a restriction of the unfolding of G, we have a natural correlation
between positions in game G and positions in game G(A, t). In fact, in both games we traverse the arenas
in top-down manner and, thus, we could try to play those games simultaneously. Doing so, we would
obtain an infinite duration game with a parity condition with positions of form 〈v,u〉 ∈ G.V × 2∗ where
v is the node in the unfolding of G and u is the node in t. The problem is that such game may deprive
players of some information. Indeed, in such game players would share some positions, and in those
positions they would loose the information of moves of their adversaries. This is the reason why in tree
games with general regular objectives we loose determinacy under deterministic strategies. It happens,
because there are positions in which players can choose their moves independently and concurrently.
Still, can this situation occur with objectives defined by an SDTT?

236 Regular Branching Games

As we have stated, intuitively we are troubled in positions 〈v,u〉 that are shared by both players. Let’s
assume that Player 0 has control over vertex v and that Player 1 controls node u, i.e., G.α(v) = 0 and
D .α(ρD(t), t(u)) = 1. Can Player 0 and Player 1 choose their moves independently?

Let q = ρD(t)(u). The transducer is deterministic, therefore state q is determined by the history, and
so is the transition D .δ (q, t(u)) = 〈q0,q1〉. Since v is not a branching vertex, node u is redundant, i.e.,
one of its sub-trees is blank. Let’s assume that Player 0 chose vi as the next move, then t(u(1− i)) = [. If
the tree [6∈ L(D [qI := q1−i]) then Player 1 will not choose this direction in the second phase, otherwise
he would forfeit the game. Similarly, if [∈ L(D [qI := q1−i]), then Player 1 will assure the victory in the
second phase by choosing node u(1− i). In other words, in this situation moves in the second phase are
induced by the moves in the first phase. Therefore, players cannot choose their moves independently and
we infer that they maintain perfect information throughout the game.

4 Game definable languages and #-reductions

Unfortunately, not every game with regular objectives is determined under deterministic strategies.
In Theorem 2 below, we give a simple criterion implying indeterminacy. To present examples of indeter-
minate games, it is convenient to extend the definition of payoff function by the concept of #-projection.
Fortunately, such an approach leads to a slightly stronger result concerning the determinacy.

We say that a tree language L ⊆ TΓ is game definable if there is a tree game G, with a finite set
of vertices, such that

L = L(G) := {G(σ ,π) ∈TΓ : σ ∈ ΣG,π ∈ΠG}.

Proposition 2 Every game definable tree language is recognisable by a W0,0-automaton.

If a tree language L is game definable, then there exists a tree game G such that L= L(G). All we need
to do is to find an automaton that will accept a tree if and only if the tree is a play in game G. For a given
tree t, the automaton will guess a pre-play whose image is t. This can be done by a W0,0-automaton
because we do not need to confirm the parity condition, only the structure of the tree.

Notice that the converse of above proposition is not true. Indeed, there are languages recognisable by
some W0,0-automata that are not game definable: every language that allows different labels on the roots
of trees (e.g., TΓ, for |Γ| > 1) is not game definiable. Since TΓ is accepted by some game automaton,
this implies also that the family of languages recognisable by game automata contains languages that are
not game definable. On the other hand, not every game definable language is recognisable by a game
automata. In fact, we can show that, in some sense, the structure of game definable languages is as rich
as the structure of regular languages. To achieve that, we use #-reductions.

Let t ∈TΓ be a tree and # 6∈Γ be a fresh label, a #-path is any, possibly infinite, sequence u1,u2, ..,un, ..
of nodes labelled # such that ui+1 is a child of ui and every node in the sequence is either redun-
dant or dead. A tree t1 ∈ TΓ∪{#} is a partial #-reduction of a tree t2 ∈ TΓ∪{#}, denoted t1 �# t2, if
p = u1,u2, . . . ,un, . . . is a maximal #-path in t2 and t1 = t2[u1 := t3] where t3 = [if p is infinite, t3 = [if
p is finite and the last node of p is dead, or t3 = t2.u, if p is finite and u is the non-blank child of the last
node of path p. In other words, t1 ∈ TΓ∪{#} is a partial #-reduction of t2 ∈ TΓ∪{#} if it is created from
tree t2 by collapsing some maximal #-path. On the other hand, every partial #-reduction t1 �# t2 defines
in natural way an injection τ : 2∗→ 2∗, called #-injection, that maps nodes of the tree t1 to their original
positions in tree t2.

It is easy to notice that relation �# is strongly confluent, which means here that the shape of the tree
which is the result of collapsing two, or more, maximal #-paths does not depend on the order in which we
collapse those paths. Moreover, the reflexive-transitive closure �∗# of �# defines a partial order. We say

M. Przybyłko 237

Figure 1: Red nodes belong to some finite #-paths. Light blue nodes in (b) belong to an infinite #-path. Blue nodes are
labelled #, but do not belong to any #-path. Part (a) depicts a tree, that has no #-projection. Tree (c) is a #-projection of tree (b)
and the dashed arrows between (c) and (b) describe the associated #-injection.

that t1 ∈TΓ∪{#} is an #-reduction of t2 ∈TΓ∪{#} if it is the smallest tree such that t1 �∗# t2. In other words,
we obtain a #-reduction by collapsing every #-path within the original tree. We say that #-reduction is
a #-projection if smaller tree has no nodes labelled with #. It is easy to check that taking a #-projection
of a tree t ∈ TΓ∪{#} is a partial function P# : TΓ∪{#} → TΓr{#} with fixed set TΓr{#}. We extend the
notion of #-injection to the injections defined by #-projections. We also extend the notion of projections
to languages of trees, in a non-standard way. We say that #-projection of a tree language L is undefined
if P#(t) is undefined for some tree t ∈ L, otherwise it is P#(L), the image of set L. An example of
#-projections can be found in Fig. 1.

Finally, having #-projections we can formulate in what sense the structure of game definable lan-
guages is similar to the structure of regular languages.

Lemma 1 For every non-empty regular tree language L ⊆ TΓ recognisable by a W0,0-automaton there
are a fresh label # 6∈ Γ and a game definable language L′ ⊆TΓ∪{#} such that L = P#(L′).

The idea behind the proof is simple – to be accepted by a W0,0-automaton it is enough to admit a
run. Game will consists of consecutive guesses of a label and a state that are a part of a run on some tree
belonging to the original language. Auxiliary nodes, required by the guessing, will be labelled with the
fresh label # that indicates redundant nodes which should be ignored by the original automaton.

Proof. Let A be a non-deterministic tree automaton recognising language L. Let both A.Q2 and A.Γ be
equipped with some total order. Let P⊆ A.Q×A.Γ be the set of all productive pairs, i.e., pairs 〈q,a〉 such
that there exists a tree t, with root labelled a, belonging to the language L(A[qI := q]). By P(q) ⊆ A.Γ
we will denote a subset of labels P(q) = {a ∈ A.Γ : 〈q,a〉 ∈ P}.

Game G is defined as follows, G = 〈V,E,λ ,α,Φ〉 where V := (2A.Q×A.Q×A.Γ)∪ (A.Q×2A.Γ), the
set of transitions allows to guess some accepting run:

E(〈x,y〉) =

{〈ql,P(ql)〉,〈qr,P(qr)〉} if x = {〈ql,qr〉},
{〈x,{min(y)}〉,〈x,yr{min(y)}〉} if y⊆ A.Γ and |y|> 1,
{〈A.δ (x,a),a〉} if y = {a}, where a ∈ A.Γ,
{〈{min(x)},y〉,〈xr{min(x)},y〉} if x⊆ A.Q×A.Q and |x|> 1.

First component begins the selection of a label associated to the state, second continues the selection up
to the moment where there is only one label left. Third component begins the selection of the proper
transition, and the last one is responsible for choosing the correct states belonging to the transition. The
partition of vertices is defined as follows: α(〈x,y〉) := γ[x= {〈ql,qr〉},B,0]. The labelling of the vertices

238 Regular Branching Games

is similar to the partition, assuring that labels from the original tree appear only on the branching vertices:
λ (〈x,y〉) := γ[x = {〈ql,qr〉},y,#]. Finally, the initial vertex is defined as vI := 〈qI,P(qI)〉.

Notice that for every play, every node labelled with # is redundant. Those nodes are used to guess
states and labels, not to contribute to the shape of the tree. It is straightforward to see that the language
defined by this game is similar to the original language in the sense that, if we remove redundant nodes
labelled with # we will obtain a tree belonging to the original language. That is, L is #-projection of
L(G). The are only two problems. The first problem is the fact that the labelling may use label [, and it is
forbidden. We solve this problem by noticing that whenever we need to use [, we can generate an infinite
#-path, instead. The second problem is the fact that some vertices have no successor. We solve that by
noticing that those vertices are not reachable from the initial vertex and, therefore, may be deleted. �

We complete the picture of the game definable languages by stating that the pre-image of a projection
of a regular tree language is regular.

Lemma 2 For every label # 6∈ Γ and regular language L⊆TΓ the language L# = {t ∈TΓ∪{#} : P#(t) ∈
L} is regular. Moreover, if L is recognised by a Wi, j-automaton, then L# can be recognised by a Wi, j-
automaton.

Proof is straightforward, we modify the original automaton so when the automaton approaches a node
labelled #, it guesses that either this node belongs to an infinite #-path, and then proceeds expecting
a blank sub-tree, or that this node belongs to a finite #-path and ignores it, ensuring that visited node is
redundant. Since such behaviour requires no parity condition, the index of the automaton is retained.

Lemma 2 gives us enough power to state the following.

Theorem 2 For every regular language L, if there exist a context tu and four different trees t1, t2, t3, t4,
such that tu[t1, t3] ∈ L, tu[t2, t4] ∈ L, tu[t2, t3] 6∈ L, and tu[t1, t4] 6∈ L, then there is a game G with payoff
function (χL ◦Pε) that is not determined under deterministic strategies.

Proof. Notice that the assumptions allow us to encode game “matching pennies” (cf., e.g., [2]). Indeed,
we use Lemma 1 to create games Gc,Gl,Gr such that P#(L(Gc)) = {tu[[, []}, P#(L(Gl)) = {t1, t2} and
P#(L(Gr)) = {t3, t4}, respectively. We can define those games so that Gc has only branching vertices
and both Gl.V1 and Gr.V0 are empty. Finally, we create G by connecting arenas of games Gc,Gl,Gr so
that G.E(v) = {Gl.vI,Gr.vI}, where v denotes the vertex corresponding to node u in game Gc and set
Gc.vI as the initial vertex.

It is easy to show that in game G each of the players has, essentially, exactly two strategies. Player 0
can choose one of two strategies σ1 or σ2 where σi means that Player 0 creates tree ti in game Gl .
Similarly, Player 1 has strategies π3,π4 creating trees t3 and t4, respectively. Finally, we have that
σ1 ≺ π4 ≺ σ2 ≺ π3 ≺ σ1, where σ ≺ π denotes that strategy π wins against strategy σ . �

We can see above theorem as a statement saying that, if the regular winning set describes some
nontrivial relation between paths in the accepted plays, then one can construct a two player tree game
that is not determined under deterministic strategies. Of course, since single player games are trivially
determined, we need to use both players to achieve the lack of determinacy. Moreover,

Proposition 3 Let G be a single player tree game, i.e, a tree game where G.V0 or G.V1 is empty, with the
winning set defined by an NTA A. If G.V1 = /0 (resp. G.V0 = /0) then the problem of deciding which player
has a winning strategy belongs to UP∩ co-UP (resp. is EXP-complete).

The proposition follows from the fact that the tree language L(G) and the winning set L(A) are
regular. If G.V1 = /0, then Player 0 wins if L(G)∩L(A) is not empty. If G.V0 = /0, then Player 0 wins

M. Przybyłko 239

if L(G) ⊆ L(A). The non-emptiness of an NTA is in UP∩ co-UP and the inclusion can be decided in
exponential time, cf. e.g. [7]. To complete the complexity results we recall that the membership problem
(does t ∈ L(A)?) requires solving a parity game and present the following lemma.

Lemma 3 Deciding whether Player 0 has a winning strategy in game G with regular winning set recog-
nised by an NTA is EXP-hard.

To prove this lemma we reduce the universality of a two letter NTA A.

Proof.

Figure 2: Arena

Let L# be the pre-image of L(A), as defined in Lemma 2, i.e., L# = {t ∈ TΓ∪{#} :
P#(t)∈ L(A)}, where Γ = {a,b}. Game G = 〈V,E,λ ,α,vI,Φ〉 is defined as in Fig. 4.
Formally, the arena has four vertices, V = {0,1,a,b}, and 8 edges: E(0) = E(1) =
{a,b},E(a) = E(b) = {0,1} with vI = 0. The labelling is defined as λ (a) = a,λ (b) =
b,λ (0) = λ (1) = # and the partition as α(0) = α(1) = 1,α(a) = α(b) = B. The
payoff function is the indicator function of the regular tree language L#.

It is easy to check that Player 1 has a winning strategy if and only if L (T{a,b}
and since single player games are determined under deterministic strategies, Player 0
has a winning strategy if and only if L = T{a,b}. �

5 Reduction to parity games

Tree games can be seen as a certain extension of games on graphs. When we consider automata based
objectives rather than those given by the parity condition we loose the positional determinacy, but, due to
the fact that the parity automata on infinite words can be determinized, we keep the determinacy under
deterministic strategies. In the case of tree games, as we have shown, for some regular winning sets we
cannot guarantee that games are determined under deterministic strategies. Yet, for game automata –
a natural subclass of non-deterministic tree automata (cf. [4]) – we retain the determinacy. Moreover,
deciding which player has a winning strategy is not harder than in the case of parity games.

To prove that, we use the idea explained in Section 3, which results in the following reduction of tree
games with regular objectives defined by a game automata to parity games.

Lemma 4 Let G be a tree game. If G.λ−1(#) ⊆ V0 ∪V1 and G.Φ = χL ◦P# for some tree language
L ⊆ TΓ recognisable by a game automaton, then there exists parity game H such that Player 0 (resp.
Player 1) has a winning strategy in game G if and only if Player 0 (resp. Player 1) has a winning
strategy in game H. The size of H is polynomial with respect to the size of the automaton recognising
L and to the size of the original game. Moreover, if G.V is finite then game H can be constructed in
polynomial time.

We will prove this lemma in three steps. First, we will construct game H that is equivalent to G, is
polynomial in size, but for which the cost of the construction may by exponential. Then we will explain
how to modify game H to acquire polynomial reduction. Finally, we will prove that game H is equivalent
to game G.

Proof. Notice that for every play of game G, nodes labelled with # are redundant. Therefore the projec-
tion of the language L(G) is well defined. Let D be an SDTT recognising language L. The set Q[⊆D .Q
is the subset {q ∈ D .Q : [∈ L(D [qI := q])}, and m is the maximal rank used by D . Game H is defined
as follows:

• H.V = G.V ×D .Q×{0,1,?} where “?” is an additional symbol;

240 Regular Branching Games

• with D .δ (q,G.λ (v)) = 〈q0,q1〉 and d ∈ {0,1}

H.E(〈v,q,x〉) =

{〈v0,q,x〉,〈v1,q,x〉} if G.λ (v) = #,
{〈v0,q0,x〉,〈v1,q1,x〉} if G.λ (v) 6= # and x 6=?,
{〈vd,qd ,γ[q1−d 6∈ Q[,?,0]〉} if G.λ (v) 6= #,G.α(v) = 1,

q ∈ Q0, and x =?,
{〈vd,qd ,γ[q1−d ∈ Q[,?,1]〉} if G.λ (v) 6= #,G.α(v) = 0,

q ∈ Q1, and x =?,
{〈v0,q0,x〉,〈v1,q1,x〉} otherwise;

• H.rank(〈v,q,x〉) =

2m if x = 0,
2m+1 if x = 1,
2m if G.λ (v) = #,x =?, and q ∈ Q[
2m+1 if G.λ (v) = #,x =?, and q 6∈ Q[
D .λ (q) otherwise;

• H.α(〈v,q,x〉) =
{

D .α(q,G.λ (v)) if G.α(v) = B
G.α(v) otherwise;

• H.vI = 〈G.vI,D .qI,?〉

Intuitively, for 〈v,q,x〉 ∈H.V first component stores the information where in the game G we are, the
second component stores the information in which state of the transducer we are, and the last component
holds the information whether the game is, sill, undecided (x =?) or whether, regardless of the future
moves, Player i won the game (x = i, for i ∈ {0,1}).

Before we will prove the equivalence, let’s consider the cost of the reduction. The resulting game has
no more than 3|G.V ||D .Q| vertices and is defined by a polynomial set of equations. The only problem
is that we need to compute the set Q[. This requires solving a parity game for every state q ∈ D .Q
and, unfortunately, may require exponential time. To avoid that we modify game H using a standard
technique: whenever the token is in position 〈v,q,?〉 ∈ H.V whose successors are determined by the
set Q[and Player i decides to move to position 〈vd,qd ,γ[q1−d 6∈ Q[,?,1− i]〉, we enter a mini-game
to decide whether q1−d ∈ Q[(see the definition of H.E): Player i states whether q1−d ∈ Q[and, after
that, Player (1-i) can either agree – resuming game H – or can try to disagree and then has to play
game G(D [qI = q1−d], [) to prove that his/her opponent cheated. Since the cost of implementing such
mini-game is polynomial, the whole reduction is polynomial.

Now we can proceed with the proof of the equivalence. Since the definitions are dual, it is enough to
prove the following claim. If Player 0 has a winning strategy in game H, he/she has a winning strategy
in game G. Proof of the appropriate claim for the Player 1 is almost identical.

Let’s assume that Player 0 has no winning strategy in game G, we will show that Player 0 has no win-
ning strategy in game H. Let σH : 2∗→{0,1} be some arbitrary strategy in game H and TσH be the restric-
tion of the unfolding TH of game H that is consistent with strategy σH . To show that σH is not a winning
strategy, we need to show that there is a sequence sl = i1i2 · · · in · · · consistent with strategy σH in game H
such that sequence H.rank(TσH (ε))H.rank(TσH (i1))H.rank(TσH (i1i2)) · · ·H.rank(TσH (i1i2 · · · in · · ·)) · · ·
is loosing. Sequence is consistent with strategy f of Player i if for every k ∈ N, f (i1i2 · · · ik) = ik+1
in the positions belonging to Player i. In the case of sequence sl and strategy σH this translates to the
statement that for every k ∈ N, TσH (i1 · · · ik) 6= [.

Player 0 has no winning strategy in game G, therefore there is a strategy πG such that tree t =
P#(G(σH ,πG)) does not belong to language L(D). That is, for every strategy σ : ΣG(D ,t) there exists
sequence s = i1i2 · · · in · · · , consistent with σ , such that sequence l 7→D(t)(i1 · · · il) is loosing.

M. Przybyłko 241

Let τ : 2∗→ 2∗ be the injection related to #-projection t =P#(TG), where TG =G(σH ,πG). We define
σ : 2∗ → {0,1} as a function satisfying the following conditions. For both branching and Player 0’s
vertices of game G that are mapped to vertices of Player 0 in game G(D , t), σ agrees with σH , i.e, for any
u∈ 2∗ such that D .α(ρD(t)(u), t(u))= 0 if TH(τ(u))= 〈q,v,x〉, where G.α(v) 6= 1, then σ(u)=σ(τ(u)).

For Player 1’s vertices of game G mapped to vertices of Player 0 in game G(D , t) we demand that

σ(u) =
{

γ[q0 ∈ Q[,0,1] if t(u0) = [,

γ[q1 ∈ Q[,1,0] if t(u0) 6= [, t(u1) = [
(1)

This equation will be called restriction (1). Intuitively, we demand that, whenever possible, σ agrees
with σH , and if the behaviour of σ cannot be deduced from σH , then it behaves reasonably.

Sequence s and function τ define sequence s2 = i1 j2 · · · jk · · · such that for every n ∈ N there is a
natural number k ∈ N such that τ(i1 · · · in) = j1 · · · jk. Sequence s2 is a witness of a loosing sequence in
tree TσH . Before we prove it, let’s notice that deterministic nature of both the unfolding and the transducer
infer that for every u ∈ 2∗, if TσH (τ(u)) = 〈v,q,x〉, then ρD(t)(u) = q.

The reminder of the proof is technical, and consists of resolving all possible instances. Those cases
depend on the vertices of game H that are found on the path defined by sequence s2.

Let’s assume that s2 is not consistent with σH in game H, i.e., there is the smallest k ∈ N such that
TσH (i1 · · · ik+1) = [. This can happen only if TσH (i1 · · · ik) = 〈v,q,x〉, where G.α(v) = 0 and D .α(q) = 1.
Otherwise, either i1 · · · ik is fully branching or s2 agrees with σH . First, let’s take care of the # case, i.e,
let’s assume that G.λ (v) = #. With this assumption, we have that in tree G(σH ,πG) node i1 · · · ik belongs
to an infinite #-path. Otherwise the node would be deleted by the projection and Player 1 would not be
able to disagree with σH . If this #-path starts at the root of the tree, then the language L(D) does not
contain a blank tree, thus qI 6∈ Q[and this infinite #-path defines a loosing sequence. If this #-path does
not begin at the initial vertex of game H (equivalently, at the root of TσH), then let u be the parent of the
start of this path and uiv i1 · · · ik be it’s child. Let, 〈w, p,y〉 := TσH (u) and TσH (ui) = 〈wi,q,x〉. The #-path
is infinite, therefore τ−1(ui) is defined and t(τ−1(ui)) = [. Moreover, since we have a loosing sequence
s we have that q 6∈ Q[. Depending on the value of y, we have three possible cases to consider. If y = 1,
then, of course, we have a loosing sequence. If y =?, then we have a similar case as when the #-path was
starting at the root and the same argument is valid. We are left with the last sub-case, y = 0. If y = 0,
then there is an ancestor ua = j1 j2 · · · jl ∈ 2∗ of node u labelled with 〈wa, pa,?〉, where G.α(wa) = 1 and
D .α(pa) = 0. Moreover, one of the sub-trees of ua is blank, let it be i, i.e., jl+1 = (1− i), TσH (ua · i) = [,
and TσH (ua(1− i)) = 〈wa(1− i), p1−i,0〉. Additionally, if D .δ (G.λ (wa), pa) = 〈p0, p1〉, then pi ∈ Q[.
We have two cases, either i = 0 and we broke restriction (1), because p0 ∈ Q[, or i = 1. If i = 1, then
either there is node o such that t(o0) 6= [, τ(o) = ua and, thus, we broke the restriction (1) or t(o0) = [
and since s is loosing in G(D , t), then p0 6∈ Q[and we broke the restriction (1) again.

Now we can assume that G.λ (v) 6= #. Without loss of generality, we can assume that ik+1 = 0.
Let D .δ (q,G.λ (v)) = 〈q0,q1〉. Notice that q0 6∈ Q[, otherwise the sequence s would not be a loosing
sequence in tree t because node j1 j2 · · · jn such that i1i2 · · · ik = τ(j1 j2 · · · jn) would accept blank tree as
a left sub-tree. Again, we have three possibilities. If x = 1, then the definition of game H implies that
there exists sequence with prefix i1i2 · · · ik · 1 that is loosing. If x =?, then the non-blank successor of
i1 · · · ik is labelled 〈v1,q1,1〉 and, similarly, we have a loosing sequence. Last case assumes that x = 0.
This implies that there is an ancestor u ∈ 2∗ of node i1 · · · ik labelled with 〈w, p,?〉, where G.α(w) = 1
and D .α(p) = 0. This situation requires similar argument to one used in the previous paragraph. This
ends the part of the proof, where our sequence disagrees with strategy σH .

Now we assume that s2 is consistent with σH in H, i.e., for all k ∈N we have that TσH (i1 · · · ik+1) 6= [.
Again, we have three possibilities. If there is node u = j1 j2 · · · jk such that TσH (u) = 〈v,q,1〉 we obtain

242 Regular Branching Games

the loosing sequence immediately. Otherwise, if there is a node u= j1 j2 · · · jk such that TσH (u) = 〈v,q,0〉,
then, as before, we find node w – the ancestor of u – and conclude that this situation cannot happen. Last
case assumes that for every k ∈ N there exists pair 〈v,q〉 such that TσH (u) = 〈v,q,?〉. As stated before,
for every u ∈ 2∗, whenever TσH (τ(u)) = 〈v,q,x〉 we have that ρD(t)(u) = q, due to the deterministic
nature of the transducer. We have to consider two cases. If there is a node u = j1 j2 · · · jk ∈ 2∗, for
some natural k, such that u,u · jk+1,u · jk+1 · jk+2, . . . is an infinite #-path, then TσH (u) = 〈v,q,?〉 where
G.λ (v) = #. Moreover, u has a corresponding node in tree t that is a root of a blank sub-tree, i.e., there
is a node ut such that τ(ut) = u and t(ut) = [. Since s is a loosing path in game G(D , t), ρD(t)(ut) =
q 6∈ Q[, but that implies that 2m+ 1 = H.rank(u j) = H.rank(u jk+1) = H.rank(u jk+1 jk+2) = · · · and s2
is a loosing sequence. Otherwise, every #-path contained in s2 is finite. Since, nodes belonging to #-
paths have values 2m or 2m+ 1 they decide whether sequence is winning if and only if they belong to
infinite #-paths. That means, we can exclude nodes belonging to any finite #-path from the sequence
ε; j1; j1 j2; j1 j2 · · · jn · · · ; · · · and, thus, we obtain an infinite sequence of nodes u1,u2, . . . ,un, . . . such that

H.rank(TσH (ε))H.rank(TσH (j1))H.rank(TσH (j1 j2)) · · ·H.rank(TσH (j1 j2 · · · jn · · ·)) · · ·
is winning if and only if the sequence

H.rank(TσH (u1))H.rank(TσH (u2))H.rank(TσH (u3)) · · ·H.rank(TσH (un)) · · ·
is winning. According to the definition of τ sequence n 7→ un is exactly the image of the sequence of
nodes n 7→ i1i2 · · · in, where i1i2 · · · in · · ·= s. As we stated before, for every u∈ 2∗, whenever TσH (τ(u)) =
〈v,q,x〉 we have that ρD(t)(u) = q, due to the deterministic nature of the transducer, thus sequences
n 7→ H.rank(TσH (un)) and n 7→ D(t)(i1i2 · · · in) are equal. And, since n 7→ D(t)(i1i2 · · · in) is a loosing
sequence s2 is a loosing sequence in game H.
For every possible scenario, we have indicated a loosing sequence in three TσH and, thus, we are done.�

6 Winning strategies

We have shown that tree games with regular objectives are not, in general, determined under deterministic
strategies. Nevertheless, the following lemma allows us to decide whether given game, with finite arena,
is determined under deterministic strategies.

Lemma 5 For every game G with a finite arena and a regular objective χL, the set of winning strategies
is regular. Moreover, it can be recognised by an ATA of size exponential in |A| and polynomial in |G|,
where A is an ATA recognising tree language L.

Proof. A strategy of Player 0 can be seen as a restriction of the unfolding of the game, restriction that is
redundant in nodes belonging to Player 0 and fully branching in the remaining nodes. We claim that the
language of all such restrictions that represent winning strategies is regular. Before we proceed, notice
that the language of trees that describe the set of proper strategies is regular and can be easily described
by an ATA of polynomial size. Therefore, for the clarity of the proof we will implicitly assume that every
tree represents a valid strategy and we will focus on deciding whether given tree is a winning strategy.

To prove that a strategy σ given as a tree tσ is not a winning strategy we need to check whether there
exists a pre-play which is a redundant in nodes belonging to Player 1 restriction of tσ and for which
the associated play does not belong to L. Intuitively, this can be done by guessing both the appropriate
restriction and an accepting run of an NTA recognising language TG.V∪{[}rL.

Now we will show how formalise above intuition, i.e, how to construct an NTA BΣ that accepts a tree
iff that tree represents a strategy that is not a winning strategy. Let B be an NTA recognising language
L(B) := TG.V∪{[}rL. We define automaton BΣ as an NTA over alphabet BΣ.Γ := G.V ∪{[} with the

M. Przybyłko 243

set of states BΣ.Q := B.Q×G.V . The initial state 〈B.q0,G.v0〉 implies that every run begins in the initial
vertex of the game and in the initial state of automaton B. The rank function simply simulates that of
NTA B, i.e., BΣ.rank(〈q,v〉) := B.rank(q). The transition function BΣ.δ : BΣ.Q×BΣ.Γ→ 2BΣ.Q×BΣ.Q is
defined as follows.

BΣ.δ ((q,v),a) =
{〈(q0, [),(q1, [)〉 : 〈q0,q1〉 ∈ B.δ (q, [)} if v = [,
{〈(q0,v0),(q1,v1)〉 : 〈q0,q1〉 ∈ B.δ (q,G.λ (v))} if v ∈VB and v = a 6= [,
{〈(q0,v0),(q1, [)〉,〈(q0, [),(q1,v1)〉 : 〈q0,q1〉 ∈ B.δ (q,G.λ (v))} if v ∈V0∪V1 and v = a 6= [.

Let tσ be a tree representation of some strategy σ ∈ Σ and ρ be some accepting run. Notice that if we
project ρ on its second coordinate we will obtain a pre-play, projection on the first coordinate results
in a run of automaton B on a play associated with that pre-play. Indeed, the first component of above
definition guarantees that the pre-play is a valid tree. The second and the third that it is, in fact, a valid
pre-play. Finally, the conditions “v = a 6= [” assure that this pre-play is a restriction of tσ .

Notice that for every tree tσ representing a valid strategy σ ∈ Σ of Player 0 we have that σ is a
winning strategy if and only if tσ 6∈ L(BΣ). If tσ ∈ L(BΣ) then there is an accepting run ρ of BΣ on tσ .
Let t and ρt be trees such that for every node u ∈ 2∗ we have that ρ(u) = 〈ρt(u), t(u)〉. Of course, t is
a pre-play and ρt is an accepting run of the automaton B on play associated with t, i.e. a play p such
that p(u) = γ[t(u) = [, [,G.λ (t(u))] for u ∈ 2∗. This implies that p ∈ L(B) and, thus, σ is not a winning
strategy. On the other hand, if σ is not a winning strategy then there is a strategy π ∈ Π such that the
play p = G(σ ,π) does not belong to the tree language L. Therefore, there is an accepting run ρt of B
on p. Finally, if t is a pre-play associated with p then the tree ρ = 〈ρt , t〉 is an accepting run of BΣ on tσ .

To end the proof of this lemma we simply complement automaton BΣ. This results in an ATA of
size polynomial in |B| and |G|. Furthermore, this ATA can be intersected with an automaton that accepts
exactly the set of trees describing valid strategies to obtain desired automaton AΣ. Since A is an ATA, |B|
is at most exponential in |A| and, thus, ATA AΣ is of exponential size. �

Corollary 1 We can decide in doubly exponential time whether a tree game G with wining set defined
by an ATA A is determined under deterministic strategies. Moreover, deciding which player has a winning
strategy is 2EXP-complete.

Since the non-emptiness of an ATA is EXP-complete, the algorithm is an easy application of Lemma 5.
First, we check whether Player 0 has a winning strategy. If not, we complement A and check whether
Player 1 has a winning strategy. If not, then the game is not determined.

The lower bound can be obtained from known results. Solving standard two player games with
objectives defined by an LTL formulae is 2EXP-complete (cf. e.g. [1],[10],). Since an LTL formula can
be translated into an ATA in polynomial time (e.g., see [11]) the lower bound immediately follows.

7 Conclusions and future work

We have shown that for the winning sets defined by game automata, tree games are determined under
deterministic strategies and that we can decide which player has a winning strategy in UP∩ co-UP.
Moreover, for arbitrary regular winning sets of trees, we have given a simple automata based algorithm
for finding a winning strategy in doubly exponential time.

We can identify several directions for future work in this area. One may wish to characterise reg-
ular winning objectives that guarantee determinacy under deterministic strategies: both Theorem 2 and

244 Regular Branching Games

Lemma 4 can be seen as the first step to such characterisation. On the other hand, since deterministic
strategies are not enough, we ask if there are larger classes of strategies that guarantee the determinacy:
if we cannot enforce that the play belongs to the winning set, can we maximise the probability? This
direction of research brings the questions about deterteminacy under randomised or mixed strategies. 3

Besides the obvious question whether the games are determined, we ask about algorithms to compute, or
at least approximate, the value of the game, whenever game is determined (under some profile).

Third direction of research aims at extending our results to stochastic games. Matteo Mio proved
in his PhD thesis that stochastic meta-parity games are determined under deterministic strategies (for a
precise statement of this result and its limitations see [8] chapter 6). He also showed that stochastic tree
games can be expressed by non-stochastic tree games (cf. [8] sect. 4.4), but the reduction requires to
change the payoff function in a manner that cannot be expressed by an ATA. Therefore, extending our
results to games with stochastic positions can be an interesting direction of research.

Acknowledgements. I would like to thank Christof Löding for indicating an error in the previous
version of Lemma 5 and providing a reference for the lower bound. Many thanks to Damian Niwiński
and Teodor Knapik for valuable discussions and comments. I also thank the anonymous referees for their
helpful comments.

References
[1] Rajeev Alur, Salvatore La Torre & P. Madhusudan (2003): Playing Games with Boxes and Diamonds. In

Roberto Amadio & Denis Lugiez, editors: CONCUR 2003 - Concurrency Theory, Lecture Notes in Computer
Science 2761, Springer Berlin Heidelberg, pp. 128–143, doi:10.1007/978-3-540-45187-7 8.

[2] K. Apt & E. Grädel, editors (2011): Lectures in Game Theory for Computer Scientists. Cambridge University
Press.

[3] Krishnendu Chatterjee (2007): Stochastic Omega-Regular Games. Ph.D. thesis, EECS Department, Univer-
sity of California, Berkeley. Available at http://chess.eecs.berkeley.edu/pubs/462.html.

[4] Jacques Duparc, Alessandro Facchini & Filip Murlak (2011): Definable Operations On Weakly Recognizable
Sets of Trees. In Supratik Chakraborty & Amit Kumar, editors: FSTTCS, LIPIcs 13, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, pp. 363–374, doi:10.4230/LIPIcs.FSTTCS.2011.363.

[5] Alessandro Facchini, Filip Murlak & Michal Skrzypczak (2013): Rabin-Mostowski Index Prob-
lem: A Step beyond Deterministic Automata. In: LICS, IEEE Computer Society, pp. 499–508,
doi:10.1109/LICS.2013.56.

[6] Marcin Jurdzinski (1998): Deciding the Winner in Parity Games is in UP∩ co-UP. Inf. Process. Lett. 68(3),
pp. 119–124, doi:10.1016/S0020-0190(98)00150-1.

[7] Christof Löding (2009): Logic and Automata over Infinite Trees. Habilitation, RWTH Aachen, Germany.
[8] Matteo Mio (2012): Game Semantics for Probabilistic µ-Calculi. Ph.D. thesis, University of Edinburgh.
[9] David E. Muller & Paul E. Schupp (1987): Alternating automata on infinite trees. Theoretical Computer

Science 54(2–3), pp. 267 – 276, doi:10.1016/0304-3975(87)90133-2.
[10] A. Pnueli & R. Rosner (1989): On the Synthesis of a Reactive Module. In: Proceedings of the 16th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89, ACM, New York,
NY, USA, pp. 179–190, doi:10.1145/75277.75293.

[11] Moshe Y. Vardi (1996): An automata-theoretic approach to linear temporal logic. In Faron Moller & Gra-
ham Birtwistle, editors: Logics for Concurrency, Lecture Notes in Computer Science 1043, Springer Berlin
Heidelberg, pp. 238–266, doi:10.1007/3-540-60915-6 6.

3In the context of tree games, randomised strategies are not as expressive as mixed strategies (cf.[8] sect. 4.1).

http://dx.doi.org/10.1007/978-3-540-45187-7_8
http://chess.eecs.berkeley.edu/pubs/462.html
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.363
http://dx.doi.org/10.1109/LICS.2013.56
http://dx.doi.org/10.1016/S0020-0190(98)00150-1
http://dx.doi.org/10.1016/0304-3975(87)90133-2
http://dx.doi.org/10.1145/75277.75293
http://dx.doi.org/10.1007/3-540-60915-6_6

	1 Introduction
	2 Basic definitions
	3 Determinacy under deterministic strategies
	4 Game definable languages and #-reductions
	5 Reduction to parity games
	6 Winning strategies
	7 Conclusions and future work

