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Games on recursive game graphs can be used to reason about the control flow of sequen-
tial programs with recursion. In games over recursive game graphs, the most natural
notion of strategy is the modular strategy, i.e., a strategy that is local to a module and
is oblivious to previous module invocations, and thus does not depend on the context of
invocation. In this work, we study for the first time modular strategies with respect to
winning conditions that can be expressed by a pushdown automaton. We show that such
games are undecidable in general, and become decidable for visibly pushdown automata
specifications. Our solution relies on a reduction to modular games with finite-state au-
tomata winning conditions, which are known in the literature. We carefully characterize
the computational complexity of the considered decision problem. In particular, we show
that modular games with a universal Büchi or co-Büchi visibly pushdown winning con-
dition are EXPTIME-complete, and when the winning condition is given by a CARET
or NWTL temporal logic formula the problem is 2EXPTIME-complete, and it remains
2EXPTIME-hard even for simple fragments of these logics. As a further contribution,
we present a different solution for modular games with finite-state automata winning
condition that runs faster than known solutions for large specifications and many exits.

1 Introduction

Recursive state machines (RSMs) carefully model the control flow of systems with potentially recursive
procedure calls [2]. A recursive state machine is composed of a set of modules, whose vertices can
be standard vertices or can correspond to invocations of other modules. A large number of hardware
and software systems fits into this class, such as procedural and object-oriented programs, distributed
systems, communication protocols and web services.

In the open systems setting, i.e., systems where an execution depends on the interaction of the system
with the environment, the natural counterpart of recursive state machines is two-player recursive game
graphs. A recursive game graph (RGG) is essentially a recursive state machine where vertices are split
into two sets each controlled by one of the players, and thus corresponds to pushdown games with an
emphasis on the modules composing the system.

In this paper we focus on solving pushdown games on RGG in which the first player is restricted to
modular strategies [7]. A strategy is a mapping that specifies, for each play ending into a controlled state,
the next move. Modular strategies are formed of a set of strategies, one for each RGG module, that are
local to a module and oblivious of the history of previous module activations, i.e., the next move in such
strategies is determined by looking only at the local memory of the current module activation (by mak-
ing the local memory persistent across module activations, deciding these games becomes undecidable
already with reachability specifications [7]).
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The main motivation for considering modular strategies is related to the synthesis of controllers
[18, 20]: given a description of the system where some of the choices depend upon the input and some
represent uncontrollable internal non-determinism, the goal is to design a controller that supplies inputs
to the system such that it satisfies the correctness specification. Synthesizing a controller thus corre-
sponds to computing winning strategies in two-player games, and a modular strategy would correspond
to a modular controller.

The notion of modular strategy is also of independent interest and has recently found application
in other contexts, such as, the automatic transformation of programs for ensuring security policies in
privilege-aware operating systems [11], and a general formulation of the synthesis problem from libraries
of open components [10].

The problem of deciding the existence of a modular strategy in a recursive game graph has been
already studied with respect to ω-regular specifications. The problem is known to be NP-complete for
reachability specifications [7], EXPTIME-complete for specifications given as deterministic and universal
Büchi or Co-Büchi automata, and 2EXPTIME-complete for LTL specifications [5].

In this paper, we study this problem with respect to several classes of specifications that can be
expressed as a pushdown automaton. We show that in the general case the problem is undecidable. We
thus focus on visibly pushdown automata (VPA) [8] specifications with Büchi or co-Büchi acceptance.
In the following, we refer to this problem as the MVPG problem and omit the acceptance condition of
the VPA by meaning either one of them.

Our main contributions are:

• We show a polynomial time reduction from the MVPG problem with deterministic or universal
VPA specifications to recursive modular games over ω-regular specifications. By [5], we get that
this problem is EXPTIME-complete. We then use this result to show the membership to 2EXPTIME

for the MVPG problem with nondeterministic VPA specifications.

• We show that when the winning condition is expressed as a formula of the temporal logics CARET

[3] and NWTL [1] the MVPG problem is 2EXPTIME-complete, and hardness can be shown also
for very simple fragments of the logics. In particular, we show a 2EXPTIME lower bound for the
fragment containing only conjunctions of disjunctions of bounded-size path formulas (i.e., formu-
las expressing either the requirement that a given finite sequence is a subsequence of a word or its
negation), that is in contrast with the situation in finite game graphs where PSPACE-completeness
holds for larger significant fragments (see [4, 6]). On the positive side, we are able to show an
exponential-time algorithm to decide the MVPG problem for specifications given as conjunctions
of temporal logic formulas that can be translated into a polynomial-size VPA (such formulas in-
clude the path formulas).

• We also give a different solution for recursive games with finite-state automata specifications. Our
approach yields an upper bound of |G|2O(d2(k+logd)+β ) for the MVPG problem, where d is the
number of P (the VPA) states, k is the number of G (the RGG) exits, and β is the number of call
edges of G, i.e., the number of module pairs (m,m′) such that there is a call from m to m′. The
known solution [5] yields an |G|2O(kd2 log(kd)) upper bound. Thus, our solution is faster when k
and d are large, and matches the known EXPTIME lower bound [5]. In addition we use one-way
nondeterministic/universal tree automata instead of two-way alternating tree automata, thus we
explicitly handle aspects that are hidden in the construction from [5].

Related work. Besides the already mentioned work that has dealt with modular games, but only for
ω-regular specifications [5] or reachability [7], other research on pushdown games have focused on the
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standard notion of winning strategy. We recall that determining the existence of a standard winning strat-
egy (i.e., non-modular) in pushdown games with reachability specifications is known to be EXPTIME-
complete [21]. Deciding such games is 2EXPTIME-complete for nondeterministic visibly pushdown
specifications and 3EXPTIME-complete for LTL and CARET specifications [13].

The synthesis from recursive-component libraries defines a pushdown game which is orthogonal
to the MVPG problem: there the modules are already synthesized and the game is on the function
calls. Deciding such games for NWTL is 2EXPTIME-complete [15]. The synthesis from open recursive-
component libraries combines both this synthesis problem and the MVPG synthesis. Deciding the related
game problem with reachability specifications is EXPTIME-complete [10]. Other synthesis problems
dealing with compositions of component libraries are [14, 9], and for modules expressed as terms of the
λY -calculus, [19].

2 Preliminaries
Given two positive integers i and j, i ≤ j, we denote with [i, j] the set of integers k with i ≤ k ≤ j, and
with [ j] the set [1, j].

We fix a set of atomic propositions AP and a finite alphabet Σ. A ω-word over Σ is a mapping that
assigns to each position i ∈ N a symbol σi ∈ Σ, and is denoted as {σi}i∈N or equivalently σ1σ2 . . ..

Recursive game graph. A recursive game graph (RGG) is composed of game modules that are essen-
tially two-player graphs (i.e., graphs whose vertices are partitioned into two sets depending on the player
who controls the outgoing moves) with entry and exit nodes and two different kind of vertices: the nodes
and the boxes. A node is a standard graph vertex and a box corresponds to invocations of other game
modules in a potentially recursive manner (in particular, entering into a box corresponds to a module call
and exiting from a box corresponds to a return from a module). Min

M1

ein b :M1

u1

pc

u2

pd

e1

u3

pa

u4

pb

ex1

Figure 1: A sample RGG.

As an example consider the RGG in Fig. 1, where the vertices of player
0 (pl0) are denoted with rounds, those of player 1 (pl1) with squares and the
rectangles denote the vertices where there are no moves that can be taken
by any of the players and correspond to calls and exits. Atomic propositions
pa, pb, pc and pd label the vertices. Each RGG has a distinct game module
which is called the main module (module Min in the figure). In analogy to
many programming languages, we require that the main module cannot be
invoked by any other module. A typical play starts in vertex ein. From this
node, there is only one possible move to take and thus the play continues
at the call to M1 on box b, which then takes the play to the entry e1 in M1.
This is a vertex of the adversary, who gets to pick the transition and thus can decide to visit either u3
(generating pa) or u4 (generating pb). In any of the cases, the play will evolve reaching the exit and then
the control will return to module M1 at the return vertex on box b. Here pl0 gets to choose if generating pc

or pd and so on back to the call to M1. Essentially, along any play alternatively pl1 chooses one between
pa and pb, and pl0 chooses one between pc and pd . Formally, we have the following definitions.

Definition 1. (RECURSIVE GAME GRAPH) A recursive game graph G over AP is a triple (M,min,
{Sm}m∈M) where M is a finite set of module names, min ∈ M denotes the main module and for each
m ∈M, Sm is a game module. A game module Sm is (Nm,Bm,Ym,Enm,Exm,δm,ηm,P0

m,P
1
m) where:

• Nm is a finite set of nodes and Bm is a finite set of boxes;

• Ym : Bm→ (M \{min}) maps every box to a module;
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• Enm ⊆ Nm is a non-empty set of entry nodes;

• Exm ⊆ Nm is a (possibly empty) set of exit nodes;

• δm : Nm∪Retnsm→ 2Nm∪Callsm is a transition function where Callsm = {(b,e)|b ∈ Bm,e ∈ EnYm(b)}
is the set of calls and Retnsm = {(b,e)|b ∈ Bm,e ∈ ExYm(b)} is the set of returns;

• ηm : Vm→ 2AP labels in 2APeach vertex from Vm = Nm∪Callsm∪Retnsm;

• P0
m and P1

m form a partition of (Nm∪Retnsm) \Exm; P0
m is the set of the positions of pl0 and P1

m is
the set of the positions of pl1.

In the rest of the paper, we denote with: G an RGG as in the above definition; V =
⋃

mVm (set of
vertices); B =

⋃
m Bm (set of boxes); Calls =

⋃
m Callsm (set of calls); Retns =

⋃
m Retnsm (set of returns);

Ex =
⋃

m Exm (set of exits); P` =
⋃

m P`
m for ` ∈ [0,1] (set of all positions of pl`); and η : V → 2AP such

that η(v) = ηm(v) where v ∈Vm.
To ease the presentation we make the following assumptions (with m ∈M):
• there is only one entry point to every module Sm and we refer to it as em;

• there are no transitions to an entry, i.e., em 6∈ δm(u) for every u;

• there are no transitions from an exit, i.e., δm(x) is empty for every x ∈ Exm;

• a module is not called immediately after a return from another module, i.e., δm(v)⊆ Nm for every
v ∈ Retnsm.

A (global) state of an RGG is composed of a call stack and a vertex, that is, each state of G is of the
form (α,u) ∈ B∗×V where α = b1 . . .bh, b1 ∈ Bmin , bi+1 ∈ BY (bi) for i ∈ [h−1] and u ∈VY (bh).

A play of G is a (possibly finite) sequence of states s0s1s2 . . . such that s0 = (ε,ein) and for i ∈ N,
denoting si = (αi,ui), one of the following holds:
− Internal move: ui ∈ (Nm∪Retnsm)\Exm, ui+1 ∈ δm(ui) and αi = αi+1;
− Call to a module: ui ∈ Callsm, ui = (b,em′), ui+1 = em′ and αi+1 = αi.b;
− Return from a call: ui ∈ Exm, αi = αi+1.b, and ui+1 = (b,ui).

Fix an infinite play π = s0s1 . . . of G where si = (αi,ui) for each i ∈ N.
With πk we denote s0 . . .sk, i.e., the prefix of π up to sk. For a finite play π ′.s, with ctr(π ′.s) we

denote the module m where the control is at s, i.e., such that u ∈Vm where s = (α,u). We define µπ such
that µπ(i, j) holds iff for some m ∈M, ui ∈ Callsm and j is the smallest index s.t. i < j, u j ∈ Retnsm and
αi = α j (µπ captures the matching pairs of calls and returns in π).

Modular strategies. Fix ` ∈ [0,1]. A strategy of pl` is a function f that associates a legal move to
every play ending in a node controlled by pl`.

A modular strategy constrains the notion of strategy by allowing only to define the legal moves
depending on the “local memory”of a module activation (every time a module is re-entered the local
memory is reset).

Formally, a modular strategy f of pl` is a set of functions { fm}m∈M, one for each module m ∈ M,
where fm : V ∗m.P

`
m→Vm is such that fm(π.u) ∈ δm(u) for every π ∈V ∗m,u ∈ P`

m.
The local successor of a position in π is: the successor according to the matching relation µπ at

matched calls, undefined at an exit or an unmatched call, and the next position otherwise. Formally, the
local successor of j, denoted succπ( j), is: h if µπ( j,h) holds; otherwise, is undefined if either u j ∈ Ex
or u j ∈ Calls and µπ( j,h) does not hold for every h > j; and j+1 in all the remaining cases.
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For each i≤ |π|, the local memory of πi, denoted λ (πi), is the maximal sequence u j1 . . .u jk such that
u jk = ui and jh+1 = succπ( jh) for each h ∈ [k− 1]. (Note that since the sequence is maximal, u j1 = em

where m = ctr(πi).)
A play π conforms to a modular strategy f = { fm}m∈M of pl` if for every i <| π |, denoting ctr(πi) =

m, ui ∈ P`
m implies that ui+1 = fm(λ (πi)).

Consider again the example from Fig. 1. A strategy of pl0 that chooses alternatively to generate pc

and pd is modular, in fact it requires as memory just to store the last move from the return of b, and thus
is local to the current (sole) activation of module Min. Instead, a strategy that attempts to match each pa

with pc and each pb with pd is clearly non modular.
We remark that modular strategies are oblivious to the previous activations of a module. In the RGG

of Fig. 1, a modular strategy for pl1 would only allow either one of the behaviors: “pl1 always picks
pa”or “pl1 always picks pb”.

Winning conditions and modular games. A modular game on RGG is a pair 〈G,L〉 where G is an
RGG and L is a winning condition. A winning condition is a set L of ω words over a finite alphabet
Σ = 2AP, where AP is a set of propositions. Given an RGG G, for a play π = s0s1 . . . of G, with si =
(αi,ui), we define the word wπ = η(u0)η(u1) . . ., which is the mapping that assigns to each position
the corrispondent symbol from Σ. A (modular) strategy f is winning if wπ ∈ L for every play π of G
that conforms to f . The modular game problem asks to determine the existence of a winning (modular)
strategy of pl0 in a given modular game. In the following sections, we consider L given by pushdown,
visibly pushdown automata and by LTL , CARET or NWTL formulas.

3 Pushdown specification
Pushdown modular games. A pushdown modular game is a pair 〈G,P〉 where G is an RGG and P
is a pushdown automaton, whose accepted language defines the winning condition in G. A pushdown
automaton P is a tuple (Q,q0,Σ,Γ,δ ,γ

⊥,F) where Q is a finite set of states, q0 ∈ Q is the initial state,
Σ is a finite alphabet, Γ is a finite stack alphabet, γ⊥ is the bottom-of-stack symbol, F ⊆ Q defines an
acceptance condition, and δ : Q×{Σ∪ε}×Γ→ 2Q×Γ∗ is the transition function. A pushdown automaton
is deterministic if it satisfies the following two conditions: -δ (q,α,γ) has at most one element for any
q ∈Q, γ ∈ Γ and α ∈ Σ (or α = ε); - if δ (q,ε,γ) 6= /0 for any q ∈Q and γ ∈ Γ then δ (q,α,γ) = /0 for any
α ∈ Σ.

Undecidability of pushdown specification. The modular game problem becomes undecidable if we
consider winning conditions expressed as standard (deterministic) pushdown automata. This is mainly
due to the fact that the stack in the specification pushdown automaton is not synchronized with the call-
return structure of the recursive game graph.

We prove the undecidability of our problem with pushdown specification by presenting a reduction
from the problem of checking the emptiness of the intersection of two deterministic context-free lan-
guages.

Consider two context-free languages L1 and L2 on an alphabet Σ = {σ1,σ2, ...,σn}, which are ac-
cepted by two pushdown automata, P1 and P2, respectively. We want to construct an instance 〈G,P〉
of a deterministic pushdown modular game problem such that exists a winning modular strategy for pl0
in 〈G,P〉 if and only if the intersection of L1 and L2 is not empty.

The basic idea of the reduction is to construct a game where pl1 challenges pl0 to generate a word
from either L1 or L2, and pl0 must match the choice of pl1 without knowing it in order to win. We
construct an RGG G with two modules, min and m (see the Fig. 2).
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The module min is the main module and is composed of an entry ein, two internal nodes u1 and u2,
and one box b labeled with m. The entry ein belongs to pl1 and has two transitions, one to each internal
node. From u1 and u2 there is only one possible move, which leads to b. The labeling function associates
the symbol a1 to u1 and the symbol a2 to u2 with a1,a2 /∈ Σ. The node ein and the call (b,em) are both
labeled with ] /∈ Σ∪{a1,a2}. Observe that since the only choice of pl1 is at ein, for any strategy f of pl0
there are only two plays conforming to it: one going through u1 and the other through u2.

min

ein

♯

u2

a2

u1

a1

b : m
♯

m

em

♯

s

♯

v1

σ1

vi

σi

vn

σn

Figure 2: The module min and m

The module m is essentially a deterministic generator of
any word in {]}.Σ∗.{]}. The module m has one entry em, |Σ|
internal nodes v1,v2, ...,vn and a sink node s (i.e., a node with
only ingoing edges). All the vertices of m belong to pl0. There
are only outgoing edges from em, which take to each of the
other vertices of m. Moreover, there is a transition from vi to v j

for any i, j ∈ [n], and from any node there is a move to s. Each
node vi is labeled with σi. for i ∈ [n]. The symbol ] labels em

and s.
As winning condition, we construct a deterministic push-

down automaton P . In the inital state P reads ] and moves
into state q0. Fix i ∈ [2]. From q0 and on input ai, P enters
state qi. From qi, P reads two occurrences of ] and enters the
initial state of Pi. From any Pi state, P behaves as Pi and
in addition, from each final state of Pi, it has a move on input
] that takes to the only final state q f .

Since the strategy must be modular, in the module m the player pl0 has no information about the
choice of pl1 in min. Also, the local strategy in module m generates one specific word (there are no
moves of pl1 allowed in m) and thus this is the same independently of the moves of pl1 in module min.
Thus, the local strategy in m is winning if and only if it generates a word in the intersection of L1 and L2,
and therefore, the following theorem holds.

Theorem 1. The (deterministic) pushdown modular game problem is undecidable.

4 Solving modular games with VPA specifications

Visibly pushdown automata. Consider the finite alphabet Σ, and let call, ret, and int be new symbols.
We denote with Σcall = Σ×{call}, Σret = Σ×{ret} and Σint = Σ×{int} and with Σ̂ = Σcall∪Σret∪Σint.

A visibly pushdown automaton (VPA) P is a tuple (Q,Q0, Σ̂,Γ∪ {γ⊥},δ ,F) where Q is a finite
set of states, Q0 ⊆ Q is a set of initial states, Σ̂ is a finite alphabet, Γ is a finite stack alphabet, γ⊥ is
the bottom-of-stack symbol, F ⊆ Q defines an acceptance condition, and δ = δ int ∪ δ push∪ δ pop where
δ int ⊆ Q×Σint×Q, δ push ⊆ Q×Σcall×Γ×Q, and δ pop ⊆ Q×Σret× (Γ∪{γ⊥})×Q.

A configuration (or global state) of P is a pair (α,q) where α ∈ Γ∗.{γ⊥} and q∈Q. Moreover, (α,q)
is initial if q ∈Q0 and α = γ⊥. We omit the semantics of the transitions of P being quite standard. It can
be obtained similarly to that of RGG with the addition of the inputs. Here we just observe that we allow
pop transitions on empty stack (a stack containing only the symbol γ⊥). In particular, a pop transition do
not change the stack when γ⊥ is at the top, and by the definition of δ push, γ⊥ cannot be pushed onto the
stack. A run ρ of P over the input σ0σ1 . . . is an infinite sequence C0

σ0−→C1
σ1−→ . . . where C0 is the initial

configuration and such that, for each i ∈N, Ci+1 is obtained from Ci by applying a transition on input σi.
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Acceptance of an infinite run depends on the control states that are visited infinitely often. Fix a run
ρ = (γ⊥,q0)

σ0−→ (α1,q1)
σ1−→ (α2,q2) . . .. With a Büchi acceptance condition, ρ is accepting if qi ∈ F for

infinitely many i ∈ N (Büchi VPA). With a co-Büchi acceptance condition, ρ is accepting if there is a
j ∈ N such that qi 6∈ F for all i > j (co-Büchi VPA).

A VPA P is deterministic if: (1) |Q0|= 1, (2) for each q ∈ Q and σ ∈ Σcall∪Σint there is at most one
transition of δ from q on input σ , and (3) for each q1 ∈ Q, σ ∈ Σret, γ ∈ Γ∪{γ⊥} there is at most one
transition from q on input σ and stack symbol γ . Note that a deterministic VPA is such that for each
word w there is at most a run over it.
For a word w, a deterministic/nondeterministic (resp. universal) VPA accepts w if there exists an accept-
ing run over w (resp. all runs over w are accepting).

Visibly pushdown games. A visibly pushdown game on RGG (VPRG) is a pair 〈G,P〉 where G is an
RGG and P is a visibly pushdown automaton (see [8]). Consider a VPRG 〈G,P〉 where G is an RGG and
P is a VPA. For a play π = s0s1 . . . of G, with si = (αi,ui), we define the word wπ as σ0σ1 . . . such that for
i ∈ N, σi = (ηm(si), ti) where ctr(πi) = m and ti is call if ui ∈ Calls, ret if ui ∈ Retns, and int otherwise.
The visibly pushdown (modular) game problem asks to determine the existence of a (winning) modular
strategy of pl0 in a given VPRG such that wπ is accepted by P for every play π that conforms to f . We
denote the visibly pushdown modular game problem as MVPG problem.

When the VPA is a finite state automaton B =(Q,q0,Σ,δ ,F) we denote with ω-MGP the ω-modular
game problem that asks to determine the existence of a winning modular strategy of pl0 in a given 〈G,B〉
game (ω-MG).

Solving games with VPA specifications We consider games with winning conditions that are given
by a VPA with different acceptance conditions. We present a reduction from recursive games with VPA
specifications to recursive games with specifications that are given as finite state automata. The reduction
is almost independent of the acceptance condition, and it works for reachability and safety conditions as
well as for Büchi and co-Büchi acceptance conditions.

dm

ein

vγg

γg

vγ1

γ1

uγ1

γ1

uγ1

γ1

uγg

γg

uγg

γg

ex1

ex jb : m

b : m

Figure 3: The module dm. All the ver-
tices of dm are controlled by pl1

The reduction transforms a recursive game graph with a
visibly pushdown automaton specification (with some accep-
tance condition) to a slightly different recursive game graph
with a finite-state automaton specification (with the same type
of acceptance condition). The key idea is to embed the top
stack symbol of a VPA P in the states of a finite-state automaton
A. In addition, the states of A will simulate the corresponding
states of P and thus we will get that the winning conditions are
equivalent. Clearly, a finite-state automaton cannot simulate an
unbounded stack. While it is easy to keep track of the top sym-
bol after a push operation, extracting the top symbol after a pop
operation requires infinite memory. For this purpose we exploit
the fact that the stacks of the VPA P and the game graph G are synchronized and we introduce a new
dummy module dm for every module in G. Recall that the invocation of a module m in G correspond to
a push operation in P. We replace every invocation of m by a call to dm. In dm (see Figure 3) pl1 first
has to declare the value of the top symbol in P before the push operation by going to the corresponding
vγ1 , . . . ,vγg state in dm, and A can verify that pl1 is honest since it keeps track of the current top-symbol
(if the player is not honest then A goes to a sink accepting state and pl1 loses). After the declaration, the
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module invokes the actual module m and when m terminates, then pl1 must declare again the top-symbol
γi of P, visiting the vertex uγi , and A changes his simulated top symbol accordingly.

Denoting with k the number of exits of the starting RGG, with g the number of stack symbols, and d
the number of states of the specification, we get that the resulting RGG G has 2k exits and the resulting
automaton A has O(dg) states. Thus combining this with the solution from [5], we get an upper bound
linear in |G| and exponential in 2k(d g)2 log(2k d g). We have:

Theorem 2. The MVPG problem with winning conditions expressed as either a deterministic Büchi VPA
or a deterministic co-Büchi VPA is EXPTIME-complete.

The proposed reduction can be extend for universal VPA specification. W.l.o.g we assume that in the
non-deterministic VPA for every state, stack letter and labeling there are exactly two possible transitions.
In this case we add a dummy module e, that is composed only by pl1 nodes and has one exit. Each
transition from a node v to a node u is splitted in two transitions, v→ e and e→ u. In the module e, pl1
resolves the nondeterminism, selecting one of the two possible transitions for the VPA specification. The
choices of pl1 in e are oblivious to pl0. Hence, the universal VPA accepts if and only if pl0 has a strategy
that wins against all pl1 choices in e, and we get the next theorem.

Theorem 3. The MVPG problem with winning conditions expressed as a universal Büchi (resp. co-
Büchi) VPA is EXPTIME-complete.

We can handle nondeterministic VPAs in the following way: Let P be a nondeterministic Büchi VPA
P. By [8], we can construct a nondeterministic Büchi VPA P′ that accepts a word w iff P does not accept
it, and such that the size of P′ is exponential in the size of P. Complete P′ with transitions that take to a
rejecting state such that for each word there is at least a run of P′ over it. Let P′′ be the dual automaton of
P′, i.e., P has the same components of P′ except that acceptance is now universal and the set of accepting
states is now interpreted as a co-Büchi condition. Clearly, P′′ accepts exactly the same words as P and
has size exponential in |P|. Similarly, we can repeat the above reasoning starting from a co-Büchi VPA
P. Therefore, we have:

Theorem 4. The MVPG problem with winning conditions expressed as a nondeterministic Büchi (resp.
co-Büchi) VPA is in 2EXPTIME.

5 Temporal logic winning conditions

By [3], we know that given a CARET formula ϕ it is possible to construct a nondeterministic Büchi VPA
of size exponential in |ϕ| that accepts exactly all the words that satisfy ϕ . From [1], we know that the
same holds for the temporal logic NWTL. Thus, given a formula ϕ in any of the two logics, we construct
a Büchi VPA P for its negation ¬ϕ . By dualizing as in the case of nondeterministic VPA specifications,
we get a co-Büchi VPA that accepts all the models of ϕ and which size is exponential in |ϕ|. Since both
CARET and NWTL subsume LTL [17], and LTL games are known to be 2EXPTIME-hard [18] already on
standard finite game graphs, we get:

Theorem 5. The MVPG problem with winning conditions expressed as CARET and NWTL formulas is
2EXPTIME-complete.

The complexity of the temporal logic MVPG problem remains 2EXPTIME-hard even if we consider
simple fragments.

A path formula is a formula expressing either the requirement that a given sequence appears as a
subsequence in an ω-word or its logical negation. Path formulas are captured by LTL formulas of the
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form 3(p1∧3(p2∧ . . .3(pn−1∧3pn) . . .)) and by their logical negation, where each pi is state predi-
cate, 3ψ (eventually ψ) denotes that ψ holds at some future position, and ∧ is the Boolean conjunction.
We denote such a fragment of LTL as PATH-LTL.

We present a reduction from exponential-space alternating Turing machines. We only give here the
general idea.We use a standard encoding of computations, where cell contents are preceded by the cell
number written in binary (2N atomic propositions suffice to encode 2N cell numbers) and configurations
are sequences of cells encodings ended with a marker (the tape head and the current control state are
encoded as cell contents).

Denote with Q and Σ respectively the control states and the input alphabet, and let 2N be the number
of cells used in each configuration. A configuration encoding is a sequence of the form 〈0〉σ0 . . .〈2N〉σ2N

where there is a i s.t. σi ∈Q×Σi (this denotes the current state, the symbol of cell i and that the tape head
is on cell i), σ j ∈ Σ for all j 6= i (symbol in cell j), and 〈h〉 is the binary encoding of h (cell number) over
new symbols d>r and d⊥r for r ∈ [N] (d>r is equivalent to 1 and d⊥r to 0 in the binary encoding). A path
of a computation (computations of alternating TM can be seen as trees of configurations) is encoded as
a sequence C0d0$ . . .Cidi$ . . . where each Ci is a configuration (C0 is initial) and di is the transition taken
from Ci to Ci+1.

We construct an RGG G with two modules Min and M1. In Min, initially, pl0 generates an encoding
of an initial configuration, then, a transition is selected by pl0, if the initial state is existential, or by
pl1, otherwise. In both cases, an end-of-configuration marker $ is generated and then pl0 is in charge to
generate again a configuration encoding, and so on. A call to M1 is placed before generating the first cell
encoding of each configuration and after generating each cell encoding. In M1, pl1 selects one among a
series of actions that can either state that everything is fine (ok) or that some check is required (by raising
one over nine objections). M1 has only one exit.

The goal of pl0 is to build an encoding of an accepting run of a TM A on a given input word, while
the goal of pl1 is to point out errors in such encoding by raising objections to delimit the cell encodings
where the check has to take place. There are two possible mistakes that can occur: the ith cells of two
consecutive configurations do not conform the transition relation of A and the number of a cell is not the
successor of the number of the preceding cell in the configuration. We use separate groups of objections
to point out each of these mistakes. These specifications can be captured with a formula ϕ defined as
{¬3obj∨ [(ψwr1∨ψ∆)∧ (ψwr2∨ψ])]}∧ (3obj∨3F) where: (1) obj denotes that an objection has been
raised; (2) F denotes a state predicate that is true on symbols of the encoding that correspond to final
states of A ; (3) ψwr1 and ψwr2 capture all the illegal uses of respectively the first and the second type
of objections; (4) ψ∆ checks the transition relation between two consecutive configurations on the cells
selected by the raised objections of type 1; and (5) ψ] checks the correct encoding of the cell numbers
of two consecutive cells selected by the raised objections of type 2. All the above formulas can be
written with disjunctions of path formulas except for ψ] that is a conjunction of disjunctions of path
formulas. Using De Morgan laws, the total formula can be transformed into an equivalent formula of
size polynomial in |ϕ|, which is a disjunction of conjunctions of path formulas. Also note that all the
used path formulas are of bounded size (the most complex one uses eleven occurrences of 3). Moreover,
in a modular strategy pl0 cannot use the fact that pl1 has raised an objection to decide the next move since
the objections are raised in a different module (which has just one exit). Therefore, in order to win, pl0
must correctly generate the computations of the TM. We get the following:
Lemma 6. The MVPG problem with winning conditions expressed as a conjunction of disjunctions of
bounded-size PATH-LTL formulas is 2EXPTIME-hard.

It is known that each formula ϕ from PATH-LTL admits a deterministic Büchi word automaton
accepting all the models of ϕ and which is linear in its size [4]. The same can be shown with Büchi
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VPA, by extending PATH-LTL allowing the versions of the 3 operator of CARET and NWTL. By the
closure properties of universal visibly pushdown automata we can easily extend Theorem 3 to winning
conditions given as intersection of deterministic VPAs and thus:

Theorem 7. The MVPG problem with winning conditions expressed as a conjunction of CARET and
NWTL formulas that admit a deterministic Büchi or co-Büchi VPA generator of polynomial size is
EXPTIME-complete.

Now consider the larger fragment of formulas
∨h

i=1
∧

j=1k ϕi, j where for each ϕi, j we can construct
either a deterministic Büchi or a deterministic co-Büchi VPA Pi, j of polynomial size that generates all the
models of ϕi, j. We are only able to show an EXPTIME lower bound using a construction similar to that
used in the reduction of Lemma 6 However, we observe that a matching upper bound cannot be shown
using automata constructions, since we would need to manage the union of N specifications without an
exponential blow-up, and since intersection is easy, this would contradict Lemma 6.

6 Improving the tree automata construction to solve ω-MGP with Büchi
condition

We assume the standard definitions of trees and nondeterministic/universal tree automata with Büchi and
co-Büchi acceptance (universality refers to the fact that all runs must be accepting in order to accept. See
[5] for definitions).

General structure of the construction. Fix a ω-MG 〈G,B〉 where B = (Q,q0,Σ,δ ,F) is a determin-
istic Büchi automaton and G is as in Section 2. We construct a Büchi tree automaton AG,B that accepts
a tree if and only if pl0 has a winning modular strategy in the game 〈G,B〉.

The trees accepted by AG,B must encode G and a modular strategy on it (strategy trees). Each such
tree essentially has a subtree rooted at a child of the root for each module of G and each such subtree is
the unwinding of the corresponding module along with a labeling encoding the strategy.

The general idea is to check on each subtree of the root some properties of the corresponding local
function of the encoded modular strategy, by assuming some other properties on the local functions of
the other modules (as in an assume-guarantee reasoning). These assumptions concern: a call structure
CG (Büchi call graph), to handle acceptance on plays involving infinitely many unreturned calls; a set E
for each module, each giving a superset of the exits that can be visited during the plays; a set of extended
pre-post conditions C , that for each module m, each exit x and each possible state q of B, carries the
requirement that if m is entered with q and the play exits at x, then this must happen with state q′ such
that (m,q,x,q′) ∈ C and after visiting an accepting state if this is required by C . To ensure correctness
all modules must share the same assumptions, thus AG,B guesses the assumptions at the root and then
passes them onto the children of the root.

The tasks of AG,B thus are: recognizing the strategy trees; ensuring the correctness of the extended
pre-post conditions; ensuring that all the plays according to the modular strategy conform the Büchi call
graph and do not exit a module from an exit different from those listed in E ; checking the acceptance
condition of B on all the plays encoded in the strategy tree, using the pre-post condition, the acceptance
condition of B and the Büchi call graph.

The above tasks are split among the Büchi tree automata AG, A E
CG and AB,C ,CG. The automata

AG and A E
CG are nondeterministic and check the fulfillment of the properties related to the game graph.

AG is in charge of verifying that the input tree is a valid strategy tree. A E
CG is parameterized over the

set of exits E and a Büchi call graph CG. The automaton AB,C ,CG, which is a universal Büchi tree
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automaton, checks the extended pre-post condition C , simulates B and checks the fulfillment of its
winning conditions.

AG,B captures the intersection of AG and the automaton that, at the root, nondeterministically
guesses E ,CG,C , and then at the children of the root, captures the intersection of AB,C ,CG and A E

CG.

The automaton AG. Let k be the maximum over the number of exits of G modules and the out-degree
of G vertices. Denote with ΩG the set {dummy,root}∪ (V \P0)∪ (P0× [k]) (recall V denotes the set of
vertices of G). AG accepts strategy trees, i.e., ΩG-labeled k-trees that encode modular strategies of pl0.

root

(ein,1) (e1)

(b,e1) dummy (u3,1) (u4)

(ex1) dummy((b,ex1),2) dummy

(u1) (u2,1)

(b,e1) dummy

((b,ex1),1) dummy

(u1) (u2,1)

dummy dummy

Figure 4: A fragment of a strategy
tree.

Intuitively, in a strategy tree, the label root is associated with
the root of the tree. The children of the root are labeled with the en-
tries of each module in G. A subtree rooted in one of these vertices
corresponds to the unrolling of a module. If a vertex is labeled with
a node that belongs to pl0, the move according to the encoded strat-
egy is annotated with the index of the selected successor. If a node
is associated to a call, then its children are labeled with the match-
ing returns. The dummy nodes are used to complete the k-tree. A
similar formal definition is given [5].

In Fig. 4 we depict the top fragment of a strategy tree for pl0 of
the RGG from Fig. 1
Given a tree T , the automaton AG accepts T iff it is a strategy tree for G. A construction for AG can be
easily obtained from G, and thus we omit it (see [5] for a similar construction).

Proposition 8. There exists an effectively constructible Büchi tree automaton of size O(|G|) that accepts
a ΩG-labeled k-tree if and only if it is a strategy tree.

Directly from the definitions, the following holds:

Proposition 9. For a ω-MG and fixed a player pl, there exists a one-to-one mapping between the modular
strategies of pl and the strategy trees.

The automaton A E
CG. Fix a modular strategy f of pl0 in G. A call graph (of G) according to f is a

directed graph (V,→), V ⊆ M, such that for each play π which conforms to f , if a module m ∈ M is
reachable on π then m ∈V and if a call from m′ to m′′ is done on π then m′→ m′′ holds.

A Büchi call graphs CG of G according to f and B is (V,→,→F) where V ⊆M×Q,→F⊆→ and:
(1) denoting with ξ ((m,q)) = m, the graph defined by all the edges ξ (v)→′ ξ (v′) s. t. v→ v′ is a call
graph of G according to f (denoted ξ (CG) in the following), and (2) for each cycle v1 → v2 → . . .→
vh→ vh+1 (with v1 = vh+1), there exists at least a j ∈ [1,h] such that (v j →F v j+1) (in order to fulfill a
Büchi condition, in a cycle of calls there must exist at least a module mi j among mi1 , . . . ,mih in which an
F state of B is visited infinitely often).

In a strategy tree, a node is enabled if it is the root or the corresponding vertex of G is reachable in
the encoded strategy. For a given Büchi call graph CG and a selection of exits E , by assuming that the
input tree is a strategy tree, the automaton A E

CG checks that indeed the input tree conforms to CG and E .

Lemma 10. There exists an effectively constructible Büchi tree automaton A E
CG such that if T is a

strategy tree of G and f is the corresponding modular strategy, then A E
CG accepts T unless either (1) an

exit not in E is enabled, or (2) ξ (CG) is not a call graph of G according to f (i.e., there exists an enabled
call from m to m′ but no edge from m to m′ in ξ (CG)). The size of A E

CG is linear in |G|.
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The automaton AB,C ,CG. The automaton AB,C ,CG is parameterized over the Büchi automaton B, an
extended pre-post condition C (which essentially summarizes the effects of B executions in each module
of G) and a Büchi call-graph CG. It is quite complex and its tasks are:

1. to simulate B on a strategy tree (and in this, it uses C s.t. when simulating B in a module it is not
needed to follow the calls to other modules and the simulation can continue at a matching return);

2. to check the correctness of the pre-post condition C ;

3. to check that the accepting states of B are entered consistently with CG on the cycles of calls;

4. to check the fulfillment of B acceptance conditions.

We first construct an automaton A C
B which ensures task 1, then on the top of A C

B we construct three
different automata AB,C ,AB,CG and ABwin , one for each of the remaining three tasks. We then get
AB,C ,CG by taking the usual cross product for the intersection of these automata (note that an efficient
construction can be obtained by discarding all the states that do not agree on the A C

B part, thus avoiding
a cubic blow-up in the size of A C

B ). Under the assumption that the input tree is a strategy tree and
ξ (CG) is consistent with it, we get that AB,C ,CG accepts only winning strategy trees (i.e., strategy trees
that correspond to winning modular strategies) that conform to CG and C . The details on all the above
automata are given in the rest of this section. Thus, we get:

Lemma 11. Let 〈G,B〉 be a ω-MG and B be a Büchi automaton. Given a Büchi call graph CG and a
pre-post condition C , there exists an effectively constructible universal Büchi tree automaton AB,C ,CG
s.t.: if T is a strategy tree of G, f is the corresponding modular strategy and ξ (CG) is a call graph of G
according to f , then AB,C ,CG accepts T iff T is winning in 〈G,B〉 and consistent with CG and C . The
size of AB,C ,CG is quadratic in the number of B states.

Winning strategy trees. For a strategy tree T of G, a play of T is an ω-sequence of T -nodes x1x2 . . .
such that x1 is the child of the root corresponding to min, α1 = ε (call-stack) and for i ∈ N, xi is an
enabled node and: (1) if xi is labeled with a call to m, then xi+1 is the child of the T root corresponding
to module m (and thus is labeled with the entry em), and αi+1 = αi.xi; (2) if xi is labeled with an exit ex,
then αi = αi+1.y, y is a node labeled with a call (b,em) and xi+1 is the child of y labeled with the return
(b,ex); (3) otherwise, xi+1 is an enabled child of xi and αi+1 = αi.

Note that any play of a strategy tree T corresponds to a play of G (conforming to the modular strategy
defined by T ). A winning strategy tree T w.r.t. B is such that for all the plays ν of T , wν is accepted by
B. From Proposition 9, we get:
Lemma 12. Given a ω-MG 〈G,B〉, a modular strategy is winning iff the corresponding strategy tree is
winning.

Pre-post conditions. A pre-post condition on the graph G is a pair 〈Cpre,Cpost〉 where Cpre ⊆M×Q
(set of pre-conditions), Cpost ⊆ M×Q× Ex×Q (set of pre-post conditions), and such that for each
(m,q,ex j,q′) ∈ Cpost , also (m,q) ∈ Cpre (i.e., tuples of Cpost add a post-condition to some of the pre-
conditions of Cpre).

Intuitively, a pre-post condition is meant to summarize all the B locations that can be reached on
entering each module of G along any play of T , and for each reachable exit ex, all the pairs of B locations
(q,q′) s.t. there exists a play of T along with B enters a module at q and exits it from ex at q′.

Fix a pre-post condition 〈Cpre,Cpost〉.
〈Cpre,Cpost〉 is consistent with a strategy tree T if for each play ν = x1x2 . . . of T and for each xi which
is labeled with a call to module m ∈M, denoting with q the location at which the only run of B over wνi
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ends: (1) (m,q) belongs to Cpre and (2) if ν reaches the matching return at x j+1, x j is labeled with exit
ex and the location at which the run of B over wν j1

is q′ (i.e., the location when reading the symbol of ex
at x j), then (m,q,ex,q′) belongs to Cpost .
〈Cpre,Cpost〉 is consistent with a set of exits 〈E m〉m∈M iff: (1) ∀m ∈ M, ∀ex ∈ E m, if there is a

(m,q) ∈ Cpre then there is at least a tuple of the form (m,q,ex,q′) ∈ Cpost ; (2) ∀(m,q,ex,q′) ∈ Cpost , then
ex ∈ E m holds.

We extend pre-post conditions with a function Fin : Cpost → {true, f alse}. An extended pre-post
condition C = 〈Cpre,Cpost ,Fin〉 is consistent with a strategy tree T if 〈Cpre,Cpost〉 is consistent with T
and for each play ν = x1x2 . . . of T s.t. xi is labeled with a call to module m ∈M, x j+1 is labeled with
its matching return, and the portion of run of B from i to j starts at location q and ends at location q′:
whenever Fin(m,q,ex,q′) = true then a location in F must be visited on this portion of run (acceptance-
condition).

Construction of A C
B . Fix an extended pre-post condition C = 〈Cpre,Cpost ,Fin〉. Let mi be the module

mapped to the ith child of the root of a strategy tree.
We construct A C

B such that the automaton simulates B on an input strategy tree T by using C . In
particular, starting from the ith child, the automaton A C

B runs in parallel a copy of B from each control
state q such that (mi,q) ∈ Cpre. When reading a node labeled with a call, A C

B starts at each matching
return a copy of B according to the applicable tuples in C and performs updates according to Fin. On
all the other enabled nodes, the control state of B is updated for each copy according to B transitions.

The states of A C
B are: an initial state q0, an accepting state qa, a rejecting state qr, and states of the

form (q,d, f ,qmi ,C ) where q,qmi ∈Q, q is the control state which is updated in the simulation of B, qmi

is the current pre-condition, and d, f ∈ {0,1} are related to the winning conditions. Namely, d is used to
check the acceptance-conditions along all the plays that conform to the strategy, and f is used to expose
that a final state of B was seen between a call and its matching return. A task of A C

B is to handle the
correct update of these bits, but they will be used to determine the acceptance by ABwin . The states qa

and qr are sinks, i.e., once reached, the automaton cycles forever on them.

Construction of AB,C , AB,CG and ABwin . The automaton AB,C is in charge of checking that the input
tree is consistent with the extended pre-post condition C . We construct it from A C

B by modifying the
transitions from a state s of the form (q,d, f ,qmi ,C ) at a tree-node labeled with an exit. In particular, in
this case, we let AB,C enter qa if there exists a tuple (mi,qmi ,exh,q) ∈ Cpost , and qr otherwise.

The purpose of AB,CG is to check that the Büchi call graph CG is indeed consistent with the input
strategy tree. We construct AB,CG from A C

B by modifying the transitions from calls. Namely, when on
a node u labeled with a call to a module m j in the subtree of the ith child of the root, at a state of the form
(q′,d, f ,q,C ) and suppose there is a transition (q′,ηmi(u),q

′′) ∈ δ : if (mi,q)→F (m j,q′′) holds in the
Büchi call graph CG and d = 0, then AB,CG enters the rejecting state qr. In all the other cases it behaves
as A C

B .
The purpose of ABwin is to check that the winning conditions of B are satisfied along all plays of the

input strategy tree. Again, we can modify A C
B to ensure this. In particular, when the automaton reaches

a tree-node labeled with exit ex of module m in a state (q′,d, f ,q,C ), then it enters the accepting state
qa, whenever (m,q,ex,q′) ∈ Cpost and Fin(m,q,ex,q′) = true implies b = 1, and qr otherwise. Moreover
the accepting states of ABwin are qa and all the states of the form (q,d, f ,q′,C ) such that either q ∈ F or
f = 1.

Reducing to emptiness of Büchi tree automata. AB,C ,CG can be translated into an equivalent non-
deterministic Büchi tree automaton with 2O(|Q|2 log |Q|) states [16]. Denoting with k the number of G exits
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and β the number of call edges of G (i.e., the number of module pairs (m,m′) such that there is a call
from m to m′), the number of different choices for an extended pre-post condition is 2O(k |Q|2), for a Büchi
call graph is 22β

, and for a set of exits E is 2k. Since AG and A E
CG are both of size O(|G|), the automaton

AG,B (obtained as described earlier in this section) is of size |G|2 2O(|Q|2(k+log |Q|)+β ). We can reduce the
factor |G|2 to |G|, by combining AG and A E

CG into the same automaton (they are essentially based on
G transitions). Therefore, we can get an efficient construction of AB,CG of size |G|2O(|Q|2(k+log |Q|)+β ).
Thus, by Propositions 8 and 9, and Lemmas 10 and 11

Theorem 13. For an RGG G and a deterministic Büchi automaton B pl0 has a winning modular strategy
in 〈G,B〉 iff the nondeterministic Büchi tree automaton AG,B accepts a non-empty language. Moreover,
AG,B is of size |G|2O(|Q|2(k+log |Q|)+β ), where k is the number of G exits.

7 Discussion

In this paper, we have considered modular games with winning condition expressed by pushdown, visibly
pushdown and temporal logic specifications. We have proved that the modular game problem with
respect to standard pushdown specifications is undecidable. Then we have presented a number of results
that give a quite accurate picture of the computational complexity of the MVPG problem with visibly
pushdown winning conditions. With some surprise, we have found that MVPG with temporal logic
winning conditions becomes immediately hard. In fact, while the complexity for LTL specifications
is 2EXPTIME-complete both for MVPG and games on finite graphs, for the fragment consisting of all
the Boolean combinations of PATH-LTL formulas, solving the corresponding games on finite graphs
is PSPACE-complete while the MVPG problem is already 2EXPTIME-complete. As a consequence, the
computational complexity of many interesting fragments of LTL, that have a better complexity than
full LTL on finite game graphs, collapses at the top of the complexities (see [4, 6]).This also differs
with the scenario of the complexities of model-checking RSMs in LTL fragments (see [12]). As a final
remark, we observe that the tree automaton construction proposed in Section 6 can be easily adapted to
handle visibly pushdown winning conditions to get a direct solution of the MVPG problem. We only
need to modify the transition rules to synchronize the calls and returns of the RGG with the pushes
and pops of the specification automaton, and this would be possible since they share the same visibly
alphabet. The change does not affect the overall complexity, however it will slightly improve on the
approach presented in Section 4 that causes doubling the number of exits and gives a complexity with an
exponential dependency in the number of stack symbols.
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