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We study the validity problem for propositional dependelocgc, modal dependence logic and ex-
tended modal dependence logic. We show that the validitiplpro for propositional dependence
logic is NEXPTIME-complete. In addition, we establish that the correspapgioblem for modal
dependence logic and extended modal dependence lIogEX® TIME-hard and ilNEXPTIMENP.

1 Introduction

Dependencies occur in many scientific disciplines. For g@tamn physics there are dependencies in
experimental data, and in social science they can occurdeetwoting extrapolations. For example, one
might want to express whether a value of a certain physicasmmement is determined by the values
of some other measurements. More concretely, is it the ¢adernt some collection of experimental
data, the temperature of some object is completely detedhioy the solar activity and the distance
between the object and the sun. One might also want to knowhehthe voting pattern of some single
constituency always determines the election results.

With the aim to express such dependencies Vaananerduted first-ordedependence logif27]
and its modal variarnodal dependence logfi28]. First-order dependence logic extends first-ordeiclog
by novel atomic formulae calledependence atomdviodal dependence logic, in turn, extends modal
logic with propositional dependence aton’ dependence atom, denotedbyx;, ..., X, Y), intuitively
states that the value of the varialylés solely determined by the values of the variabtes..,x,. The
intuitive meaning of the propositional dependence aton{pgp.., pn,q) is that the truth value of the
propositiong is functionally determined by the truth values of the propmss py, ..., pn. One of the core
ideas in these logics of dependence is the use of team sesavtiananen realized that dependencies
do not manifest themselves in a single assignment nor inghespoint. To manifest dependencies one
must look at sets of assignment or collections of points.s€&hsets of assignments or points are called
teams. Thus whereas in the standard semantics for firsi-tmgie formulae are evaluated with respect
to first-order models and assignments, in team semanticepdralence logic formulae are evaluated
with respect to first-order models and sets of assignment&logously, in team semantics for modal
logic formulae are evaluated with respect to Kripke modals sets of points. For example, the formula

=(Xactivity, Xdist, Xtemp) »

where the values of the variabl&geivity, Xdist: and Xemp range over the magnitude of solar activity,
distance to the sun, and temperature, respectively, esggdbat in some set of data the temperature is
completely determined by the solar activity and the distatocthe sun. Sets of data are captured by
teams. Each assignment in a team corresponds to one recdathof
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Team semantics was originally defined by Hodges [14] as a snaobtain compositional seman-
tics for the independence-friendly logic of Hintikka and8a [13]. Later on Vaananen adopted team
semantics as a central notion for his dependence logic.

Modal dependence logic was the first step in combining foneti dependence and modal logic. The
logic however lacks the ability to express temporal depraoi@s; there is no mechanism in modal de-
pendence logic to express dependencies that occur betwgsart points of the model. This is due to
the restriction that only proposition symbols are allowedhe dependence atoms of modal dependence
logic. To overcome this defect Ebbing et al. [6] introduckddxtended modal dependence lolgjcex-
tending the scope of dependence atoms to arbitrary modalfae, i.e., dependence atoms in extended
modal dependence logic are of the form @gp... ¢n, ), whereds,..., ¢,,  are formulae of modal
logic. For example when interpreted in a temporal modelfdh@aula

dep(Ord, OrOPQ, OPOPOPT, 0)

expresses that the truth gfat this moment, only depends of the truthgah the previous 3 time steps.

It was shown in[[6] that extended modal dependence logicristlgt more expressive than modal
dependence logic. Furthermore Hella etlal! [12] estahtighat exactly the properties of teams that are
downward closed and closed under the so-called tedmimulation, for some finité, are definable in
extended modal dependence logic. The characterizatioreltd gt al. truly demonstrates the naturality
of extended modal dependence logic. In recent years tharmsaround modal dependence logic has
bloomed, for recent work see e.gl [6=9,20/21, 24].

Team semantics in propositional context is also closebtedl to the inquisitive logic of Groenendijk
[11]. In inquisitive logic the meaning of formulae is defined sets of assignments for proposition
symbols. This connection between propositional depereléogic and inquisitive logic has already
been noted in the recent Ph.D. thesis of Fan Yang [29]. Fentasork related to inquisitive logic, see
e.g. [3[23].

In this paper we study the computational complexity of thiditg problem for propositional de-
pendence logic, modal dependence logic and extended megdahdence logic. The study of compu-
tational complexity of the satisfiability problem and the debchecking problem for logics of depen-
dence has been very active. For research related to fragmEfitst-order dependence logic and related
formalisms see |2, 10, 15,116,126]. For work on variants ofppsitional and modal dependence logics
seel[6,7,20,24,29]. However, there is not much research dothe validity problem of these logics. We
wish to mend this shortcoming. Note that since the logicsepfethdence are not closed under negation,
the traditional connection between the satisfiability peaband the validity problem fails. In this article
we establish that the validity problem for propositionapeedence logic iNNEXPTIME-complete. In
addition, we obtain that the corresponding problem for rhagpendence logic and extended modal
dependence logic is containedNEXPTIMENP.

The article is structured as follows. In sectidn 2 we defireelthsic concepts and results relevant to
this article. In sectioh]3 we introduce a variant@BF, called dependency quantified Boolean formulae,
for which the decision problem whether a given formula ietiss NEXPTIME-complete. We start
Section 4 with compact definitions of satisfiability, vatidand model checking in the context of team
semantics. The rest of the section is devoted for the studiieotomplexity of the validity problem
for propositional dependence logic. In Secfidn 5 we comdiake validity problem of modal dependence
logic and extended modal dependence logic.
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2 Preliminaries

In this section we define the basic concepts and resultsami¢w this article. We assume that the reader
is familiar with propositional logic PL and modal logic ML.

2.1 Propositional logics

Let Z, denote the set of positive integers, and let PROR; | i € Z. } be the set of exactly afiropo-
sition symbolsLet D be a finite, possibly empty, subset of PROP. A funcgo — {0,1} is called an
assignmentA setX of assignments: D — {0,1} is called gpropositional teamThe seD is thedomain

of X. Note that the empty team 0 does not have a unique domairsulrset of PROP is a domain of the
empty team.

Most of the logics considered in this article are not closeden negation, thus we adopt the conven-
tion that a syntax of a logic is always defined in negation radfiorm, i.e., negations are allowed only in
front of proposition symbols. This convention is widely dse the dependence logic community. For-
mula that is not in negation normal form is regarded as a kaod for the formula obtained by pulling
all the negations to the atomic level.

Let ® be a set of proposition symbols. The syntax for proposititotgac PL(®) is defined as follows.

¢:=pl-pl(@A)[(dVD),
wherep € ®. We will now give the team semantics for propositional logis we will see below, the
team semantics and the ordinary semantics for propositlogae defined via assignments, in a rather
strong sense, coincide.
Definition 2.1. Let® be a set of atomic propositions and let X be a propositionahteThe satisfaction
relation X = ¢ is defined as follows. Note that, we always assume that theoption symbols that
occur in¢g are also in the domain of X.

XEp < VseX:s(p) =1

XE-p & VseX:s(p)=0.

Xf=(pAY) & Xi=¢andX=y.
XE(@VY) < YE¢andZE=y, forsome YZ such thatYUZ = X.

Proposition 2.2 ( [24]). Let ¢ be a formula of propositional logic and let X be a proposiabteam.
Then

X):d) iff VSEXZS)ZPL¢.
Here =p_ refers to the ordinary satisfaction relation of proposital logic defined via assignments.

The syntax opropositional dependence logRD(®) is obtained by extending the syntax of (@Y
by the grammar rule

¢ = deF(plw-meQ)a

wherepy, ..., pn,q € ®. The intuitive meaning of thpropositional dependence atatep ps, ..., pn,d)
is that the truth value of the proposition symlopsolely depends on the truth values of the proposition
symbolsps,..., pn. The semantics for the propositional dependence atom isatkés follows:

X Edep(p1,....pn,Q) < VsteX:s(pr)=t(pi),...,S(Pn) =t(pn)
implies thats(q) = t(q).

The next proposition is very useful. The proof is very easy te result is stated, for example, in [29].
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Proposition 2.3 (Downwards closure)Let ¢ be a formula of propositional dependence logic and let
Y C X be propositional teams. ThenpX ¢ implies Y= ¢.

2.2 Modal logics

In this article, in order to keep the notation light, we rig$tour attention to mono-modal logic, i.e., to
modal logic with just two modal operator$ @ndd). However this is not really a restriction, since the
definitions, results, and proofs of this article generalimea straightforward manner, to handle also the
poly-modal case.

Let ® be a set of atomic propositions. The set of formulaestandard mono-modal logi®IL () is
generated by the following grammar

¢ =pl-pl(¢ng)[(dVe)| 0o |D9,

wherep € @. Note that, since negations are allowed only in front of psifpon symbols[J and¢{ are
not interdefinable. The syntax efiodal logic with intuitionistic disjunctioML (@)(®) is obtained by
extending the syntax of Ml®) by the grammar rule

p=(009).
Theteam semantics for modal logie defined vieKripke modelsandteams In the context of modal

logic, teams are subsets of the domain of the model.

Definition 2.4. Let @ be a set of atomic proposition symbols. K&ipke model Kover @ is a tuple
K= (W,R V), where W is a nonempty setwbrlds RCW xW is a binary relation, and V ® — & (W)
is avaluation A subset T of W is calledteaamof K. Furthermore, define that

R[T]:={weW | vRw holds for some& T},
RY[T]:= {weW |wRv holds for some@ T}.

For teams TSC W, we write TR|S if SC R[T] and TC R™Y[S. Thus, TR]S holds if and only if for
every we T there exists some«/S such that wRv, and for everyy\S there exists someavT such that
WRVv.

We are now ready to define the team semantics for modal logiareodal logic with intuitionistic
disjunction. Similar to the case of propositional logice team semantics of modal logic, in a rather
strong sense, coincides with the traditional semanticsarfahlogic defined via pointed Kripke models.

Definition 2.5. LetK be a Kripke model. The satisfaction relatisnT = ¢ for ML is defined as follows.

K.TEp < weV(p) foreveryweT.

K.TE-p < w¢gV(p) foreveryweT.

KTE@AY) < KTE¢andKT = y.

KTE@Vy) < KTiE¢andK T g forsomeT,T,suchthat TUT, =T.
K.TEOP < K, T'E ¢ for some Tsuchthat TRIT'.

K.TEO¢p < KT E¢, whereT=R[T].
For ML (@) we have the following additional clause:

KTE(@oy) < KTE¢oKTEUY.
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Proposition 2.6( [24]). Let$ € ML, K be a Kripke model and T a team §f Then
K,T’:d) iff VWETZK,W):ML 0.

Here =u. refers to the ordinary satisfaction relation of modal logiefined via pointed Kripke models.

The syntax fomodal dependence logMDL (®) is obtained by extending the syntax of M) by
propositional dependence atoms

¢ = deqplr'wpl’hq)a

wherepy,..., pn,q € ®, whereas the syntax fextended modal dependence logMDL (®) is obtained
by extending the syntax of MId) by modal dependence atoms

¢ = deF(¢l,.. '7¢n7 W)v

wheregs, ..., ¢y, Y are ML(P)-formulae.

The intuitive meaning of the modal dependence aton{diep. ., ¢, @) is that the truth value of the
formula ¢ is completely determined by the truth values of the formylae. ., ¢,. The semantics for
these dependence atoms is defined as follows.

K, T Edepds,....0n¢) & YwveT: AK,{w}E ¢ <K {v}E )

i=1
implies (K, {w} |= ¢ & K, {v} E ).
The following proposition for MDL and ML®) is due to [28] and([8], respectively. For EMDL it
follows by the fact that EMDL translates into M), see[6].

Proposition 2.7(Downwards closure)Let ¢ be a formula oML (@) or EMDL, letK be a Kripke model
and let SC T be teams oK. ThenK, T |= ¢ implieskK,S}|= ¢.

The standard concept of bisimulation from modal logic califtel, in a straightforward manner, to
handle team semantics. Below when stating thaw knd Kw are bisimilar, we refer to the standard
bisimulation of modal logic, for a definition see, e.al, [1].

Definition 2.8. LetK andK’ be Kripke models and let T and Be teams oK andK’, respectively. We
say thatk, T andK’, T’ are team bisimilarif

1. for every we T there exists some'w T’ such thatk,w andK’,w are bisimilar, and
2. for every We T’ there exists some w T such thaK,w andK’,w are bisimilar.

Theorem 2.9([12]). If K, T andK’, T’ are team bisimilar, then for every formugac ML (@) (and also
for every¢ € EMDL)

KTE¢ < K. TE¢.
The following result is stated in [29]. It also follows by aelit team bisimulation argument.

Corollary 2.10. Truth of ML (@)-formulae is preserved under taking disjoint unions, iifeK and K’
are Kripke models, T is a team KfandK & K’ denotes the disjoint union &f andK’ then

KTE¢ < KuwK TgE9¢,

for everyg € ML (@).



Jonni Virtema 23

3 Dependency quantified Boolean formulae

Deciding whether a given quantified Boolean formula is taua canonicaPSPACE-complete problem.
Dependency quantified Boolean formulae introduced by Bateet al.[[22] are variants of quantified
Boolean formulae for which the corresponding decision |emobis NEXPTIME-complete. In this sec-
tion we give a definition of quantified Boolean formulae an@atelency quantified Boolean formulae
suitable for our needs.

A Boolean variablds a variable that is assigned either true or false. Let BVARY | i € Z.} be
the set of exactly all Boolean variableBoolean formulagp are a built from Boolean variables by the
following grammar:

pi=al-al(¢ne)|(dVe),
wherea € BVAR. A formula
Y =Q101Q202...Qnond,

whereQ; € {V,3}, for eachi < n, is called aguantified Boolean formulaf ¢ is a Boolean formula and

Y does not have free variables. We@BF denote the set of all quantified Boolean formulae. Semantics
for Boolean formulae and quantified Boolean formulae is @efivia assignments: BVAR — {0,1} in

the obvious way. We define that

TQBF = {¢ € QBF | ¢ is true}.

Theorem 3.1( [25]). The membership problem ®fQBF is PSPACE-complete.

We call a formula
Y=vai...Ya,3IB1... 3PP

a simple quantified Boolean formuyl# ¢ is a Boolean formulay does not have free variables and
each variable quantified ity is quantified exactly once. L&,...,R C {0y,...,a,}. We call the tuple
(Py,...,F) aconstraintfor . If PLC P, C --- C R, we call the constrairgimple The idea here is that,
for eachi <k, the value assigned for the existentially quantified Baoleariable may only depend
on the values given to the universally quantified Boolearatsées in the se®. Thus, the intuition is that
the simple quantified Boolean formula

VGNOIgH[BlHBzB

is true under the constraifa; },{a>}), if 8 can be made true such that the dependencietodef )
and deas, 32) hold. The formal definition is given below.

Definition 3.2. Lety =Va;...Va,3B:... 3Bk be a simple quantified Boolean formula afi, ..., F)
a constraint fory. We say thaty is true under the constrairP, ..., F), if there exists a function
fi : {0,1}/Rl — {0, 1}, for each i< k, such that for each assignment{y, ..., an} — {0,1}

skE¢,

where $is the modified assignment defined as follows:

J(a):= fi(s(R)) ifa=pandi<k,
| s(a) otherwise.

Here §R) is a shorthand notation fofs(y;, ),...,s(y,)), wherey,,...,y, are exactly the Boolean vari-
ables in Pordered such thatji< ij.1, for each j<t.



24 Complexity of validity for propositional dependence lagjic

It is easy to see that there is a close connection betweenrifipdrBoolean formulae and simple
guantified Boolean formulae with simple constraints; thetists a polynomial time computable function
F that associates each quantified Boolean formula to an dgqotvsimple quantified Boolean formula
with a simple constraint, and vice versa. The equivalenhtijied Boolean formula is obtained from a
simple quantified Boolean formula with a simple constraintdordering the quantification of variables.
The constraint determines the order of quantifiers.

We define that a dependency quantified Boolean formula isra(qvaﬁ) wherey is a simple quan-
tified Boolean formula and? is a constraint fony. We let DQBF denote the set of all dependency
guantified Boolean formulae. We define that

TDQBF = {(¢,P) € DQBF| y is true under the constraif}.
Theorem 3.3( [22]). The membership problem ®DQBF is NEXPTIME-complete.

4 Computational complexity of propositional dependence lgics

Computational complexity of the satisfiability problem ghd model checking problem for variants of
propositional and modal dependence logics have been thlolsostudied, see e.gl.l[6/7,/10] 20} 24, 29].
However there is not much research done on the validity prokidf these logics. Note that since the
logics of dependence are not closed under negation theidrzali connection between the satisfiability
problem and the validity problem fails.

4.1 Satisfiability, validity and model checking in team sematics

We start by defining satisfiability and validity in the corttexteam semantics.

A formula ¢ of propositional dependence logic is said toshgisfiable if there exists a propositional
teamX such thatX = ¢. A formula ¢ of propositional dependence logic is said tovadid, if X = ¢
holds for all teamsX such that the proposition symbols ¢fare in the domain oK. Analogously, a
formulay of EMDL (or ML(®)) is said to besatisfiable if there exists a Kripke model K and a tedm
of K such that KT = . A formulay of EMDL (or ML(@)) is said to bevalid, if K, T |= ¢ holds for
every Kripke model K (such that the proposition symbols/irare mapped by the valuation of K) and
every teamTl of K.

The satisfiability problem and the validity problem for thdegics is defined in the obvious man-
ner. Given a binary encoding of a formula of a given logic,ideavhether the formula is satisfiable
(valid, respectively). The variant of the model checkinghpem, we are concerned in this article is the
following. Given binary encodings of a formulfa of propositional dependence logic and of a (finite)
propositional teanX, decide whetheX |= ¢. The corresponding problem for modal logics is defined as
follows. Given binary encodings of a formujaof EMDL (or ML(@)), of a finite Kripke model K and
of a teamT of K, decide whether KT = y.

4.2 The validity problem of propositional dependence logic

The complexity of the satisfiability problem for PL and PD rokvn to coincide; both ardP-complete.
The result for PL is due to Cook|[5] and Levin |18]. For PD, tie-hardness follows directly from the
result of Cook and Levin, and the inclusionN® follows from the work of Lohmann and Volimer [20].
A natural question then arises: Is there a similar connedi&tween the validity problem of PL and
that of PD? Since the syntax of propositional logic is closader taking negations, it follows that the
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validity problem for PL iscoNP-complete. However, since the syntax of propositional ddpace logic
is not closed under taking negations, the correspondingestiion between the satisfiability problem and
the validity problem of PD fails. This indicates that theright not be any direct connection between the
validity problem of PL and that of PD. In fact, as we will seee t/alidity problem for PD is much harder
than the corresponding problem for PL. Surprisingly, weabie to show that the validity problem for
PD isNEXPTIME-complete.

We shall first show that the validity problem for PD is NEXPTIME. To that end, we use the
following result concerning the model checking problem Bt P

Theorem 4.1( [7]). The model checking problem fBD is NP-complete.

Let D be a finite set of proposition symbols. Bynaxp we denote the set of all assignmeatddD —
{0,1}. The following lemma follows directly from the fact that P®downward closed, i.e., Proposition
2.3.

Lemma 4.2. Let ¢ be a formula oPD and let D be the set of proposition symbols occurringinThen
¢ is valid if and only if Xhaxp = ¢.
Lemma 4.3. The validity problem foPDis in NEXPTIME.

Proof. Let ¢ be a PD-formula. LeD be the set of proposition symbols occurringpinNow, by Lemma
4.2, ¢ is valid if and only if Xmaxp = ¢. The size ofXmaxp is 2IPI and thus< 2I¢Il. ThereforeXmaxo
can be clearly constructed frognin exponential time. By Theorem 4.1, there existshdhalgorithm
(with respect to||Xmaxp|| + ||¢||) for checking whetheXnap = ¢. Clearly this algorithm works in
NEXPTIME with respect to the size @f. Therefore, we conclude that the validity problem for PDnis i
NEXPTIME. O

We will then show that the validity problem for PD MEXPTIME-hard. We give a reduction from
TDQBF to the validity problem of PD.

Lemma 4.4. The validity problem foPDis NEXPTIME-hard.

Proof. We will give a reduction from the truth problem of dependeqeyantified Boolean formulae to
the validity problem of PD. Since Boolean variables and psigpn symbols in the context of PD are
essentially the same, we will in this proof treat Booleanalzes as proposition symbols, and vice versa.
Consequently, we may treat quantifier free Boolean formagaiermulae of propositional logic, and vice
versa.

We will associate each DQBF-formulawith a corresponding PD formulp,. Let

p=(Voi...Van3ps... 3B, (Py,...,R))

be a DQBF-formula. For each set of Boolean varialile$ < k, we stipulate thaB = {oril,...,orini }.
We then denote bp,, the set of Boolean variables jn i.e.,D, = {a,...,0an,B1,...,B}. Recall that
we treat Boolean variables also as proposition symboaols. Let

Oy = w\/\/dep(ail,...,aini,Bi> .
i<k
We will show thatu is true (i.e.,u € TDQBF) if and only if the corresponding PD-formull, is valid.
Since TDQBF is NEXPTIME-complete andp, is polynomial with respect tq, it follows that the
validity problem for PD isSNEXPTIME-hard. By Lemm&4]2, it is enough to show thats true if and
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Assume first thaps is true, i.e., thata; ... Vap3B: ... 3B Y is true under the constrai(ly, ..., F).
Therefore, for each< k, there exists a functiofy : {0,1}Rl — {0,1} such that

for every assignmerst: {ay,...,an} — {0,1}: S =y, (1)

wheres' is the modified assignment defined as follows:

J(a) = fi(s(R)) if a=p andi <k,
- |s() otherwise.

Our goal is to show that
XmaxDu ): yv \/deF(aip SERE) aini >Bi) .

i<k
It suffices to show that there exist SOMEZy, ... Zx C Xmaxp, such thaty UZy U---UZx = Xmax,,,
Y E g, andz = dep(ail, e, O ,Bi> , for eachi < k. We define the tearg;, for eachi <k, by using the
function f;. We letZ; := {s€ Xmaxp, | S(Bi) # fi (s(oril), ... ,s(orini ))}, for eachi < k. Now, since Boolean
variables have only 2 possible values, we conclude thagdohi <k, Z; = dep(ail, e, Oy ,Bi>. Thus

U Z ): \/dep(cril,...,aini,ﬁi> . (2

1<i<k i<k

Note thats(3) = fi(s(ai,),...,S(ai, )) holds for everys € (Xmax, \ Zi) and everyi < k. Define then
that

Y= XmaxD“\ U Z.

1<i<k

Clearly, for everys€ Y andi <k, it holds thats(5) = fi(s(ai,), .-, S(ai, ). Thus from[2), it follows
thats |= , for everyse Y. Sincey is a PL formula, we conclude by Proposition]2.2 tiat . From
this together with[(R), we conclude thétaxp, = @u-

Assume then thaXmaxp,, = ¢u. Therefore

Y ): \/dep(oril, ey aini >Bi>
i<k
andZ = , for someY andZ such thaty UZ = Xmaxp, - Hence there exist somg, ..., Yy, Z such that
Y1U- - UYUZ = Xmaxp,, Z = ¢, andY = dep(oril,...,aini ,Bi> for eachi < k. Assume that we have

pickedVYi,..., Yk, Z such thatZ is minimal. We will show that the& = dep(ail, coey Ol ,Bi), for each
i < k. Assume for the sake of contradiction that, for samaek, there exiss,t € Z such that

s(ai,) = t(aiy), .., s(a, ) = t(ai, ) buts(B) # t(B)-

Now clearly eithery; U {s} = dep(ail, ooy Oy ,Bi) orYiu{t} = dep(ail, ooy Oy ,Bi). This contradicts
the fact thaZ was assumed to be minimal.
We will then show that for evergy, ..., a, € {0,1} there exists some assignmerih Z that expands

(a1,...,0n) — (a1,...,an).
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Leta,...,a, € {0,1}. Now, for everyi <Kk, sinceY; = dep(oril,...,orini ,Bi>, it follows that for any
two s,s’ €Y that expandas,...,an) — (ai,...,&), it holds thats' () = s’ (). Thus, for each <Kk,
there exists a truth valug € {0,1} such that there is no expansions(af,...,on, ) — (a1,...,a,b)
in Y. Therefore, the assignmefdrs,...,dn,B1,...,0B) — (a1,...,a,b1,...,bk) is not inY;, for any
i <k. Thus the assignmerttry,...,dn, B, ..., B) — (a1,...,8y,b1,...,bx) is in Z. Hence, for every
ai,...,an € {0,1}, there exists some expansion(of;,...,an) — (a1,...,a,) in Z.

Now, for eachi <k, we define the functiorf; : {0,1}R — {0,1} as follows. We define that

fi(bl,...,b‘m) = S(Bi),

wheresis an assignment id that expandsa;, . ... iy, )= (bg,...,bjp|). SinceZ = dep(ail, coey Ol ,Bi) ,
for eachi <k, the functionsf; are well defined. Now sincg is syntactically a PL formula and since
Z =y, it follows from propositiod 2.2 thas' = ¢, for eachs' € Z. Clearly the functions;, fori <k,
are as required i 1. Thus we conclude fBat 1 holds. Thisstrue.
Now since the truth problem for DQBF BEXPTIME-hard andg,, is clearly polynomial with re-
spect tou, we conclude that the validity problem for PDNEXPTIME-hard.
]

By Lemmag 4.8 and 4.4, we obtain the following:
Theorem 4.5. The validity problem foPDis NEXPTIME-complete.

5 The validity problem for modal dependence logic

The satisfiability problem for both MDL and EMDL is known to BEEXPTIME-complete. For MDL

this was shown by Sevenstér [24] and for EMDL Ebbing et al. [6]Theoreni 4.5 we showed that the
validity problem for PD isNEXPTIME-complete and thus much more complex than the corresponding
satisfiability problem. This together with the fact that treidity problem for modal logic is known to

be PSPACE-complete (Laddner [17]) seems to suggeXiPSPACE as a candidate for the complexity
of the validity problem of MDL and EMDL. However, we managedo a bit better. We establish
that the validity problem of MDL and EMDL is iNEXPTIMENP, i.e., inNEXPTIME with access to

NP oracles. Thus we obtain that the precise complexity of tipesblems lie somewhere between and
NEXPTIME andNEXPTIMENP, since theNEXPTIME-hardness follows directly from Lemrha #.4.

Corollary 5.1. The validity problem foMDL and EMDL is NEXPTIME-hard.

The rest of this section is devoted on showing that the \glfioblem for EMDL is inNEXPTIMENP.
Let ¢ be a formula of EMDL or MLL®@). The set nbSul§fp) of non-Boolean subformulasf ¢ is
defined recursively as follows.

nbSubf-p) :=nbSubfp) :={p}, nbSubfA¢):={A¢}unbSubfp) for A e {¢,O},
nbSubf@ o ) := nbSubf¢p) unbSubfy) foro e {@,V,A},
anub(dep((pl, ey On, w)) :=nbSubf¢1)U--- UnbSub{¢,) UnbSubfy).

The following lemma follows directly from [24, Claim 15].

Lemma 5.2. Let ¢ € ML and let k= |[nbSubf¢)|. Then,¢ is valid if and only ifK,w = ¢ holds for
every Kripke modeK = (W,R,V) and we W such thatw/| < 2.
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The following proposition for EMDL is based on a similar ridar MDL that essentially combines
the ideas ofi[28],[[24] and [19].

Proposition 5.3. For every formulap € EMDL there exists an equivalent formula
¢* = @ ¢i7
iel

where | is a finite set of indices angl € ML, for each ic I. Furthermore, for each € I, the size of; is
only exponential in the size ¢fand |nbSubf¢;)| < 3 x |§]|.

Proof. We will first recall an exponential translatiop — ¢~ from EMDL to ML(@) given in [€,
Theorem 2]. The cases for proposition symbols, Boolean ectives and modalities are trivial, i.e.,
PP, mp = P (OAY) = (9TAYT),(@VY) = (9T VYPT), 00 — 09T,0¢ — D¢~ The only
interesting case is the case for the dependence atom. We tadiin

deF(¢1a--->¢n>W) = \/ (/\d)la'/\(w@ QUL))>

ay,....anc{L, T} i<n

where¢ " denotesp and ¢ denotes the ML formula obtained fromp by pulling all negations to the
atomic level. Notice that the size ¢ft is < ¢ x |¢| x 2%/, for some constartt. Thus the size o' is at
most exponential with respect to the sizepofFrom¢ ™ it is easy to obtain an equivalent Ni2)-formula

¢* of the form
@ i,

iel
wherel is a finite index set and;, fori € I, is an ML-formula. Let= be the set of all selection functions
f that select, separately for each occurrence, either theligtinct ¢ or the right disjunctd of each
subformula of the fornfy @ 6) of ¢ *. Now let;" denote the formula obtained frogn™ by substituting
each occurrence of a subformula of tyjye® 6) by f (¢ @ 8)). We then define that
=gy
fek
It is straightforward to prove that* is equivalent top™ and hence t@. Since, for eactf € F, ¢; is
obtained fromp* by substituting subformulae of tyge @ 6) with eithery or 6, it is clear that the size
of ;" is bounded above by the size@f. Recall that the size af * is at most exponential with respect
to the size ofp. Therefore, for eacli € F, the size ofp;" is at most exponential with respect to the size
of ¢.

We say that the modal operatorin ¢ 8 dominatesan intuitionistic disjunction ifp occurs in6. To
see thatnbSubf¢; )| < 3 x |¢|, for eachf € F, notice first that in the translatiop — ¢ the only
case that can increase the number of non-Boolean subfoenmilhe case for the dependence atom.
Each¢;- and ¢+ may introduce new non-Boolean subformulae. Thus it isghitéérward to see that
InbSubf¢ )| < 2x |nbSubf¢)|. Furthermore, notice that the number of modal operatotibrainate
an intuitionistic disjunction inp™ is less or equal to the number of modal operatorg.irLet k denote
the number of modal operators ¢n It is easy to see thahbSubf$;")| < [nbSubf¢*)| +k, for each
f € F. Now sincek < |¢| and|nbSubf@)| <|¢|, we obtain thafnbSubf¢;")| < 3x |¢|, for eachf € F.
With a more careful bookkeeping, we would obtain that nb&ipf < 2 x |¢|. O

We say that a formulg € ML is valid in small modelsf K, w = ¢ holds for every Kripke model
K = (W,R,V) andw € W such thatwW| < |¢]|.
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Lemma 5.4. The decision problem whether a given formulaif is valid in small models is in d¢P.

Proof. If aformula¢ € ML is not valid in small models, then there is sok€ |¢| and a pointed Kripke
model K w of sizek such that Kw [~ ¢. The size of Kw s clearly polynomial in¢|, and thus it can be
guessed nondeterministically in polynomial time with espto|¢|. The model checking problem for
modal logic is inP ( [4]), and thus Kw [~ ¢ can be verified in polynomial time with respect|t| + | ¢ |
and thus in polynomial time with respect|ip). O

Proposition 5.5. ML (@) has the@-disjunction property, i.e., for everg, € ML (®) it holds that
(¢ @ @) is valid if and only if eitherp is valid or ¢ is valid.

Proof. The direction from right to left is trivial. We will prove herthe direction form left to right.
Assume that¢ @ @) is valid. For the sake of contradiction, assume then thaheep nor y is valid.
Thus there exist Kripke models K and,kand team3 andT’ of K and K, respectively, such that,K [~

¢ and K, T’ }= . From Corollary 2,70 it follows that KWK', T (£ ¢ and KgK’, T’ £ @, where Ky K’
denotes the disjoint union of K and KSince the formulae of ML©) are downwards closed (Proposition
[2.7), we conclude that KK/, TUT' j~ ¢ and KoK, TUT' £ ¢. Thus KeK', TUT' }~£ (¢ @ ). This
contradicts the fact thdty @ ) is valid. O

Proposition 5.6. The validity problem foEMDL is in NEXPTIMENP.

Proof. For deciding whether a given EMDL formula is valid, we give @ndeterministic exponential
time algorithm that has an access toNi? oracle that decides whether a given ML formula is valid in
small models. For each € EMDL let ¢ * denote the equivalent exponential size (¢l)-formula from
the proof of Proposition 513. Clearly™ is computable frong in exponential time. Furthermore lgt
denote the MI(@)-formula of the form@fep ¢; of Propositiof 5.8. Moreover lgf: N — N be some
exponential function such thip; | < g(|¢|), for every¢ € EMDL and f € F. By Propositio 5.3 there
exists such a function.

We are now ready to giveMEXPTIMENP algorithm for the validity problem of EMDL. Lep be an
EMDL formula. First guess nondeterministically an ML forlaw of the same vocabulary gsof size
at mostg(|¢|). Then computed ™ from ¢ and check whethap is among the disjunctg;”, f € F, of ¢*.
Clearly the checking can be done in polynomial time with ee$go|¢ ™| + || and thus in exponential
time with respect to the size @f. If  is not among the disjuncts the algorithm outputs “No”, ottise
the algorithm continues. We then give

v = A (pv-p)ry

j<23x(9|

as an input to ahlP oracle that decides whether the ML formula is valid in small models. Clearly~

is computable fromp in exponential time with respect to the sizegofThe algorithm outputs “No” if the

oracle outputs “No” and “Yes” if the oracle outputs “Yes”.@tly this algorithm is iNEXPTIMENP.
Now by Proposition 513¢ is valid if and only if¢* is valid, and furthermore, by Propositibn 5¢5

is valid if and only if ¢ is valid for somef € F. By Propositioi 5.3|nbSubf¢; )| <3 x |¢|, for every

f € F. Thus by Lemma35]2, for everfy € F, ¢; is valid if and only if ¢; is true on all pointed models

of size at most 29I, Now clearly, for everyf € F, ¢ is valid if and only if the formula

o =( A\ (pv-p)Ads

i<23x/4|
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is valid. Thus, for everyf € F, ¢ is valid if and only if ¢; is valid in small models. Therefore, and
sincey~ = ¢, for somef € F, the algorithm decides the validity problem of EMDL. O

Corollary 5.7. The validity problem foMDL is in NEXPTIMENP.

6 Conclusion

In this article we studied the validity problem of propasital dependence logic, modal dependence
logic, and extended modal dependence logic. We establista¢dhe validity problem for propositional
dependence logic INEXPTIME-complete. In addition we showed that the correspondinglpro for
modal dependence logic and extended modal dependenceiddgleXPTIME-hard and contained in
NEXPTIMENP. The exact complexity of the validity problem for MDL and ENMDemain open. We
conjecture that both of these problems are harder HE&XPTIME. We also believe that the complexity
of MDL and EMDL coincide. In addition to resolving the pregisomplexity of the validity problem
of MDL and EMDL, we are interested in the complexity of thealment problem of PD, MDL, and
EMDL. Note that in the context of dependence logic the emiit problem cannot be reduced directly
to the validity problem. However the validity problem canrbduced to the entailment problem. Hence
the entailment problem of PD, MDL, and EMDL is at least as lerthe corresponding validity problem.
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