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We study the validity problem for propositional dependencelogic, modal dependence logic and ex-
tended modal dependence logic. We show that the validity problem for propositional dependence
logic isNEXPTIME-complete. In addition, we establish that the corresponding problem for modal
dependence logic and extended modal dependence logic isNEXPTIME-hard and inNEXPTIMENP.

1 Introduction

Dependencies occur in many scientific disciplines. For example, in physics there are dependencies in
experimental data, and in social science they can occur between voting extrapolations. For example, one
might want to express whether a value of a certain physical measurement is determined by the values
of some other measurements. More concretely, is it the case that in some collection of experimental
data, the temperature of some object is completely determined by the solar activity and the distance
between the object and the sun. One might also want to know whether the voting pattern of some single
constituency always determines the election results.

With the aim to express such dependencies Väänänen introduced first-orderdependence logic[27]
and its modal variantmodal dependence logic[28]. First-order dependence logic extends first-order logic
by novel atomic formulae calleddependence atoms. Modal dependence logic, in turn, extends modal
logic with propositional dependence atoms. A dependence atom, denoted by=(x1, . . . ,xn,y), intuitively
states that the value of the variabley is solely determined by the values of the variablesx1, . . . ,xn. The
intuitive meaning of the propositional dependence atom dep(p1, . . . , pn,q) is that the truth value of the
propositionq is functionally determined by the truth values of the propositions p1, . . . , pn. One of the core
ideas in these logics of dependence is the use of team semantics. Väänänen realized that dependencies
do not manifest themselves in a single assignment nor in a single point. To manifest dependencies one
must look at sets of assignment or collections of points. These sets of assignments or points are called
teams. Thus whereas in the standard semantics for first-order logic formulae are evaluated with respect
to first-order models and assignments, in team semantics of dependence logic formulae are evaluated
with respect to first-order models and sets of assignments. Analogously, in team semantics for modal
logic formulae are evaluated with respect to Kripke models and sets of points. For example, the formula

=(xactivity,xdist,xtemp) ,

where the values of the variablesxactivity, xdist, and xtemp range over the magnitude of solar activity,
distance to the sun, and temperature, respectively, expresses that in some set of data the temperature is
completely determined by the solar activity and the distance to the sun. Sets of data are captured by
teams. Each assignment in a team corresponds to one record ofdata.
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Team semantics was originally defined by Hodges [14] as a means to obtain compositional seman-
tics for the independence-friendly logic of Hintikka and Sandu [13]. Later on Väänänen adopted team
semantics as a central notion for his dependence logic.

Modal dependence logic was the first step in combining functional dependence and modal logic. The
logic however lacks the ability to express temporal dependencies; there is no mechanism in modal de-
pendence logic to express dependencies that occur between different points of the model. This is due to
the restriction that only proposition symbols are allowed in the dependence atoms of modal dependence
logic. To overcome this defect Ebbing et al. [6] introduced theextended modal dependence logicby ex-
tending the scope of dependence atoms to arbitrary modal formulae, i.e., dependence atoms in extended
modal dependence logic are of the form dep(ϕ1, . . .ϕn,ψ), whereϕ1, . . . ,ϕn,ψ are formulae of modal
logic. For example when interpreted in a temporal model, theformula

dep(♦Pq,♦P♦Pq,♦P♦P♦Pq, q)

expresses that the truth ofq, at this moment, only depends of the truth ofq in the previous 3 time steps.

It was shown in [6] that extended modal dependence logic is strictly more expressive than modal
dependence logic. Furthermore Hella et al. [12] established that exactly the properties of teams that are
downward closed and closed under the so-called teamk-bisimulation, for some finitek, are definable in
extended modal dependence logic. The characterization of Hella et al. truly demonstrates the naturality
of extended modal dependence logic. In recent years the research around modal dependence logic has
bloomed, for recent work see e.g. [6–9,20,21,24].

Team semantics in propositional context is also closely related to the inquisitive logic of Groenendijk
[11]. In inquisitive logic the meaning of formulae is definedon sets of assignments for proposition
symbols. This connection between propositional dependence logic and inquisitive logic has already
been noted in the recent Ph.D. thesis of Fan Yang [29]. For resent work related to inquisitive logic, see
e.g. [3,23].

In this paper we study the computational complexity of the validity problem for propositional de-
pendence logic, modal dependence logic and extended modal dependence logic. The study of compu-
tational complexity of the satisfiability problem and the model checking problem for logics of depen-
dence has been very active. For research related to fragments of first-order dependence logic and related
formalisms see [2, 10, 15, 16, 26]. For work on variants of propositional and modal dependence logics
see [6,7,20,24,29]. However, there is not much research done on the validity problem of these logics. We
wish to mend this shortcoming. Note that since the logics of dependence are not closed under negation,
the traditional connection between the satisfiability problem and the validity problem fails. In this article
we establish that the validity problem for propositional dependence logic isNEXPTIME-complete. In
addition, we obtain that the corresponding problem for modal dependence logic and extended modal
dependence logic is contained inNEXPTIMENP.

The article is structured as follows. In section 2 we define the basic concepts and results relevant to
this article. In section 3 we introduce a variant ofQBF, called dependency quantified Boolean formulae,
for which the decision problem whether a given formula is true is NEXPTIME-complete. We start
Section 4 with compact definitions of satisfiability, validity and model checking in the context of team
semantics. The rest of the section is devoted for the study ofthe complexity of the validity problem
for propositional dependence logic. In Section 5 we consider the validity problem of modal dependence
logic and extended modal dependence logic.
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2 Preliminaries

In this section we define the basic concepts and results relevant to this article. We assume that the reader
is familiar with propositional logic PL and modal logic ML.

2.1 Propositional logics

Let Z+ denote the set of positive integers, and let PROP= {pi | i ∈ Z+} be the set of exactly allpropo-
sition symbols. Let D be a finite, possibly empty, subset of PROP. A functions : D →{0,1} is called an
assignment. A setX of assignmentss: D→{0,1} is called apropositional team. The setD is thedomain
of X. Note that the empty team /0 does not have a unique domain; anysubset of PROP is a domain of the
empty team.

Most of the logics considered in this article are not closed under negation, thus we adopt the conven-
tion that a syntax of a logic is always defined in negation normal form, i.e., negations are allowed only in
front of proposition symbols. This convention is widely used in the dependence logic community. For-
mula that is not in negation normal form is regarded as a shorthand for the formula obtained by pulling
all the negations to the atomic level.

Let Φ be a set of proposition symbols. The syntax for propositional logic PL(Φ) is defined as follows.

ϕ ::= p | ¬p | (ϕ ∧ϕ) | (ϕ ∨ϕ),

wherep∈ Φ. We will now give the team semantics for propositional logic. As we will see below, the
team semantics and the ordinary semantics for propositional logic defined via assignments, in a rather
strong sense, coincide.
Definition 2.1. LetΦ be a set of atomic propositions and let X be a propositional team. The satisfaction
relation X |= ϕ is defined as follows. Note that, we always assume that the proposition symbols that
occur inϕ are also in the domain of X.

X |= p ⇔ ∀s∈ X : s(p) = 1.

X |= ¬p ⇔ ∀s∈ X : s(p) = 0.

X |= (ϕ ∧ψ) ⇔ X |= ϕ and X |= ψ .

X |= (ϕ ∨ψ) ⇔ Y |= ϕ and Z|= ψ , for some Y,Z such that Y∪Z = X.

Proposition 2.2 ( [24]). Let ϕ be a formula of propositional logic and let X be a propositional team.
Then

X |= ϕ iff ∀s∈ X : s |=PL ϕ .

Here|=PL refers to the ordinary satisfaction relation of propositional logic defined via assignments.
The syntax ofpropositional dependence logicPD(Φ) is obtained by extending the syntax of PL(Φ)

by the grammar rule
ϕ ::= dep(p1, . . . , pn,q) ,

wherep1, . . . , pn,q∈ Φ. The intuitive meaning of thepropositional dependence atomdep(p1, . . . , pn,q)
is that the truth value of the proposition symbolq solely depends on the truth values of the proposition
symbolsp1, . . . , pn. The semantics for the propositional dependence atom is defined as follows:

X |= dep(p1, . . . , pn,q) ⇔ ∀s, t ∈ X : s(p1) = t(p1), . . . ,s(pn) = t(pn)

implies thats(q) = t(q).

The next proposition is very useful. The proof is very easy and the result is stated, for example, in [29].
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Proposition 2.3 (Downwards closure). Let ϕ be a formula of propositional dependence logic and let
Y ⊆ X be propositional teams. Then X|= ϕ implies Y|= ϕ .

2.2 Modal logics

In this article, in order to keep the notation light, we restrict our attention to mono-modal logic, i.e., to
modal logic with just two modal operators (♦ and�). However this is not really a restriction, since the
definitions, results, and proofs of this article generalize, in a straightforward manner, to handle also the
poly-modal case.

Let Φ be a set of atomic propositions. The set of formulae forstandard mono-modal logicML(Φ) is
generated by the following grammar

ϕ ::= p | ¬p | (ϕ ∧ϕ) | (ϕ ∨ϕ) | ♦ϕ |�ϕ ,

wherep∈ Φ. Note that, since negations are allowed only in front of proposition symbols,� and♦ are
not interdefinable. The syntax ofmodal logic with intuitionistic disjunctionML(6)(Φ) is obtained by
extending the syntax of ML(Φ) by the grammar rule

ϕ ::= (ϕ 6 ϕ).

Theteam semantics for modal logicis defined viaKripke modelsandteams. In the context of modal
logic, teams are subsets of the domain of the model.

Definition 2.4. Let Φ be a set of atomic proposition symbols. AKripke model K over Φ is a tuple
K =(W,R,V), where W is a nonempty set ofworlds, R⊆W×W is a binary relation, and V: Φ→P(W)
is avaluation. A subset T of W is called ateamof K. Furthermore, define that

R[T] := {w∈W | vRw holds for some v∈ T},

R−1[T] := {w∈W | wRv holds for some v∈ T}.

For teams T,S⊆ W, we write T[R]S if S⊆ R[T] and T⊆ R−1[S]. Thus, T[R]S holds if and only if for
every w∈ T there exists some v∈ S such that wRv, and for every v∈ S there exists some w∈ T such that
wRv.

We are now ready to define the team semantics for modal logic and modal logic with intuitionistic
disjunction. Similar to the case of propositional logic, the team semantics of modal logic, in a rather
strong sense, coincides with the traditional semantics of modal logic defined via pointed Kripke models.

Definition 2.5. LetK be a Kripke model. The satisfaction relationK,T |=ϕ for ML is defined as follows.

K,T |= p ⇔ w∈V(p) for every w∈ T.

K,T |= ¬p ⇔ w 6∈V(p) for every w∈ T.

K,T |= (ϕ ∧ψ) ⇔ K,T |= ϕ and K,T |= ψ .

K,T |= (ϕ ∨ψ) ⇔ K,T1 |= ϕ andK,T2 |= ψ for some T1,T2 such that T1∪T2 = T.

K,T |= ♦ϕ ⇔ K,T ′ |= ϕ for some T′ such that T[R]T ′.

K,T |=�ϕ ⇔ K,T ′ |= ϕ , where T′ = R[T].

For ML(6) we have the following additional clause:

K,T |= (ϕ 6 ψ) ⇔ K,T |= ϕ or K,T |= ψ .
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Proposition 2.6( [24]). Let ϕ ∈ ML , K be a Kripke model and T a team ofK. Then

K,T |= ϕ iff ∀w∈ T : K,w |=ML ϕ .

Here|=ML refers to the ordinary satisfaction relation of modal logicdefined via pointed Kripke models.

The syntax formodal dependence logicMDL(Φ) is obtained by extending the syntax of ML(Φ) by
propositional dependence atoms

ϕ ::= dep(p1, . . . , pn,q) ,

wherep1, . . . , pn,q∈ Φ, whereas the syntax forextended modal dependence logicEMDL(Φ) is obtained
by extending the syntax of ML(Φ) by modal dependence atoms

ϕ ::= dep(ϕ1, . . . ,ϕn,ψ) ,

whereϕ1, . . . ,ϕn,ψ are ML(Φ)-formulae.
The intuitive meaning of the modal dependence atom dep(ϕ1, . . . ,ϕn,ψ) is that the truth value of the

formula ψ is completely determined by the truth values of the formulaeϕ1, . . . ,ϕn. The semantics for
these dependence atoms is defined as follows.

K,T |= dep(ϕ1, . . . ,ϕn,ψ) ⇔ ∀w,v∈ T :
n
∧

i=1

(K,{w} |= ϕi ⇔ K,{v} |= ϕi)

implies(K,{w} |= ψ ⇔ K,{v} |= ψ).

The following proposition for MDL and ML(6) is due to [28] and [8], respectively. For EMDL it
follows by the fact that EMDL translates into ML(6), see [6].

Proposition 2.7(Downwards closure). Letϕ be a formula ofML(6) or EMDL, letK be a Kripke model
and let S⊆ T be teams ofK. ThenK,T |= ϕ impliesK,S|= ϕ .

The standard concept of bisimulation from modal logic can belifted, in a straightforward manner, to
handle team semantics. Below when stating that K,w and K,w′ are bisimilar, we refer to the standard
bisimulation of modal logic, for a definition see, e.g., [1].

Definition 2.8. LetK andK′ be Kripke models and let T and T′ be teams ofK andK′, respectively. We
say thatK,T andK′,T ′ are team bisimilarif

1. for every w∈ T there exists some w′ ∈ T ′ such thatK,w andK′,w′ are bisimilar, and

2. for every w′ ∈ T ′ there exists some w∈ T such thatK,w andK′,w′ are bisimilar.

Theorem 2.9( [12]). If K,T andK′,T ′ are team bisimilar, then for every formulaϕ ∈ ML(6) (and also
for everyϕ ∈ EMDL)

K,T |= ϕ ⇔ K′,T ′ |= ϕ .

The following result is stated in [29]. It also follows by a direct team bisimulation argument.

Corollary 2.10. Truth of ML(6)-formulae is preserved under taking disjoint unions, i.e.,if K and K′

are Kripke models, T is a team ofK andK ⊎K′ denotes the disjoint union ofK andK′ then

K,T |= ϕ ⇔ K ⊎K′,T |= ϕ ,

for everyϕ ∈ ML(6).
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3 Dependency quantified Boolean formulae

Deciding whether a given quantified Boolean formula is true is a canonicalPSPACE-complete problem.
Dependency quantified Boolean formulae introduced by Peterson et al. [22] are variants of quantified
Boolean formulae for which the corresponding decision problem isNEXPTIME-complete. In this sec-
tion we give a definition of quantified Boolean formulae and dependency quantified Boolean formulae
suitable for our needs.

A Boolean variableis a variable that is assigned either true or false. Let BVAR= {γi | i ∈ Z+} be
the set of exactly all Boolean variables.Boolean formulaeϕ are a built from Boolean variables by the
following grammar:

ϕ ::= α | ¬α | (ϕ ∧ϕ) | (ϕ ∨ϕ),

whereα ∈ BVAR. A formula
ψ = Q1α1Q2α2 . . .Qnαnϕ ,

whereQi ∈ {∀,∃}, for eachi ≤ n, is called aquantified Boolean formula, if ϕ is a Boolean formula and
ψ does not have free variables. We letQBF denote the set of all quantified Boolean formulae. Semantics
for Boolean formulae and quantified Boolean formulae is defined via assignmentss : BVAR →{0,1} in
the obvious way. We define that

TQBF= {ϕ ∈ QBF | ϕ is true}.

Theorem 3.1( [25]). The membership problem ofTQBF is PSPACE-complete.

We call a formula
ψ = ∀α1 . . .∀αn∃β1 . . .∃βkϕ

a simple quantified Boolean formula, if ϕ is a Boolean formula,ψ does not have free variables and
each variable quantified inψ is quantified exactly once. LetP1, . . . ,Pk ⊆ {α1, . . . ,αn}. We call the tuple
(P1, . . . ,Pk) aconstraintfor ψ . If P1 ⊆ P2 ⊆ ·· · ⊆ Pk, we call the constraintsimple. The idea here is that,
for eachi ≤ k, the value assigned for the existentially quantified Boolean variableβi may only depend
on the values given to the universally quantified Boolean variables in the setPi. Thus, the intuition is that
the simple quantified Boolean formula

∀α1∀α2∃β1∃β2θ

is true under the constraint({α1},{α2}), if θ can be made true such that the dependencies dep(α1,β1)
and dep(α2,β2) hold. The formal definition is given below.

Definition 3.2. Letψ = ∀α1 . . .∀αn∃β1 . . .∃βkϕ be a simple quantified Boolean formula and(P1, . . . ,Pk)
a constraint forψ . We say thatψ is true under the constraint(P1, . . . ,Pk), if there exists a function
fi : {0,1}|Pi | →{0,1}, for each i≤ k, such that for each assignment s: {α1, . . . ,αn}→ {0,1}

s′ |= ϕ ,

where s′ is the modified assignment defined as follows:

s′(α) :=

{

fi
(

s(Pi)
)

if α = βi and i≤ k,

s(α) otherwise.

Here s(Pi) is a shorthand notation for
(

s(γi1), . . . ,s(γit )
)

, whereγi1, . . . ,γit are exactly the Boolean vari-
ables in Pi ordered such that ij < i j+1, for each j< t.
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It is easy to see that there is a close connection between quantified Boolean formulae and simple
quantified Boolean formulae with simple constraints; thereexists a polynomial time computable function
F that associates each quantified Boolean formula to an equivalent simple quantified Boolean formula
with a simple constraint, and vice versa. The equivalent quantified Boolean formula is obtained from a
simple quantified Boolean formula with a simple constraint by reordering the quantification of variables.
The constraint determines the order of quantifiers.

We define that a dependency quantified Boolean formula is a pair (ψ ,~P) whereψ is a simple quan-
tified Boolean formula and~P is a constraint forψ . We let DQBF denote the set of all dependency
quantified Boolean formulae. We define that

TDQBF= {(ψ ,~P) ∈ DQBF | ψ is true under the constraint~P}.

Theorem 3.3( [22]). The membership problem ofTDQBF isNEXPTIME-complete.

4 Computational complexity of propositional dependence logics

Computational complexity of the satisfiability problem andthe model checking problem for variants of
propositional and modal dependence logics have been thoroughly studied, see e.g., [6, 7, 10, 20, 24, 29].
However there is not much research done on the validity problem of these logics. Note that since the
logics of dependence are not closed under negation the traditional connection between the satisfiability
problem and the validity problem fails.

4.1 Satisfiability, validity and model checking in team semantics

We start by defining satisfiability and validity in the context of team semantics.
A formula ϕ of propositional dependence logic is said to besatisfiable, if there exists a propositional

teamX such thatX |= ϕ . A formula ϕ of propositional dependence logic is said to bevalid, if X |= ϕ
holds for all teamsX such that the proposition symbols ofϕ are in the domain ofX. Analogously, a
formulaψ of EMDL

(

or ML(6)
)

is said to besatisfiable, if there exists a Kripke model K and a teamT
of K such that K,T |= ψ . A formulaψ of EMDL

(

or ML(6)
)

is said to bevalid, if K ,T |= ψ holds for
every Kripke model K (such that the proposition symbols inψ are mapped by the valuation of K) and
every teamT of K.

The satisfiability problem and the validity problem for these logics is defined in the obvious man-
ner. Given a binary encoding of a formula of a given logic, decide whether the formula is satisfiable
(valid, respectively). The variant of the model checking problem, we are concerned in this article is the
following. Given binary encodings of a formulaϕ of propositional dependence logic and of a (finite)
propositional teamX, decide whetherX |= ϕ . The corresponding problem for modal logics is defined as
follows. Given binary encodings of a formulaψ of EMDL

(

or ML(6)
)

, of a finite Kripke model K and
of a teamT of K, decide whether K,T |= ψ .

4.2 The validity problem of propositional dependence logic

The complexity of the satisfiability problem for PL and PD is known to coincide; both areNP-complete.
The result for PL is due to Cook [5] and Levin [18]. For PD, theNP-hardness follows directly from the
result of Cook and Levin, and the inclusion toNP follows from the work of Lohmann and Vollmer [20].

A natural question then arises: Is there a similar connection between the validity problem of PL and
that of PD? Since the syntax of propositional logic is closedunder taking negations, it follows that the
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validity problem for PL iscoNP-complete. However, since the syntax of propositional dependence logic
is not closed under taking negations, the corresponding connection between the satisfiability problem and
the validity problem of PD fails. This indicates that there might not be any direct connection between the
validity problem of PL and that of PD. In fact, as we will see, the validity problem for PD is much harder
than the corresponding problem for PL. Surprisingly, we areable to show that the validity problem for
PD isNEXPTIME-complete.

We shall first show that the validity problem for PD is inNEXPTIME. To that end, we use the
following result concerning the model checking problem of PD.

Theorem 4.1( [7]). The model checking problem forPD isNP-complete.

Let D be a finite set of proposition symbols. ByXmaxD we denote the set of all assignmentss : D →
{0,1}. The following lemma follows directly from the fact that PD is downward closed, i.e., Proposition
2.3.

Lemma 4.2. Let ϕ be a formula ofPDand let D be the set of proposition symbols occurring inϕ . Then
ϕ is valid if and only if XmaxD |= ϕ .

Lemma 4.3. The validity problem forPD is inNEXPTIME.

Proof. Let ϕ be a PD-formula. LetD be the set of proposition symbols occurring inϕ . Now, by Lemma
4.2, ϕ is valid if and only ifXmaxD |= ϕ . The size ofXmaxD is 2‖D‖ and thus≤ 2‖ϕ‖. ThereforeXmaxD

can be clearly constructed fromϕ in exponential time. By Theorem 4.1, there exists anNP algorithm
(with respect to‖XmaxD‖+ ‖ϕ‖) for checking whetherXmaxD |= ϕ . Clearly this algorithm works in
NEXPTIME with respect to the size ofϕ . Therefore, we conclude that the validity problem for PD is in
NEXPTIME.

We will then show that the validity problem for PD isNEXPTIME-hard. We give a reduction from
TDQBF to the validity problem of PD.

Lemma 4.4. The validity problem forPD isNEXPTIME-hard.

Proof. We will give a reduction from the truth problem of dependencyquantified Boolean formulae to
the validity problem of PD. Since Boolean variables and proposition symbols in the context of PD are
essentially the same, we will in this proof treat Boolean variables as proposition symbols, and vice versa.
Consequently, we may treat quantifier free Boolean formulaeas formulae of propositional logic, and vice
versa.

We will associate each DQBF-formulaµ with a corresponding PD formulaϕµ . Let

µ =
(

∀α1 . . .∀αn∃β1 . . .∃βk ψ ,(P1, . . . ,Pk)
)

be a DQBF-formula. For each set of Boolean variablesPi, i ≤ k, we stipulate thatPi = {αi1, . . . ,αini
}.

We then denote byDµ the set of Boolean variables inµ , i.e.,Dµ := {α1, . . . ,αn,β1, . . . ,βk}. Recall that
we treat Boolean variables also as proposition symbols. Let

ϕµ := ψ ∨
∨

i≤k

dep
(

αi1, . . . ,αini
,βi

)

.

We will show thatµ is true (i.e.,µ ∈ TDQBF) if and only if the corresponding PD-formulaϕµ is valid.
SinceTDQBF is NEXPTIME-complete andϕµ is polynomial with respect toµ , it follows that the
validity problem for PD isNEXPTIME-hard. By Lemma 4.2, it is enough to show thatµ is true if and
only if XmaxDµ |= ϕµ .
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Assume first thatµ is true, i.e., that∀α1 . . .∀αn∃β1 . . .∃βk ψ is true under the constraint(P1, . . . ,Pk).
Therefore, for eachi ≤ k, there exists a functionfi : {0,1}|Pi | → {0,1} such that

for every assignments : {α1, . . . ,αn}→ {0,1} : s′ |= ψ , (1)

wheres′ is the modified assignment defined as follows:

s′(α) :=

{

fi
(

s(Pi)
)

if α = βi andi ≤ k,

s(α) otherwise.

Our goal is to show that

XmaxDµ |= ψ ∨
∨

i≤k

dep
(

αi1, . . . ,αini
,βi

)

.

It suffices to show that there exist someY,Z1, . . .Zk ⊆ XmaxDµ such thatY ∪ Z1 ∪ ·· · ∪ Zk = XmaxDµ ,

Y |= ψ , andZi |= dep
(

αi1, . . . ,αini
,βi

)

, for eachi ≤ k. We define the teamZi, for eachi ≤ k, by using the

function fi . We letZi := {s∈XmaxDµ | s(βi) 6= fi
(

s(αi1), . . . ,s(αini
)
)

}, for eachi ≤ k. Now, since Boolean

variables have only 2 possible values, we conclude that, foreachi ≤ k, Zi |= dep
(

αi1, . . . ,αini
,βi

)

. Thus

⋃

1≤i≤k

Zi |=
∨

i≤k

dep
(

αi1, . . . ,αini
,βi

)

. (2)

Note thats(βi) = fi
(

s(αi1), . . . ,s(αini
)
)

holds for everys∈ (XmaxDµ \Zi) and everyi ≤ k. Define then
that

Y := XmaxDµ \
⋃

1≤i≤k

Zi.

Clearly, for everys∈Y and i ≤ k, it holds thats(βi) = fi
(

s(αi1), . . . ,s(αini
)
)

. Thus from (1), it follows
thats |= ψ , for everys∈Y. Sinceψ is a PL formula, we conclude by Proposition 2.2 thatY |= ψ . From
this together with (2), we conclude thatXmaxDµ |= ϕµ .

Assume then thatXmaxDµ |= ϕµ . Therefore

Y |=
∨

i≤k

dep
(

αi1, . . . ,αini
,βi

)

andZ |= ψ , for someY andZ such thatY∪Z = XmaxDµ . Hence there exist someY1, . . . ,Yk,Z such that

Y1∪ ·· · ∪Yk∪Z = XmaxDµ , Z |= ψ , andYi |= dep
(

αi1, . . . ,αini
,βi

)

for eachi ≤ k. Assume that we have

pickedY1, . . . ,Yk,Z such thatZ is minimal. We will show that thenZ |= dep
(

αi1, . . . ,αini
,βi

)

, for each

i ≤ k. Assume for the sake of contradiction that, for somei ≤ k, there exists, t ∈ Z such that

s(αi1) = t(αi1), . . . ,s(αini
) = t(αini

) but s(βi) 6= t(βi).

Now clearly eitherYi ∪{s} |= dep
(

αi1, . . . ,αini
,βi

)

or Yi ∪{t} |= dep
(

αi1, . . . ,αini
,βi

)

. This contradicts

the fact thatZ was assumed to be minimal.
We will then show that for everya1, . . . ,an ∈ {0,1} there exists some assignments in Z that expands

(α1, . . . ,αn) 7→ (a1, . . . ,an).
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Let a1, . . . ,an ∈ {0,1}. Now, for everyi ≤ k, sinceYi |= dep
(

αi1, . . . ,αini
,βi

)

, it follows that for any

two s′,s′′ ∈Yi that expand(α1, . . . ,αn) 7→ (a1, . . . ,an), it holds thats′(βi) = s′′(βi). Thus, for eachi ≤ k,
there exists a truth valuebi ∈ {0,1} such that there is no expansions of(α1, . . . ,αn,βi) 7→ (a1, . . . ,an,bi)
in Yi . Therefore, the assignment(α1, . . . ,αn,β1, . . . ,βk) 7→ (a1, . . . ,an,b1, . . . ,bk) is not in Yi , for any
i ≤ k. Thus the assignment(α1, . . . ,αn,β1, . . . ,βk) 7→ (a1, . . . ,an,b1, . . . ,bk) is in Z. Hence, for every
a1, . . . ,an ∈ {0,1}, there exists some expansion of(α1, . . . ,αn) 7→ (a1, . . . ,an) in Z.

Now, for eachi ≤ k, we define the functionfi : {0,1}|Pi | →{0,1} as follows. We define that

fi(b1, . . . ,b|Pi |) := s(βi),

wheres is an assignment inZ that expands(αi1, . . .αini
) 7→ (b1, . . . ,b|Pi |). SinceZ |= dep

(

αi1, . . . ,αini
,βi

)

,

for eachi ≤ k, the functionsfi are well defined. Now sinceψ is syntactically a PL formula and since
Z |= ψ , it follows from proposition 2.2 thats′ |= ψ , for eachs′ ∈ Z. Clearly the functionsfi , for i ≤ k,
are as required in 1. Thus we conclude that 1 holds. Thusµ is true.

Now since the truth problem for DQBF isNEXPTIME-hard andϕµ is clearly polynomial with re-
spect toµ , we conclude that the validity problem for PD isNEXPTIME-hard.

By Lemmas 4.3 and 4.4, we obtain the following:

Theorem 4.5. The validity problem forPD isNEXPTIME-complete.

5 The validity problem for modal dependence logic

The satisfiability problem for both MDL and EMDL is known to beNEXPTIME-complete. For MDL
this was shown by Sevenster [24] and for EMDL Ebbing et al. [6]. In Theorem 4.5 we showed that the
validity problem for PD isNEXPTIME-complete and thus much more complex than the corresponding
satisfiability problem. This together with the fact that thevalidity problem for modal logic is known to
bePSPACE-complete (Laddner [17]) seems to suggestEXPSPACE as a candidate for the complexity
of the validity problem of MDL and EMDL. However, we manage todo a bit better. We establish
that the validity problem of MDL and EMDL is inNEXPTIMENP, i.e., inNEXPTIME with access to
NP oracles. Thus we obtain that the precise complexity of theseproblems lie somewhere between and
NEXPTIME andNEXPTIMENP, since theNEXPTIME-hardness follows directly from Lemma 4.4.

Corollary 5.1. The validity problem forMDL andEMDL isNEXPTIME-hard.

The rest of this section is devoted on showing that the validity problem for EMDL is inNEXPTIMENP.
Let ϕ be a formula of EMDL or ML(6). The set nbSubf(ϕ) of non-Boolean subformulasof ϕ is

defined recursively as follows.

nbSubf(¬p) := nbSubf(p) := {p}, nbSubf(△ϕ) := {△ϕ}∪nbSubf(ϕ) for △∈ {♦,�},

nbSubf(ϕ ◦ψ) := nbSubf(ϕ)∪nbSubf(ψ) for ◦ ∈ {6,∨,∧},

nbSubf
(

dep(ϕ1, . . . ,ϕn,ψ)
)

:= nbSubf(ϕ1)∪ ·· ·∪nbSubf(ϕn)∪nbSubf(ψ).

The following lemma follows directly from [24, Claim 15].

Lemma 5.2. Let ϕ ∈ ML and let k= |nbSubf(ϕ)|. Then,ϕ is valid if and only ifK,w |= ϕ holds for
every Kripke modelK = (W,R,V) and w∈W such that|W| ≤ 2k.
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The following proposition for EMDL is based on a similar result for MDL that essentially combines
the ideas of [28], [24] and [19].

Proposition 5.3. For every formulaϕ ∈ EMDL there exists an equivalent formula

ϕ∗ =6
i∈I

ϕi ,

where I is a finite set of indices andϕi ∈ ML , for each i∈ I. Furthermore, for each i∈ I, the size ofϕi is
only exponential in the size ofϕ and |nbSubf(ϕi)| ≤ 3×|ϕ |.

Proof. We will first recall an exponential translationϕ 7→ ϕ+ from EMDL to ML(6) given in [6,
Theorem 2]. The cases for proposition symbols, Boolean connectives and modalities are trivial, i.e.,
p 7→ p,¬p 7→ ¬p,(ϕ ∧ψ) 7→ (ϕ+ ∧ψ+),(ϕ ∨ψ) 7→ (ϕ+ ∨ψ+),♦ϕ 7→ ♦ϕ+,�ϕ 7→ �ϕ+. The only
interesting case is the case for the dependence atom. We define that

dep(ϕ1, . . . ,ϕn,ψ) 7→
∨

a1,...,an∈{⊥,⊤}

(
∧

i≤n

ϕai
i ∧ (ψ 6 ψ⊥)

)

,

whereϕ⊤ denotesϕ andϕ⊥ denotes the ML formula obtained from¬ϕ by pulling all negations to the
atomic level. Notice that the size ofϕ+ is≤ c×|ϕ |×2|ϕ |, for some constantc. Thus the size ofϕ+ is at
most exponential with respect to the size ofϕ . Fromϕ+ it is easy to obtain an equivalent ML(6)-formula
ϕ∗ of the form

6
i∈I

ϕi,

whereI is a finite index set andϕi , for i ∈ I , is an ML-formula. LetF be the set of all selection functions
f that select, separately for each occurrence, either the left disjunct ψ or the right disjunctθ of each
subformula of the form(ψ 6θ) of ϕ+. Now letϕ+

f denote the formula obtained fromϕ+ by substituting

each occurrence of a subformula of type(ψ 6 θ) by f
(

(ψ 6 θ)
)

. We then define that

ϕ∗ :=6
f∈F

ϕ+
f .

It is straightforward to prove thatϕ∗ is equivalent toϕ+ and hence toϕ . Since, for eachf ∈ F, ϕ+
f is

obtained fromϕ+ by substituting subformulae of type(ψ 6θ) with eitherψ or θ , it is clear that the size
of ϕ+

f is bounded above by the size ofϕ+. Recall that the size ofϕ+ is at most exponential with respect
to the size ofϕ . Therefore, for eachf ∈ F, the size ofϕ+

f is at most exponential with respect to the size
of ϕ .

We say that the modal operator♦ in ♦θ dominatesan intuitionistic disjunction if6 occurs inθ . To
see that|nbSubf(ϕ+

f )| ≤ 3× |ϕ |, for each f ∈ F, notice first that in the translationϕ 7→ ϕ+ the only
case that can increase the number of non-Boolean subformulae is the case for the dependence atom.
Eachϕ⊥

i andψ⊥ may introduce new non-Boolean subformulae. Thus it is straightforward to see that
|nbSubf(ϕ+)| ≤ 2×|nbSubf(ϕ)|. Furthermore, notice that the number of modal operators that dominate
an intuitionistic disjunction inϕ+ is less or equal to the number of modal operators inϕ . Let k denote
the number of modal operators inϕ . It is easy to see that|nbSubf(ϕ+

f )| ≤ |nbSubf(ϕ+)|+ k, for each
f ∈ F . Now sincek≤ |ϕ | and|nbSubf(ϕ)| ≤ |ϕ |, we obtain that|nbSubf(ϕ+

f )| ≤ 3×|ϕ |, for eachf ∈ F.
With a more careful bookkeeping, we would obtain that nbSubf(ϕ+

f )≤ 2×|ϕ |.

We say that a formulaϕ ∈ ML is valid in small modelsif K ,w |= ϕ holds for every Kripke model
K = (W,R,V) andw∈W such that|W| ≤ |ϕ |.
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Lemma 5.4. The decision problem whether a given formula ofML is valid in small models is in coNP.

Proof. If a formulaϕ ∈ML is not valid in small models, then there is somek≤ |ϕ | and a pointed Kripke
model K,w of sizek such that K,w 6|= ϕ . The size of K,w is clearly polynomial in|ϕ |, and thus it can be
guessed nondeterministically in polynomial time with respect to|ϕ |. The model checking problem for
modal logic is inP ( [4]), and thus K,w 6|= ϕ can be verified in polynomial time with respect to|K|+ |ϕ |
and thus in polynomial time with respect to|ϕ |.

Proposition 5.5. ML(6) has the6-disjunction property, i.e., for everyϕ ,ψ ∈ ML(6) it holds that
(ϕ 6 ψ) is valid if and only if eitherϕ is valid or ψ is valid.

Proof. The direction from right to left is trivial. We will prove here the direction form left to right.
Assume that(ϕ 6 ψ) is valid. For the sake of contradiction, assume then that neither ϕ nor ψ is valid.
Thus there exist Kripke models K and K′, and teamsT andT ′ of K and K′, respectively, such that K,T 6|=
ϕ and K′,T ′ 6|= ψ . From Corollary 2.10 it follows that K⊎K′,T 6|= ϕ and K⊎K′,T ′ 6|= ψ , where K⊎K′

denotes the disjoint union of K and K′. Since the formulae of ML(6) are downwards closed (Proposition
2.7), we conclude that K⊎K′,T ∪T′ 6|= ϕ and K⊎K′,T ∪T ′ 6|= ψ . Thus K⊎K′,T ∪T ′ 6|= (ϕ 6ψ). This
contradicts the fact that(ϕ 6 ψ) is valid.

Proposition 5.6. The validity problem forEMDL is in NEXPTIMENP.

Proof. For deciding whether a given EMDL formula is valid, we give a nondeterministic exponential
time algorithm that has an access to anNP oracle that decides whether a given ML formula is valid in
small models. For eachϕ ∈ EMDL let ϕ+ denote the equivalent exponential size ML(6)-formula from
the proof of Proposition 5.3. Clearlyϕ+ is computable fromϕ in exponential time. Furthermore letϕ∗

denote the ML(6)-formula of the form6 f∈F ϕ+
f of Proposition 5.3. Moreover letg : N→ N be some

exponential function such that|ϕ+
f | ≤ g(|ϕ |), for everyϕ ∈ EMDL and f ∈ F. By Proposition 5.3 there

exists such a function.
We are now ready to give aNEXPTIMENP algorithm for the validity problem of EMDL. Letϕ be an

EMDL formula. First guess nondeterministically an ML formula ψ of the same vocabulary asϕ of size
at mostg(|ϕ |). Then computeϕ+ from ϕ and check whetherψ is among the disjunctsϕ+

f , f ∈ F , of ϕ∗.
Clearly the checking can be done in polynomial time with respect to|ϕ+|+ |ψ | and thus in exponential
time with respect to the size ofϕ . If ψ is not among the disjuncts the algorithm outputs “No”, otherwise
the algorithm continues. We then give

ψ− :=
(

∧

i≤23×|ϕ|

(p∨¬p)
)

∧ψ

as an input to anNP oracle that decides whether the ML formulaψ− is valid in small models. Clearlyψ−

is computable fromψ in exponential time with respect to the size ofϕ . The algorithm outputs “No” if the
oracle outputs “No” and “Yes” if the oracle outputs “Yes”. Clearly this algorithm is inNEXPTIMENP.

Now by Proposition 5.3,ϕ is valid if and only ifϕ∗ is valid, and furthermore, by Proposition 5.5,ϕ∗

is valid if and only ifϕ+
f is valid for somef ∈ F . By Proposition 5.3,|nbSubf(ϕ+

f )| ≤ 3×|ϕ |, for every
f ∈ F. Thus by Lemma 5.2, for everyf ∈ F, ϕ+

f is valid if and only ifϕ+
f is true on all pointed models

of size at most 23×|ϕ |. Now clearly, for everyf ∈ F, ϕ+
f is valid if and only if the formula

ϕ−
f :=

(
∧

i≤23×|ϕ|

(p∨¬p)
)

∧ϕ+
f
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is valid. Thus, for everyf ∈ F, ϕ+
f is valid if and only if ϕ−

f is valid in small models. Therefore, and
sinceψ− = ϕ−

f , for somef ∈ F, the algorithm decides the validity problem of EMDL.

Corollary 5.7. The validity problem forMDL is inNEXPTIMENP.

6 Conclusion

In this article we studied the validity problem of propositional dependence logic, modal dependence
logic, and extended modal dependence logic. We establishedthat the validity problem for propositional
dependence logic isNEXPTIME-complete. In addition we showed that the corresponding problem for
modal dependence logic and extended modal dependence logicis NEXPTIME-hard and contained in
NEXPTIMENP. The exact complexity of the validity problem for MDL and EMDL remain open. We
conjecture that both of these problems are harder thanNEXPTIME. We also believe that the complexity
of MDL and EMDL coincide. In addition to resolving the precise complexity of the validity problem
of MDL and EMDL, we are interested in the complexity of the entailment problem of PD, MDL, and
EMDL. Note that in the context of dependence logic the entailment problem cannot be reduced directly
to the validity problem. However the validity problem can bereduced to the entailment problem. Hence
the entailment problem of PD, MDL, and EMDL is at least as hardas the corresponding validity problem.
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