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Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with
performance guarantees for reactive systems within an uncontrollable environment. Classical settings
include mean-payoff games, where the objective is to optimize the long-run average gain per action,
and energy games, where the system has to avoid running out of energy.

We study average-energy games, where the goal is to optimize the long-run average of the
accumulated energy. We show that this objective arises naturally in several applications, and that it
yields interesting connections with previous concepts in the literature. We prove that deciding the
winner in such games is in NP ∩ coNP and at least as hard as solving mean-payoff games, and we
establish that memoryless strategies suffice to win. We also consider the case where the system has to
minimize the average-energy while maintaining the accumulated energy within predefined bounds at
all times: this corresponds to operating with a finite-capacity storage for energy. We give results for
one-player and two-player games, and establish complexity bounds and memory requirements.

1 Introduction

Quantitative games. Game-theoretic formulations are a standard tool for the synthesis of provably-
correct controllers for reactive systems [22]. We consider two-player (system vs. environment) turn-based
games played on finite graphs. Vertices of the graph are called states and partitioned into states of player 1
and states of player 2. The game is played by moving a pebble from state to state, along edges in the
graph, and starting from a given initial state. Whenever the pebble is on a state belonging to player i,
player i decides where to move the pebble next, according to his strategy. The infinite path followed by
the pebble is called a play: it represents one possible behavior of the system. A winning objective encodes
acceptable behaviors of the system and can be seen as a set of winning plays. The goal of player 1 is to
ensure that the outcome of the game will be a winning play, whatever the strategy played by his adversary.

To reason about resource constraints and the performance of strategies, quantitative games have
been considered in the literature. See for example [10, 3, 29], or [30] for an overview. Those games
are played on weighted graphs, where edges are fitted with integer weights modeling rewards or costs.
The performance of a play is evaluated via a payoff function that maps it to the numerical domain. The
objective of player 1 is then to ensure a sufficient payoff with regard to a given threshold value. Seminal
classes of quantitative games include mean-payoff (MP), total-payoff (TP) and energy games (EG). In MP
games [15, 33, 24], player 1 has to optimize his long-run average gain per edge taken whereas, in TP
games [20, 19], player 1 has to optimize his long-run sum of weights. Energy games [10, 5, 23] model
safety-like properties: the goal is to ensure that the running sum of weights never drops below zero
and/or that it never exceeds a given upper bound U ∈ N. All three classes share common properties.
First, MP games, TP games, and EG games with only a lower bound (EGL) are memoryless determined
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(given an initial state, either player 1 has a strategy to win, or player 2 has one, and in both cases no
memory is required to win). Second, deciding the winner for those games is in NP ∩ coNP and no
polynomial algorithm is known despite many efforts (e.g., [8, 12]). Energy games with both lower and
upper bounds (EGLU) are more complex: they are EXPTIME-complete and winning requires memory in
general [5].

While those classes are well-known, it is sometimes necessary to go beyond them to accurately model
practical applications. For example, multi-dimensional games and conjunctions with a parity objective
model trade-offs between different quantitative aspects [11, 14, 32]. Similarly, window objectives address
the need for strategies ensuring good quantitative behaviors within reasonable time frames [12].

Average-energy games. We study the average-energy (AE) payoff function: in AE games, the goal of
player 1 is to optimize the long-run average accumulated energy over a play. We introduce this objective
to formalize the specification desired in a practical application [9], which we detail in the following as a
motivating example. Interestingly, it turns out that this payoff first appeared long ago [31], but it was not
subject to a systematic study until very recently: see related work for more discussion.

In addition to being meaningful w.r.t. practical applications, AE games also have theoretical interest.
In [13], Chatterjee and Prabhu define the average debit-sum level objective, which can be seen as a
variation of the average-energy where the accumulated energy is taken to be zero in any point where it is
actually positive (hence, it focuses on the average debt). They use the corresponding games to compute
the values of quantitative timed simulation functions. In particular, they provide a pseudo-polynomial-
time algorithm to solve those games, but the complexity of deciding the winner as well as the memory
requirements are open. Here, we solve those questions for the very similar average-energy objective.

Motivating example. Our example is a simplified version of the industrial application studied by Cassez
et al. [9]. Consider a machine that consumes oil, stored in a connected accumulator. We want to synthesize
an appropriate controller to operate the oil pump that fills the accumulator, and by the effect of pressure,
that releases oil from the accumulator into the machine with a (time-varying) rate according to desired
production. In order to ensure safety, the oil level in the accumulator should be maintained at all times
between a minimal and a maximal level. This part of the specification can be encoded as an energy
objective with both lower and upper bounds (EGLU). At the same time, the more oil (thus pressure) in the
accumulator, the faster the whole apparatus wears out. Hence, an ideal controller should minimize the
average level of oil in the long run. This desire can be formalized through the average-energy payoff (AE).
Overall, the specification is thus to minimize the average-energy under the strong energy constraints: we
denote the corresponding objective by AELU .

Contributions. Our main results are summarized in Table 1.
A) We establish that the average-energy objective can be seen as a refinement of total-payoff, in the

same sense as total-payoff is seen as a refinement of mean-payoff [19]: it allows to distinguish strategies
yielding identical mean-payoff and total-payoff.

B) We show that deciding the winner in two-player AE games is in NP ∩ coNP whereas it is in P
for one-player games. In both cases, memoryless strategies suffice (Thm. 5). Those complexities match
the state-of-the-art for MP and TP games [33, 24, 19, 8]. Furthermore we prove that AE games are at
least as hard as mean-payoff games (Thm. 7). Therefore, the NP ∩ coNP-membership can be considered
optimal w.r.t. our knowledge of MP games. Technically, the crux of our approach is as follows. First,
we show that memoryless strategies suffice in one-player AE games (Thm. 3): this requires to prove
important properties of the AE payoff as classical sufficient criteria for memoryless determinacy present
in the literature fail to apply directly. Second, we establish a polynomial-time algorithm for the one-player
case: it exploits the structure of winning strategies and mixes graph techniques with local linear program
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Game objective 1-player 2-player memory

MP in P [26] in NP ∩ coNP [33] memoryless [15]
TP in P [17] in NP ∩ coNP [19] memoryless [20]

EGL in P [5] in NP ∩ coNP [10, 5] memoryless [10]
EGLU PSPACE-complete [16] EXPTIME-complete [5] pseudo-polynomial

AE in P in NP ∩ coNP memoryless
AELU , polynomial U in P in NP ∩ coNP polynomial

AELU , arbitrary U in EXPTIME / PSPACE-hard EXPTIME-complete pseudo-polynomial
AEL EXPTIME-easy / NP-hard open / EXPTIME-hard open (≥ pseudo-p.)

Table 1: Complexity of deciding the winner and memory requirements for quantitative games: MP stands
for mean-payoff, TP for total-payoff, EGL (resp. EGLU) for lower-bounded (resp. lower- and upper-
bounded) energy, AE for average-energy, and AEL (resp. AELU) for average-energy under a lower bound
(resp. and upper bound U ∈N) on the energy. Results without reference are proved in this paper.

solving (Thm. 4). Finally, we lift memoryless determinacy to the two-player case using results by Gimbert
and Zielonka [21] and obtain the NP ∩ coNP-membership as a corollary (Thm. 6).

C) We establish an EXPTIME algorithm to solve two-player AE games with lower- and upper-
bounded energy (AELU) with an arbitrary upper bound U ∈ N (Thm. 8). It relies on a reduction of
the AELU game to a pseudo-polynomially larger AE game where the energy constraints are encoded
in the graph structure. Applying straightforwardly the AE algorithm on this game would only give us
NEXPTIME ∩ coNEXPTIME-membership, hence we avoid this blowup by further reducing the problem
to a particular MP game and applying a pseudo-polynomial algorithm, with some care to ensure that
overall the algorithm only requires pseudo-polynomial time in the original AELU game. Since the simpler
EGLU games (i.e., AELU with a trivial AE constraint) are already EXPTIME-hard [5], the EXPTIME-
membership result is optimal. We also prove that pseudo-polynomial memory is both sufficient and in
general necessary to win in AELU games, for both players (Thm. 9). Whether one-player AELU games
belong to PSPACE is an open question. For polynomial (in the size of the game graph) values of the
upper bound U—or if it is given in unary—the complexity of the two-player AELU problem collapses to
NP ∩ coNP with the same approach, and polynomial memory suffices for both players.

D) We provide partial answers for the AEL objective—AE under a lower bound constraint on energy
but no upper bound. We provide an EXPTIME algorithm for the one-player case, by reducing the problem
to an AELU game with a sufficiently large upper bound. That is, we prove that if the player can win for the
AEL objective, then he can do so without ever increasing its energy above a well-chosen bound. We also
prove the AEL problem to be at least NP-hard in one-player games and EXPTIME-hard in two-player
games (Lem. 12) via reductions from the subset-sum problem and countdown games respectively. Finally,
we show that memory is required for both players in two-player AEL games (Lem. 13), and that pseudo-
polynomial memory is both sufficient and necessary in the one-player case (Thm. 10). The decidability
status of two-player AEL games remains open as we only provide a correct but incomplete incremental
algorithm (Lem. 11). We conjecture that the two-player AEL problem is decidable and sketch a potential
approach to solve it. We highlight the key remaining questions and discuss some connections with related
models that are known to be difficult.

Observe that in many applications, the energy must be stocked in a finite-capacity storage for which
an upper bound is provided. Hence, the model of choice in this case is AELU .
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Related work. The average-energy payoff—Eq. (1)—appeared in a paper by Thuijsman and Vrieze in
the late eighties [31], under the name total-reward. This definition is different from the classical total-
payoff —see Sect. 2—commonly studied in the formal methods community (see for example [20, 19]),
which, despite that, has been referred in many papers as either total-payoff or total-reward equivalently.
We will see in this paper that both definitions are indeed different and exhibit different behaviors.

Maybe due to this confusion, the payoff of Eq. (1)—which we call average-energy thus avoiding
misunderstandings—was not studied extensively until recently. Nothing was known about memoryless
determinacy and complexity of deciding the winner. Independently to our work, Boros et al. recently
studied the same payoff (under the name total-payoff ). In [4], they study Markov decision processes and
stochastic games with the payoff of Eq. (1) and solve both questions. Their results overlap with ours
for AE games (Table 1). Let us first mention that our results were obtained independently. Second, and
most importantly, our approach and techniques are different, and we believe our take on the problem
yields some interest for our community. Indeed, the algorithm of Boros et al. entirely relies on linear
programming in the one-player case, and resorts to approximation by discounted games in the two-player
one. Our techniques are arguably more constructive and based on inherent properties of the payoff. In
that sense, it is closer to what is usually deemed important in our field. For example, we provide an
extensive comparison with classical payoffs. We base our proof of memoryless determinacy on operational
understanding of the AE which is crucial in order to formalize proper specifications. Our technique then
benefits from seminal works [21] to bypass the reduction to discounted games and obtain a direct proof,
thanks to our more constructive approach. Lastly, while [4] considers the AE problem in the stochastic
context, we focus on the deterministic one but consider multi-criteria extensions by adding bounds on the
energy (AELU and AEL games). Those extensions are completely new, exhibit theoretical interest and are
adequate for practical applications in constrained energy systems, as witnessed by the case study of [9].

Recent work of Brázdil et al. [7] considers the optimization of a payoff under energy constraint. They
study mean-payoff in consumption systems, i.e., simplified one-player energy games where all edges
consume energy but some states can atomically produce a reload of the energy up to the allowed capacity.

Full details and proofs of the results presented here can be found in the extended paper [6].

2 Preliminaries

Graph games. We consider turn-based games played on graphs between two players denoted by P1
and P2. A game is a tuple G = (S1,S2,E,w) where (i) S1 and S2 are disjoint finite sets of states belonging
to P1 and P2, with S = S1]S2, (ii) E ⊆ S×S is a finite set of edges, and (iii) w : E→ Z is an integer
weight function. Given edge (s1,s2) ∈ E, we write w(s1,s2) as a shortcut for w((s1,s2)). We denote by W
the largest absolute weight assigned by function w. A game is called 1-player if S1 = /0 or S2 = /0.

A play from an initial state sinit ∈ S is an infinite sequence π = s0s1 . . .sn . . . such that s0 = sinit and for
all i≥ 0 we have (si,si+1)∈E. The (finite) prefix of π up to position n gives the sequence π(n) = s0s1 . . .sn,
the last element sn is denoted last(π(n)). The set of all plays in G is denoted by Plays(G) and the set
of all prefixes is denoted by Prefs(G). We say that a prefix ρ ∈ Prefs(G) belongs to Pi, i ∈ {1,2}, if
last(ρ) ∈ Si. The set of prefixes that belong to Pi is denoted by Prefsi(G). The classical concatenation
between prefixes (resp. prefix and play) is denoted by the · operator. The length of a non-empty prefix
ρ = s0 . . .sn is defined as the number of edges and denoted by |ρ|= n.
Payoffs of plays. Given a play π = s0s1 . . .sn . . . we define
• its energy level at position n as EL(π(n)) = ∑

n−1
i=0 w(si,si+1);

• its mean-payoff as MP(π) = limsupn→∞
1
n ∑

n−1
i=0 w(si,si+1) = limsupn→∞

1
n EL(π(n));
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• its total-payoff as TP(π) = limsupn→∞ ∑
n−1
i=0 w(si,si+1) = limsupn→∞ EL(π(n));

• and its average-energy as

AE(π) = limsup
n→∞

1
n

n

∑
i=1

(
i−1

∑
j=0

w(s j,s j+1)

)
= limsup

n→∞

1
n

n

∑
i=1

EL(π(i)). (1)

We will sometimes consider those measures defined with liminf instead of limsup, in which case we
write MP, TP and AE respectively. Finally, we also consider those measures over prefixes: we naturally
define them by dropping the limsupn→∞ operator and taking n = |ρ| for a prefix ρ ∈ Prefs(G). In this
case, we simply write MP(ρ), TP(ρ) and AE(ρ) to denote the fact that we consider finite sequences.

Strategies. A strategy for Pi, i ∈ {1,2}, is a function σi : Prefsi(G)→ S such that for all ρ ∈ Prefsi(G)
we have (last(ρ),σi(ρ)) ∈ E. A strategy σi for Pi is finite-memory if it can be encoded by a deterministic
finite-state Moore machine. A strategy is memoryless if it does not depend on the history but only on the
current state of the game. We denote by Σi(G), the sets of strategies for player Pi. We drop G when the
context is clear.

A play π = s0s1 . . . is consistent with a strategy σi of Pi if, for all n≥ 0 where last(π(n)) ∈ Si, we
have σi(π(n)) = sn+1. Given an initial state sinit ∈ S and strategies σ1 and σ2 for the two players, we
denote by Outcome(sinit,σ1,σ2) the unique play that starts in sinit and is consistent with both σ1 and σ2.
When fixing the strategy of only Pi, we denote the set of consistent outcomes by Outcomes(sinit,σi).

Objectives. An objective in G is a set W ⊆ Plays(G) that is declared winning for P1. Given a game G,
an initial state sinit, and an objective W , a strategy σ1 ∈ Σ1 is winning for P1 if for all strategy σ2 ∈ Σ2,
we have that Outcome(sinit,σ1,σ2) ∈W . Symmetrically, a strategy σ2 ∈ Σ2 is winning for P2 if for all
strategy σ1 ∈ Σ1, we have that Outcome(sinit,σ1,σ2) 6∈W . That is, we consider zero-sum games.

We consider the following objectives and combinations of those objectives.

• Given an initial energy level cinit ∈N, the lower-bounded energy (EGL) objective EnergyL(cinit) =
{π ∈ Plays(G) | ∀n≥ 0, cinit+EL(π(n))≥ 0} requires non-negative energy at all times.

• Given an upper bound U ∈N and an initial energy level cinit ∈N, the lower- and upper-bounded
energy (EGLU) objective EnergyLU(U,cinit) = {π ∈ Plays(G) | ∀n≥ 0, cinit+EL(π(n)) ∈ [0,U ]}
requires that the energy always remains non-negative and below the upper bound U along a play.

• Given a threshold t ∈ Q, the mean-payoff (MP) objective MeanPayoff (t) = {π ∈ Plays(G) |
MP(π)≤ t} requires that the mean-payoff is at most t.

• Given a threshold t ∈Z, the total-payoff (TP) objective TotalPayoff (t) = {π ∈ Plays(G) | TP(π)≤
t} requires that the total-payoff is at most t.

• Given a threshold t ∈ Q, the average-energy (AE) objective AvgEnergy(t) = {π ∈ Plays(G) |
AE(π)≤ t} requires that the average-energy is at most t.

For the MP, TP and AE objectives, note that P1 aims to minimize the payoff value while P2 tries to
maximize it. The reversed convention is also often used in the literature but both are equivalent. For our
motivating example, seeing P1 as a minimizer is more natural. Note that we define the objectives using
the limsup variants of MP, TP and AE, but similar results are obtained for the liminf variants.

Decision problem. Given a game G, an initial state sinit ∈ S, and an objective W ⊆ Plays(G) as defined
above, the associated decision problem is to decide if P1 has a winning strategy for this objective.

We recall classical results in Table 1. Memoryless strategies suffice for both players for EGL [10, 5],
MP [15] and TP [17, 20] objectives. Since all associated problems can be solved in polynomial time
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for 1-player games, it follows that the 2-player decision problem is in NP∩ coNP for those three
objectives [5, 33, 19]. For the EGLU objective, memory is in general needed and the associated decision
problem is EXPTIME-complete [5] (PSPACE-complete for one-player games [16]).

Game values. Given a game with an objective W ∈ {MeanPayoff ,TotalPayoff ,AvgEnergy} and an
initial state sinit, we refer to the value from sinit as v = inf{t ∈Q | ∃σ1 ∈ Σ1, Outcomes(sinit,σ1)⊆W (t)}.
For both MP and TP objectives, it is known that the value can be achieved by an optimal memoryless
strategy; for the AE objective it follows from our results (Thm. 5).

3 Average-Energy

In this section, we consider the problem of ensuring a sufficiently low average-energy.

Problem 1 (AE). Given a game G, an initial state sinit, and a threshold t ∈Q, decide if P1 has a winning
strategy σ1 ∈ Σ1 for the objective AvgEnergy(t).

3.1 Relation with classical objectives

Several links between EGL, MP and TP objectives can be established. Intuitively, P1 can only ensure a
lower bound on energy if he can prevent P2 from enforcing strictly-negative cycles (otherwise the initial
energy is eventually exhausted). This is the case if and only if P1 can ensure a non-negative mean-payoff
in G (here, he wants to maximize the MP), and if this is the case, P1 can prevent the running sum of
weights from ever going too far beyond zero along a play, hence granting a lower bound on total-payoff.

The TP objective is sometimes seen as a refinement of MP for the case where P1—as a minimizer—
can ensure MP equal to zero but not lower, i.e., the MP game has value zero [19]. Indeed, one may
use the TP to further discriminate between strategies that guarantee MP zero. In the same philosophy,
the average-energy can help in distinguishing strategies that yield identical total-payoffs. See Fig. 1.
The AE values in both examples can be computed easily using the upcoming technical lemmas (Sect. 3.2).

In these examples, the average-energy is clearly comprised between the infimum and supremum
total-payoffs. This remains true for any play. In particular, if the mean-payoff value from a state is not
zero, its total-payoff value is infinite and the following holds: either P1 can force AE equal to −∞ or P2
can force AE equal to +∞.

3.2 Useful properties of the average-energy

Classical sufficient criteria. Various sufficient criteria—or connected approaches—to deduce mem-
oryless determinacy appear in the literature [15, 2, 1, 20, 27]. Unfortunately, they cannot be applied
straight out of the box to the AE payoff. Intuitively, a common requirement is for winning objectives to be
closed under cyclic permutation and under concatenation. Without further assumptions, the AE objective
satisfies neither. Indeed, consider cycles represented by sequences of weights C1 = {−1}, C2 = {1} and
C3 = {1,−2}. We see that AE(C1C2) = (−1+0)/2 =−1/2 < AE(C2C1) = (1−0)/2 = 1/2, hence AE
is not closed under cyclic permutations. Intuitively, the order in which the weights are seen does matter, in
contrast to most classical payoffs. For concatenation, see that AE(C3) = 0 while AE(C3C3) =−1/2 < 0.
Here the intuition is that the overall AE is impacted by the energy of the first cycle which is strictly
negative (−1). In a sense, the AE of a cycle can only be maintained through repetition if this cycle is
neutral with regard to the total energy level, i.e., if it has energy level zero: we will formalize this intuition
in Lem. 2.



P. Bouyer, N. Markey, M. Randour, K.G. Larsen, S. Laursen 7

1

2 2

−2−2

2

−2

1

2 0

0−2

Step

Energy

0

2

4

6

0 2 4 6 8 10 12

AE=3

(c) Play π1 sees energy levels (1,3,5,3)ω .
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Energy

0
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4
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0 2 4 6 8 10 12

AE=11/3

(d) Play π2 sees energy levels (1,3,5,5,5,3)ω .

Fig. 1: Both plays have identical mean-payoff and total-payoff: MP(π1) = MP(π1) = MP(π2) =
MP(π2) = 0, TP(π1) = TP(π2) = 5, and TP(π1) = TP(π2) = 1. But play π1 has a lower average-energy:
AE(π1) = AE(π1) = 3 < AE(π2) = AE(π2) = 11/3.

Extraction of prefixes. We establish two useful properties of the average-energy that help us to prove
memoryless determinacy. The following lemma describes the impact of adding a finite prefix to an infinite
play: it will help us in decomposing plays when needed.
Lemma 1. [Average-energy prefix] Let ρ ∈ Prefs(G), π ∈ Plays(G). Then, AE(ρ ·π) = EL(ρ)+AE(π).
The same equality holds for AE.
Extraction of a best cycle. The next lemma is crucial to prove that memoryless strategies suffice: under
well-chosen conditions, one can always select a best cycle in a play—hence, there is no interest in mixing
different cycles and no use for memory. It holds only for sequences of cycles that have energy level zero:
since they do not change the energy, they do not modify the AE of the following suffix of play, and one
can decompose the AE as a weighted average over zero cycles. The concatenation of cycles Ca = ss′ . . .s
and Cb = ss′′ . . .s is to be understood as Ca ·Cb = ss′ . . .ss′′ . . .s.
Lemma 2. [Repeated zero cycles of bounded length] Let C1,C2,C3, . . . be an infinite sequence of cycles
Ci ∈ Prefs(G) such that (i) π = C1 ·C2 ·C3 · · · ∈ Plays(G), (ii) ∀ i ≥ 1, EL(Ci) = 0 and (iii) ∃` ∈N>0
such that ∀ i≥ 1, |Ci| ≤ `. Then the following properties hold.

1. The average-energy of π is the weighted average of the average-energies of the cycles:

AE(π) = limsup
k→∞

[
∑

k
i=1 |Ci| ·AE(Ci)

∑
k
i=1 |Ci|

]
. (2)

2. For any cycle C ∈ Prefs(G) such that EL(C ) = 0, we have that AE(C ω) = AE(C ).

3. Repeating the best cycle gives the lowest AE: infi∈N>0 AE(Ci) = infi∈N>0 AE((Ci)
ω)≤ AE(π).

Similar properties hold for AE.

3.3 One-player games

We assume that the unique player is P1, hence that S2 = /0. The proofs are similar for the case where
all states belong to P2 (i.e., S1 = /0). Similarly, we present our results for the AE variant, but they carry
over to the AE one. Actually, since we show that we can restrict ourselves to memoryless strategies, all
consistent outcomes will be periodic and thus both variants will be equal over those outcomes.
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s′ s s′′

1 1

−1−1

(a) Original game.

(s,2)

(s′,1)

(s′′,1)

(s,0)

(−1,−2)

(1,2)

(1,1)

(−1,−1)

(b) Expanded graph for k = 2.

Fig. 2: The best cycle Cs,2 is computed by looking for a path from (s,2) to (s,0) with sum zero in the first
dimension (zero cycle) and minimal sum in the second dimension (minimal AE). Here, the cycle via s′ is
clearly better, with AE equal to −1/2 in contrast to 1/2 via s′′.

Memoryless determinacy. Intuitively, we use Lem. 1 and Lem. 2 to transform any arbitrary path in a
simple lasso path, repeating a unique simple cycle, and yielding an at least as good AE, thus proving that
any threshold achievable with memory can also be achieved without it.

Theorem 3. Memoryless strategies are sufficient to win one-player AE games.

Polynomial-time algorithm. We know the form of optimal memoryless strategies: an optimal lasso
path π = ρ ·C ω w.r.t. the AE. We establish a polynomial-time algorithm to solve one-player AE games.

The crux is computing, for each state s, the best—w.r.t. the AE—zero cycle Cs starting and ending
in s (if any). This is achieved through linear programming (LP) over expanded graphs. For each state s
and length k ∈ {1, . . . , |S|}, we compute the best cycle Cs,k by considering a graph (Fig. 2) that models
all cycles of length k from s and that uses k+ 1 levels and two-dimensional weights on edges of the
form (c, l · c) where c is the weight in the original game and l ∈ {k,k−1, . . . ,1} is the level of the edge.
In the LP, we look for cycles Cs,k of length k on s such that (a) the sum of weights in the first dimension
is zero (thus Cs,k is a zero cycle), and (b) the sum in the second one is minimal. Fortunately, this sum is
exactly equal to AE(C ) · k thanks to the l factors used in the weights of the expanded graph. Hence, we
obtain the optimal cycle Cs,k (in polynomial time). Doing this |S| times for each state s, we obtain for
each of them the optimal cycle Cs (if one zero cycle exists). Then, by Lem. 1, it remains to compute the
least EL with which each state s can be reached using classical graph techniques (e.g., Bellman-Ford),
and to pick the optimal combination to obtain an optimal memoryless strategy, in polynomial time.

Theorem 4. The AE problem for one-player games is in P.

3.4 Two-player games

Memoryless determinacy. We now prove that memoryless strategies still suffice in two-player games.
As discussed in Sect. 3.2, classical criteria do not apply. There is, however, one result that proves par-
ticularly useful. Consider any payoff function such that memoryless strategies suffice for both one-player
versions (S1 = /0, resp. S2 = /0). In [21, Cor. 7], Gimbert and Zielonka establish that memoryless strategies
also suffice in two-player games with the same payoff. Thanks to Thm. 3, this entails the next theorem.

Theorem 5. Average-energy games are determined and both players have memoryless optimal strategies.

Solving average-energy games. By Thm. 5, one can guess an optimal memoryless strategy for P2 and
solve the remaining one-player game for P1, in polynomial time (by Thm. 4). The converse is also true:
one can guess the strategy of P1 and solve the remaining game where S1 = /0 in polynomial time.

Theorem 6. The AE problem for two-player games is in NP ∩ coNP.
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(a) One-player AELU game.
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3
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AE = 3/2

(b) Play π1 = (acacacab)ω .

Step
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0

1

2

3

1 2 3 4 5

AE = 8/5

(c) Play π2 = (aacab)ω .

Step

Energy

0

1

2

3

1 2 3 4 5

AE = 1

(d) Play π3 = (acaab)ω .

Fig. 3: Example of a one-player AELU game (U = 3) and the evolution of energy under different strategies
that maintain it within [0, 3] at all times. The minimal average-energy is obtained with play π3: alternating
in order between the +1, +2 and −3 cycles.

We prove that MP games can be encoded into AE ones in polynomial time. The former are known to
be in NP ∩ coNP but whether they belong to P is a long-standing open question (e.g., [33, 24, 8, 12]).
Hence, w.r.t. current knowledge, the NP ∩ coNP-membership of the AE problem can be considered
optimal. The key of the construction is to double each edge of the original game and modify the weight
function such that each pair of successive edges corresponding to such a doubled edge now has a total
energy level of zero, and an average-energy that is exactly equal to the weight of the original edge. Then
we apply decomposition techniques as in Lem. 2 to establish the equivalence.

Theorem 7. Mean-payoff games can be reduced to average-energy games in polynomial time.

4 Average-Energy with Lower- and Upper-Bounded Energy

We extend the AE framework with constraints on the running energy level of the system. Such constraints
are natural in many applications where the energy capacity is bounded (e.g., fuel tank, battery charge).
We first study the case where the energy is subject to both a lower bound (here, zero) and an upper bound
(U ∈N). We study the problem for the fixed initial energy level cinit := 0.

Problem 2 (AELU). Given a game G, an initial state sinit, an upper bound U ∈N, and a threshold t ∈Q,
decide if P1 has a winning strategy σ1 ∈ Σ1 for the objective EnergyLU(U,cinit := 0) ∩ AvgEnergy(t).

Illustration. Consider the one-player game in Fig. 3. The energy constraints force P1 to keep the
energy in [0, 3] at all times. Hence, only three strategies can be followed safely, respectively inducing
plays π1, π2 and π3. Due to the bounds on energy, it is natural that strategies need to alternate between
both a positive and a negative cycle to satisfy objective EnergyLU(U,cinit := 0) (since no simple zero
cycle exists). It is yet interesting that to play optimally (play π3), P1 actually has to use both positive
cycles, and in the appropriate order (compare plays π2 and π3). This type of alternation is more intricate
than for other classical objectives [11, 14, 32]. This gives a hint of the complexity of AELU games.

4.1 Pseudo-polynomial algorithm and complexity bounds

We first reduce the AELU problem to the AE problem over a pseudo-polynomial expanded game, i.e.,
polynomial in the size of the original AELU game and in U ∈N. By Thm. 6 and Thm. 4, this reduction
induces NEXPTIME∩ coNEXPTIME-membership of the two-player AELU problem, and EXPTIME-
membership of the one-player one. We improve the complexity for two-player games by further reducing
the AE game to an MP game. This yields EXPTIME-membership, which is optimal (Thm. 8).
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(a,0) (a,1) (a,2) (a,3)

(b,0) (b,1) (b,2) (b,3)

(c,0) (c,1) (c,2) (c,3)

sink

1 | 0 1 | 1 1 | 2
0 | 0 0 | 1 0 | 2 0 | 3

1 | 0 1 | 1 1 | 2 1 | 3
1 | 2

0 | 0 0 | 1 0 | 2 0 | 3

−3 | 3

2 | 0 2 | 1

Fig. 4: Reduction from the AELU game in Fig. 3a to an AE game and further reduction to an MP game
over the same expanded graph. For the sake of succinctness, the weights are written as c | c′ with c the
weight used in the AE game and c′ the one used in the MP game. We use the upper bound U = 3 and the
average-energy threshold t = 1 (the optimal value in this case). The optimal play π3 = (acaab)ω of the
original game corresponds to an optimal memoryless play in the expanded graph.

Observe that if U is encoded in unary or if U is polynomial in the size of the original game, the
complexity of the AELU problem collapses to NP∩ coNP for two-player games and to P for one-player
games thanks to our reduction to an AE problem and the results of Thm. 6 and Thm. 4.

The reductions. Given a game G = (S1,S2,E,w), an initial state sinit, an upper bound U ∈ N, and
a threshold t ∈ Q, we reduce the AELU problem to an AE problem as follows. If at any point along a
play, the energy drops below zero or exceeds U , the play will be losing for the EnergyLU(U,cinit := 0)
objective, hence also for its conjunction with the AE one. So we build a new game G′ over the state space
(S×{0,1, . . . ,U})∪{sink}. The idea is to include the energy level within the state labels, with sink as an
absorbing state reached only when the energy constraint is breached. We now consider the AE problem
for threshold t on G′. By putting a self-loop of weight 1 on sink, we ensure that if the energy constraint is
not guaranteed in G, the answer to the AE problem in G′ will be No as the average-energy will be infinite
due to reaching this positive loop and repeating it forever. Hence, we show that the AELU objective can
be won in G if and only if the AE one can be won in G′ (thus avoiding the sink state). The result of the
reduction for the game in Fig. 3a is presented in Fig. 4.

We then show that the AE game G′ can be further reduced to an MP game G′′ by modifying the weight
structure of the graph. Essentially, all edges leaving a state (s,c) of G′ are given weight c in G′′, i.e., the
current energy level, and the self-loop on sink is given weight (dte+1). This modification is depicted in
Fig. 4. We claim that the AE problem for threshold t ∈Q in G′ is equivalent to the MP problem for the
same threshold in G′′. Indeed, we show that with our change of weight function, reaching sink implies
losing, both in G′ for AE and in G′′ for MP, and all plays that do not reach sink have the same value for
their average-energy in G′ as for their mean-payoff in G′′.

Illustration. Consider the AELU game G in Fig. 3a. The optimal strategy is π3 = (acaab)ω . Now
consider the reduction to the AE game, and further to the MP game, depicted in Fig. 4. The opti-
mal (memoryless) strategy in both the AE game G′ and the MP game G′′ is to create the play π ′ =
((a,0)(c,1)(a,1)(a,3)(b,0))ω , which corresponds to the optimal play π3 in the original game. It can be
checked that AEG(π3) = AEG′(π

′) = MPG′′(π
′).

Complexity. The reduction from the AELU game to the AE one induces a pseudo-polynomial blow-up
in the number of states. Thanks to the second reduction and the use of a pseudo-polynomial algorithm for
the MP game [33, 8], we get EXPTIME-membership, which is optimal for two-player games thanks to
the lower bound proved for EGLU [5].
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s s′−U

1

0

(a) P1 needs to take U times (s,s′) before taking
(s,s) once and repeating.

s a

b c d e f

g

1

−1 1 0 0 0

0 0 −U 0 1

(b) P2 needs to increase the energy up to U using (a,c) to force P1
to take (g,d) then make him lose by taking (a,b).

Fig. 5: Families of games witnessing the need for pseudo-polynomial-memory strategies for EGLU (and
AELU) objectives. The goal of P1 is to keep the energy in [0,U ] at all times, for U ∈N. The left game is
won by P1 and the right one by P2 but both require memory polynomial in the value U to be won.

Theorem 8. The AELU problem is EXPTIME-complete for two-player games and at least PSPACE-hard
for one-player games. If the upper bound U ∈N is polynomial in the size of the game or encoded in unary,
the AELU problem collapses to NP∩ coNP and P for two-player and one-player games respectively.

4.2 Memory requirements

We prove pseudo-polynomial lower and upper bounds on memory for the two players in AELU games.
The upper bound follows from the reduction to a pseudo-polynomial AE game and the memoryless
determinacy of AE games proved in Thm. 5. The lower bound can be witnessed in two families of games
asking for strategies using memory polynomial in the energy upper bound U ∈ N to be won by P1
(Fig. 5a) or P2 (Fig. 5b) respectively. It is interesting to observe that those families already ask for such
memory when considering the simpler EGLU objective.

Theorem 9. Pseudo-polynomial-memory strategies are both sufficient and necessary to win in EGLU and
AELU games with arbitrary energy upper bound U ∈N, for both players. Polynomial memory suffices
when U is polynomial in the size of the game or encoded in unary.

5 Average-Energy with Lower-Bounded Energy

We conclude with the conjunction of an AE objective with a lower bound (again equal to zero) constraint
on the running energy, but no upper bound. This corresponds to an hypothetical unbounded energy storage.
Hence, its applicability is limited, but it may prove interesting on the theoretical standpoint.

Problem 3 (AEL). Given a game G, an initial state sinit and a threshold t ∈Q, decide if P1 has a winning
strategy σ1 ∈ Σ1 for objective EnergyL(cinit := 0) ∩ AvgEnergy(t).

This problem proves to be challenging to solve: we provide partial answers in the following, with a
proper algorithm for one-player games but only a correct but incomplete method for two-player games.

Illustration. Consider the game in Fig. 3. Recall that for AELU with U = 3, the optimal play is π3,
and it requires alternation between all three different simple cycles. Now consider AEL. One may think
that relaxing the objective would allow for simpler winning strategies. This is not the case. Some new
plays are now acceptable w.r.t. the energy constraint, such as π4 = (aabaaba)ω , with AE(π4) = 11/7
and π5 = (aaababa)ω , with AE(π5) = 18/7. Yet, the optimal play w.r.t. the AE (under the lower-bound
energy constraint) is still π3, hence still requires to use all the available cycles, in the appropriate order.
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5.1 One-player games

We assume that the unique player is P1. Indeed, the opposite case is easy as for P2, the objective is a
disjunction and P2 can choose beforehand which sub-objective he will transgress, and do so with a simple
memoryless strategy (both AE and EGL games admit memoryless optimal strategies as seen before). We
show how to solve a one-player AEL problem in pseudo-polynomial time by reduction to an AELU problem
for a well-chosen upper bound U ∈N and then application of the algorithm of Sect. 4.1.

The reduction. Given a game G = (S1,S2 = /0,E,w), an initial state sinit, and a threshold t ∈ Q, we
reduce the AEL problem to an AELU problem with an upper bound U ∈N which is pseudo-polynomial
in the original problem. Precisely, U := t +N2 +N3, with N =W · (|S|+2). The intuition is that if P1
can win a one-player AEL game, he can win it without ever reaching energy levels higher than the chosen
bound U , even if he is technically allowed to do so. Essentially, the interest of increasing the energy is
making more cycles available (as they become safe to take w.r.t. the lower bound constraint), but increasing
the energy further than necessary is not a good idea as it will negatively impact the average-energy. To
prove this reduction, we start from an arbitrary winning path in the AEL game, and build a witness path
that is still winning for the AEL objective, but also keeps the energy below U at all times. Our construction
exploits a result of Lafourcade et al. that bounds the value of the counter along a path in a one-counter
automaton [28]. We build upon it to define an appropriate transformation leading to the witness path and
derive a sufficiently large upper bound U ∈N for the AELU problem.

Complexity. Plugging this bound U in the pseudo-polynomial-time algorithm for AELU games yields
an algorithm for one-player AEL games that is overall also pseudo-polynomial. We prove that no truly-
polynomial-time algorithm can be obtained unless P= NP as the one-player AEL problem is NP-hard.
We show it by reduction from the subset-sum problem [18].

Memory requirements. Recall that for P2, the situation is simpler and memoryless strategies suffice.
By the reduction to AELU , we know that pseudo-polynomial memory suffices for P1. This bound is
tight as witnessed by the family of games already presented in Fig. 5a. To ensure the lower bound on
energy, P1 has to play edge (s,s′) at least U times before taking the (s,s) self-loop. But to minimize the
average-energy, edge (s,s′) should never be played more than necessary. The optimal strategy is the same
as for the AELU problem: playing (s,s′) exactly U times, then (s,s) once, then repeating, forever.

Theorem 10. Pseudo-polynomial-memory strategies are both sufficient and necessary to win for P1 in
one-player AEL games. Memoryless strategies suffice for P2 in such games.

5.2 Two-player games

Decidability. Assume that there exists some U ∈N such that P1 has a winning strategy for the AELU

problem with upper bound U and average-energy threshold t. Then, this strategy is trivially winning for
the AEL problem as well. This observation leads to an incremental algorithm that is correct (no false
positives) but incomplete (it is not guaranteed to stop). In [6], we draw the outline of a potential approach
to obtain completeness hence decidability.

Lemma 11. There is an algorithm that takes as input an AEL problem and iteratively solves corresponding
AELU problems for incremental values of U ∈N. If a winning strategy is found for some U ∈N, then it is
also winning for the original AEL problem. If no strategy is found up to value U ∈N, then no strategy
of P1 can simultaneously win the AEL problem and prevent the energy from exceeding U at all times.

While an incomplete algorithm clearly seems limiting from a theoretical standpoint, it is worth noting
that in practice, such approaches are common and often necessary restrictions, even for problems where a
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Fig. 6: Reduction from a countdown game C = (V ,E ) with initial configuration (vinit,c0) to a two-player
AEL problem for average-energy threshold t := 0.

complete algorithm is known to exist — because theoretical bounds granting completeness are too large
to be tackled efficiently by software synthesis tools (e.g., [14]). In our case, we have already seen that if
such a bound exists for the two-player AEL problem, it needs to be at least exponential in the encoding of
problem (cf. one-player AEL games). Hence it seems likely that a prohibitive bound would be necessary,
rendering the incremental algorithm of Lem. 11 more appealing in practice.

Complexity lower bound. We now prove that the two-player AEL problem would require at least
exponential time to solve. Our proof is by reduction from countdown games. A countdown game C is a
weighted graph (V ,E ), where V is the finite set of states, and E ⊆ V ×N\{0}×V is the edge relation.
Configurations are of the form (v,c), v∈V , c∈N. The game starts in an initial configuration (vinit,c0) and
transitions from a configuration (s,c) are performed as follows. First, P1 chooses a duration d, 0 < d ≤ c
such that there exists e = (v,d,v′) ∈ E for some v′ ∈ V . Second, P2 chooses a state v′ ∈ V such that
e = (v,d,v′) ∈ E . Then the game advances to (v′,c−d). Terminal configurations are reached whenever
no legitimate move is available. If such a configuration is of the form (v,0), P1 wins the play, otherwise
P2 wins. Deciding the winner given an initial configuration (vinit,c0) is EXPTIME-complete [25].

Our reduction is depicted in Fig. 6. The EL is initialized to c0, then it is decreasing along any play.
Consider the AEL objective for AE threshold t := 0. To ensure that the energy always stays non-negative,
P1 has to switch to stop while the EL is no less than zero. In addition, to ensure an AE no more than
t = 0, P1 has to obtain an EL at most equal to zero before switching to stop (as the AE will be equal to
this EL thanks to Lem. 1 and the zero self-loop on stop). Hence, P1 wins the AEL objective only if he can
ensure a total sum of chosen durations that is exactly equal to c0, i.e., if he can reach a winning terminal
configuration for the countdown game. The converse also holds.
Lemma 12. The AEL problem is EXPTIME-hard for two-player games.
Memory requirements. We establish that memory is needed for both players.
Lemma 13. Pseudo-polynomial-memory strategies are necessary to win for P1 in two-player AEL games.
Memory is also required for P2 in such games.
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