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Small Progress Measures is one of the classical parity game solving algorithms. For games with
n vertices,m edges andd different priorities, the original algorithm computes thewinning regions
and a winning strategy for one of the players inO(dm· (n/⌊d/2⌋)⌊d/2⌋) time. Computing a winning
strategy for the other player requires a re-run of the algorithm on that player’s winning region, thus
increasing the runtime complexity toO(dm· (n/⌈d/2⌉)⌈d/2⌉) for computing the winning regions
and winning strategies for both players. We modify the algorithm so that it derives the winning
strategy for both players in one pass. This reduces the upperbound on strategy derivation for SPM to
O(dm· (n/⌊d/2⌋)⌊d/2⌋). At the basis of our modification is a novel operational interpretation of the
least progress measure that we provide.

1 Introduction

A parity game [3, 14, 20] is an infinite duration game played ona directed graph by two players called
evenand odd. Each vertex in the graph is owned by one of the players, and labelled with a natural
number, called a priority. The game is played by pushing a token along the edges in the graph; the
choice where to move next is made by the owner of the vertex on which the token currently resides. The
winner of the thus constructed play is determined by the parity of the minimal (or maximal, depending
on the convention) priority that occurs infinitely often, and the winner of a vertex is the player who
has astrategyto force every play originating from that vertex to be winning for her. Parity games are
positionally determined; that is, each vertex is won by someplayer [14], and each player has a positional
winning strategy on her winning region.Solvinga game essentially means deciding which player wins
which vertices in the game.

Parity games play an important role in several foundationalresults; for instance, they allow for an
elegant simplification of the hard part of Rabin’s proof of the decidability of a monadic second-order
theory, and a number of decision problems of importance can be reduced to deciding the winner in
parity games. For instance, the model checking problem for the modalµ-calculus is equivalent, via
a polynomial-time reduction, to the problem of solving parity games [4, 18]; this is of importance in
computer-aided verification. Winning strategies for the players play a crucial role in supervisory control
of discrete event systems, in which such strategies are instrumental in constructing a supervisor that
controls a plant such that it reaches its control objectivesand avoids bad situations; seee.g. [1] and
the references therein. In model checking, winning strategies are essential in reporting witnesses and
counterexamples, see [18].

A major impetus driving research in parity games is their computational status: the solution problem
lies in UP and coUP and is, despite the continued research effort, not known to be in PTIME. Deter-
ministic algorithms for solving parity games include the classicalrecursive algorithm[20] and small
progress measures(SPM) algorithm [11], thebigstepalgorithm [15], the deterministic subexponential
algorithm [12] and a class of strategy improvement algorithms [19, 16, 5].

Strategy improvement algorithms were long perceived as likely candidates for solving parity games
in polynomial time, but, save a recently introduced symmetric variant [17], they were ultimately proven
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to be exponential in the worst-case [6]. The deterministic subexponential algorithm, running innO(
√

n)

wheren is the number of vertices in the game, is a modification of the recursive algorithm which itself
runs in O(m· nd), wherem is the number of edges andd is the number of different priorities in the
game. Bigstep, which runs inO(m· (κn/d)γ(d)), whereκ is a small constant andγ(d) ≈ d/3, is a
combination of the recursive algorithm and the SPM algorithm. This latter algorithm solves a game in
O(dm· (n/⌊d/2⌋)⌊d/2⌋).

Somewhat surprisingly, our knowledge of classical algorithms such as SPM and the recursive algo-
rithm is still far from complete. For instance, the recursive algorithm is regarded as one of the best
algorithms in practice, which is corroborated by experiments [7]. However, until our recent work [8]
where we showed the algorithm is well-behaved on several important classes of parity games, there was
no satisfactory explanation why this would be the case. In a similar vein, in ibid. we provided tighter
bounds on the worst-case running time, but so far, no tight bounds for this seemingly simple algorithm
have been established. We expect that if improvements on theupper bound on the parity game solving
problem can be made, such improvements will come from improvements in, or through a better under-
standing of the classical algorithms; this expectation is fuelled by the fact that these classical algorithms
and the ideas behind them have been at the basis of the currently optimal algorithms.

In this paper, we focus on Jurdziński’s small progress measures algorithm. Using a fixpoint compu-
tation, it computes aprogress measure, a labelling of vertices, that witnesses the existence of winning
strategies. In general, no clear, intuitive interpretation of the information contained in the progress mea-
sures has been given, and the mechanics of the algorithm remain rather technical. This is in contrast
to the self-explanatory recursive algorithm, and the strategy improvement algorithm, where, thanks to
the ordering of plays according to profiles, at every step, one has a clear picture of the currently known
best strategy. Apart from Jurdziński’s original article,some additional insight was offered by Klauck
and Schewe. In [10], Klauck defines a specific parity progressmeasure for a solitaire game with only
even simple cycles and explains that it has a particular interpretation, but his parity progress measure is
not generally related to the measure computed by the SPM algorithm (not even in the setting of solitaire
games). Schewe, in his paper onbigstep[15], analyses progress measures with restricted codomains and
shows how they can be utilised to efficiently detect small dominions. Ourfirst contribution is to provide a
better understanding of these progress measures and the intermediate values in the fixpoint computation,
see Section 4. By doing so, a better understanding of the algorithm itself is obtained.

Progress measures come in two flavours,viz. even-and odd-biased, and their computation time is
bounded by eitherO(dm· (n/⌊d/2⌋)⌊d/2⌋) or O(dm· (n/⌈d/2⌉)⌈d/2⌉), depending on the parity of the
extreme priorities that occur in the game. From an even-biased progress measure, one immediately
obtains winning regions forboth players, but only a winning strategy for player even on its winning
region and not for her opponent. Likewise for odd-biased progress measures. Obtaining the winning
strategy for an opponent thus requires re-running the algorithm on the opponent’s winning region. Note
that the effort that needs to be taken to obtain a strategy in the same time bound as the winning region
stems from a more general feature of parity games: a winning partition in itself does not allow one to
efficiently compute a winning strategy (unless there is an efficient algorithm for solving parity games).
This basic result, which we nevertheless were unable to find in the literature, is formalised in Section 5.

An essential consequence of this is that the algorithm solves a parity game inO(dm·(n/⌊d/2⌋)⌊d/2⌋),
as one can always compute one of the two types of progress measures in the shorter time bound. Contrary
to what is stated in [11], the same reasoning does not apply tocomputing the winning strategy for a fixed
player; this still requiresO(dm· (n/⌈d/2⌉)⌈d/2⌉) in the worst case, as also observed by Schewe in [15].
An intriguing open problem is whether it is at all possible toderive the winning strategies for both players
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while computing one type of measure only, as this would lowerthe exponent in the time bound to⌊d/2⌋.
Our secondcontribution is to give an affirmative answer to the above problem. We modify the generic
SPM by picking a partial strategy when a vertex won by player� is discovered, and subsequently adjust
the lifting policy so that it prioritises the area which contains an�-dominion. Both steps are inspired by
the interpretation of the progress measures that we discussin Section 4. Like the original algorithm, our
solution, which we present in Section 5, still works in polynomial space. Formal proofs of all results can
be found in our technical report [9].

2 Parity Games

A parity game is an infinite duration game, played by playersodd, denoted by� andeven, denoted by
3, on a directed, finite graph. The game is formally defined as follows.

Definition 1 A parity game is a tuple(V,E,P,(V3,V�)), where

• V is a finite set of vertices, partitioned in a setV3 of vertices owned by player3, and a set of
verticesV� owned by player�,

• E ⊆V×V is a total edge relation,i.e. all vertices have at least one outgoing edge,

• P:V → N is a priority function that assigns priorities to vertices.

Henceforth, we assume that# denotes an arbitrary player; that is# ∈ {�,3}. We write #̄ for #’s
opponent:3̄ = � and�̄ = 3. Parity games are depicted as graphs; diamond-shaped nodesrepresent
vertices owned by player3, box-shaped nodes represent vertices owned by player� and the priority
assigned to a vertex is written inside the node, see the game depicted in Figure 1.
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Figure 1: A simple parity game with 4 different priorities, in which 4 vertices are owned by player odd
and 2 vertices are owned by player even.

Throughout this section, assume thatG= (V,E,P,(V3,V�)) is an arbitrary parity game. We write
v→ w iff (v,w) ∈ E, and we writev• to denote the set of successors ofv, i.e.{w∈V | v→ w}. For a set
of verticesW ⊆V, we will denote the minimal priority occurring inW with minP(W); by Vi we denote
the set of vertices with priorityi; likewise forV≤k. For a setA⊆ V, we defineG∩A as the structure
(A,E∩(A×A),P|A,(V3∩A,V�∩A)); the structureG\A is defined asG∩(V \A). The structuresG∩A
andG\A are again parity games if their edge relations are total.

Plays and Strategies A sequence of verticesv1, . . . ,vn is apathif vm→ vm+1 for all 1≤m< n. Infinite
paths are defined in a similar manner. We writeπi to denote theith vertex in a pathπ.

A game starts by placing a token on some vertexv∈V. Players3 and� move the token indefinitely
according to a single simple rule: if the token is on some vertex that belongs to player#, that player
moves the token to an adjacent vertex. An infinite sequence ofvertices created this way is called aplay.
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Theparity of the leastpriority that occurs infinitely often on a play defines thewinnerof the play: player
3 wins if, and only if this priority is even.

A strategyfor player# is a partial functionσ :V+→V satisfying that whenever it is defined for a
finite pathu1 · · ·un ∈V+, bothun ∈V# andσ(u1 · · ·un) ∈ u•n. We denote the set of strategies of player#

by S
∗
#. An infinite playu1 u2 u3 · · · is consistentwith a strategyσ if for all prefixesu1 · · ·un of the play

for which σ(u1 · · ·un) is defined,un+1 = σ(u1 · · ·un). The set of all plays, consistent with some strategy
σ , and starting inv is denotedΠ(σ ,v). Some strategyσ is winning for player# from vertexv iff all
plays consistent withσ are won by player#. Vertexv is won by player# whenever she has a winning
strategy for all plays starting in vertexv. Parity games aredetermined[3], meaning that every vertex
is won by one of the players; they are evenpositionally determined, meaning that if# wins a vertex
then she has a winningpositional strategy: a strategy that determines where to move the token next
based solely on the vertex on which the token currently resides. Such strategies can be represented by a
functionσ :V#→V, and the set of all such strategies for player# is denotedS#. Solvinga parity game
G essentially means computing the partition(Win3(G),Win�(G)) of V into vertices won by player3
and player�, respectively.

Example 1 In the parity game depicted in Figure 1, verticesv1,v2 andv3 are won by player3 while
verticesv4,v5 andv6 are won by player�. A winning positional strategy for player3 is to play fromv2

to v1 and fromv3 to v2. A winning strategy for� is to move fromv4 to v6 and fromv5 to v6.

Attractors and Dominions An #-attractor into a setU ⊆ V contains all those vertices from which
player# can force any play toU ; it is formally defined as follows.

Definition 2 The#-attractor into a setU ⊆V, denoted#-Attr(U), is the least setA⊆V satisfying:

1. U ⊆ A

2. (a) if w∈V# andw•∩A 6= /0, thenw∈ A

(b) if w∈V#̄ andw• ⊆ A, thenw∈ A

Observe that the complement of an attractor set of any subsetof a parity game induces a parity game,i.e.
G\#-Attr(U) for anyU and# is a well-defined parity game. Whenever we refer to anattractor strategy
associated with#-Attr(U), we mean the positional strategy that player# can employ to force play toU ;
such a strategy can be computed inO(|V|+ |E|) using a straightforward fixpoint iteration.

A set of verticesU is an#-dominion whenever there is a strategyσ for player# such that every play
starting inU and conforming toσ is winning for# and stays withinU . A game is aparadisefor player
# if the entire game is an#-dominion.

Example 2 Reconsider the parity game of Figure 1. We have3-Attr(v2) = {v2,v3} and�-Attr(v4) =
{v4,v5,v6}. The winning region{v1,v2,v3} is an3-dominion, but the subset{v2,v3} is not; the set
{v4,v6} is an�-dominion.

3 Jurdziński’s Small Progress Measures Algorithm

The SPM algorithm works by computing ameasureassociated with each vertex. This measure is such
that it decreases along the play with each “bad” odd priorityencountered, and only increases upon reach-
ing a beneficial even priority. In what follows, we recapitulate the essentials for defining and studying
the SPM algorithm; our presentation is—as in the original paper by Jurdziński—from the perspective of
player3.
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Let G= (V,E,P,(V3,V�)) be a parity game. Letd be a positive number and letα ∈Nd be ad-tuple
of natural numbers. We number its components from 0 tod−1, i.e. α = (α0,α1, . . . ,αd−1), and let< on
suchd-tuples be given by the lexicographic ordering. We define a derived ordering<i on k-tuples and
l -tuples of natural numbers as follows:

(α0,α1, . . . ,αk)<i (β0,β1, . . . ,βl ) iff (α0,α1, . . . ,αi)< (β0,β1, . . . ,βi)

where, if i > k or i > l , the tuples are suffixed with 0s. Analogously, we writeα =i β to denote thatα
andβ are identical up-to and including positioni. The derived ordering provides enough information to
reason about the interesting bits of plays: when encountering a priorityi in a play, we are only interested
in how often we can or must visit vertices of a more significant(i.e. smaller) priority thani, whereas we
no longer care about the less significant priorities that we shall encounter; a more precise interpretation
of the information that will be encoded will be given in Section 4.

Now, assume from hereon thatd−1 is the largest priority occurring inG; i.e., d is one larger than
the largest priority inG. For i ∈ N, let ni = |Vi |. DefineM3 ⊆ N

d∪{⊤}, as the largest set containing⊤
(⊤ /∈ N

d) and only thosed-tuples with 0 onevenpositions and natural numbers≤ ni on oddpositionsi.
The lexicographical ordering< and the family of orderings<i ond-tuples is extended to an ordering

onM3 by settingα <⊤ and⊤=⊤. Let ρ :V→M
3 and supposew∈ v•. ThenProg(ρ ,v,w) is the least

m∈M
3, such that

• m≥P(v) ρ(w) if P(v) is even,

• m>P(v) ρ(w), or m= ρ(w) =⊤ if P(v) is odd.

Definition 3 Functionρ is agame parity progress measureif for all v∈V:

• if v∈V3, then for somew∈ v•, ρ(v)≥P(v) Prog(ρ ,v,w)

• if v∈V�, then for allw∈ v•, ρ(v)≥P(v) Prog(ρ ,v,w)

The following proposition is due to Jurdziński [11]; it shows that the least game parity progress measure
characterises the winning regions of a parity game.

Proposition 1 If ρ is the least game parity progress measure forG, then for allv ∈ V: ρ(v) 6= ⊤ iff
v∈Win3(G).

The least game parity progress measure can be described as the least fixpoint of a monotone transformer
on the complete lattice we define next. Letρ ,ρ ′:V→M

3 and defineρ ⊑ ρ ′ asρ(v)≤ ρ ′(v) for all v∈V.
We writeρ < ρ ′ if ρ ⊑ ρ ′ andρ 6= ρ ′. Then the set of all functionsV→M

3 with ⊑ is a complete lattice.
The monotone transformer defined on this set is given as follows:

Lift(ρ ,v) =

{

ρ [v 7→max{ρ(v),min{Prog(ρ ,v,w) | v→ w}}] if v∈V3

ρ [v 7→max{ρ(v),max{Prog(ρ ,v,w) | v→ w}}] if v∈V�

As a consequence of Tarski’s fixpoint theorem, we know the least fixpoint of the above monotone trans-
former exists and can be computed using a standard fixpoint iteration scheme. This leads to the original
SPM algorithm, see Algorithm 1. Upon termination of the iteration within the SPM algorithm, the com-
puted game parity progress measureρ is used to compute the setsWin3(G) andWin�(G) of vertices
won by player3 and�, respectively.

Theorem 1 Algorithm 1 solves a parity game inO(dm· (n/⌊d/2⌋)⌊d/2⌋), see [11].
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Algorithm 1 The original Small Progress Measures Algorithm
1: function SPM(G)
2: Input G= (V,E,P,(V3,V�))
3: Output Winning partition(Win3(G),Win�(G))
4: ρ ← λv∈V. (0, . . . ,0)
5: while ρ < Lift(ρ ,v) for somev∈V do
6: ρ← Lift(ρ ,v) for somev∈V such thatρ < Lift(ρ ,v)
7: end while
8: return ({v∈V | ρ(v) 6=⊤},{v∈V | ρ(v) =⊤})
9: end function

The runtime complexity of SPM is obtained by considering themore optimal runtime of solving a
gameG, or G’s ‘dual’; the latter is obtained by shifting all prioritiesby one and swapping ownership of
all vertices (alternatively, a ‘dual’ algorithm can be used, computing with a domainM�). The runtime
complexity for computing winning strategies for both players using the SPM algorithm is worse than the
runtime complexity of solving the game. A winning strategyσ3:V3→V for player3 can be extracted
from ρ by settingσ3(v) = w for v∈V3∩Win3(G) andw∈ v• such thatρ(w)≤ ρ(w′) for all w′ ∈ v•. A
winning strategy for player� cannot be extracted fromρ a posteriori, so, as also observed in [15], the
runtime complexity of computing a winning strategy cannot be improved by considering the dual of a
game (contrary to what is stated in [11]).

Theorem 2 [See also [15]] Algorithm 1 can compute winning strategies for both players inO(dm·
(n/⌈d/2⌉)⌈d/2⌉).

As an illustration of the above observations, consider the family of games depicted in Figure 2. The more
optimal runtime ofO(dm·(n/⌊d/2⌋)⌊d/2⌋) will be achieved by solving the games themselves (usingM

3)
and not their dual. As all games in the family are�-paradises, we cannot extract a winning strategy for
player� from the computed progress measure and the only option we have is to solve the dual games
with the less favourable runtime ofO(dm· (n/⌈d/2⌉)⌈d/2⌉). In fact, all instances of the family of games
depicted in Figure 2 are solved exponentially faster than their dual, underlining the potential practical
implications of re-running the algorithm.

0 2 1 3 . . . 2N−2 2N−1 2N

Figure 2: A parity game won by player�. Solving the game usingM3, the first⊤ value is reached after
the first full pass of the cycle containing priority 1 (O(N2) using a fair lifting strategy), and it will then
propagate through the game. Solving the dual game, or usingM

� takes exponential time to lift the node
with priority 2N.

To facilitate the analysis of SPM, we will use the following terms and notions. The termmeasure
refers to the intermediate values ofρ in the lifting process as well. Given a tuplem∈M

3, we say that
the positioni in m is saturated, if (m)i = |Vi |.
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4 An operational interpretation of progress measures

While, from a technical perspective, SPM is a relatively simple algorithm in the sense that it is concise
and its individual steps are elementary operations, it lacks a clear and appealing explanation of the devices
used. It is therefore difficult to understand, and possibly enhance. Apart from the formal definition of
progress measures, little explanation of what is hidden behind the values in tuples is offered. Notable
exceptions are [13], which explains that for�-solitaire games with only even simple cycles, one can use
the maximal degrees of ‘odd stretches’ (a concept we make precise below) in order to define a parity
progress measure, and Schewe’s bigstep paper [15], where itis shown that dominions of a bounded size
can be detected using measures with a restricted codomain. Klauck’s construction for a specific parity
progress measure breaks down for arbitrary parity games andthe constructed parity progress measure
is not related to the measure that is computed by the SPM algorithm, nor to any of the intermediate
measures. In general, the high-level intuition is that the larger progress measure values indicate more
capabilities of player�, and a value at a given position in the tuple is somehow related to the number of
priorities that� can enforce to visit.

In what follows, we present a precise and operational interpretation of measures. Our interpretation
is similar in spirit to the one used in [13], but applicable toall parity games, and uses a concept known
from the realm of strategy improvement algorithms – a value (or profile) of a play. Here, values are
defined in terms of maximal odd-dominated stretches occurring in a prefix of a play. With this notion at
hand, we can consider an optimal valuation of vertices, being the best lower bound on play values that
player3 can enforce, or the worst upper bound that� can achieve,i.e. it is anequilibrium. The optimal
valuations range over the same codomain as progress measures, and the main result of this section states
that the least game parity progress measure is equal to the optimal valuation.

LetM3
ext denote all tuples inNd∪{⊤} such that for allm∈M3

ext and even positionsi≤ d, (m)i = 0; i.e.
compared toM3, we drop the requirement that values on odd positionsi are bounded by|Vi |. Elements
in M

3
ext are ordered in the same fashion as those inM

3. Given a playπ, a stretch is a subsequence
πsπs+1 . . .πs+l of π. For a priorityk, a k-dominated stretchis a stretch in which the minimal priority
among all vertices in the stretch isk. Thedegreeof ak-dominated stretch is the number of vertices with
priority k occurring in the stretch.

Definition 4 Let us denote all plays in the parity game byΠ. An 3−value(or simply value) of a play is
a functionθ3 : Π−→M

3
ext defined as follows:

• if π is winning for�, thenθ3(π) =⊤
• if π is winning for 3, thenθ3(π) = m, wherem 6= ⊤, and for every odd positioni, (m)i is the

degreeof the maximali-dominated stretch that is a prefix ofπ
Observe that a play value is well-defined, as an infinitei-dominated stretch for an oddi implies that a
game is won by�, and its value is⊤ in such case.

Example 3 Suppose that the sequence of priorities corresponding to a certain playπ is 453453213(47)∗ .
Thenθ3(π) = (0,1,0,2,0,0,0,0).

The theorem below links the progress measure values to players’ capabilities to enforce beneficial
plays or avoid harmful ones, where the benefit from a play is measured by a specially devised play
value, as it is done in strategy improvement algorithms. This offers a more operational view on progress
measure values, which, combined with a more fine-grained analysis of the mechanics of SPM allows us
to extract winning strategies for both players in the next section.
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Theorem 3 If ρ is the least progress measure of a parity gameG, then, for allv:

1. there is a strategyσ� ∈ S
∗
�

such that for everyπ ∈Π(σ�,v), θ3(π)≥ ρ(v)
2. there is a strategyσ3 ∈ S3 such that for everyπ ∈Π(σ3,v), θ3(π)≤ ρ(v)

A notable difference between strategy improvement algorithms and SPM is that SPM does not work
with explicit strategies, and the intermediate measure values do not represent any proper valuation in-
duced by strategies – only the final least progress measure does. Still, these intermediate values give
an underapproximation of the capabilities of player� in terms of odd-dominated stretches that she can
enforce.

Note that a consequence of Theorem 3 is that the least (resp. greatest) play values that player� (resp.
3) can enforce are equal, and coincide with the least game parity progress measureρ computed by SPM.
Observe also that player3 can always achieve the strategy guaranteeing the optimal even-biased play
value with a memoryless strategy, whereas player� may require to that end a strategy that depends on a
play’s history.

5 Strategy construction for player�

Computing winning strategies is typically part of a practical solution to a complex verification or a
controller synthesis problem. In such use cases, these strategies are employed to construct witnesses and
counterexamples for the verification problems, or for constructing control strategies for the controller [1].
As we explained in Section 3, the SPM algorithm can easily be extended to construct a winning strategy
for player3. The problem of deriving a winning strategy for player� in SPM (other than by running
the algorithm on the ‘dual’ game, or by using a ‘dual’ domainM

�) has, however, never been addressed.
Note that the problem of computing strategies is at least as hard as solving a game. Indeed, even if we are
equipped with a valid winning partition(Win3(G),Win�(G)) for a gameG, then deriving the strategies
witnessing these partitions involves the same computational overhead as the one required to compute
(Win3(G),Win�(G)) in the first place.

Proposition 2 The problem of finding the winning partition(Win3(G),Win�(G)) of a given gameG
can be reduced in polynomial time to the problem of computinga winning strategy for player# in a
given#-dominion.

Deriving a strategy for both players by using the SPM to computeM
3 measures andM� measures

consecutively, or even simultaneously, affects, as we already discussed in Section 3, SPM’s runtime.
Being able to compute� strategies without resorting to the aforementioned methods would also allow
us to potentially significantly improve efficiency on such instances as given by Figure 2. It may be clear,
though, that extracting a winning strategy from the small progress measures algorithm for vertices with
measure⊤ will require modifying the algorithm (storing additional data, augmenting the lifting process).
For instance, simply following the vertex that caused the update to top, fails, as the example below shows.

Example 4 Reconsider the game depicted in Figure 1. Recall that vertices v4,v5 and v6 are won by
player�, and in all possible lifting schemes, the first vertex whose measure becomes⊤ is v6. After that,
a possible sequence of liftings is that firstρ(v5) is set to⊤ (due tov6), followed byρ(v4) = ⊤ (due to
v5). If we set the strategy based on the vertex that caused the given vertex to be lifted to top, we obtain
σ(v4) = v5, which is not winning for�.

The key problem is that for vertices won by player�, from some point onward, the lifting process
discards significant information. This is best seen in case of lifting to ⊤ – a partial characterisation of



166 Improvement in Small Progress Measures

reachable odd priorities contained in a tuple (see also our previous section) is ultimately replaced with a
mere indication that player� can win.

5.1 A Bounded�-Dominion

Consider a gameG on which a standard SPM algorithm with an arbitrary lifting policy has been applied.
Suppose that at some point a vertexv is the first one to be lifted to⊤, and after lifting ofv the algorithm
is suspended, resulting in some temporary measureρ . Let k be the priority ofv.

We will start with two straightforward observations. The first one is thatk must be an odd number;
this is because a vertex with an even priority obtains, afterlifting, a ρ-value equal to theρ-value of one
of its successors, and therefore it cannot be the first vertexlifted to⊤. Another immediate conclusion is
that at least one (or all, ifv∈V3) successor(s) ofv has (have) aρ-value saturated up to thek-th position,
i.e. it is of the formm= (0, |V1|,0, |V3|, . . . ,0, |Vk|,∗ ∗ ∗); were it not the case, then a non-top valuem′

such thatm′ >k mwould exist, which would be inconsistent with the definitionof Prog.

kv ρ(v) =⊤

umax . . .

�-dominion
D⊆⋃

i≥kVi

V
kv ρ(v) =⊤

. . .

�-dominion
D⊆ ⋃

i≥kVi

V

Figure 3: Snapshot of the SPM algorithm after the first vertexv is lifted to top.

There are two more complex properties, which we can utilise to modify the SPM algorithm and
compute the winning strategy for player� (see Figure 3).

1. Vertexv belongs to an�-dominionD within G such that the minimal priority inD is k.

2. If v∈V�, then picking the successorumaxof v with the maximal currentρ-value amongv• is a part
of a (positional) winning strategy for� that stays within such a dominionD as described above.

The intuition concerning the above facts is as follows. Vertices with a measure valuem saturated up to
but possibly excluding a certain positioni have a neat interpretation of the measure value at positioni:

Player� can force the following outcome of a play:

1. priority i appears mi times without any lower priority in between

2. the play will reach a⊤-labelled vertex via priorities not more significant than i

3. the play enters a cycle with an odd dominating priority larger (less significant) than i.

Therefore, in the situation as described above,� can force a play starting atv to first go in one step to the
successorumax of v with a measure of the form(0, |V1|,0, |V3|, . . . ,0, |Vk|,∗∗∗), and then to play further
and either force a less significant odd-dominated cycle (cases 2 and 3, sincev is the only⊤-labelled
vertex), or to visit vertices with priorityk |Vk| times without any lower priority in between. But in the
latter case, sincev has priorityk, we have in fact|Vk|+ 1 vertices with priorityk not “cancelled” by a
lower priority. Hence player� has forced an odd-dominated cycle with the lowest (most significant)
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priority k. Note that this does not imply we can simply construct a winning strategy for� by always
picking a successor with the maximal measure to further vertices that can be visited along the play; such
a method may lead to an erroneous strategy, as illustrated byFigure 4.

1

v1

⊤

2

v2

(0,2,0,0)

1

v3

(0,2,0,0)

3

v4

(0,2,0,1)

Figure 4: A game, won entirely by player�, and demonstrating that a strategy defined by a greedy
choice of vertex with the maximal tuple does not work. After lifting the vertices in orderv1,v3,v2,v4,v1,
we obtain the measure values as above. Player� would then choosev3, which leads to a losing play,
whereas the choice of the other successor(v4) yields a winning play for�.

Propagating a top value only to vertices with less significant priorities is, however, safe. This can
be achieved efficiently by a slightly modified attractor thatworks within a given context of verticesW,
which we call aguardedattractor.

Definition 5 Let k be some priority andU,W some sets for whichU ⊆W∩V≥k. Then�-Attr≥k
W (U) is

the least setA satisfying:

1. U ⊆ A⊆W∩V≥k

2. (a) if u∈V� andu•∩A 6= /0, thenu∈ A

(b) if u∈V3 andu•∩W ⊆ A, thenu∈ A

If W =V, we drop the subscriptW from the guarded attractor.

The theorem below forms the basis of our algorithm; it describes the relevant information about an�-
dominion that can be extracted once the first vertex in the game is lifted to top.

Theorem 4 Let G be a parity game on which an arbitrary lifting sequence is applied, such that at some
point a vertexv with P(v) = k is the first vertex whose measure value becomes top. Letρ be the
temporary measure at that point. The following holds:

• if v∈V�, then for every successoru of v with a maximal measure amongv• there is an�-dominion
Du containing�-Attr≥k({v}) such that for allw ∈ Du, P(w) ≥ k. Moreover,� has a winning
strategy that is closed onDu, and which is defined onv asσ(v) = u, and on�-Attr≥k({v}) \{v}
as the strategy attracting towardsv,

• if v∈V3, then there is an�-dominionD containing�-Attr≥k({v}) such that for allw∈D, P(w)≥
k. Moreover,� has a winning strategyσ that is closed onD, and defined on�-Attr≥k({v})\{v}
as the strategy attracting towardsv. Note that in this casev• ⊆ D.

5.2 The Extended SPM Algorithm

Theorem 4 captures the core idea behind our algorithm. It provides us with the means to locally resolve
(i.e. define a local strategy for) at least one vertex inWin�(G), once a top value is found while lifting.
Moreover, it indicates in which part of the game the remainder of the�-dominion resides, implying that
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Algorithm 2 Modified SPM with strategy derivation for player Odd
1: function SOLVE(G)
2: Input G= (V,E,P,(V3,V�))
3: Output Winning partition and strategies((Win3(G),σ ′),(Win�(G),σ))
4: initialise σ to an empty assignment
5: ρ ← λw∈V. (0, . . . ,0)
6: SPM-Within(V)
7: compute strategyσ ′ for player Even by picking min. successor w.r.t.ρ
8: return (({v∈V | ρ(v) 6=⊤},σ ′),({v∈V | ρ(v) =⊤,σ))
9:

10: procedureSPM-Within(W)
11: while (W 6= /0) do
12: while ρ < Lift(ρ ,w) for somew∈W and for allw∈W:ρ(w) 6=⊤ do
13: ρ ← Lift(ρ ,w) for w∈W such thatρ < Lift(ρ ,w)
14: end while
15: if for all w∈W: ρ(w) 6=⊤ break end if
16: v← the (unique) vertex inW such thatρ(v) =⊤
17: k←P(v)
18: σ(v)← u whereu∈ v•∩W for which ρ(u′)≤k ρ(u) for all u′ ∈ v•∩W
19: RES←�-Attr≥k

W ({v})
20: for all w∈ RES\{v} do
21: ρ(w)←⊤
22: if w∈V� then assignσ(w) the strategyattracting to vend if
23: end for
24: DOM← RES

25: IRR←3-AttrW({w∈W | P(w)< k})
26: REM←W \ (RES∪ IRR)
27: SPM-Within(REM)
28: DOM← DOM∪{w∈ REM | ρ(w) =⊤}
29: A←�-AttrW(DOM)
30: for all w∈ A\DOM do
31: ρ(w)←⊤
32: if w∈V� then assignσ(w) to be the strategyattracting to DOM

33: end if
34: end for
35: W←W \A
36: end while
37: end procedure
38: end function

one can temporarily restrict the lifting to that area until the dominion is fully resolved. We will give a
description of our solution (Algorithm 2), and informally argue the correctness of our approach. For a
(intricate and rather involved) formal proof, we refer to [9].

The algorithm proceeds as follows. First, a standard SPM is run until the first vertex reaches top [l.
12–14 in Alg. 2 ]. Wheneverv is the first vertex lifted to top, then the issue of the winningstrategy for
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v can be resolved immediately [l. 18 ], as well as for vertices in the guarded attractor ofv (if there are
any). We will denote this set of ‘resolved’ vertices withRES. Moreover, we can restrict our search for
the remainder of the�-dominionD only to vertices with priorities not more significant thank, in fact
only those from which player3 cannot attract a play to visit a priority more significant than k. Hence we
can remove from the current computation context the setIRR= 3-Attr({w∈W | P(w)< k}), vertices
that may be considered at the moment irrelevant [l. 25–26 ].

After discarding the resolved and currently irrelevant vertices, the algorithm proceeds in the remain-
ing set of vertices that constitutes a proper subgame (i.e. without dead ends) induced by the setREM.
After the subroutine returns [l. 27 ], all vertices labelledwith top are won by player� in the subgame
G∩REM. In other words, those vertices are won by� provided that the play does not leaveREM. Since
the only way for player3 to escape fromREM is to visit RES, where every vertex is won by player
�, the top-labelled vertices fromREM are in fact won by� in the context of the larger gameG∩W.
Therefore the setDOM computed in line 28 constitutes an�-dominion within the gameG∩W, in which
we have moreover fully defined a winning strategyσ for player�. Finally, every vertex fromV \DOM
that can be attracted by player� to the dominionDOM is certainly won by�, and for those vertices we
assign the standard strategy attracting toDOM. The�-dominionA is then removed, and the computation
continues in the remaining subgame.

The algorithm may at first sight appear to deviate much from the standard SPM algorithm. However,
the additional overlay, apart from defining the strategy, isno more than a special lifting policy that
temporarily restricts the lifting to parts where an� dominion resides.

Every attractor computation takesO(n+m) time, and whenever it occurs, at least one new vertex is
‘resolved’. Hence the total extra time introduced by the attractor computations is bounded byO(n(n+m)).
As with the standard SPM, the lifting operations dominate the running time, and their total number for
every vertex is bounded by the size ofM

3.

Theorem 5 For a gameG with n vertices,m edges, andd priorities, SOLVE solvesG and computes
winning strategies for player3 and� in worst-caseO(dm· (n/⌊d/2⌋)⌊d/2⌋).

6 Illustrating the new algorithm

We illustrate the various aspects of Algorithm 2 on the gameG depicted in Figure 5, with two (over-
lapping) subgamesG1 andG2. Note that the entire game is an�-paradise: every vertex eventually is
assigned measure⊤ by Algorithm 2 (and Algorithm 1, for that matter). Suppose weuse a lifting strategy
prioritising v2,v3,v7 andv8; then vertexv3’s measure is the first to reach⊤, and the successor with maxi-
mal measure isv7. Therefore,�’s strategy is to move fromv3 to v7. The setRES, computed next consists
of verticesv3 andv2; the strategy forv2 is set tov3 and its measure is set to⊤. The3-attractor into those
vertices with priorities≥ 3, i.e., verticesv1 andv4, is exactly those vertices, so, next, the algorithm zooms
in on solving the subgameG1.

Suppose that within the latter subgame, we prioritise the lifting of vertexv7 andv8; then vertexv7’s
measure is set to⊤ first, andv7’s successor with the largest measure isv8; therefore�’s strategy is to
move fromv7 to v8. At this point in the algorithm,RES is assigned the set of verticesv7 andv8, and
the measure ofv8 is set to⊤. Note that in this case, in this subgame, the winning strategy for � on
v7 is to remain within the setRES. Since all remaining vertices have more signficant priorities than
v7, or are forced by3 to move there, the next recursion is run on an empty subgame and immediately
returns without changing the measures. Upon return, the�-attractor to all�-won vertices (within the
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G2

G1

0

v1

4

v2

3

v3

1

v4

4

v5

5

v6

5

v7

6

v8

4

v9

Figure 5: An example gameG with two (overlapping) subgamesG1 andG2.

subgameG1, so these are only the verticesv7 andv8) is computed, and the algorithm continues solving
the remaining subgame (i.e. the game restricted to verticesv5,v6 andv9), concluding that no vertex in
this entire game will be assigned measure⊤.

At this point, the algorithm returns to the global game againand computes the�-attractor to the
vertices won by player� at that stage (i.e. verticesv2,v3,v7 andv8), adding verticesv1 andv9, setting
their measure to⊤ and setting�’s strategy forv9 to move tov1.

As a final step, the algorithm next homes in on the subgameG2, again within the larger game. The
only vertex assigned measure⊤ in the above subgame is vertexv4; at this pointRES is assigned all
vertices inG2, the measure ofv5 andv6 is set to⊤ and the� strategy for vertexv5 is set tov4. This
effectively solves the entire game.

7 Conclusions and Future Work

In this paper, we studied the classical Small Progress Measures algorithm for solving parity games. The
two key contributions of our work are as follows:

1. We have proposed a more operational interpretation of progress measures by characterising the
types of plays that players can enforce.

2. We have provided a modification of the SPM algorithm that allows to compute the winning strate-
gies for both players in one pass, thus improving the worst-case running time of strategy derivation.

The second enhancement has been made possible due to a thorough study of the contents of progress
measures, and their underapproximations in the intermediate stages of the algorithm (building on the
proposed operational interpretation).

As for the future work, we would like to perform an analysis ofSPM’s behaviour on special classes
of games, along the same lines as we have done in case of the recursive algorithm [8]. More specifically,
we would like to identify the games for which SPM runs in polynomial time, and study enhancements
that allow to solve more types of games efficiently. It would also be interesting to see whether the ideas
behind our modification of the SPM algorithm carry over to thealgorithm for small energy progress
measures [2] for mean payoff games.
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[12] M. Jurdziński, M. Paterson & U. Zwick (2006):A Deterministic Subexponential Algorithm for Solving Parity
Games. In: SODA’06, ACM/SIAM, pp. 117–123, doi:10.1145/1109557.1109571.

[13] H. Klauck (2001): Algorithms for Parity Games. In: Automata, Logics, and Infinite Games: A
Guide to Current Research, chapter 7,Lecture Notes in Computer Science2500, Springer, pp. 107–129,
doi:10.1007/3-540-36387-47.

[14] R. McNaughton (1993): Infinite games played on finite graphs. APAL 65(2), pp. 149–184,
doi:10.1016/0168-0072(93)90036-D.

[15] S. Schewe (2007):Solving Parity Games in Big Steps. In: FSTTCS’07, Lecture Notes in Computer Science
4855, Springer, pp. 449–460, doi:10.1007/978-3-540-77050-3 37.

[16] S. Schewe (2008):An Optimal Strategy Improvement Algorithm for Solving Parity and Payoff Games. In:
CSL, Lecture Notes in Computer Science5213, Springer, pp. 369–384, doi:10.1007/978-3-540-87531-4 27.

[17] S. Schewe, A. Trivedi & T. Varghese (2015):Symmetric Strategy Improvement. In: ICALP, Lecture Notes in
Computer Science9135, Springer, pp. 388–400, doi:10.1007/978-3-662-47666-6 31.

[18] P. Stevens & C. Stirling (1998):Practical Model Checking Using Games. In: TACAS’98, Lecture Notes in
Computer Science1384, Springer, pp. 85–101, doi:10.1007/BFb0054166.
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