Improvement in Small Progress Measures

Maciej Gazda and Tim A.C. Willemse

Eindhoven University of Technology, The Netherlands

Small Progress Measures is one of the classical parity gaeg algorithms. For games with
n vertices,m edges andl different priorities, the original algorithm computes thanning regions
and a winning strategy for one of the player<itdm- (n/|d/2]).9/2]) time. Computing a winning
strategy for the other player requires a re-run of the allgorion that player’s winning region, thus
increasing the runtime complexity ©(dm- (n/[d/2])/9/2]) for computing the winning regions
and winning strategies for both players. We modify the dthor so that it derives the winning
strategy for both players in one pass. This reduces the Ugmperd on strategy derivation for SPM to
O(dm- (n/|d/2])l9/2]). At the basis of our modification is a novel operational iptetation of the
least progress measure that we provide.

1 Introduction

A parity game[[3| 14, 20] is an infinite duration game playedaatirected graph by two players called
evenandodd Each vertex in the graph is owned by one of the players, amelléal with a natural
number, called a priority. The game is played by pushing &rickdong the edges in the graph; the
choice where to move next is made by the owner of the vertextoohathe token currently resides. The
winner of the thus constructed play is determined by thetyafithe minimal (or maximal, depending
on the convention) priority that occurs infinitely often,dathe winner of a vertex is the player who
has astrategyto force every play originating from that vertex to be wirgifor her. Parity games are
positionally determined; that is, each vertex is won by sphager [14], and each player has a positional
winning strategy on her winning regioi®olvinga game essentially means deciding which player wins
which vertices in the game.

Parity games play an important role in several foundatioesllts; for instance, they allow for an
elegant simplification of the hard part of Rabin’s proof o tthecidability of a monadic second-order
theory, and a number of decision problems of importance enretluced to deciding the winner in
parity games. For instance, the model checking problemhermodalp-calculus is equivalent, via
a polynomial-time reduction, to the problem of solving pagames([4| 18]; this is of importance in
computer-aided verification. Winning strategies for theypls play a crucial role in supervisory control
of discrete event systems, in which such strategies areumental in constructing a supervisor that
controls a plant such that it reaches its control objectaed avoids bad situations; see.[1] and
the references therein. In model checking, winning stragegre essential in reporting witnesses and
counterexamples, see [18].

A major impetus driving research in parity games is their potational status: the solution problem
lies in UP and coUP and is, despite the continued researolt,effot known to be in PTIME. Deter-
ministic algorithms for solving parity games include thasdicalrecursive algorithm[20] and small
progress measureglSPM) algorithm [[11], thebigstepalgorithm [15], the deterministic subexponential
algorithm [12] and a class of strategy improvement algorgh19, 16 5].

Strategy improvement algorithms were long perceived adylikandidates for solving parity games
in polynomial time, but, save a recently introduced symimoeiriant [17], they were ultimately proven

J. Esparza, E. Tronci (Eds.): Games, Automata,
Logics and Formal Verification 2015 (GandALF’15)
EPTCS 193, 2015, pp. 198=171, d0i:10.4204/EPTCS.193.12

http://dx.doi.org/10.4204/EPTCS.193.12

M. Gazda and T.A.C. Willemse 159

to be exponential in the worst-case [6]. The deterministizesponential algorithm, running ifP(v?
wheren is the number of vertices in the game, is a modification of dwairsive algorithm which itself
runs inO(m-nd), wherem is the number of edges arlis the number of different priorities in the
game. Bigstep, which runs i®(m- (kn/d)¥@), wherek is a small constant ang(d) ~ d/3, is a
combination of the recursive algorithm and the SPM algoritirhis latter algorithm solves a game in
o(dm: (n/|d/2])9/2),

Somewhat surprisingly, our knowledge of classical alfpong such as SPM and the recursive algo-
rithm is still far from complete. For instance, the recuesalgorithm is regarded as one of the best
algorithms in practice, which is corroborated by experitadid]. However, until our recent work|[8]
where we showed the algorithm is well-behaved on severabitapt classes of parity games, there was
no satisfactory explanation why this would be the case. limélag vein, inibid. we provided tighter
bounds on the worst-case running time, but so far, no tighhts for this seemingly simple algorithm
have been established. We expect that if improvements oaper bound on the parity game solving
problem can be made, such improvements will come from inmgmrants in, or through a better under-
standing of the classical algorithms; this expectatiou@léd by the fact that these classical algorithms
and the ideas behind them have been at the basis of the dyioptitnal algorithms.

In this paper, we focus on Jurdzifiski's small progress mreasalgorithm. Using a fixpoint compu-
tation, it computes @rogress measure labelling of vertices, that withesses the existence ohimg
strategies. In general, no clear, intuitive interpretatid the information contained in the progress mea-
sures has been given, and the mechanics of the algorithmrreather technical. This is in contrast
to the self-explanatory recursive algorithm, and the stpatimprovement algorithm, where, thanks to
the ordering of plays according to profiles, at every step, lvas a clear picture of the currently known
best strategy. Apart from Jurdzihski's original articeme additional insight was offered by Klauck
and Schewe. In_[10], Klauck defines a specific parity progmeasure for a solitaire game with only
even simple cycles and explains that it has a particularpraation, but his parity progress measure is
not generally related to the measure computed by the SPNithigo(not even in the setting of solitaire
games). Schewe, in his paper lnigstep[15], analyses progress measures with restricted codcraaith
shows how they can be utilised to efficiently detect smallishions. Ourfirst contribution is to provide a
better understanding of these progress measures andehmaadtiate values in the fixpoint computation,
see Sectiohl4. By doing so, a better understanding of theitgoitself is obtained.

Progress measures come in two flavowiz, even-and odd-biased, and their computation time is
bounded by eithe©(dm- (n/[d/2])\92)) or O(dm- (n/[d/2])[%/2), depending on the parity of the
extreme priorities that occur in the game. From an everediggogress measure, one immediately
obtains winning regions foboth players, but only a winning strategy for player even on itaning
region and not for her opponent. Likewise for odd-biasedymss measures. Obtaining the winning
strategy for an opponent thus requires re-running the idgeron the opponent’s winning region. Note
that the effort that needs to be taken to obtain a strategyarsame time bound as the winning region
stems from a more general feature of parity games: a winnamtition in itself does not allow one to
efficiently compute a winning strategy (unless there is &igient algorithm for solving parity games).
This basic result, which we nevertheless were unable to firldd literature, is formalised in Sectibh 5.

An essential consequence of this is that the algorithm sa\garity game i®(dm-: (n/|d/2])l9/2)),
as one can always compute one of the two types of progressinesas the shorter time bound. Contrary
to what is stated in [11], the same reasoning does not aplyrtputing the winning strategy for a fixed
player; this still require®©(dm- (n/[d/2])[9/21) in the worst case, as also observed by Schewe in [15].
An intriguing open problem is whether it is at all possiblel&rive the winning strategies for both players

160 Improvement in Small Progress Measures

while computing one type of measure only, as this would Iativerexponent in the time bound td/2].
Our secondcontribution is to give an affirmative answer to the abovebfgm. We modify the generic
SPM by picking a partial strategy when a vertex won by playés discovered, and subsequently adjust
the lifting policy so that it prioritises the area which camis an_l-dominion. Both steps are inspired by
the interpretation of the progress measures that we discBesctior 4. Like the original algorithm, our
solution, which we present in Sectibh 5, still works in palymial space. Formal proofs of all results can
be found in our technical report|[9].

2 Parity Games

A parity game is an infinite duration game, played by playstd denoted by 1 andeven denoted by
<, on a directed, finite graph. The game is formally defined bows.

Definition 1 A parity game is a tupléV,E, &, (Vo, Vo)), where

e V is a finite set of vertices, partitioned in a &t of vertices owned by playe®, and a set of
verticesV owned by playef],

e E CV xV is atotal edge relationi.e. all vertices have at least one outgoing edge,

e NV — Nis a priority function that assigns priorities to vertices.

Henceforth, we assume that denotes an arbitrary player; thatise {{J,$}. We write O for O’s
opponent:& = 0 andd = <. Parity games are depicted as graphs; diamond-shaped rejtesent
vertices owned by playe®, box-shaped nodes represent vertices owned by pl@yand the priority
assigned to a vertex is written inside the node, see the gapieted in Figuréll.

Figure 1: A simple parity game with 4 different priorities,which 4 vertices are owned by player odd
and 2 vertices are owned by player even.

Throughout this section, assume tiat (V,E, &, (Vo,V0)) is an arbitrary parity game. We write
v — wiff (vyw) € E, and we writev* to denote the set of successors/gte. {w eV | v— w}. For a set
of verticesW C V, we will denote the minimal priority occurring W with min 2 (W); by V; we denote
the set of vertices with priority; likewise forV<,. For a setA CV, we defineGN A as the structure
(AJEN(AXA), Z|a, (Vo NAVONA)); the structurés\ Ais defined a&sN (V \ A). The structure&SNA
andG)\ A are again parity games if their edge relations are total.

Plays and Strategies A sequence of vertices, ..., Vy is apathif v, — vpeq for all 1 < m< n. Infinite
paths are defined in a similar manner. We writéo denote thé™" vertex in a pathr.

A game starts by placing a token on some vertexXV. Players® andJ move the token indefinitely
according to a single simple rule: if the token is on someexethat belongs to playep, that player
moves the token to an adjacent vertex. An infinite sequengertites created this way is calleghay.

M. Gazda and T.A.C. Willemse 161

Theparity of theleastpriority that occurs infinitely often on a play defines thimnerof the play: player
< wins if, and only if this priority is even.

A strategyfor playerO is a partial functiono:V*™ — V satisfying that whenever it is defined for a
finite pathu; - - -u, € VT, bothu, € V5 ando(u; - - uy) € uf. We denote the set of strategies of player
by S&. Aninfinite playu; up uz--- is consistentwith a strategyo if for all prefixesuy - - - u, of the play
for whicho(u; ---up) is definedun.1 = o(uz ---uy). The set of all plays, consistent with some strategy
o, and starting irv is denoted1(o,v). Some strategy is winning for playerO from vertexv iff all
plays consistent witlo are won by player. Vertexv is won by playerD whenever she has a winning
strategy for all plays starting in vertex Parity games ardetermined[3], meaning that every vertex
is won by one of the players; they are evaositionally determinedmeaning that if> wins a vertex
then she has a winningositional strategy a strategy that determines where to move the token next
based solely on the vertex on which the token currently essi&uch strategies can be represented by a
function oV, — V, and the set of all such strategies for playeis denotedS. Solvinga parity game
G essentially means computing the partitioiing (G), Wing(G)) of V into vertices won by playet
and player], respectively.

Example 1 In the parity game depicted in Figuré 1, verticgsv, andvsz are won by playe> while
verticesvy, vs andvg are won by player]. A winning positional strategy for playe is to play fromv,
to vi and fromvs to vo. A winning strategy fof is to move fromvg to v and fromvs to ve.

Attractors and Dominions An O-attractor into a setU C V contains all those vertices from which
playerO can force any play ttJ; it is formally defined as follows.

Definition 2 The O-attractor into a selU C V, denotedD-Attr(U), is the least seA C V satisfying:
1.UCA

2. (a) fweVyandw*NA#0, thenwe A
(b) if we V5 andw® C A, thenw € A

Observe that the complement of an attractor set of any sobsgtarity game induces a parity game,
G\ O-Attr(U) for anyU andoO is a well-defined parity game. Whenever we refer tatiractor strategy
associated wittb-Attr(U), we mean the positional strategy that playecan employ to force play t0;
such a strategy can be computedifiV| + |[E|) using a straightforward fixpoint iteration.

A set of verticedJ is anO-dominion whenever there is a strategyor playerO such that every play
starting inU and conforming tar is winning for O and stays withitd . A game is garadisefor player
O if the entire game is atw-dominion.

Example 2 Reconsider the parity game of Figlile 1. We havéttr(v2) = {vo,vs} and-Attr(v,) =
{V4,Vs5,Ve}. The winning region{vy,V,,v3} is an G-dominion, but the subseivp, vs} is not; the set
{v4,Vs} is an[J-dominion.

3 Jurdzifski’'s Small Progress Measures Algorithm

The SPM algorithm works by computingraeasureassociated with each vertex. This measure is such
that it decreases along the play with each “bad” odd pri@itgountered, and only increases upon reach-
ing a beneficial even priority. In what follows, we recapetiel the essentials for defining and studying
the SPM algorithm; our presentation is—as in the originglgndy Jurdzihski—from the perspective of
player<.

162 Improvement in Small Progress Measures

LetG = (V,E, Z,(Vo,V0)) be a parity game. Let be a positive number and late N9 be ad-tuple
of natural numbers. We number its components from@-tdL, i.e. o = (ap, d1,...,04-1), and let< on
suchd-tuples be given by the lexicographic ordering. We defineravelé ordering<; on k-tuples and
I-tuples of natural numbers as follows:

(Qo,01,...,0k) <i (Bo,Bu,---,B) iff (a0, 01,...,ai) < (Bo,P1,---,B)

where, ifi > k ori > |, the tuples are suffixed with Os. Analogously, we wite=; 8 to denote thatr
andp are identical up-to and including positionThe derived ordering provides enough information to
reason about the interesting bits of plays: when encoungteripriorityi in a play, we are only interested
in how often we can or must visit vertices of a more signifiq@et smaller) priority thari, whereas we
no longer care about the less significant priorities that madl £ncounter; a more precise interpretation
of the information that will be encoded will be given in Seciid.

Now, assume from hereon that- 1 is the largest priority occurring i6; i.e., d is one larger than
the largest priority irG. Fori € N, letn, = |V;|. DefineM® C N9U {T}, as the largest set containifig
(T ¢ N9 and only thosa-tuples with 0 orevenpositions and natural numbessn; on odd positionsi.

The lexicographical ordering and the family of orderings; ond-tuples is extended to an ordering
onM® by settinga < T andT = T. Letp:V — M® and suppos® < v*. ThenProg(p,V,w) is the least
me M®, such that

e M2> 5, P(W) if Z(v)is even,
e M> 5 P(W),orm=p(w) =T if Z(v)is odd.
Definition 3 Functionp is agame parity progress measufdor all v e V:
e if vE Vo, then for somev € v*, p(V) > »(y) Prog(p,v,w)
e if ve Vg, then for allw € v*, p(v) > »(y) Prog(p,v,w)

The following proposition is due to Jurdzihski [11]; it shethat the least game parity progress measure
characterises the winning regions of a parity game.

Proposition 1 If p is theleastgame parity progress measure &y then for allv e V: p(v) # T iff
v e Wing (G).

The least game parity progress measure can be describegllaashfixpoint of a monotone transformer
on the complete lattice we define next. lpep’:V — M and defingo C p’ asp(v) < p/(v) forallve V.
We writep C p’ if p C p’ andp # p’. Then the set of all functiong — M with C is a complete lattice.
The monotone transformer defined on this set is given asafsilo

pvi— max{p(v),min{Prog(p,v,w) |[v—w}}] ifveVs
plv— max{p(v),max{Prog(p,v,w) | v—w}}] if veVg

Lift(p,v) = {

As a consequence of Tarski's fixpoint theorem, we know thst lisgpoint of the above monotone trans-
former exists and can be computed using a standard fixpenatibn scheme. This leads to the original
SPM algorithm, see Algorithin 1. Upon termination of theatan within the SPM algorithm, the com-
puted game parity progress measpres used to compute the sétéin, (G) andWing(G) of vertices
won by player® andd, respectively.

Theorem 1 Algorithm[d solves a parity game @(dm- (n/|d/2])!9/2)), see[[T1].

M. Gazda and T.A.C. Willemse 163

Algorithm 1 The original Small Progress Measures Algorithm
1. function SPM@G)
2: Input G = (V,E, £, (Vo,V0))

3 Output Winning partition(Wine (G), Wing(G))

4 p+ AveV. (0,...,0)

5: while p C Lift(p,v) for somev eV do

6: p < Lift(p,v) for somev € V such thatp C Lift(p,V)
7 end while

8: return ({veV |p(v) £ TH{veV |pv)=T})

9: end function

The runtime complexity of SPM is obtained by considering ri@re optimal runtime of solving a
gameG, or G's ‘dual’; the latter is obtained by shifting all prioritidsy one and swapping ownership of
all vertices (alternatively, a ‘dual’ algorithm can be usedmputing with a domaii™). The runtime
complexity for computing winning strategies for both plesyasing the SPM algorithm is worse than the
runtime complexity of solving the game. A winning strategy:V, — V for player< can be extracted
from p by settingoe (v) = w for v € Vo, N"Wing (G) andw € v* such thap(w) < p(w) forallw e v*. A
winning strategy for playel] cannot be extracted from a posteriori so, as also observed in |15], the
runtime complexity of computing a winning strategy cannetitmproved by considering the dual of a
game (contrary to what is stated in [11]).

Theorem 2 [See alsol[15]] Algorithnill can compute winning strategies Hoth players inO(dm-

(n/[d/2])1/21).

As an illustration of the above observations, consider dingilfy of games depicted in Figuré 2. The more
optimal runtime of0(dm- (n/|d/2])l%/2)) will be achieved by solving the games themselves (ublitg

and not their dual. As all games in the family afeparadises, we cannot extract a winning strategy for
playerd from the computed progress measure and the only option weibae solve the dual games
with the less favourable runtime @f(dm- (n/[d/2])9/2]). In fact, all instances of the family of games
depicted in Figur¢l2 are solved exponentially faster thair tthual, underlining the potential practical
implications of re-running the algorithm.

0 2 1 3 o o o 2N -2 2N-1 2N)

Figure 2: A parity game won by playé&t. Solving the game usiniy®, the firstT value is reached after
the first full pass of the cycle containing priority ®(N?) using a fair liting strategy), and it will then

propagate through the game. Solving the dual game, or Béingakes exponential time to lift the node
with priority 2N.

To facilitate the analysis of SPM, we will use the followirgrms and notions. The termeasure
refers to the intermediate values @fn the lifting process as well. Given a tuptec M, we say that
the positioni in mis saturated if (m); = |Vi|.

164 Improvement in Small Progress Measures

4 An operational interpretation of progress measures

While, from a technical perspective, SPM is a relatively @emalgorithm in the sense that it is concise
and its individual steps are elementary operations, idaokear and appealing explanation of the devices
used. It is therefore difficult to understand, and possibllgamce. Apart from the formal definition of
progress measures, little explanation of what is hidderinietine values in tuples is offered. Notable
exceptions are [13], which explains that farsolitaire games with only even simple cycles, one can use
the maximal degrees of ‘odd stretches’ (a concept we makasgrédelow) in order to define a parity
progress measure, and Schewe’s bigstep paper [15], wherghibwn that dominions of a bounded size
can be detected using measures with a restricted codomé#aclks construction for a specific parity
progress measure breaks down for arbitrary parity gameshendonstructed parity progress measure
is not related to the measure that is computed by the SPMitidggrnor to any of the intermediate
measures. In general, the high-level intuition is that drgdr progress measure values indicate more
capabilities of player], and a value at a given position in the tuple is somehow rtlai¢he number of
priorities that_] can enforce to visit.

In what follows, we present a precise and operational inéégtion of measures. Our interpretation
is similar in spirit to the one used ih [13], but applicableatbparity games, and uses a concept known
from the realm of strategy improvement algorithms — a vatuepfofile) of a play. Here, values are
defined in terms of maximal odd-dominated stretches ocuyin a prefix of a play. With this notion at
hand, we can consider an optimal valuation of vertices,dtie best lower bound on play values that
player< can enforce, or the worst upper bound thatan achievei,e. it is anequilibrium The optimal
valuations range over the same codomain as progress meaanidethe main result of this section states
that the least game parity progress measure is equal to timeabpaluation.

Let Mg, denote all tuples itNdU {T} such that for alme Mg, and even positionis< d, (m); =0;i.e.
compared tdVI®, we drop the requirement that values on odd positicare bounded byV;|. Elements
in Mg, are ordered in the same fashion as thos®lin. Given a playrm, a stretchis a subsequence
T&T,.1... Ty Of 7. For a priorityk, a k-dominated stretclis a stretch in which the minimal priority
among all vertices in the stretchks Thedegreeof ak-dominated stretch is the number of vertices with
priority k occurring in the stretch.

Definition 4 Let us denote all plays in the parity gameldy An &—value(or simply value) of a play is
a function8, : M — MS, defined as follows:

e if Tis winning forJ, thenB, (M) =T

e if 1Tis winning for ¢, then 8, (1) = m, wherem # T, and for every odd position (m); is the
degreeof the maximali-dominated stretch that is a prefix af

Observe that a play value is well-defined, as an infiril®@minated stretch for an oddmplies that a
game is won by, and its value isI" in such case.

Example 3 Suppose that the sequence of priorities correspondingédaiit playrtis 45345321347)*.
Then6(m) = (0,1,0,2,0,0,0,0).

The theorem below links the progress measure values torglagapabilities to enforce beneficial
plays or avoid harmful ones, where the benefit from a play issueed by a specially devised play
value, as it is done in strategy improvement algorithmss iffiers a more operational view on progress
measure values, which, combined with a more fine-grainelysinaf the mechanics of SPM allows us
to extract winning strategies for both players in the negtiea.

M. Gazda and T.A.C. Willemse 165

Theorem 3 If p is the least progress measure of a parity g&@nthen, for allv:
1. there is a strategy € S¢; such that for everyt € MN(o0n, V), B (1M) > p(V)
2. there is a strategy. € S¢ such that for everyr € M (0, V), 8o (1) < p(V)

A notable difference between strategy improvement algorit and SPM is that SPM does not work
with explicit strategies, and the intermediate measuraegto not represent any proper valuation in-
duced by strategies — only the final least progress measea® dsiill, these intermediate values give
an underapproximation of the capabilities of plajém terms of odd-dominated stretches that she can
enforce.

Note that a consequence of Theofdm 3 is that the least (ressptegt) play values that player(resp.
<) can enforce are equal, and coincide with the least gamiy paagress measu@computed by SPM.
Observe also that player can always achieve the strategy guaranteeing the optinealtigased play
value with a memoryless strategy, whereas playenay require to that end a strategy that depends on a
play’s history.

5 Strategy construction for player]

Computing winning strategies is typically part of a pragkisolution to a complex verification or a
controller synthesis problem. In such use cases, thegegitra are employed to construct witnesses and
counterexamples for the verification problems, or for cartsing control strategies for the controller [1].
As we explained in Sectidd 3, the SPM algorithm can easilyxdtengled to construct a winning strategy
for player<. The problem of deriving a winning strategy for playerin SPM (other than by running
the algorithm on the ‘dual’ game, or by using a ‘dual’ dom&if’) has, however, never been addressed.
Note that the problem of computing strategies is at leasae & solving a game. Indeed, even if we are
equipped with a valid winning partitiofWine (G), Wing(G)) for a gameG, then deriving the strategies
witnessing these partitions involves the same computatiomverhead as the one required to compute
(Wins (G),Wing(G)) in the first place.

Proposition 2 The problem of finding the winning partitiofWins (G), Wing(G)) of a given gamés

can be reduced in polynomial time to the problem of compuéinginning strategy for playep in a
given O-dominion.

Deriving a strategy for both players by using the SPM to campli® measures ani™ measures
consecutively, or even simultaneously, affects, as weadiraliscussed in Sectidd 3, SPM’s runtime.
Being able to computél strategies without resorting to the aforementioned metiweould also allow
us to potentially significantly improve efficiency on sucktances as given by Figure 2. It may be clear,
though, that extracting a winning strategy from the smailgpess measures algorithm for vertices with
measurel will require modifying the algorithm (storing additionahth, augmenting the lifting process).
For instance, simply following the vertex that caused theaig to top, fails, as the example below shows.

Example 4 Reconsider the game depicted in Figlite 1. Recall that esrti¢ vs andvs are won by
player, and in all possible lifting schemes, the first vertex whosasure becomes is vg. After that,
a possible sequence of liftings is that fipgivs) is set toT (due tovs), followed byp(vs) = T (due to
vs). If we set the strategy based on the vertex that caused tka gertex to be lifted to top, we obtain
0(Va) = Vs, Which is not winning forJ.

The key problem is that for vertices won by playér from some point onward, the lifting process
discards significant information. This is best seen in cdditing to T — a partial characterisation of

166 Improvement in Small Progress Measures

reachable odd priorities contained in a tuple (see also @mwiqus section) is ultimately replaced with a
mere indication that player can win.

5.1 A Bounded-Dominion

Consider a gam& on which a standard SPM algorithm with an arbitrary liftingipy has been applied.
Suppose that at some point a vertas the first one to be lifted td", and after lifting ofv the algorithm
is suspended, resulting in some temporary megsutest k be the priority ofv.

We will start with two straightforward observations. Thesfione is thak must be an odd number;
this is because a vertex with an even priority obtains, éifterg, a p-value equal to th@-value of one
of its successors, and therefore it cannot be the first véfted to T. Another immediate conclusion is
that at least one (or all, if € V) successor(s) of has (have) @-value saturated up to theth position,
i.e. itis of the formm = (0,|V1],0,|Vs|,...,0,|Vk|, * * x); were it not the case, then a non-top vaide
such tham' >, mwould exist, which would be inconsistent with the definitimfiProg.

J-dominion
D C UiskMi

J-dominion
D C Uik Vi

Figure 3: Snapshot of the SPM algorithm after the first vevtexlifted to top.

There are two more complex properties, which we can utilisenodify the SPM algorithm and
compute the winning strategy for player(see Figurél3).

1. Vertexv belongs to aml-dominionD within G such that the minimal priority i is k.

2. If ve Vg, then picking the successogay of v with the maximal currenp-value among® is a part
of a (positional) winning strategy far that stays within such a dominidd as described above.

The intuition concerning the above facts is as follows. ieg with a measure valua saturated up to
but possibly excluding a certain positiohave a neat interpretation of the measure value at position

Player can force the following outcome of a play:

1. priority i appears mtimes without any lower priority in between

2. the play will reach ar -labelled vertex via priorities not more significant than i

3. the play enters a cycle with an odd dominating priorityglar (less significant) than i.
Therefore, in the situation as described abavean force a play starting atto first go in one step to the
successotmax of v with a measure of the forrf0,|V4|,0, V3|, ..., 0, [Vk|,* * %), and then to play further
and either force a less significant odd-dominated cyclee&sand 3, since is the only T-labelled
vertex), or to visit vertices with prioritk [Vi| times without any lower priority in between. But in the

latter case, since has priorityk, we have in factVk| + 1 vertices with priorityk not “cancelled” by a
lower priority. Hence playet] has forced an odd-dominated cycle with the lowest (mostifstgnt)

M. Gazda and T.A.C. Willemse 167

priority k. Note that this does not imply we can simply construct a wigrstrategy foil by always
picking a successor with the maximal measure to furtherogsrthat can be visited along the play; such
a method may lead to an erroneous strategy, as illustrat&igbye4.

/_\© (0,2,0,0)
Vi V:
2 / V3

JE—— 2

C Vg

T mzah\\\
K@ (0,2,0,1)

Figure 4: A game, won entirely by playét, and demonstrating that a strategy defined by a greedy
choice of vertex with the maximal tuple does not work. Afiéiig the vertices in ordevy, Vs, Vo, Vs, V1,

we obtain the measure values as above. Playarould then choos&s, which leads to a losing play,
whereas the choice of the other succegsgy yields a winning play fofJ.

Propagating a top value only to vertices with less signifigaiorities is, however, safe. This can
be achieved efficiently by a slightly modified attractor thairks within a given context of verticed,
which we call aguardedattractor.

Definition 5 Let k be some priority antd, W some sets for which C W NVsy. ThenD-Attr\?vk(U) is
the least sef satisfying:

1. UCACWNVay

2. (a) ifuevVgandu*NA#0, thenue A
(b) ifue Ve andu*NW C A thenue A

If W=V, we drop the subscrip¥/ from the guarded attractor.

The theorem below forms the basis of our algorithm; it dbsithe relevant information about @h
dominion that can be extracted once the first vertex in theegartifted to top.

Theorem 4 Let G be a parity game on which an arbitrary lifting sequence isiagpsuch that at some
point a vertexv with #(v) = k is the first vertex whose measure value becomes top. pLle¢ the
temporary measure at that point. The following holds:

¢ if ve Vo, then for every successaiof v with a maximal measure amongthere is ariJ-dominion
Dy containing[J-Attr=K({v}) such that for alw € Dy, &2 (w) > k. Moreover,(] has a winning
strategy that is closed dby, and which is defined omasa(v) = u, and ond-Attr=K({v}) \ {v}
as the strategy attracting towands

e if ve Vs, then there is ahl-dominionD containingJ-Attr=X({v}) such that for alive D, 22(w) >
k. Moreover,J has a winning strategy that is closed o, and defined ofd-Attr=¥({v})\ {v}
as the strategy attracting towandsNote that in this case® C D.

5.2 The Extended SPM Algorithm

Theoreni ¥ captures the core idea behind our algorithm. tigees us with the means to locally resolve
(i.e. define a local strategy for) at least one verteX\lin(G), once a top value is found while lifting.
Moreover, it indicates in which part of the game the remairadehe [(J-dominion resides, implying that

168 Improvement in Small Progress Measures

Algorithm 2 Modified SPM with strategy derivation for player Odd
1. function SOLVE(G)

2: Input G = (V,E,L@,(VQ,VD))
3: Output Winning partition and strategie§ Wine (G), a’), (Wing(G), 0))
4: initialise o to an empty assignment
5: p+—AweV. (0,...,0)
6: SPM-WITHIN(V)
7 compute strategy’ for player Even by picking min. successor w.pt.
8: return ({veV |p(v)£T}o'),{veV|p(v)=T,0))
9:
10: procedure SPM-WITHIN(W)
11: while (W # 0) do
12: while p C Lift(p,w) for somew € W and for allw € W:p(w) # T do
13: p « Lift(p,w) for w € W such thafo C Lift(p,w)
14: end while
15: if for allwe W: p(w) # T break end if
16: Vv < the (unique) vertex iV such thap(v) = T
17: k< Z(v)
18: o(v) < uwhereu € v* "W for which p(U') < p(u) for all u € v* NW
19: RES « C-Attre ({v})
20: for all we RES\ {v} do
21 p(w)« T
22: if w e Vg then assigno (w) the strategyattracting to vend if
23: end for
24: DOM <« RES
25: IRR +— O-Attrw({we W | Z(w) < k})
26: REM < W\ (RESUIRR)
27 SPM-WITHIN(REM)
28: DOM «+~ DOMU{w e REM | p(w) =T}
29: A+ O-Attry (DOM)
30: for all we A\ DOM do
3L p(w)« T
32 if w e Vg then assigno (w) to be the strateggttractingto DOM
33: end if
34: end for
35: W<+ W\A
36: end while

37 end procedure
38: end function

one can temporarily restrict the lifting to that area urttg tdominion is fully resolved. We will give a
description of our solution (Algorithrnl 2), and informallygaie the correctness of our approach. For a
(intricate and rather involved) formal proof, we refer[t.[9

The algorithm proceeds as follows. First, a standard SPMrisuntil the first vertex reaches top [l.
12414 in Alg.[2]. Whenevev is the first vertex lifted to top, then the issue of the winngtigategy for

M. Gazda and T.A.C. Willemse 169

v can be resolved immediately [[_]18], as well as for verticethie guarded attractor of(if there are
any). We will denote this set of ‘resolved’ vertices wRIES. Moreover, we can restrict our search for
the remainder of th&l-dominionD only to vertices with priorities not more significant thinin fact
only those from which playe® cannot attract a play to visit a priority more significantrifka Hence we
can remove from the current computation context théRiet= O-Attr({w e W | 2(w) < k}), vertices
that may be considered at the moment irrelevant JI[26-26].

After discarding the resolved and currently irrelevantiees, the algorithm proceeds in the remain-
ing set of vertices that constitutes a proper subgame (iihout dead ends) induced by the &#M.
After the subroutine returns [[._R7], all vertices labelleih top are won by playel] in the subgame
GNREM. In other words, those vertices are wonByrovided that the play does not leaREM. Since
the only way for player> to escape fronREM is to visit RES, where every vertex is won by player
], the top-labelled vertices frolREM are in fact won by in the context of the larger gan@NW.
Therefore the sdbOM computed in lin€_28 constitutes airdominion within the gam&nNW, in which
we have moreover fully defined a winning strategyor player(. Finally, every vertex frony \ DOM
that can be attracted by playerto the dominionDOM is certainly won by], and for those vertices we
assign the standard strategy attractin @M. TheJ-dominionA is then removed, and the computation
continues in the remaining subgame.

The algorithm may at first sight appear to deviate much froenstandard SPM algorithm. However,
the additional overlay, apart from defining the strategynasmore than a special lifting policy that
temporarily restricts the lifting to parts where @ndominion resides.

Every attractor computation tak€$n-+ m) time, and whenever it occurs, at least one new vertex is
‘resolved’. Hence the total extra time introduced by theaatbr computations is bounded ®yn(n+m)).
As with the standard SPM, the lifting operations dominatriimning time, and their total number for
every vertex is bounded by the sizeMf”.

Theorem 5 For a gameG with n vertices,m edges, andl priorities, SOLVE solvesG and computes
winning strategies for playe® and in worst-caseD(dm- (n/[d/2])l9/2]).

6 lllustrating the new algorithm

We illustrate the various aspects of Algorittith 2 on the gabngepicted in Figur&l5, with two (over-
lapping) subgame&; and G,. Note that the entire game is amparadise: every vertex eventually is
assigned measure by Algorithm[2 (and Algorithni L, for that matter). Supposewse a lifting strategy
prioritising v», v3, 7 andvg; then vertexvs's measure is the first to readh and the successor with maxi-
mal measure ig;. Therefore[J's strategy is to move frona to v;z. The seRES, computed next consists
of verticesvz andvy; the strategy fow, is set tovs and its measure is set 10. The $-attractor into those
vertices with priorities> 3, i.e., verticesv; andvy, is exactly those vertices, so, next, the algorithm zooms
in on solving the subgam®;.

Suppose that within the latter subgame, we prioritise ftiadi of vertexv; andvg; then vertexv;'s
measure is set td first, andv;'s successor with the largest measuregistherefored's strategy is to
move fromvy to vg. At this point in the algorithmRES is assigned the set of vertices andvg, and
the measure ofg is set toT. Note that in this case, in this subgame, the winning styafeg[] on
v7 is to remain within the seRES. Since all remaining vertices have more signficant presitihan
v7, or are forced by® to move there, the next recursion is run on an empty subgaché@ranediately
returns without changing the measures. Upon return[tagtractor to allJ-won vertices (within the

170 Improvement in Small Progress Measures

Vi Vo V3

A

4 3 1

[Ge
I [

ek L 4

Gy i 8 v7 6 VS

Figure 5: An example gam® with two (overlapping) subgamés; andGs.

subgames’;, so these are only the verticesandvg) is computed, and the algorithm continues solving
the remaining subgaméd. the game restricted to vertices, vs andvg), concluding that no vertex in
this entire game will be assigned meastire

At this point, the algorithm returns to the global game agaid computes thEl-attractor to the
vertices won by playel] at that stageif. verticesv,,vs,v7 andvg), adding vertices; andvg, setting
their measure td and setting1'’s strategy forvg to move tov;.

As a final step, the algorithm next homes in on the subg@megain within the larger game. The
only vertex assigned measufein the above subgame is vertex; at this pointRES is assigned all
vertices inGy, the measure ofs andvg is set toT and theld strategy for vertexss is set tovy. This
effectively solves the entire game.

7 Conclusions and Future Work

In this paper, we studied the classical Small Progress Measugorithm for solving parity games. The
two key contributions of our work are as follows:

1. We have proposed a more operational interpretation ajrpss measures by characterising the
types of plays that players can enforce.

2. We have provided a modification of the SPM algorithm thiated to compute the winning strate-
gies for both players in one pass, thus improving the waasecunning time of strategy derivation.

The second enhancement has been made possible due to gythstady of the contents of progress
measures, and their underapproximations in the interrteedtages of the algorithm (building on the
proposed operational interpretation).

As for the future work, we would like to perform an analysisS’FM’s behaviour on special classes
of games, along the same lines as we have done in case of thisivecalgorithm|[[3]. More specifically,
we would like to identify the games for which SPM runs in padymial time, and study enhancements
that allow to solve more types of games efficiently. It woulkbabe interesting to see whether the ideas
behind our modification of the SPM algorithm carry over to #hgorithm for small energy progress
measures |2] for mean payoff games.

M. Gazda and T.A.C. Willemse 171

References

[1] A. Arnold, A. Vincent & . Walukiewicz (2003)Games for synthesis of controllers with partial observatio
TCS303(1), pp. 7-34, d0i:10.1016/S0304-3975(02)00442-5.

[2] L. Brim, J. Chaloupka, L. Doyen, R. Gentilini & J.-F. Rask(2011): Faster algorithms for mean-payoff
games Formal Methods in System Desi§B(2), pp. 97-118, d6i:10.1007/s10703-010-0105-x.

[3] E.A. Emerson & C.S. Jutla (1991)free automata, Mu-Calculus and determinady: FOCS’9] IEEE
Computer Society, Washington, DC, USA, pp. 368—377| dal109/SFCS.1991.185392.

[4] E.A. Emerson, C.S. Jutla & A.P. Sistla (199&)n Model-Checking for Fragments pfCalculus In: CAV,
Lecture Notes in Computer Scien@®7, Springer, pp. 385-396, doi:10.1007/3-540-56922-7

[5] J. Fearnley (2010)Non-oblivious Strategy Improvemeth: LPAR-16 Lecture Notes in Computer Science
6355, Springer, pp. 212-230, doi:10.1007/978-3-642-17613.

[6] O. Friedmann (2011)Recursive algorithm for parity games requires exponetitiaé RAIRO — Theor. Inf.
and Applic.45(4), pp. 449-457, doi:10.1051/ita/2011124.

[7]1 O. Friedmann & M. Lange (2009Bolving Parity Games in Practicén: ATVA, Lecture Notes in Computer
Scienceés799, Springer, pp. 182—-196, doi:10.1007/978-3-642-047 65.

[8] M. Gazda & T.A.C. Willemse (2013)Zielonka’s Recursive Algorithm: dull, weak and solitai@nges and
tighter boundsIn: GandALF, EPTCS119, pp. 7-20, d0i:10.4204/EPTCS.119.4.

[9] M. Gazda & T.A.C. Willemse (2014): Strategy Derivation for Small Progress Measures
http://arxiv.org/abs/1407.2149.

[10] E. Gradel, W. Thomas & T. Wilke, editors (2008utomata, Logics, and Infinite Games: A Guide to Current
ResearchLecture Notes in Computer Scien2g00, Springer.

[11] M. Jurdzifski (2000)Small Progress Measures for Solving Parity Gamies STACS’0Q Lecture Notes in
Computer Scienck770, Springer, pp. 290-301, do0i:10.1007/3-540-46524-3

[12] M. Jurdzihski, M. Paterson & U. Zwick (2006& Deterministic Subexponential Algorithm for Solving Bari
Games In: SODA'06, ACM/SIAM, pp. 117-123, dci:10.1145/1109557.1109571.

[13] H. Klauck (2001): Algorithms for Parity Games In: Automata, Logics, and Infinite Games: A
Guide to Current Researchhapter 7,Lecture Notes in Computer Scien2g00, Springer, pp. 107-129,
doi{10.1007/3-540-36387-4.

[14] R. McNaughton (1993): Infinite games played on finite graphs APAL 65(2), pp. 149-184,
doi{10.1016/0168-0072(93)90036-D.

[15] S. Schewe (2007B0lving Parity Games in Big Stepl: FSTTCS’07 Lecture Notes in Computer Science
4855, Springer, pp. 449-460, doi:10.1007/978-3-540-073)37.

[16] S. Schewe (2008)An Optimal Strategy Improvement Algorithm for Solving Baand Payoff Gamesin:
CSL, Lecture Notes in Computer Sciens213, Springer, pp. 369-384, d0i:10.1007/978-3-540-87&37.

[17] S. Schewe, A. Trivedi & T. Varghese (201ymmetric Strategy Improvemeht: ICALP, Lecture Notes in
Computer Scienc@135, Springer, pp. 388—400, doi:10.1007/978-3-662-87%81.

[18] P. Stevens & C. Stirling (1998pPractical Model Checking Using Gamek: TACAS'98, Lecture Notes in
Computer Scienc&384, Springer, pp. 85-101, doi:10.1007/BFb0054166.

[19] J. Voge & M. Jurdzihski (2000)A Discrete Strategy Improvement Algorithm for Solving a@ames In:
CAV, Lecture Notes in Computer Scient@55, Springer, pp. 202—-215, doi:10.1007/1072218.7

[20] W. Zielonka (1998)infinite games on finitely coloured graphs with applicatibmautomata on infinite trees
TCS200(1-2), pp. 135 —183, dpi:10.1016/S0304-3975(98)00009

http://dx.doi.org/10.1016/S0304-3975(02)00442-5
http://dx.doi.org/10.1007/s10703-010-0105-x
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1007/3-540-56922-7_32
http://dx.doi.org/10.1007/978-3-642-17511-4_13
http://dx.doi.org/10.1051/ita/2011124
http://dx.doi.org/10.1007/978-3-642-04761-9_15
http://dx.doi.org/10.4204/EPTCS.119.4
http://arxiv.org/abs/1407.2149
http://dx.doi.org/10.1007/3-540-46541-3_24
http://dx.doi.org/10.1145/1109557.1109571
http://dx.doi.org/10.1007/3-540-36387-4_7
http://dx.doi.org/10.1016/0168-0072(93)90036-D
http://dx.doi.org/10.1007/978-3-540-77050-3_37
http://dx.doi.org/10.1007/978-3-540-87531-4_27
http://dx.doi.org/10.1007/978-3-662-47666-6_31
http://dx.doi.org/10.1007/BFb0054166
http://dx.doi.org/10.1007/10722167_18
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

	1 Introduction
	2 Parity Games
	3 Jurdzinski's Small Progress Measures Algorithm
	4 An operational interpretation of progress measures
	5 Strategy construction for player
	5.1 A Bounded -Dominion
	5.2 The Extended SPM Algorithm

	6 Illustrating the new algorithm
	7 Conclusions and Future Work

