Robust, Expressive, and Quantitative Linear Temporal Logics: Pick any Two for Free

Daniel Neider
(Max Planck Institute for Software Systems)
Alexander Weinert
(German Aerospace Center (DLR), Simulation and Software Technology)
Martin Zimmermann
(University of Liverpool)

Linear Temporal Logic (LTL) is the standard specification language for reactive systems and is successfully applied in industrial settings. However, many shortcomings of LTL have been identified in the literature, among them the limited expressiveness, the lack of quantitative features, and the inability to express robustness. There is work on overcoming these shortcomings, but each of these is typically addressed in isolation. This is insufficient for applications where all shortcomings manifest themselves simultaneously.

Here, we tackle this issue by introducing logics that address more than one shortcoming. To this end, we combine the logics Linear Dynamic Logic, Prompt-LTL, and robust LTL, each addressing one aspect, to new logics. For all combinations of two aspects, the resulting logic has the same desirable algorithmic properties as plain LTL. In particular, the highly efficient algorithmic backends that have been developed for LTL are also applicable to these new logics. Finally, we discuss how to address all three aspects simultaneously.

In Jérôme Leroux and Jean-Francois Raskin: Proceedings Tenth International Symposium on Games, Automata, Logics, and Formal Verification (GandALF 2019), Bordeaux, France, 2-3rd September 2019, Electronic Proceedings in Theoretical Computer Science 305, pp. 1–16.
Published: 18th September 2019.

ArXived at: https://dx.doi.org/10.4204/EPTCS.305.1 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org