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Languages based on the theory of timed automata are a well established approach for modelling and
analysing real-time systems, with many applications both in industrial and academic context. Model
checking for timed automata has been studied extensively during the last two decades; however, even
now industrial-grade model checkers are available only for few timed automata dialects (in particular
Uppaal timed automata), exhibit limited scalability for systems with large discrete state space, or
cannot handle parametrised systems. We explore the use of Horn constraints and off-the-shelf model
checkers for analysis of networks of timed automata. The resulting analysis method is fully symbolic
and applicable to systems with large or infinite discrete state space, and can be extended to include
various language features, for instance Uppaal-style communication/broadcast channels and BIP-
style interactions, and systems with infinite parallelism. Experiments demonstrate the feasibility of
the method.

1 Introduction

We consider the analysis of systems with real-time aspects, a problem that is commonly addressed with
the help of timed automata models. By modelling systems as timed automata, a variety of relevant
properties can be analysed, including schedulability, worst-case execution time of concurrent systems,
interference, as well as functional properties. Tools and model checking techniques for timed automata
have been studied extensively during the last two decades, one prime example being the Uppaal tool [20],
which uses difference-bound matrices (DBMs) for the efficient representation of time, and explicit rep-
resentation of data (discrete state). Despite many advances, scalability of tools for analysing timed
automata remains a concern, in particular for models of industrial size.

We investigate the use of fully-symbolic model checking for the analysis of timed systems, leveraging
counterexample-guided abstraction refinement (CEGAR) [11, 15] to represent state space, with Craig
interpolation [7] for the refinement step, as well as the recently proposed framework of Horn clauses [21,
13] as intermediate system representation. Symbolic methods enable us to handle timed systems that
are beyond the capabilities of DBM-based model checkers, due to the size of the discrete state space
(which in realistic models can be large, or even infinite). The flexibility of Horn constraints makes it
possible to elegantly encode language features of timed systems that are commonly considered difficult;
in particular, systems with an unbounded (or infinite) number of processes can be handled in much the
same way as bounded systems. At the same time, Horn constraints enable the application of various
general-purpose model checkers, for instance Z3 [16], Q’ARMC [12], or Eldarica [17], and streamline
the engineering of analysis tools.

Contributions of the paper are: (i) a uniform Horn clause encoding for systems with (finite or infi-
nite) concurrency, real-time constraints, as well as inter-process communication using shared memory,
synchronous message passing, and synchronisation using barriers; the encoding can be applied, among
others, to Uppaal timed automata [20] and BIP [4]; (ii) an experimental evaluation using a set of (well-
known) parametric timed automata models.
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1.1 Related Work

We focus on work most closely related to ours; for a general overview of timed automata analysis, the
reader is referred to surveys like [25].

Our work is inspired by recent results on the use of Horn clauses for concurrent system analysis, in
particular Owicki-Gries and Rely-Guarantee approaches in [12]. We use Owicki-Gries-style invariants
in our work, but generalise the way how invariants can relate different processes of a system (using in-
variant schemata), and include systems with infinitely many processes and time. For parametric systems,
we generate invariants quantifying over all processes in a system; the way such invariants are derived
has similarities to [5], where quantified invariants are inferred in the context of datatypes like arrays.
Encoding of timed automata as Horn clauses has also been proposed in [16, 8], but only restricted to
derivation of monolithic system invariants (non-compositional reasoning). Similarly, there is work on
non-compositional/parametric analysis of timed systems using logic programming (CLP) [14, 18, 3, 9].

k-Indexed invariants were introduced in [24], as an instance of the general concept of thread-
modular model checking [10], using self-reflection to automatically build environments of threads. We
carry over the approach to Horn clauses, and investigate its use for extensions of timed systems.

SMT-based full model checking (k-induction and IC3) for timed automata has recently been investi-
gated in [19], using the region abstraction for discretisation. In comparison, our work relies on CEGAR
to handle time and data alike, and achieves compositional and parametric analysis via Horn clauses.

The approach of backward reachability has been used for verification of various classes of paramet-
ric systems, including timed systems [2, 1, 6], establishing decision procedures with the help of suitable
syntactic restrictions. A detailed comparison between backward reachability for timed systems and our
approach is beyond the scope of this paper, and is planned as future work. Since our approach naturally
includes abstraction through CEGAR, we expect better scalability for systems with complex process-
local behaviour (e.g., if individual processes are implemented as software programs). On the other hand,
backward reachability gives rise to decision procedures for important classes of parametric systems; it is
unclear whether such results can be carried over to our setting.

2 Motivating Examples

2.1 Railway Control System

Fig. 1 depicts a train controller system taken from [26], consisting of a number of trains travelling towards
a critical point that can be passed by only one train at a time, and a controller responsible for preventing
collisions. Compared to [26], the model was simplified by removing the queue to store incoming requests
from the trains; since we only focus on safety, not fairness, this queue becomes irrelevant. The controller
randomly releases trains without considering any specific order.

The trains communicate with the controller using binary communication channels. When a train
approaches the critical point it informs the controller via the channel appr. It then waits for 20 time units;
if the controller does not stop the train using stop, it enters its crossing state q2. As a safety property
of the system we require that at any time only one train can be in q2; using Uppaal, the authors of [26]
could successfully prove safety for up to 6 trains. In our setting, we consider the model with infinitely
many instances of the train automaton; this subsumes the parametric problem of showing safety for an
arbitrary (finite) number N of trains. We show safety of the infinite model (automatically) by computing
a quantified inductive invariant of the form ∀id1, id2, id3. I(ctrl, train(id1), train(id2), train(id3)), where
ctrl is the state of the controller, and train(id) the state of a specific train id; in other words, the invariant
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Figure 1: Railway Control System [26]. (a) Controller, (b) Train.
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Figure 2: Temperature Control System [4]

expresses a property that holds for any triplet of trains at any time. Note that invariants of this kind can
express that at most two trains are in q3.

2.2 RT-BIP Example

Figure 2 shows a temperature control system modeled in the component coordination language BIP [4].
The Controller component is responsible for keeping the value of θ between the values 450 and 900.
Whenever the value of θ reaches the upper bound of 900 the Controller sends a cooling command to
the Rod 1 and Rod 2 components using its cool port. In the lower bound of 450 the Controller resets
the Rods. The Rod components can accept a cool command again only if 3600 time units have elapsed.
Compared to [4], we use the RT-BIP dialect and model both physical time t1, t2 and temperature θ using
clocks. Note that in this model all the communications are in the form of Rendezvous so the priority layer
of the BIP glue is essentially empty. The required safety property of the system is to ensure deadlock
freedom. Deadlock happens when the value of θ reaches 900 but there was not sufficient time (3600
time units) for the rods to be engaged again.

BIP semantics requires that all processes run to an interaction point, before interaction takes place.
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We model this using a basic form of synchronization barrier (Section 7.3), together with a global vari-
able iact to choose between interactions. Among a set of parallel processes that share a barrier, whenever
a process reaches the barrier it stops until all the other processes reach the barrier. Verification shows
that the model has a deadlock; the heating period of the controller is faster than the required delay time
of the rods.

3 Preliminaries

Constraint languages. Throughout this paper, we assume that a first-order vocabulary of interpreted
symbols has been fixed, consisting of a set Σ f of fixed-arity function symbols, and a set Σp of fixed-arity
predicate symbols. Interpretation of Σ f and Σp is determined by a fixed structure (U, I), consisting of a
non-empty universe U , and a mapping I that assigns to each function in Σ f a set-theoretic function over
U , and to each predicate in Σp a set-theoretic relation over U . As a convention, we assume the presence
of an equation symbol “=” in Σp, with the usual interpretation. Given a set X of variables, a constraint
language is a set Constr of first-order formulae over Σ f ,Σp,X . For example, the language of quantifier-
free Presburger arithmetic (mainly used in this paper) has Σ f = {+,−,0,1,2, . . .} and Σp = {=,≤, |},
with the usual semantics. We write dist(x1, . . . ,xn) ≡

(
∀i, j ∈ {1, . . . ,n}. (i = j∨ xi 6= x j)

)
to state that

the values x1, . . . ,xn are pairwise distinct.

Horn Clauses. We consider a set R of uninterpreted fixed-arity relation symbols. A Horn clause is a
formula H←C∧B1∧·· ·∧Bn where

• C is a constraint over Σ f ,Σp,X ;

• each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order terms over Σ f ,X ;

• H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms, or false.

H is called the head of the clause, C∧B1∧ ·· ·∧Bn the body. In case C = true, we usually leave out
C and just write H← B1∧·· ·∧Bn. First-order variables in a clause are implicitly universally quantified;
relation symbols represent set-theoretic relations over the universe U of a structure (U, I) ∈ S. Notions
like (un)satisfiability and entailment generalise to formulae with relation symbols.

Definition 1 (Solvability). Let HC be a set of Horn clauses over relation symbols R. HC is called
(semantically) solvable (in the structure (U, I)) if there is an interpretation of the relation symbols R as
set-theoretic relations such that the universal closure Cl∀(h) of every clause h ∈ HC holds in (U, I); in
other words, if the structure (U, I) can be extended to a model of the clauses HC.

We can practically check solvability of sets of Horn clauses by means of predicate abstraction [12,
23], using tools like Z3 [16], Q’ARMC [12], or Eldarica [17].

4 Basic Encoding of Concurrent Systems

4.1 Semantics of Concurrent Systems

We work in the context of a simple, but expressive system model with finitely or infinitely many processes
executing concurrently in interleaving fashion; in subsequent sections, further features like communica-
tion will be added. Each process has its own local state (taken from a possibly infinite state space), and
in addition the system as a whole also has a (possibly infinite) global state that can be accessed by all
processes. We use the following notation:
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• G is a non-empty set representing the global state space.

• P is a non-empty index set representing processes in the system.

• The non-empty set Lp represents the local state space of a process p ∈ P.

• Initp ⊆ G×Lp is the set of initial states of a process p ∈ P.

• (g, l)
p→ (g′, l′) is the transition relation of a process p ∈ P, with global states g,g′ ∈ G and local

states l, l′ ∈ Lp.

Given a set of processes defined in this manner, we can derive a system by means of parallel composition:

• S = G×∏p∈P Lp is the system state space. Given a system state s = (g, l̄) ∈ S, we write l̄[p] ∈ Lp

for the local state belonging to process p ∈ P.

• S0 = {(g, l̄) | ∀p ∈ P. (g, l̄[p]) ∈ Initp} ⊆ S is the set of initial system states.

• The transition relation of the system as a whole is defined by:

p ∈ P (g, l̄[p])
p→ (g′, l′)

(g, l̄)→ (g′, l̄[p/l′])

We write l̄[p/l′] ∈∏p∈P Lp for the state vector obtained by updating the component belonging to
process p ∈ P to l′ ∈ Lp.

Safety. We are interested in checking safety properties of systems as defined above. We define (un)safety
in the style of coverability, by specifying a vector (〈p1,E1〉, . . . ,〈pm,Em〉) of process-state-pairs, where
the pi ∈ P are pairwise distinct, and Ei ⊆ G×Lpi for each i ∈ {1, . . . ,m}. System error states are:

Err =
{
(g, l̄) ∈ S | ∀i. (g, l̄[pi]) ∈ Ei

}
Intuitively, a system state is erroneous if it contains m (pairwise distinct) processes whose state is in
E1, . . . ,Em, respectively. Error properties like occurrence of local runtime exceptions or violation of
mutual exclusion can be expressed using this concept of error; for instance, the property that the pro-
cesses p1, p2 cannot reside in some state (g, l) together is captured by (〈p1,{(g, l)}〉,〈p2,{(g, l)}〉). A
system is safe if there is no sequence s0→ s1→ . . .→ sn of transitions such that s0 ∈ S0 and sn ∈ Err.

4.2 Encoding Safety of Finite Systems

To check that a system is safe it is sufficient to find an inductive invariant, which is a set Inv⊆ S of states
with the properties (i) Initiation: S0 ⊆ Inv; (ii) Consecution: for all s→ t with s ∈ Inv, also t ∈ Inv; and
(iii) Safety: Inv∩Err = /0.

The following sections define methods to derive inductive invariants with the help of Horn con-
straints. We first concentrate on the case of a finite set P = {1,2, . . . ,n} of processes, and show how an
encoding in the spirit of Owicki-Gries [22] can be done with the help of Horn constraints. In comparison
to earlier work [12], inductive invariants can be defined to cover individual processes, as well as sets
of processes, in order to handle required relational information (inspired by the concept of k-indexed
invariants [24]). We define this concept formally with the help of invariant schemata.

Recall that the component-wise order < on the set Nn is a well-founded partial order. An antichain
is a set A ⊆ Nn whose elements are pairwise <-incomparable; as a consequence of Dickson’s lemma,
antichains over Nn are finite. An invariant schema for the processes P = {1,2, . . . ,n} is an antichain
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{
Rā(g, l1, . . . , lk) ← Initi1(g, l1)∧·· ·∧ Initik(g, lk)

}
ā∈A

(2){
Rā(g

′, l̄[p/l′][ā]) ←
(
(g, l̄[p])

p→ (g′, l′)
)
∧Rā(g, l̄[ā])∧Ctxt({p},g, l̄)

}
p=1,...,n

ā∈A

(3)

false ←
( ∧

j=1,...,m

(g, l̄[p j]) ∈ E j

)
∧Ctxt({p1, . . . , pm},g, l̄) (4)

Figure 3: Horn constraints encoding a finite system. In (2), the numbers i1, . . . , ik are the indexes of
non-zero entries in ā. Symbols in sans serif are implicitly universally quantified variables.

A ⊆ {0,1}n ⊆ Nn. Intuitively, every vector in A represents an invariant to be inferred; entries with
value 1 in the vector indicate processes included in the invariant, while processes with entry 0 are not
visible (entries > 1 are relevant in Sect. 5.2).

Example 1. Consider the RT-BIP model in Sect. 2.2, with processes P = {1,2,3} (1 ∼= Rod 1, 2 ∼=
Controller, 3∼= Rod 2). Schema A1 = {(1,0,0),(0,1,0),(0,0,1)} leads to fully modular safety analysis
with three local invariants, each of which refers to exactly one process. A2 = {(1,1,0),(0,1,1)} intro-
duces two invariants, each relating one cooling rod with the controller. The strongest invariant schema,
A3 = {(1,1,1)} corresponds to analysis with a single monolithic invariant.

To define the system invariant specified by a schema A, we assume that {Rā | ā∈A} is a set of relation
variables, later to be used as vocabulary for Horn constraints. Further, given a local state vector l̄ ∈
∏p∈R Lp and ā ∈ A, we write l̄[ā] for the vector (l̄[i1], l̄[i2], . . . , l̄[ik]), where i1 < i2 < · · · < ik are the
indexes of non-zero entries in ā = (a1, . . . ,an) (i.e., {i1, . . . , ik}= {i∈ {1,2, . . . ,n} | ai > 0}). The system
invariant is then defined as the conjunction of the individual relation symbols Rā, applied to global and
selected local states:

Inv(g, l̄) =
∧
ā∈A

Rā(g, l̄[ā]) (1)

Concrete solutions for the variables {Rā | ā ∈ A}, subject to the conditions Initiation, Consecution,
and Safety given in the beginning of this section, can be computed by means of an encoding as Horn
clauses. For this purpose, we assume that a system can be represented within some constraint language,
for instance within Presburger arithmetic: the sets Initp, the transition relation s

p→ t, as well as the error
specification (〈p1,E1〉, . . . ,〈pm,Em〉) are encoded as constraints in this language. Horn clauses can then
be formulated as shown in Fig. 3. Clause (2) represents initiation, for each of the variables Rā; (3) is
consecution, and expresses that every relation Rā is preserved by transitions of any process p, and (4)
encodes unreachability of error states.

In (3), (4), we refer to a context invariant Ctxt({p1, . . . , pk},g, l̄), which includes those literals from
Inv(g, l̄) relevant for the processes p1, . . . , pk:

Ctxt(Q,g, l̄) =
∧{

Rc̄(g, l̄[c̄]) | c̄ ∈ A and ∃q ∈ Q. c̄[q]> 0
}

However, note that different choices can be made concerning invariants Rā to be mentioned in the body
of (3), (4); it is in principle possible to add arbitrary literals from Inv(g, l̄). Adding more literals results in
constraints that are weaker, and potentially easier to satisfy, but can also introduce irrelevant information.

Lemma 1 (Soundness). If the constraints in Fig. 3 are solvable for some invariant schema A, then the
analysed system is safe.
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Lemma 2 (Completeness). If a system is safe, then there exists an invariant schema A such that the
constraints in Fig. 3 are (semantically) solvable.

It is important to note that Lem. 2 talks about semantic solvability. Despite existence of such a model-
theoretic solution, in general there is no guarantee that a symbolic solution exists that can be expressed
as a formula of the chosen constraint language. However, such guarantees can be derived for individual
classes of systems, for instance for the case that the considered system is a network of timed automata
(and a suitable constraint language like linear arithmetic).

4.3 Counterexample-Guided Refinement of Invariant Schemata

The question remains how it is practically possible to find invariant schemata that are sufficient to find in-
ductive invariants. This aspect can be addressed via a counterexample-guided refinement algorithm. Ini-
tially, verification is attempted using the weakest invariant schema, A0 = {(1,0,0, . . .),(0,1,0, . . .), . . .}.
If verification is impossible, a Horn solver will produce a concrete counterexample to solvability of the
generated Horn constraints. It can then be checked whether this counterexample points to genuine un-
safety of the system, or just witnesses insufficiency of the invariant schema. In the latter case, a stronger
invariant schema can be chosen, and verification is reattempted.

5 Safety for Unbounded Systems

5.1 Encoding of Unbounded Homogeneous Systems

We now relax the restriction that the process index set P of a system is finite, and also consider an in-
finite number of processes. Since our definition of safety only considers finite paths into potential error
states, this represents the case of systems with an unbounded number of (active) threads. Showing safety
for a system with infinitely many processes raises the challenge of reasoning about a state vector with
infinitely many entries. This can be addressed by exploiting the symmetry of the system, by deriving
a single parametric invariant that is inductive for each process; the corresponding system invariant uni-
versally quantifies over all processes. Necessary relational information pertaining to multiple processes
can be captured with the help of k-indexed invariants [24]. The correctness of parametric invariants can
be encoded as a finite set of Horn constraints, which again yields an effective method to derive such
invariants automatically.

Initially we restrict attention to homogeneous systems, in which all processes share the same initial
states and transition relation; however, each process has access to its process id (as a natural number),
and can adapt its behaviour with respect to the id.1 We assume that P =N, Initp = Init, and Lp = L for
all processes p ∈ P. Then, for any number k ∈N>0, and given a fresh relation variable R, a k-indexed
invariant has the shape:

Inv(g, l̄) = ∀p1, . . . , pk ∈N.
(
dist(p1, . . . , pk)→ R(g, p1, l̄[p1], . . . , pk, l̄[pk])

)
(5)

R represents a formula that can talk about the global state g, as well as about k pairs (pi, l̄[pi]) of (pairwise
distinct) process identifiers and local process states. R can therefore express which combinations of states
of multiple processes can occur simultaneously, and encode properties like mutual exclusion (at most one
process can be in some state at a time). For k = 1, the invariants reduce to Owicki-Gries-style invariants
(for infinitely many processes).

1By exploiting the fact that the id can be accessed, in fact the model in this section is as expressive as the (syntactically
richer) one in Sect. 5.2.
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{
R(g,pσ(1), lσ(1), . . . ,pσ(k), lσ(k)) ← dist(p1, . . . ,pk)∧R(g,p1, l1, . . . ,pk, lk)

}
σ∈Sk

(6)

R(g,p1, l1, . . . ,pk, lk) ← dist(p1, . . . ,pk)∧ Init(g, l1)∧·· ·∧ Init(g, lk) (7)

R(g′,p1, l
′
1, . . . ,pk, lk) ← dist(p1, . . . ,pk)∧

(
(g, l1)

p1→ (g′, l′1)
)
∧R(g,p1, l1, . . . ,pk, lk) (8)

R(g′,p1, l1, . . . ,pk, lk) ← dist(p0,p1, . . . ,pk)∧
(
(g, l0)

p0→ (g′, l′0)
)
∧RConj(0, . . . ,k) (9)

false ← dist(p1, . . . ,pr)∧
( ∧

j=1,...,m

(p j = p j ∧ (g, l j) ∈ E j)
)
∧RConj(1, . . . ,r) (10)

Figure 4: Horn constraints encoding a homogeneous infinite system with the help of a k-indexed invari-
ant. Sk is the symmetric group on {1, . . . ,k}, i.e., the group of all permutations of k numbers; as an
optimisation, any generating subset of Sk, for instance transpositions, can be used instead of Sk. In (10),
we define r = max{m,k}.

Fig. 4 gives the Horn clauses encoding the assumed properties of Inv(g, l̄) for a given k. Since k-
indexed invariants quantify over all permutations of k processes, it can be assumed that R is symmetric,
which is captured by (6). Initiation is encoded in (7). Consecution is split into two cases: (8) cov-
ers the situation that p ∈ {p1, . . . ,pk} makes a transition, and (9) for transitions due to some process
p0 6∈ {p1, . . . ,pk}. In (8), due to symmetry of R, it can be assumed that p = p1. Unreachability of
errors (〈p1,E1〉, . . . ,〈pm,Em〉) is specified by (10).

As shorthand notation in (9), (10), for numbers a,b ∈N with a ≤ b the expression RConj(a, . . . ,b)
represents the conjunction of all R-instances for process ids in the range a, . . . ,b (as in Sect. 4.2, it is
possible to include further literals from Inv(g, l̄) in the body of (8)–(10), resulting in weaker constraints):

RConj(a, . . . ,b) =
∧

i1,...,ik∈{a,...,b}
i1<i2<···<ik

R(g,pi1 , li1 , . . . ,pik , lik)

Theorem 1 (Expressiveness). (i) If the constraints in Fig. 4 are satisfiable for a given k, then they are
also satisfiable for any k′ > k (for the same system). (ii) If k′ > k > 0, then there are systems that can be
verified with k′-indexed invariants, but not with k-indexed invariants.

5.2 Encoding of Unbounded Heterogeneous Systems

The encodings of Sect. 4.2 and 5.1 can be combined, to analyse systems that contain n different types
of processes, each of which can either be a singleton process, or a process that is infinitely replicated.
Compared to Sect. 5.1, process types enable more fine-grained use of k-indexed invariants, since it is
now possible to specify which processes are considered with which arity in an invariant.

More formally, we now use the process index set P =
⋃

i=1,...n({i} × Pi), where Pi is either {0}
(singleton case) or N (replicated case). Invariant schemata from Sect. 4.2 generalise to unbounded het-
erogeneous systems, and are now antichains A of the partially ordered set ∏i=1,...n({0,1}∪Pi) ⊆ Nn.
This means that an invariant can refer to at most one instance of a singleton process, but to multiple
instances of replicated processes. As in Sect. 4.2, we use a set {Rā | ā ∈ A} of relation variables, and
define the system invariant as a conjunction of individual invariants, each of which now quantifies over
ids of processes. Namely, for a vector ā = (a1, . . . ,an) and process type i ∈ {1, . . . ,n}, ai distinct pro-
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cesses pi
1, . . . , pi

ai
∈ Pi are considered:2

Inv(g, l̄) =
∧
ā∈A

ā=(a1,...,an)

∀p1
1, . . . , p1

a1
∈ P1. . . .∀pn

1, . . . , pn
an
∈ Pn.(

dist(p1
1, . . . , p1

a1
)∧·· ·∧dist(pn

1, . . . , pn
an
)

→ Rā(g, p1
1, l̄[(1, p1

1)], p1
2, l̄[(1, p1

2)], . . . , pn
an
, l̄[(n, pn

an
)])
)

It is then possible to formulate Horn constraints about the required properties of the invariants. The Horn
clauses combine features of those in Fig. 3 and 4, but are left out from this paper due to the notational
complexity.

Example 2. Consider the railway control system in Fig. 1, which consists of a singleton process P1 = {0},
the controller, and an infinitely replicated process P2 =N, the trains. The system can be verified with
the schema A = {(1,3)}; this means, an inductive invariant is derived that relates the controller with a
triplet of (arbitrary, but distinct) trains.

6 Encoding of Physical Time

We now describe how our model of execution, and the encoding as Horn constraints, can be extended
to take physical time into account. In this and the following sections we focus on the Horn encoding
of unbounded homogeneous systems (Sect. 5.1), but stress that the same extensions are possible for
heterogeneous systems (Sect. 5.2) and finite systems (Sect. 4.2).

In our system model, time is represented as a component of the global state g ∈ G. As a convention,
we write g[C] to access the current time, and g′ = g[C/C′] to update time to a new value C′ ∈ Time, where
Time =Q for a dense model of time, and Time = Z for discrete time. Time elapse is represented by an
additional rule, augmenting the transition relation as defined in Sect. 4.1:

C′ ∈ Time C′ ≥ g[C] ∀p ∈ P. (g[C/C′], l̄[p]) ∈ TInvp

(g, l̄)→ (g[C/C′], l̄)
time-elapse

The premises state that time can only develop monotonically, and only as long as the time invari-
ant TInvp ⊆ G× Lp of all processes p ∈ P is satisfied. We make the assumption that TInvp is convex
with respect to time, i.e., (g[C/C1], l) ∈ TInvp and (g[C/C2], l) ∈ TInvp imply (g[C/C3], l) ∈ TInvp for all
C1 ≤C3 ≤C2.

Concepts like clocks or stopwatches can easily be represented by defining local process transitions.
For instance, a clock is realised by means of a Time-valued variable x; resetting the clock is translated to
the assignment x := g[C], so that the value of the clock at any point is g[C]− x.

When the model of time is dense it is still possible to retain the global variable C in the integer
domain. Considering the value of time to be a fractional number, the variable C can store the numerator,
and a new global variable U is added to the system to represent the denominator. The variable U is
initialised with an arbitrary positive value at system start, but can then stay constant throughout the
system execution, whereas the numerator C is incremented by time elapse transitions. The encoding of
rationals using numerator and denominator faithfully represents dense time, but makes it possible to keep
all variables integer-valued. In practice this is helpful when no rational solver is available.

2Note that if i is a singleton process, there is only a single process id (Pi = {0}), so that the corresponding argument of Rā
could be left out.
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Horn constraints. On the level of inductive invariants, time just requires to add one further clause to
the constraints in Fig. 4; as before, this necessitates sets TInvp that can be represented in the constraint
language of the clauses.

R(g[C/C′],p1, l1, . . . ,pk, lk) ←
dist(p1, . . . ,pk)∧ (C′ ≥ g[C])∧R(g,p1, l1, . . . ,pk, lk)∧
(g[C/C′], l1) ∈ TInvp1 ∧·· ·∧ (g[C/C′], lk) ∈ TInvpk

(11)

7 Communication and Synchronisation

At this point, our model of execution supports communication between processes via the global state of
a system (shared variables). To naturally represent timed automata models and message passing commu-
nication, it is appropriate to introduce further communication primitives, together with their encoding as
Horn constraints, which is done in the next sections.

7.1 Uppaal-style Binary Communication Channels

Binary communication channels in Uppaal implement a simple form of synchronisation between pairs
of processes (rendezvous). We assume that Ch is a finite set of channel identifiers. In addition to local
transitions (g, l)

p→ (g′, l′) of a process p ∈ P (as in Sect. 4.1), we then also consider send transitions
(g, l)

p,a!−→ (g′, l′) and receive transitions (g, l)
p,a?−→ (g′, l′) for any communication channel a ∈ Ch. Send

and receive transitions are paired up in system transitions:

(g, l̄[p1])
p1,a!−→ (g′, l′1) (g′, l̄[p2])

p2,a?−→ (g′′, l′2) p1 6= p2 a ∈ Ch

(g, l̄)→ (g′′, l̄[p1/l′1][p2/l′2])
binary-comm

Note that the effect of the send transition (on global state) occurs prior to the execution of the receive
transition; this means that transfer of data can easily be realised with the help of additional global vari-
ables.

Horn constraints. Recall that Fig. 4 contains two clauses, (8) and (9), that model local process transi-
tions. Since communication through a channel implies that two process transitions take place simultane-
ously (say, for processes ps, pr ∈P), it is now necessary to distinguish four cases (and add four clauses) to
characterise how a k-indexed invariant about processes Qk = {p1, . . . , pk} ⊆ P is affected: clause (12) for
the case {ps, pr} ⊆ Qk (this case disappears for k = 1); clause (13) for ps ∈ Qk, but pr 6∈ Qk; clause (14)
for pr ∈ Qk, but ps 6∈ Qk; and clause (15) for ps, pr 6∈ Qk. The clauses are instantiated for every chan-
nel a ∈ Ch:

R(g′′,p1, l
′
1,p2, l

′
2, . . . ,pk, lk) ←

dist(p1, . . . ,pk)∧
(
(g, l1)

p1,a!−→ (g′, l′1)
)
∧
(
(g′, l2)

p2,a?−→ (g′′, l′2)
)
∧

R(g,p1, l1,p2, l2, . . . ,pk, lk)
(12)

R(g′′,p1, l
′
1,p2, l2, . . . ,pk, lk) ←

dist(p0, . . . ,pk)∧
(
(g, l1)

p1,a!−→ (g′, l′1)
)
∧
(
(g′, l0)

p0,a?−→ (g′′, l′0)
)
∧

RConj(0, . . . ,k) (13)

R(g′′,p1, l
′
1,p2, l2, . . . ,pk, lk) ←

dist(p0, . . . ,pk)∧
(
(g, l0)

p0,a!−→ (g′, l′0)
)
∧
(
(g′, l1)

p1,a?−→ (g′′, l′1)
)
∧

RConj(0, . . . ,k) (14)

R(g′′,p3, l3,p4, l4, . . . ,pk+2, lk+2) ←
dist(p1, . . . ,pk+2)∧

(
(g, l1)

p1,a!−→ (g′, l′1)
)
∧
(
(g′, l2)

p2,a?−→ (g′′, l′2)
)
∧

RConj(1, . . . ,k+2) (15)
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7.2 Unbounded Barrier Synchronisation

Besides rendezvous between pairs of processes, also barrier synchronisation involving an unbounded
number of processes can be represented naturally in our model. Barriers turn out to be a powerful
primitive to encode other forms of communication, among others Uppaal-style broadcast channels and
BIP-style interactions (Sect. 7.3); of course, barriers are also highly relevant for analysing concurrent
software programs. We assume a finite set Ba of barriers, and denote process transitions synchronising
at barrier b ∈ Ba by (g, l)

p,b−→ (g′, l′). For simplicity, we require all processes in a system to participate
in every barrier synchronisation; a more fine-grained definition of the scope of a barrier can be achieved
by adding neutral transitions (g, l)

p,b−→ (g, l) to those processes that are not supposed to be affected by b.
Barriers give rise to the following system transition:{

(g, l̄[p])
p,b−→ (g′p, l̄

′[p])
}

p∈P b ∈ Ba

(g, l̄)→ (g, l̄′)
barrier

Note that the system transition does not modify global state, but alters all local state components simul-
taneously; the motivation for this definition is to avoid clashes resulting from an unbounded number of
global state updates.

Horn constraints. Barrier synchronisation can be represented by a simple Horn constraint (instantiated
for every barrier b ∈ Ba) stating that all processes considered by a k-indexed invariant can do a transition
simultaneously:

R(g,p1, l
′
1,p2, l

′
2, . . . ,pk, l

′
k) ←

dist(p1, . . . ,pk)∧
(
(g, l1)

p1,b−→ (g′1, l
′
1)
)
∧·· ·∧

(
(g, lk)

pk,b−→ (g′k, l
′
k)
)
∧

R(g,p1, l1,p2, l2, . . . ,pk, lk)
(16)

7.3 BIP Interactions

BIP (Behaviour, Interaction, Priority) [4] is a framework for designing component-based systems. The
BIP model of a component consists of an interface (a set of ports) and a behaviour (an automaton with
transitions labelled by ports). Components are composed by a set of connectors that determine the in-
teraction pattern among the components. In general, when several interactions are possible the system
chooses the one which is maximal according to some given strict partial order (priority). For sake of pre-
sentation, we concentrate on a special case of interactions, rendezvous, for which priorities are irrelevant;
the interactions in Fig. 2 are all in the form of rendezvous. However, other forms of interaction provided
by BIP (including interaction governed by priorities, and ports that act as triggers) can be handled in our
framework as well.

To define BIP rendezvous, we assume that Port is a finite set of ports, and I ⊆P(Port) is a set of in-
teractions. A transition of process p∈ P interacting through port a∈ Port is denoted by (g, l)

p,a−→ (g′, l′).
The system transition for an interaction {a1, . . . ,am}∈ I (with m distinct ports) is defined by the following
rule; as a premise of the rule, it is required that all processes of the system arrived at a point where local
(non-interacting) transitions are disabled ((g, l̄[p])

p
6→), but m distinct processes p1, . . . , pm are available

that offer interaction through ports a1, . . . ,am, respectively:{
(g, l̄[p j])

p j,a j−→ (g′j, l
′
j)
}

j=1,...,m {a1, . . . ,am} ∈ I
{
(g, l̄[p])

p
6→
}

p∈P dist(p1, . . . , pm)

(g, l̄)→ (g, l̄[p1/l′1] · · · [pm/l′m])
bip-comm
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Benchmark ]Cli ]Cl f Nth (sec) Inv Schema Total (sec)
Temperature Control System (unsafe) 48 110 0.37 (1,1,1) 3.86
Temperature Control System 48 110 1.12 (1,1,1) 4.31
Fischer 47 221 5.62 (2,1) 12.21
Fischer (unsafe) 47 221 2.84 (2,1) 8.91
CSMA/CD 50 162 3.60 (2,1) 8.22
CSMA/CD (unsafe) 50 793 2.91 (4,1) 13.81
Lynch-Shavit 50 299 66.11 (2) 70.10
Lynch-Shavit (unsafe) 50 299 2.58 (2) 5.35
Train Crossing 28 686 2.51 (1,3) 8.84
Train Crossing (unsafe) 28 240 1.53 (1,2) 3.91

Figure 5: Runtime for verifying the benchmarks. Experiments were done on an Intel Core i7 Duo
2.9 GHz with 8GB of RAM. Columns ]Cli and ]Cl f indicate the number of clauses required to model
the corresponding benchmark for the initial iteration and final iteration of the counterexample-guided
refinement of invariant schemata (Sect. 4.3), respectively. The Nth column indicates the time required
to verify the benchmark on the final iteration. The Inv Schema column contains the invariant schema
required for the final (successful) iteration and Total is the full verification time required.

For the purpose of analysis within our framework, we reduce BIP rendezvous to barrier synchroni-
sation as in Sect. 7.2. We make two simplifying assumptions: (i) in no state (g, l) of a process p ∈ P
both local transitions ((g, l)

p→ ··· ) and interacting transitions ((g, l)
p,a−→ ·· ·) are enabled; this will ensure

the third premise of bip-comm; and (ii) no two processes p1, p2 ∈ P share the same port a ∈ Port. Both
assumptions can be established through suitable transformations of a system.

We then encode BIP interaction using a single barrier {b} = Ba. To distinguish interactions, we
choose a bijection h : I→{1, . . . , |I|} that provides a unique integer as label for each interaction, and add
a global variable iact (part of the global state g ∈G) ranging over {1, . . . , |I|}. In addition, we denote the
ports used by a process p ∈ P by Portp ⊆ Port. Each process p ∈ P of the system is modified as follows:
• each interacting transition (g, l)

p,a−→ (g′, l′) is replaced with two barrier transitions. The first barrier
transition is (g, l)

p,b−→ (g′, l′), and guarded with the test a ∈ h−1(iact). The second transition is
(g, l)

p,b−→ (g, l), i.e., does not cause state changes, and is guarded with Portp∩h−1(iact) = /0.

• a transition (g, l)
p→ (g[iact/∗], l) non-deterministically assigning a value to the variable iact is

added to the process p; this transition is always enabled.

8 Experimental Evaluation

We have integrated our technique into the predicate abstraction-based model checker Eldarica [17]. In
Table 5 we show results for benchmarks3 encoding timed models, verifying natural safety properties of
the models. All models but the temperature control system (Sect. 2.2) are unbounded; finite instances of
which are commonly used as benchmarks for model checkers. Most of the benchmarks were originally
specified as Uppaal timed automata. For each benchmark we provide a correct version and an unsafe
version, to demonstrate the ability of our tool to prove correctness and provide counter-examples for
incorrect benchmarks. The Fischer benchmarks contain an observer process, which is the second com-
ponent of the invariant schema. The results demonstrate the feasibility of our approach. Further, it can
be seen that the majority of the benchmarks require stronger invariant schemata, highlighting the benefits
of k-indexed invariants. Most benchmarks are solved within a few seconds.

3Available at: http://lara.epfl.ch/w/horn-parametric-benchmarks

http://lara.epfl.ch/w/horn-parametric-benchmarks
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