
E. De Angelis, G. Fedyukovich, N. Tzevelekos and M. Ulbrich (Eds.):

Sixth Workshop on Horn Clauses for Verification and Synthesis and

Third Workshop on Program Equivalence and Relational Reasoning.

EPTCS 296, 2019, pp. 42–47, doi:10.4204/EPTCS.296.7

c© Dietsch, Heizmann, Hoenicke, Nutz, Podelski

This work is licensed under the

Creative Commons Attribution License.

Ultimate TreeAutomizer

(CHC-COMP Tool Description)

Daniel Dietsch

University of Freiburg

dietsch@cs.uni-freiburg.de

Matthias Heizmann

University of Freiburg

heizmann@cs.uni-freiburg.de

Jochen Hoenicke

University of Freiburg

hoenicke@cs.uni-freiburg.de

Alexander Nutz

University of Freiburg

nutz@cs.uni-freiburg.de

Andreas Podelski

University of Freiburg

podelski@cs.uni-freiburg.de

We present Ultimate TreeAutomizer, a solver for satisfiability of sets of constrained Horn clauses.

Constrained Horn clauses (CHC) are a fragment of first order logic with attractive properties in terms

of expressiveness and accessibility to algorithmic solving. Ultimate TreeAutomizer is based on the

techniques of trace abstraction, tree automata and tree interpolation. This paper serves as a tool

description for TreeAutomizer in CHC-COMP 2019.

1 Introduction

We present Ultimate TreeAutomizer, a solver for satisfiability of sets of constrained Horn clauses. The

logical fragment of constrained Horn clauses (CHC) has received increasing attention in the last years.

One reason for its attractiveness in program verification is that it naturally allows for expressing proof

queries for many kinds of correctness proofs, e.g., classic Floyd-Hoare proofs for while-programs, but

also assume-guarantee reasoning, compositional verification, and many more [11, 15].

The CHC fragment is equivalent in expressive power to the verification of safety properties of pro-

cedural (possibly recursive) programs, i.e., there is a translation of a CHC-formula to a procedural pro-

gram such that the CHC-formula is satisfiable if and only if the procedural program is correct, and vice

versa. Therefore, it is not surprising that solvers for CHC-formulas often adapt algorithms known in pro-

gram verification. For example, HSF [10, 3] uses predicate abstraction, Spacer1 uses PDR [9, 14], and

Rahft [17] uses trace abstraction [12], to name just a few tools. Ultimate TreeAutomizer is part of this

tradition and is an adaptation of the trace abstraction verification algorithm for procedural programs [13].

This paper is a tool description for the TreeAutomizer tool as it participated in CHC-COMP in 2018

and 2019. We give a brief overview of how trace abstraction is used to solve CHC-formulas. Afterwards,

we describe some aspects of the implementation of TreeAutomizer and some crucial optimizations. Last,

we discuss expected strengths and weaknesses of the approach.

2 Approach

In this section, we describe the approach for solving formulas in the CHC-fragment used in TreeAu-

tomizer. The approach is based on trace abstraction [12]; its adaptation to solving CHC-formulas has

1https://spacer.bitbucket.io

http://dx.doi.org/10.4204/EPTCS.296.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


Dietsch, Heizmann, Hoenicke, Nutz, Podelski 43

been described by Kafle and Gallagher [16] and by Wang and Jiao [19], we refer to these papers for a

more in-depth description and only give an overview here.

In the following, we assume that a constraint theory T is given, and that we have an SMT-solver for

T . Furthermore, we refer to constraints over theory T with free variables~x as C(~x) and we assume that a

set {P1,P2, . . .} of predicate symbols is given that are not used by the constraint theory T .

A formula in the CHC-fragment is given as a set of clauses where each clause is of one of the below

forms. According to general convention, Horn clauses subdivided the categories of facts, definite clauses,

and queries (also: goal clauses), depending on which of the below patterns they match.

∀~x.C(~x)→P(~x) (fact)

∀~x.P1(~x)∧ . . .∧Pn(~x)∧C(~x)→P(~x) (definite clause)

∀~x.P1(~x)∧ . . .∧Pn(~x)∧C(~x)→false (query)

In the remainder, we assume that a set S of constrained Horn clauses is given.

Now, let us consider the resolution trees over the clauses in set S with root false. We call such a

tree a derivation of false. Since no constraints ever occur in a clause head, the resolvent at the root of

a derivation of false is a query with one large conjunctive constraint in the antecedent, i.e., it is of the

following form.

∀~x.C1(~x)∧ . . .∧Cn(~x)→ false

We call a derivation of false feasible if the formula ∃~x.C1(~x)∧ . . .∧Cn(~x) is satisfiable, and infeasible

otherwise. The existence of a feasible derivation of false means that the conjunction of the clauses in S

is contradictory. Completeness of first-order resolution implies that the converse also holds, i.e., that the

absence of a feasible derivation of false implies satisfiability of the formula. Thus, we can formulate the

following proof rule.

A set of constraint Horn clauses S is satisfiable if and only if there is no feasible derivation

of false over S.

Ultimate TreeAutomizer’s approach to prove satisfiability of the set of Horn clauses S is to show

infeasibility of all derivations of false over S. The refinement algorithm used for this purpose is shown in

Figure 1. The proving process starts by sampling a derivation from the set of all derivations of false over

S. The sample derivation is then checked for feasibility using an SMT solver. If the sample derivation

is feasible, the clause set S is unsatisfiable (since it implies false). If the sample derivation is infeasible,

the sample is generalized to a set of derivations which are all infeasible. This set is subtracted from the

set of derivations of false. This process is repeated until either all derivations of false have been proven

infeasible or a feasible derivation has been found.



44 Ultimate TreeAutomizer

3 Implementation

A := A_S

while (nonempty(A)) {

d := sample(A)

if (d is feasible)

return unsat

I := getTreeInterpolant(d)

G := generalize(d, I, S)

A := A \ G

}

return sat

Figure 1: Trace abstraction refinement scheme used

in Ultimate TreeAutomizer. S is the input set of con-

strained Horn clauses. A_S is a set containing all

derivations of false over S. The procedure sample

picks an element from a non-empty set. The proce-

dure generalize takes an infeasible derivation of

false as input and returns a set of infeasible deriva-

tions of false that contains at least the input deriva-

tion (see also Figure 2). Note that the check for fea-

sibility as well as the generalize procedure rely

on calls to an (interpolating) SMT solver.

TreeAutomizer is implemented in the Ultimate

framework. It is written in Java, open source,

and can be downloaded and contributed to on Ul-

timate’s Github page2.

Ultimate provides for TreeAutomizer the

SMTLIB parser, utilities for handling formulas

(e.g., simplifications), and the Ultimate Automata

Library. SMT solvers for which by Ultimate

provides an interface include SMTInterpol [4],

Z3 [18], CVC4 [2], and MathSat [5]. In cases

when a solver does not support interpolation in the

given constraint theory, but can produce unsatisfi-

able cores, Newton-style interpolation [8] can be

used to obtain interpolants.

TreeAutomizer takes as input Horn clause sets

in the format used in CHC-COMP3. During pars-

ing, the input formulas are converted into the nor-

mal form given above.

In order to represent (possibly infinite) sets of

derivations of false, TreeAutomizer uses tree au-

tomata (see [7] for more details on tree automata).

The alphabet that the tree automata operate on is

the set of input Horn clauses S. The states of the

tree automata have one of two different semantics. The states of the automata A, and AS represent the

uninterpreted predicates in the set {P1,P2 . . .}. The states of the interpolant automaton G represent the in-

terpolants from the interpolation query that is generated from the sample derivation of false d. From this

sample query, a generalization procedure computes the canonical interpolant automaton. The canonical

interpolant automaton is given by the set of all rules that correspond to a valid implication between the

formulas in the source of the automaton rules, the constraint in the alphabet symbol, and the formula at

target of the rule (see [19]) for a thorough description).

4 Optimizations

In each iteration of the main refinement loop of trace abstraction, an interpolant automaton (G) is created

and subtracted from the automaton representing the derivations of false (A). Two major bottlenecks in

terms of space and time consumption may arise from this. First, the generalization that is done during

creation of the interpolant automaton can produce a large number of candidate transition rules each

one requiring an SMT solver call. Second, the difference operation requires construction of a product

automaton and thus can lead to growth of the automaton representing the derivations of false that is

exponential in the number of loop iterations. Both problems are amplified by an increasing nonlinearity

of the involved Horn clauses.

2https://github.com/ultimate-pa/
3https://chc-comp.github.io/2018/format.html

https://github.com/ultimate-pa/
https://chc-comp.github.io/2018/format.html


Dietsch, Heizmann, Hoenicke, Nutz, Podelski 45

Minimization The explosion through the repeated product construction can often be contained through

an additional minimization step on the result of the difference operation. Standard minimization algo-

rithms for tree automata can be used here; the Ultimate automata library currently supports two mini-

mization variants, one based on the naive algorithm [7] the other on bisimulation [1].

generalize(d, I, S) {

result = freshTreeAutomaton(S);

for ((P_1 ... P_n /\ C -> P) in S) {

for (formulas (phi_1, ..., phi_(n+1))

with phi_i occur in I) {

candidateRule :=

phi_1 /\ ... phi_n /\ c -> phi_n+1;

if (checkvalidity(candidateRule))

result.addRule(candidateRule);

}

}

return result;

}

Figure 2: generalize procedure as called in the refine-

ment algorithm in Figure 1. Given an infeasible deriva-

tion of false d, a tree interpolant I, and the Horn clause

set S, the procedure returns a tree automaton that accepts

d and, by generalization, possibly other infeasible deriva-

tions of false. The tree automaton’s states are the predi-

cates that occur in the tree interpolant I. The generaliza-

tion happens through adding rules to the tree automaton

that correspond to a valid implication between the source

states, conjoined with the constraint in the alphabet sym-

bol (a Horn clause from S), and the target state.

On-Demand Construction of Interpolant

Automaton The explosion of the number

of rules in the interpolant automaton can be

countered by integrating the difference (i.e.,

complementation and intersection) operation

with the creation of the interpolant automa-

ton.

The idea behind the integration is that a

large number of candidate rules in the inter-

polant automaton is irrelevant to the result

of the difference operation. The basic intu-

ition here is that for computing the difference

S \ T of two sets S and T , only the part of

T that lies in the intersection of S and T is

relevant – elements of T that don’t lie in S

need not be considered by a subtraction algo-

rithm. For the subtraction of tree automata,

this means the following: A rule is irrele-

vant to the result of the difference operation,

A−G, if it never contributes to the construc-

tion of a tree in G that lies in the language

of A. Such candidate rules can be filtered

out during the product construction by only

querying the interpolant automaton for rules

whose source tuple is reachable in according

to the minuend automaton (A).

5 Discussion

TreeAutomizer’s approach inherits its basic

properties from the trace abstraction approach. Thus, TreeAutomizer is conceptually sound and relatively

complete. As is common for such refinement schemes, the actual detection of a proof of satisfiability

(and thus actual completeness) depends on guessing the right formulas during the generalization step

(we only mentioned interpolation here, but several other methods are available).

We believe that one strength of the trace abstraction approach lies in a semantic independence of

refinement steps. For example in predicate abstraction with CEGAR [6] (which several program veri-

fication schemes can be seen as a variant of), formulas that stem from many different refinement steps

are conjoined. This means that SMT-solver queries get bigger and bigger over a growing number of

iterations, which can swamp the SMT solver. In trace abstraction on the other hand, the formulas used

in the generalize procedure can be forgotten, after the difference A - G has been computed, i.e. for-



46 Ultimate TreeAutomizer

mulas from different refinement steps are never conjoined. However, among other things, this property

relies on a rich-enough structure of the initial automaton. In particular, this means that CHC-formulas

that stem from proof queries for programs where large block encoding has been performed or where the

program counter is not made explicit by using different uninterpreted predicates for each location, this

compositionality may not come into full effect.

References

[1] Parosh Aziz Abdulla, Lisa Kaati & Johanna Högberg (2006): Bisimulation Minimization of Tree Automata.

In: CIAA, Lecture Notes in Computer Science 4094, Springer, pp. 173–185, doi:10.1137/0216062.

[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew

Reynolds & Cesare Tinelli (2011): CVC4. In: CAV, Lecture Notes in Computer Science 6806, Springer, pp.

171–177, doi:10.1007/3-540-45657-0_40.

[3] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan & Andrey Rybalchenko (2015): Horn Clause Solvers

for Program Verification. In: Fields of Logic and Computation II, Lecture Notes in Computer Science 9300,

Springer, pp. 24–51, doi:10.1007/978-3-319-19249-9.

[4] Jürgen Christ, Jochen Hoenicke & Alexander Nutz (2012): SMTInterpol: An Interpolating SMT Solver. In:

SPIN, Lecture Notes in Computer Science 7385, Springer, pp. 248–254, doi:10.1007/11532231_26.

[5] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma & Roberto Sebastiani (2013): The MathSAT5

SMT Solver. In: TACAS, Lecture Notes in Computer Science 7795, Springer, pp. 93–107, doi:10.1007/

978-3-642-31365-3_38.

[6] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu & Helmut Veith (2000): Counterexample-Guided

Abstraction Refinement. In: CAV, Lecture Notes in Computer Science 1855, Springer, pp. 154–169, doi:10.

1007/3-540-49519-3_18.

[7] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison & M. Tommasi (2007):

Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata.

Release October, 12th 2007.

[8] Daniel Dietsch, Matthias Heizmann, Betim Musa, Alexander Nutz & Andreas Podelski (2017): Craig vs.

Newton in software model checking. In: ESEC/SIGSOFT FSE, ACM, pp. 487–497, doi:10.1145/3106237.

3106307.

[9] Niklas Eén, Alan Mishchenko & Robert K. Brayton (2011): Efficient implementation of property directed

reachability. In: FMCAD, FMCAD Inc., pp. 125–134.

[10] Sergey Grebenshchikov, Ashutosh Gupta, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012):

HSF(C): A Software Verifier Based on Horn Clauses - (Competition Contribution). In: TACAS, Lecture

Notes in Computer Science 7214, Springer, pp. 549–551, doi:10.1007/978-3-540-69611-7_16.

[11] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012): Synthesizing soft-

ware verifiers from proof rules. In: PLDI, ACM, pp. 405–416, doi:10.1145/2254064.2254112.

[12] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2009): Refinement of Trace Abstraction. In:

SAS, Lecture Notes in Computer Science 5673, Springer, pp. 69–85, doi:10.1007/978-3-540-73368-3_

46.

[13] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2010): Nested interpolants. In: POPL, ACM,

pp. 471–482, doi:10.1145/1706299.1706353.

[14] Krystof Hoder & Nikolaj Bjørner (2012): Generalized Property Directed Reachability. In: SAT, Lecture

Notes in Computer Science 7317, Springer, pp. 157–171, doi:10.1007/3-540-49481-2_26.

[15] Jochen Hoenicke, Rupak Majumdar & Andreas Podelski (2017): Thread modularity at many levels: a pearl

in compositional verification. In: POPL, ACM, pp. 473–485, doi:10.1145/3009837.3009893.

http://dx.doi.org/10.1137/0216062
http://dx.doi.org/10.1007/3-540-45657-0_40
http://dx.doi.org/10.1007/978-3-319-19249-9
http://dx.doi.org/10.1007/11532231_26
http://dx.doi.org/10.1007/978-3-642-31365-3_38
http://dx.doi.org/10.1007/978-3-642-31365-3_38
http://dx.doi.org/10.1007/3-540-49519-3_18
http://dx.doi.org/10.1007/3-540-49519-3_18
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1145/3106237.3106307
http://dx.doi.org/10.1145/3106237.3106307
http://dx.doi.org/10.1007/978-3-540-69611-7_16
http://dx.doi.org/10.1145/2254064.2254112
http://dx.doi.org/10.1007/978-3-540-73368-3_46
http://dx.doi.org/10.1007/978-3-540-73368-3_46
http://dx.doi.org/10.1145/1706299.1706353
http://dx.doi.org/10.1007/3-540-49481-2_26
http://dx.doi.org/10.1145/3009837.3009893


Dietsch, Heizmann, Hoenicke, Nutz, Podelski 47

[16] Bishoksan Kafle & John P. Gallagher (2015): Tree Automata-Based Refinement with Application to Horn

Clause Verification. In: VMCAI, Lecture Notes in Computer Science 8931, Springer, pp. 209–226, doi:10.

1007/3-540-52753-2_52.

[17] Bishoksan Kafle, John P. Gallagher & José F. Morales (2016): Rahft: A Tool for Verifying Horn Clauses

Using Abstract Interpretation and Finite Tree Automata. In: CAV (1), Lecture Notes in Computer Science

9779, Springer, pp. 261–268, doi:10.1016/j.jsc.2010.06.005.

[18] Leonardo Mendonça de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: TACAS, Lecture

Notes in Computer Science 4963, Springer, pp. 337–340, doi:10.1109/MS.2006.117.

[19] Weifeng Wang & Li Jiao (2016): Trace Abstraction Refinement for Solving Horn Clauses. Comput. J. 59(8),

pp. 1236–1251, doi:10.1145/69575.69577.

http://dx.doi.org/10.1007/3-540-52753-2_52
http://dx.doi.org/10.1007/3-540-52753-2_52
http://dx.doi.org/10.1016/j.jsc.2010.06.005
http://dx.doi.org/10.1109/MS.2006.117
http://dx.doi.org/10.1145/69575.69577

	1 Introduction
	2 Approach
	3 Implementation
	4 Optimizations
	5 Discussion

