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Qubits on multi-atomic ensembles in a common optical resonator are considered. With that, pos-
sible constructions of swap, square root of swap and controlled swap quantum gates are analyzed.
Dynamical elimination of excess quantum state and collective blockade mechanism are proposed for
realizations of the two and three qubit gates.

1 Introduction

The creation of a quantum computer is an outstanding fundamental and practical problem. The quan-
tum computer could be used for the execution of very complicated tasks which are not solvable with
the classical computers. The first prototype of a solid statequantum computer was created in 2009 with
superconducting qubits [1]. However, it suffers from the decoherent processes and it is desirable to find
more practical encoding of qubits with long-lived coherence. It could be single impurity or vacancy
centers in solids [2] but their interaction with electromagnetic radiation is rather weak. So, here, ensem-
bles of atoms were proposed for the qubit encoding by using the dipole blockade mechanism in order to
turn multilevel systems in two level ones [3]. But dipole-dipole based blockade introduces an additional
decoherence that limits its practical significance. Recently, the collective blockade mechanism has been
proposed for the system of three-level atoms by using the different frequency shifts for the Raman tran-
sitions between the collective atomic states characterized by a different number of the excited atoms [4].
Here, we propose a two qubit gate by using another collectiveblockade mechanism in the system of two
level atoms based on exchange interaction via the virtual photons between the multi-atomic ensembles
in the resonator. Also we demonstrate the possibility of a three qubit gate (Controlled SWAP gate) using
a suppression of the swap-process between two multi-atomicensembles due to dynamical shift of the
atomic levels controlled by the states of photon encoded qubit.

2 Swap gates

Let us consider a plurality of the atomic systems (nodes) situating in a common electrodynamic resonator
with a quantum memory (QM) node as depicted in Fig. 1. For realization of two-qubit gates we transfer
the two qubits from QM node to the 1-st and 2-rd processing nodes and equalize the carrier frequencies
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Figure 1: Layout for realization of two-qubitiSWAP gates. Input and output quantum information is
encoded through the quantum states of the in-coming (Ein) and out-coming (Eout ) single photon fields.

of the nodes at time moment t=0 with some detuning from the resonator mode frequencyω1−ω0 = ∆1 =
ω2−ω0 = ∆2 = ∆. It yields to the following initial state of 1-st and 2-nd nodes in the interaction picture

ψin(0) = {α1|0>1 +β1|1>1}{α2|0>2 +β2|1>2}, (1)

where |α1,2|2 + |β1,2|2 = 1. Here, we have introduced the following states:|0 >m= |01,02, ...,0Nm >
corresponding to the ground state of the m-th node,|1 >m=

√

1/N ∑Nm
j |0 >1 |0 >2 ...|1 > j ...|0 >Nm

and |2 >m=
√

2/N(N −1)∑Nm
i6= j |0 >1 |0 >2 ...|1 >i ...|1 > j ...|0 >Nm are the collective states of m-th

node with single and two atomic excitations. Equal frequencies of the two nodes results in interaction
of the atoms via the virtual processes of resonant circuit quanta determined by effective Hamiltonian1,2
between these nodes. In order to obtain this interaction, westart from initial HamiltonianĤ = Ĥ0+ Ĥ1

where Ĥ0 = Ĥa + Ĥr is main Hamiltonian andĤ1 = Ĥr−a is perturbation Hamiltonian. Here,̂Ha =
Ĥa1 + Ĥa2 is Hamiltonian of atoms in nodes 1 and 2 andĤr is Hamiltonian of photons. With that,
Ĥa1 = h̄ω0 ∑ j1 Sz

j1 and Ĥa2 = h̄ω0 ∑ j2 Sz
j2 whereω0 is the frequency of working transitions in atoms,

Sz
j1 andSz

j2 operators of effective spin z-projection in two-level model for atoms in sitesj1 and j2 of

nodes 1 and 2;Ĥr = h̄ωk0a+k0
ak0 whereωk0 is frequency of photons with wave vectork0, a+k0

and ak0

are creation and annihilation operators for photons. We have for interaction of atoms with photons
Ĥr−a = H(1)

r−a+H(1)
r−a in nodes 1 and 2 the following expressions:

H(1)
r−a = ∑

j1

(g(1)k0
eik0r j1 S+j1ak0 +g(1)∗k0

e−ik0r j1 S−j1a+k0
), (2)

H(2)
r−a = ∑

j2

(g(2)k0
eik0r j2 S+j2ak0 +g(2)∗k0

e−ik0r j2 S−j2a+k0
), (3)

whereg(α)
k0

are interaction constants,S+j2 are raising and lowering operators for spin1/2 in two level model,
~r jα are radius vectors for atoms in sitesjα of nodesα = 1,2.
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We perform unitary transformation of HamiltonianHs = e−sHes that yields in the second degree on
small perturbation the following result:

Hs = H0+
1
2
[H1,s] , (4)

when relationH1+[H0,s] = 0 is valid. Using relation (3) we finds = s1+ s2,

s1 = ∑
j1

(

α1g(1)k0
ei~k0~r j1 S+j1ak0 +β1g(1)∗k0

e−i~k0~r j1 S−j1a+k0

)

, (5)

s2 = ∑
j2

(

α2g(2)k0
ei~k0~r j2 S+j2ak0 +β2g(2)∗k0

e−i~k0~r j2 S−j2a+k0

)

, (6)

where

α1,2 =−β1,2 =− 1
h̄(ω0−ωk0)

=− 1
h̄∆

. (7)

Substituting (5) and (6) into (4), we get

Hs = h̄ωk0a+k0
ak0 +

1,2

∑
m

∑
jm

h̄ωmSz
jm +2

1,2

∑
m

∑
jm

∣

∣

∣g
(m)
k0

∣

∣

∣

2

h̄∆
a+k0

ak0Sz
jm +

1,2

∑
m

∑
im jm

∣

∣

∣g
(m)
k0

∣

∣

∣

2

h̄∆
S+im S−jm+

+
1

h̄∆ ∑
j1 j2

(

g(1)k0
g(2)∗k0

ei~k0~r j1 j2 S+j1S−j2 +g(1)∗k0
g(2)k0

e−i~k0~r j1 j2 S−j1S+j2

)

. (8)

The first term is unchanged energy of photons, the second termis unchanged energy of atoms in
nodes 1 and 2, the third term is atomic energy shifts due to photons, the forth term is atomic intra-node
swap energy, the fifth term is atomic inter-node swap energy.

According to (8) effective interaction of atoms iŝHe f f = ∑2
m=1 Ĥ(m)

node + Ĥint , where

Ĥ(m)
node = h̄Ωσ ∑N

im jm ei~k0~rim jm S+im S−jm is a long-range spin-spin interaction in m-th node,

Ĥint = h̄Ωσ ∑N
j1, j2=1

(

ei~k0~r j1 j2 S+j1S−j2 + e−i~k0~r j1 j2 S−j1S+j2

)

(whereΩσ = |gσ |2/∆) describes a spin-spin inter-

action between the two nodes (N1 = N2 = N),~k0 is wave vector of resonant mode. Let’s introduce the col-
lective basis states of the two nodes:|ψ〉1 = |0〉1 |0〉2, |ψ〉2 = |1〉1 |0〉2, |ψ〉3 = |0〉1 |1〉2, |ψ〉4 = |1〉1 |1〉2
and|ψ〉5 = 1/

√
2{|2〉1 |0〉2+ |0〉1 |2〉2}. It is important that the Hamiltonian̂He f f has a matrix represen-

tation in the basis of the five states which is separated from other states of the multi-atomic system













0 0 0 0 0
0 NΩσ NΩσ 0 0
0 NΩσ NΩσ 0 0
0 0 0 2NΩσ 2Ωσ

√

N(N −1)
0 0 0 2Ωσ

√

N(N −1) 2Ωσ (N −1)













. (9)

By using (9), we find the unitary evolution of the atomic systems which couples independently two
pairs of the quantum states|ψ〉2 ↔ |ψ〉3 and|ψ〉4 ↔ |ψ〉5
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Ψ1(t) = α2α3ψ1 +exp(−iΩσ Nt){β2α3[cos(Ωσ Nt)ψ2− isin(Ωσ Nt)ψ3]

+α2β3[cos(Ωσ Nt)ψ3− isin(Ωσ Nt)ψ2]}
+exp(−i2Ωσ Nt)β2β3[cos(2Ωσ Nt)ψ4− isin(2Ωσ Nt)ψ5], (10)

where we have assumed a large number of atomsN ≫ 1. The solution demonstrates two coherent
oscillations with the frequencyΩσ N for the first pair|ψ〉2 ↔ |ψ〉3 and with the double frequency 2Ωσ N
for the second pair|ψ〉4 ↔ |ψ〉5. The oscillations are drastically accelerated N-times comparing to the
case of two coupled two-level atoms so we can use even bad common resonator with relatively lower
quality factor.

It is known [4,5] that the evolution of the two coupled two level atoms can lead toiSWAP and√
iSWAP gates. TheiSWAP and

√
iSWAP gates work in the Hilbert space of four states|ψ〉1 , ..., |ψ〉4

and these gates are important for realization of the complete set of the universal quantum gates [5, 6].
iSWAP gate provides exchange of the two quantum states between thetwo nodes. In our case we get that
iSWAP gate occurs at shortened timetiSWAP = π/2Ωσ N sec

Ψ1 (tiSWAP) = {α2 |0〉1−β2 |1〉1}{α1 |0〉2−β1 |1〉2}. (11)

We also note that by choosing different carrier frequencieswe can realize the describediSWAP
operation for many pairs of nodes simultaneously due to exploitation of the independent virtual quanta
for each pair in the QED cavity. It is interesting that theiSWAP gate provides a perfect elimination of
transfer of the initial state to the state|ψ〉5 that occurs only at t=tiSWAP.

3 Square root swap gates

The situation is more complicated for realization of
√

iSWAP gate because it is impossible to eliminate
state|ψ〉5 with evolution based on matrix (12). Below, we propose a universal mechanism forcollective
dynamical elimination (CDE –procedure) of the state|ψ〉5 for realization of

√
iSWAP gate by using the

multi-atomic ensemble encoding for single qubits and cavity mediated collective interaction.

Scheme of spatial arrangement of the processing nodes and cavities for realization of the
√

iSWAP is
presented in Fig. 2. Here, we insert the 1-nd and 2-rd nodes intwo different single mode QED cavities
characterized by high quality factors forπ-modes. We assume that eachπ-mode interacts only with the
atoms of one node and is decoupled from the basic cavity field mode that is possible for large enough
spectral detuning of the local QED cavity modes.

Thus, we take the additional field HamiltoniansHrπ =
1,2
∑
m

h̄ωk0a+k0πm
ak0πm and interaction of photons

with the atoms in the 1st and the 2nd nodes H(π)
r−a =

1,2
∑
m

∑
jm

(

g(m)
k0πm

ei~k0~r j S+jm ak0πm +g(m)∗
k0πm

e−i~k0~r j S−jm a+k0πm

)

.

By assuming a large enough spectral detuning of atomic frequencies from the field mode and absence of
real photons in the QED cavities we find the following effective Hamiltonian similar to previous section
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Figure 2: Layout for realization of the two-qubit
√

iSWAP gates (σ is the mode of common cavity;π1

andπ2 are the local modes).

Hs =
1,2

∑
m

∑
jm

h̄ωmSz
jm +

1,2

∑
m

∑
im jm

∣

∣

∣g
(m)
k0σ

∣

∣

∣

2

h̄∆′
m

ei~k0~rim jm S+im S−jm +
1,2

∑
m

∑
im jm

∣

∣

∣g
(1)
k0π

∣

∣

∣

2

h̄∆′
m

ei~k0~rim jm S+im S−jm+

+
1
2h̄

(

1
∆1

+
1

∆2

)

∑
j1 j2

(

g(1)k0σ g(2)∗k0σ ei~k0~r j1 j2 S+j1S−j2 +g(1)∗k0σ g(2)k0σ e−i~k0~r j1 j2 S−j2S+j2

)

, (12)

where∆1,2 = ω1,2−ωo are the atomic frequency detunings from the common cavity mode and∆′
1,2 =

ω1,2 −ωko are the atomic detunings from the frequency of the local QED cavities having the same fre-
quencyωko . To be concrete, we take below∆′

1,2 =−∆1,2 =−∆, ∆ > 0.
The second and third terms in Eq. (12) describes the atom-atom interactions inside each node via the

exchange ofσ andπ virtual photons, while the last term describes the interaction due to the exchange
of virtual σ photons between the atoms situating in different nodes. Again by assuming equal number
of atoms in the two nodesN1 = N2 = N, we get the following matrix representation for the new effective
HamiltonianĤe f f in the basis of the five states













0 0 0 0 0
0 ΩsN Ωσ N 0 0
0 Ωσ N ΩsN 0 0
0 0 0 2ΩsN 2Ωσ

√

N(N −1)
0 0 0 2Ωσ

√

N(N −1) 2Ωs(N −1)













, (13)

whereΩs = Ωσ +Ωπ , Ωσ = |gσ |2
/

∆, Ωπ =−|gπ |2
/

∆.
For the initial state (1.1), the atomic wave function evolves as follows

Ψ2(t) = α1α2ψ1

+exp[−iΩsNt]{β1α2[cos(Ωσ Nt)ψ2− isin(Ωσ Nt)ψ3]+α1β2[cos(Ωσ Nt)ψ3− isin(Ωσ Nt)ψ2]}

+exp[−iΩs(2N −1)t]β1β2{[cos(St)− i
Ωs

S
sin(St)]ψ4− i

2Ωσ
√

N(N −1)
S

sin(St)ψ5}, (14)
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where S=
√

4Ω2
σ N(N −1)+Ω2

s .
We choose the following parameters for the evolution of Eq. (14) providing the dynamical elimina-

tion of the stateψ5:

1) Ωσ Nt = π(1
4 +

1
2µ +n); µ = 0,1; n = 0,1, ...,

2) St = πk, k = 1,2,..., (15)

that leads to the following entangled state of the nodes

Ψ2(t) = α1α2ψ1

+(−1)n 1√
2

exp[−iΩsNt]{[(−1)µ β1α2− iα1β2]ψ2+[(−1)µα1β2− iβ1α2]ψ3}
+(−1)k exp[−iΩs(2N −1)t]β1β2ψ4, (16)

whereΩs is determined by the two conditions (15). In particular we write three sets of parameters for
possible realizations of CDE procedure characterized by weaker coupling of atoms withσ -mode (n=0,1;
µ=0,1):

1) n = 0,µ = 0,k = 1 : Ωσ Nt = π/4,St = π → |Ωs|t =
√

3π, |Ωs|
Ωσ N = 4

√
3≈ 6.92;

2) n = 0,µ = 1,k = 2 : Ωσ Nt = 3π/4,St = 2π → |Ωs|t =
√

7π, |Ωs|
Ωσ N = 4

√
7

3 ≈ 5.53;

3) n = 1,µ = 0,k = 3 : Ωσ Nt = 5π/4,St = 3π → |Ωs|t =
√

11π, |Ωs|
Ωσ N = 4

√
11

5 ≈ 2,65
and so on.

Another interesting case occurs for stronger coupling of the atoms with localπ-modes of the QED
cavities when|Ωπ |>> NΩσ . Here, we get acollective blockade of stateψ5 that provides the following
atomic evolution

Ψ2(t) = α2α3ψ1 +exp[−iΩsNt]{β2α3[cos(Ωσ Nt)ψ2− isin(Ωσ Nt)ψ3]

+α2β3[cos(Ωσ Nt)ψ3− isin(Ωσ Nt)ψ2]}
+exp[−i2ΩsNt]β2β3ψ4, (17)

yielding the entangled state of the two nodes if only the condition (15) is satisfied. So here, we can vary
the coupling constantΩσ and interaction time t in some possible intervals providinga realization of gen-
eral iSWAP gate with arbitrary tunable angle of rotationΩσ Nt. Collective blockade needs more quality
micro-cavities thancollective dynamical elimination technique but it is more robust being operative for
all necessary temporal durations.

4 Controlled swap gates

Let’s consider two atomic ensembles situating in two separate nodes in the common resonator as shown
in Fig.3. With that, one of these nodes has its own micro-resonator. We can introduce signal and con-
trol photons through a beam splitter into the system. Photons are stored for a time in quantum memory
situating also in common resonator. After absorption of photons by quantum memory, we raise reflec-
tivity of input-output mirror in order to make resonator perfect. First, signal photon is transferred from
quantum memory to one of processing nodes and frequency of atomic transitions in processing nodes is



S.N. Andrianov & S.A. Moiseev 19

 

E in 

E ou t 

P rocessing  nodes S em i-transparent m irro r 

F requency contro l 

M irro r 

Q  M em ory 

σ 

σ

E с 

Figure 3: Scheme of controlSWAP gate (CSWAP) on multi-atomic ensembles in resonator.

tuned out of resonance with the cavity. Then, we release fromquantum memory the control photon and
detune memory from resonance with it. With that, control photon can not be absorbed by the memory
and processing nodes or released from the cavity at these conditions.

Using Hamiltonian (8) and statesψ1 = |0〉1 |0〉2, ψ2 = |1〉1 |0〉2, ψ3 = |0〉1 |1〉2, ψ4 = |1〉1 |1〉2, ψ5 =
|2〉1 |0〉2 andψ6 = |0〉1 |2〉2, we get for total wave function

ψ (t) = c1 (t)ψ1+ c2(t)ψ2+ c3(t)ψ3+ c4 (t)ψ4+ c5(t)ψ5+ c6(t)ψ6, (18)

the following Schrödinger equation

dψ
dt

= iN
2 {ω1+ω2+2n(Ω1+Ω2)}c1ψ1

+ i
{(

N
2 −1

)

(ω1+2nΩ1)+
N
2 (ω2+2nΩ2)− iNΩ1

}

c2ψ2− iNΩsc3ψ2

− iNΩsc2ψ3+ i
{

N
2 (ω1+2nΩ1)+

(

N
2 −1

)

(ω2+2nΩ2)−NΩ2
}

c3ψ3

+ i
{(

N
2 −1

)

(ω1+ω2+2n(Ω1+Ω2))−N (Ω1+Ω2)
}

c4ψ4− iΩs

√

2N (N −1)(c5+ c6)ψ4

− iΩs

√

2N (N −1)c4ψ5+ i
(

N
2 −2

)

(ω1+2nΩ1)c5ψ5

− iΩs

√

2N (N −1)c4ψ6+ i
(

N
2 −2

)

(ω2+2nΩ2)c6ψ6, (19)

where we have assumed the mode field is in the state with definite numbern of photons,Ω1 =

∣

∣

∣g
(1)
k0

∣

∣

∣

2

h̄2∆ ,

Ω2 =

∣

∣

∣g
(2)
k0

∣

∣

∣

2

h̄2∆ andΩs =
g(1)k0

g(2)k0

h̄2∆ If g(2)k0
≪ g(1)k0

. Below we are interested in the case whenΩ2
∼= 0 (second

node is characterized by lower quality factor in comparisonwith the first node factor) and equations for
c2 andc3 can be written as

dc2

dt
= i

{(

N
2
−1

)

(ω1+2nΩ1)+
N
2

ω2−NΩ1

}

c2− iNΩsc3, (20)

dc3

dt
= i

{

N
2
(ω1+2nΩ1)+

(

N
2
−1

)

ω2

}

c3− iNΩsc2, (21)

or

dc2

dt
=

i
h̄

E2c2− iNΩsc3, (22)
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dc3

dt
=

i
h̄

E3c3− iNΩsc2, (23)

whereE2 =
(

N
2 −1

)

(ω1+2nΩ1)+
N
2 ω2−NΩ1, andE3 =

N
2 (ω1+2nΩ1)+

(

N
2 −1

)

ω2 . The Equations
(22), (23) give the following second order equation

d2c3

dt2 − i
h̄
(E2+E3)

dc3

dt
−
(

E2E3

h̄2 −N2Ω2
s

)

c3 = 0, (24)

with a solution

c3 =C1eir1t +C2eir2t , (25)

where

r1,2 =
1
2h̄

{[(

N
2 −1

)

(ω1+2nΩ1)+
N
2 ω2−NΩ1

]

+
[

N
2 (ω1+2nΩ1)+

(

N
2 −1

)

ω2
]}

±
√

1
4 (ω1−ω2+NΩ1+2nΩ1)

2+N2Ω2
s . (26)

With the initial conditionsc2 = 1 andc3 = 0, we have

C1 =−C2 =− NΩs
√

(ω1−ω2+NΩ1+2nΩ1)
2+N2Ω2

s

, (27)

that simplifies atω1−ω2+NΩ1 = 0 to

C1 =−C2 =− NΩs
√

N2Ω2
s +4n2Ω2

1

. (28)

We see that ifn = 1 at 2Ω1 ≫ NΩs we haveC1 =C2 = c3
∼= 0 and ifn = 0 we haveC1 =−1,C2 = 1

and in the first case no swap occurs and in the second case we have swapping solution

c2 = e
i

2h̄{( N
2 −1)ω1+

N
2 ω2−NΩ1}t cos(NΩst) , (29)

and

c3 =−ie
i

2h̄{(N
2 −1)ω1+

N
2 ω2−NΩ1}t sin(NΩst) . (30)

In the first case no swap occurs and in the second case we have swapping solution.

5 Summary

So, we have considerediSWAP,
√

iSWAP andCSWAP gates.iSWAP gate can be used for efficient trans-
fer of qubit between various nodes of quantum computer.

√
iSWAP gate which entangles the two qubits

provides a complete set of universal quantum gates togetherwith single qubit operations. Here, we note
that the single qubit gates can be performed by transfer the atomic qubit to photonic qubit in waveguide
where it can be rotated on arbitrary angle by usual optical tools [7]. We can also return the qubit back to
QM node on demand as it has been shown above. Another possibility to implement the single qubit gates
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is to transfer it to the node with single resonant atom which state can be controlled by external classical
field [8]. Also we can mark the principle possibility to exploit the collective blockade mechanism for
realization of the single qubit gate similar to approach developed for usual blockade mechanism [3] and
exploitation of Raman transition between the collective atomic states [4]. FastCSWAP gate can be used
for efficient realization of promising quantum algorithm offingerprinting [9]. The proposed protocols of
two and three-qubit gates also make a creation of large scaleuniversal quantum computer more feasible
with the multi-atomic encoding of the single qubit states.
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