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When modelling tissue-level cardiac electrophysiology, continuum approximations to the discrete
cell-level equations are used to maintain computational tractability. One of the most commonly used
models is represented by the bidomain equations, the derivation of which relies on a homogenisa-
tion technique to construct a suitable approximation to the discrete model. This derivation does not
explicitly account for the presence of gap junctions connecting one cell to another. It has been seen
experimentally [Rohr, Cardiovasc. Res. 2004] that these gap junctions have a marked effect on the
propagation of the action potential, specifically as the upstroke of the wave passes through the gap
junction.

In this paper we explicitly include gap junctions in a both a 2D discrete model of cardiac elec-
trophysiology, and the corresponding continuum model, on a simplified cell geometry. Using these
models we compare the results of simulations using both continuum and discrete systems. We see
that the form of the action potential as it passes through gap junctions cannot be replicated using a
continuum model, and that the underlying propagation speed of the action potential ceases to match
up between models when gap junctions are introduced. In addition, the results of the discrete simu-
lations match the characteristics of those shown in Rohr 2004. From this, we suggest that a hybrid
model — a discrete system following the upstroke of the action potential, and a continuum system
elsewhere — may give a more accurate description of cardiac electrophysiology.

1 Introduction
Many phenomena in biology are discrete; for example, biological tissue consists of discrete cells within
extracellular material. When modelling a particular phenomenon or feature, different sets of equations
can apply in the intra- and extracellular regions. In the case of modelling at the tissue or organ level it is
impractical to model each individual cell. As a result, multi-scale techniques which consider the average
behaviour of the problem — for example homogenisation — are used so that we may include cell-level
phenomena into a tissue-level model whilst retaining computational tractability.

In the case of cardiac electrophysiology, whilst computing a numerical approximation to the solution
of the governing equations at the level of individual cells should give accurate and realistic results, it
is computationally unfeasible even for very small regions of tissue. It is much more efficient to solve
these models using a continuum approximation to the equations, and indeed over the last 20 years many
have done this [8]. This continuum model relies on a homogenisation technique to construct a suitable
approximation to the discrete model. The homogenisation process uses a multiple-scales method which
uses the fact that the problem is naturally defined on two different scales.

We now discuss relevant issues from cardiac electrophysiology and homogenisation.
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1.1 Cardiac tissue modelling

Figure 1: Cardiac cell structure: Guyton and Hall, 1996, Fig. 9-2, p.108.

An example of the histology of cardiac cells is shown in Figure 1. These myocardial cells are roughly
cylindrical and are packed together in an irregular three-dimensional pattern. Each cell is electrically
connected to its neighbours via gap junctions, which are small channels through which ions may flow.
The cell structure is surrounded by an extracellular matrix (ECM) and the two regions are separated
by the cell membrane. In the discrete formulation of the governing equations, as will be described in
more detail shortly, Laplace’s equation holds for the potentials in both the intracellular and extracellular
spaces, with the electrical properties of the membrane taken into account in the boundary conditions.
The solution of these equations is a substantial computational task even for a small region of tissue due
to the fine-scale structural detail of cells. As a result, it is computationally desirable to homogenise the
microstructure to allow us to pose the problem as a continuum rather than a discrete problem. This led
to the proposal of the bidomain model by Tung in 1978 [12] in which the homogenised potentials are
solved for via two reaction-diffusion equations using averaged conductivities, where the precise form
of averaging arises from the homogenisation technique. A sketch of the derivation of the bidomain
equations is presented later in this document (see Section 2.2), and as discussed earlier it is the generally
accepted model of cardiac tissue behaviour. A more formal derivation of the model can be found in [5].

Whilst realistic simulations using the bidomain model have been demonstrated, these studies tend to take
the bidomain equations as being physiologically correct in all circumstances, and empirical parameters
are measured by matching the results of the continuum simulations with experimental data. However,
there has been little rigorous testing of the validity of the derivation of the bidomain equations; in partic-
ular, concerning the homogenisation technique used to average microstructural quantities.

In addition, the effect of gap junctions on propagation is often ignored during the homogenisation pro-
cess. As previously mentioned, gap junctions are the means by which cells are electrically connected to
one another. Whilst they allow the signal to be conducted, they do so with more resistance than is given
by the interior of the cells. When considering action potential propagation at cell-level, we therefore
expect to see the conduction velocity reduce as the wave passes through the gap junction. Indeed, this is
supported by experimental data as shown in [11] — the spatial form of the action potential is ‘stepped’,
with the reduced conductivity in the gap junction causing a steep jump in membrane potential between
one side of the gap junction and the other. The repercussions of this for the continuum model, and how
it affects the homogenisation process, will be discussed later.
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1.1.1 Hybrid models of cardiac electrophysiology

In recent years, models based on hybrid automata have been developed to model networks of excitable
cells, with an initial focus on the temporal morphology of the action potential [13]. The model was
further refined to study more specific conditions associated with action potential morphology such as
early depolarisation [14], spiral waves [3], and tachycardia [4]. Whilst these models allow efficient and
precise analysis of the conditions required for such phenomena, they are not focused on the incorporation
of the cell microstructure and the corresponding effect on action potential propagation.

1.2 Homogenisation

Whilst the initial formulation of the bidomain model stated the equations in the same form as they
remain today (as laid out in [12]), no rigorous derivation was given at that time that followed from basic
physical principles and the cell-level properties of the tissue — the macroscopic bidomain equations were
not directly connected to the microstructure of the tissue. The advent of more formal homogenisation
methods [2] paved the way for a first attempt at a rigorous derivation of the bidomain equations by
Neu & Krassowska in 1993 [7]. They used a multiple-scales asymptotic expansion technique to convert
the microscopic problem, formulated in terms of the pointwise potentials, to a macroscopic problem
formulated in terms of the leading order potential averages.

This technique was then modified by Keener & Panfilov in 1996 [5], who corrected a couple of errors
in the homogenisation technique used. This boiled down to generalising the work of Neu & Krassowska
using more realistic tissue geometries. The error corrections played no part during normal action po-
tential situations, but had a significant effects when examining the result of the application of a large
current stimulus such as is seen during defibrillatory shocks, with the result being that the mechanism for
defibrillation was clarified. It is a version of this derivation that will be presented later in this document.

Following this, a recent paper by Richardson & Chapman [10] augmented the above derivation by in-
troducing a co-ordinate transformation that allows for variable tissue structure and ultimately a set of
bidomain equations in which the conductivity tensors systematically account for deformation of the tis-
sue and the orientation of the cells.

1.3 Analysis of the homogenisation process

Despite all this work having been done on the derivation of the bidomain equations, looking at multiple-
scales methods and complex geometry, one unproven assumption remains. In the derivations, the macro-
and microscales of the problem are related by a dimensionless parameter, usually denoted ε , that is equal
to the ratio of the typical lengthscale of a single cell to the lengthscale over which the solution varies.
In fact, the denominator of ε is stated as the ‘natural’ lengthscale of the fibres in [5], which has been
translated in [10] as the ‘typical lengthscale of the cardiac tissue’, but as we have stated above it is more
correct to translate it as the typical solution lengthscale, so that ε is equal to the ratio between microscale
and macroscale coordinates. This parameter is assumed to be small, and much of the homogenisation
process involves taking the limit ε → 0.

However, it is clear that in the case of a steep propagating wavefront, this will not be the case. As pre-
viously discussed, when the action potential passes through a gap junction the steepness of the upstroke
portion of the wave will be significantly increased. We therefore question whether, in such circumstances,
the homogenisation process used in the derivation of the bidomain equations remains valid.

Furthermore, it will become apparent when presented with an explicit version of the homogenisation
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process in Section 2.2 that the ‘stepped’ action potential seen in the presence of gap junctions cannot
be captured using such a continuum model — not only does the homogenisation process enforce that
the macroscale conductivity tensors are independent of space at a cellular level, but the fundamental
principle of the continuum model is that the fine-scale structure of cells, including gap junctions, are
only accounted for by their average effect on the system.

1.4 Aims and Outline

We have described how the presence of gap junctions in cardiac tissue has a major effect on the propa-
gation of the action potential and the associated conduction velocity. We therefore wish to consider the
most accurate method to incorporate such structures into a simplified discrete model of cardiac electro-
physiology.

We begin in Section 2 by describing the conventional discrete and continuum models of cardiac elec-
trophysiology. Then, in Section 3, we consider the physiological properties of gap junctions and relate
these to the models, setting up a more detailed discrete model that accounts for gap junctions, as well
as deriving the corresponding continuum equations, which we will refer to as the modified bidomain
equations. We then compare the results of these continuum and discrete models in Section 4, asking how
well the solutions compare both to each other and to those seen experimentally. We will observe that
whilst the bidomain equations adequately represent the behaviour of a discrete model that neglects gap
junctions, when gap junctions are included the continuum model wavespeed begins to fail to match the
discrete model wavespeed, and that the discrete model better captures action potential profiles observed
experimentally.

2 Modelling cardiac electrophysiology
The derivation of the models below applies to general periodic structures. However, in this paper we are
restricting our considerations to 2D models, and so we will now present a simplified representation of
the cell structure in two dimensions. This will be the geometry upon which our analysis and simulations
will take place.

To arrive at our simplified representation of the cells, we assume that the intracellular space in each peri-
odic subunit is rectangular in shape, with no coupling of the cells in the off-fibre direction, thus restricting
our attention to propagation in one spatial dimension. This leads us to the schematic representation of
Figure 2a.

This representation consists of a sheet of cells that are connected into fibres along the x-direction, with
each fibre separated in the y-direction by extracellular matrix. We create a periodic subunit of the domain,
labelled Ω, which contains both intracellular and extracellular portions, and this can be seen in more
detail in Figure 2b. Here, we are assuming that all cells have the same dimensions.

2.1 The discrete model

In this section, we are referring to the global problem as given in Figure 2a.

2.1.1 Intracellular space

In the intracellular space Ωi, the current is given by ic =−σi∇φi, where φi is the intracellular potential and
σi is the (scalar) conductivity of the intracellular space. The form of the current comes from Ohm’s law
which states that current is the product of conductivity and the gradient of the potential [6]. Conservation
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(a) A representation of cardiac cells in 2D. σi and
σe are, respectively, the intracellular and extracellular
conductivities, with φi and φe the potentials. The re-
gion Ω represents a periodic subunit containing both
intracellular and extracellular space.
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(b) A single periodic subunit of cell and ECM, as repre-
sented by Ω in Figure 2a. L represents the length of our
subunit, with h its height and h1 the height of the intra-
cellular portion. The intracellular domain is labelled Ωi,
and the extracellular domain Ωe. The membrane between
the two is labelled ∂Ωm.

Figure 2: The 2D representation of cardiac cells

of current in the intracellular space therefore gives us

∇ · (σi∇φi) = 0, x ∈Ωi. (1)

The boundary condition representing flux of current is then

−σi∇φi ·n = Im(x), x ∈ ∂Ωm, (2)

where n is the outward pointing normal, that is, the normal pointing from the intracellular space into the
extracellular space, Im is the transmembrane current, i.e. the current flowing from the intracellular space
into the extracellular space, and ∂Ωm is the boundary between the intracellular and extracellular spaces.

2.1.2 Extracellular space

Similarly, in the extracellular space Ωe we have

∇ · (σe∇φe) = 0, x ∈Ωe, (3)

where φe and σe are the extracellular potential and conductivity respectively. The transmembrane current
Im will now flow into the extracellular space, and so the boundary condition here becomes

σe∇φe ·n = Im(x), x ∈ ∂Ωm, (4)

where ∂Ωm is the same boundary and n the same normal as in (2), so that the normal still points from
the intracellular to the extracellular space.

2.1.3 The transmembrane current

For the transmembrane potential, defined on ∂Ωm by vm = φi−φe, the transmembrane current is given
by

Im =Cm
∂vm

∂ t
+ Iion(vm,u), (5)
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where Cm denotes the membrane capacitance and u(x, t) consists of various ionic concentrations and
gating variables, which are determined from a cell model usually represented by a system of ordinary
differential equations (ODEs). This comes from modelling the cell membrane as a capacitor, and as the
capacitance of an insulator is defined to be the ratio between charge and potential we have Cm = Q/vm.

Since the current is given by the rate of change of charge, i.e. dQ/dt, it follows that the capacitive current
is equal to Cm

∂vm
∂ t , assuming that Cm is a constant property of the material. In addition to this capacitive

current there will be an ionic current created by the flow of ions through the membrane, and this is
denoted Iion. The total transmembrane current will be the sum of the capacitive and ionic currents, and
is thus given by (5).

As stated previously, the quantity Iion represents the sum of the currents formed by the flow of charged
ions across the cell membrane. These currents are due to the membrane possessing pore-forming pro-
teins, known as channels, which allow the passage of specific ions, for example sodium (Na+) and
potassium (K+), down their electrochemical gradient. The specifics of the form of the current caused by
these channels can be found in [6]. It is assumed that Iion is defined in the same fashion at all points on
the cell membrane, and that there are a sufficiently large number of ion channels along the cell membrane
for us to model Iion as a continuous function.

To summarise, in a discrete framework we will be solving the equations [(1),(3),(5)] for the unknowns φi

and φe, subject to the boundary conditions [(2),(4)], as well as specifying that solutions and current are
continuous between one cell and the next.

2.2 The continuum approximation

To model the cardiac tissue as a continuum, we use a homogenisation technique based on the assumption
that the lengthscale of the solution to the governing equations is much larger than the length of an
individual cell. We therefore define a “fast” variable

z =
1
ε

x,

where

ε =
length of a single cell

lengthscale of the solution
,

and it is thus assumed that ε� 1. Considering the intracellular space to begin with, we can now write φi

as a function of both x and z and seek a solution by expanding in powers of ε , so that

φi(x,z) = Φi(x)+ εφi1(x,z)+ ε
2
φi2(x,z)+ . . . , (6)

where φi1,φi2, . . . , are periodic in z with zero mean. A full version of the derivation can be found in [7] or
[5], but to summarise, by substituting (6) into the discrete governing equations and boundary conditions,
equating powers of ε and using the periodicity of φi1 and φi2, the equation for the intracellular potential
can be written

∇x · (Σi∇xΦi) =
1

Vcell

∫
∂Ωm

Im dSz, (7)

where Vcell is the volume of our periodic subunit and Σi is the macroscale intracellular conductivity tensor
of the problem, given by

Σi =
1

Vcell

∫
Ωi

σi

(
I +

∂Wi

∂z

)
dVz. (8)
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The functions W i
j are periodic in z with zero mean, and satisfy

∇z · (σi∇zW i
j) =−

∂σi

∂ z j
, x ∈Ωi, ∇zW i

j ·n =−n j, x ∈ ∂Ωm, j = 1,2

The same method, applied this time to the extracellular space, will give us

∇x · (Σe∇xΦe) =−
1

Vcell

∫
∂Ωm

Im dSz, (9)

where analogously

Σe =
1

Vcell

∫
Ωe

σe

(
I +

∂We

∂z

)
dVz, (10)

The functions W e
j now satisfy

∇z · (σe∇zW e
j ) =−

∂σe

∂ z j
, x ∈Ωe, ∇zW e

j ·n = n j, x ∈ ∂Ωm, j = 1,2

and are periodic in z with zero mean. Thus, the tissue-level conductivity tensors Σi and Σe will depend
on the domain shapes Ωi and Ωe, the volumne of our periodic subunit Vcell, the micro-level conductivity
scalars σi and σe, along with any quantity that will change the functions W(i,e)

(1,2).

2.2.1 The bidomain equations

If we now write the transmembrane potential vm as a power expansion in ε , so that

vm =Vm(x)+ εvm1(x,z)+ ε
2vm2(x,z)+ . . . ,

we may express (7) as

∇x · (Σi∇xΦi) =
1

Vcell

∫
∂Ωm

Cm
∂vm

∂ t
+ Iion(vm, t) dSz,

= χ

(
Cm

∂vm

∂ t
+

1
Sm

∫
∂Ωm

Iion(Vm(x)+ εvm1(x,z)+ ε
2vm2(x,z)+ . . . , t) dSz

)
,

where Sm is the membrane surface area and χ = Sm/Vcell . If we make the assumption that we may ignore
the contribution from ε1 and higher order terms, i.e. that

1
Sm

∫
∂Ωm

Iion(Vm(x)+ εvm1(x,z)+ ε
2vm2(x,z)+ . . . , t) dSz = Iion(Vm(x), t)

which also physiologically implies that we are taking there to be sufficiently many ion channels in each
cell to model Iion and a continuous function as mentioned previously, we can write

∇x · (Σi∇xΦi) = χ

(
Cm

∂Vm

∂ t
+ Iion(Vm, t)

)
, (11)

and similarly (9) becomes

∇x · (Σe∇xΦe) =−χ

(
Cm

∂Vm

∂ t
+ Iion(Vm, t)

)
. (12)

We now use the fact that φi =Vm +φe to eliminate φi from (11), and denote the transmembrane potential
Vm simply as V to avoid any future subscript confusion, to write (11) and (12) in the more familiar form
of

χCm
∂V
∂ t

= ∇x · (Σi∇x(V +φe))−χIion, (13a)

∇x · ((Σi +Σe)∇xφe +Σi∇xV ) = 0. (13b)
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Appropriate boundary conditions, imposing zero flux on the boundary of the entire domain, are

−Σi∇(V +φe) ·n = 0, Σe∇φe ·n = 0.

These are what we call the bidomain equations, in the absence of any external stimuli.

3 Explicitly incorporating gap junctions into the models
3.1 Physiology of gap junctions

Intercellular space

Hydrophilic channel
2-4 nm space

Connexon 

Plasma membranes

connexin monomer

Closed Open

Figure 3: A representation of gap junctions, Mariana Ruiz, 2006.

As seen in Figure 3, the gap junctions form a channel that directly connect two adjacent cells, allowing
molecules and ions to pass through it. These junctions are abundant in cardiac muscle, and allow direct
electrical signalling from one cell to the next. When looking at an entire cell, we can approximate
the collection of individual gap junctions by one continuous domain whose conductivity σg takes into
account the density of gap junctions present, the average fraction that are open or closed during signal
propagation and the underlying conductivity of the material.

We then notice that, on the boundary between such a gap junction domain and the intracellular spaces
that it connects, both ions and electrical signals are free to flow, and so we will have continuity of flux
across the boundary when considering electrical potential. This allows us to treat the gap junction as
part of the intracellular space with a different conductivity, so that the intracellular conductivity becomes
a function of space, which naturally corresponds to imposing continuity of potential and flux on the
interface if the gap junction had been treated as a separate compartment.

On the interface between gap junction and extracellular space, we note that there are likely to be dif-
ferences between the properties of this interface and that of the cell membrane. Unlike on the cell
membrane, a gap junction will not allow ion transport between itself and the extracellular space. In ad-
dition, the capacitive properties of the material will be different from those of the cell membrane. These
differences will have an impact on the form of the transmembrane current Im that will be defined on the
interface between gap junction and extracellular space.
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3.2 Adaptation of models to include gap junctions
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Figure 4: Our periodic subunit (see Figure 2b) modified to include a gap junction. It is modelled as a
region of width δ at one end of the cell with different conductivity (σg) to that of the cytoplasm (σi).

From our discussion above, we adapt our cell geometry to include gap junctions as shown in Figure 4.
We include a thin region of width δ at one end of the intracellular space in which the conductivity is
given by σg. The overall intracellular conductivity is now denoted by σ = σ(x), where

σ(x) =

{
σi x ∈ cell,
σg x ∈ gap junction.

(14)

In addition, we adapt the form of the transmembrane current on the boundary as follows:

Im =

{
cm

∂v
∂ t + Iion x ∈ cell,

cg
∂v
∂ t + IgIion x ∈ gap junction.

(15)

where Ig is a boolean switch that turns ionic flow across the membrane on or off, and cg is the capacitance
of the gap junction membrane. We may then alter the properties of the gap junction membrane by
specifying cg according to one of three cases:

• cm, treating it as if it were the same material as the cell membrane

• cg 6= cm, treating it as a capacitive material with its own properties

• 0, treating it as a fully insulative material.

Whilst we expect that it is correct to take Ig = 0 and cg 6= cm in the above system, we will leave both
parameters undetermined in the forms stated so that we can explore the effect that they have on results
of simulations.

To summarise, the discrete equations will be modified as such: the intracellular conductivity will now
take different values in the cell and the gap junction, and the transmembrane current will have a different
formulation on the cell membrane and the gap junction membrane.

3.2.1 A modified formulation of the bidomain equations

Returning to (7), the right-hand term of the equation given by 1
Vcell

∫
∂Ωm

ImdS will be split into integrals
over the cell membrane ∂Ωi and gap junction membrane ∂Ωg separately before being evaluated, so
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1
Vcell

∫
∂Ωm

ImdS =
1

Vcell

[∫
∂Ωi

ImdS+
∫

∂Ωg

ImdS
]

(16)

=
1

Vcell

[
ciSi

∂V
∂ t

+ cgSg
∂V
∂ t

+
∫

∂Ωi

IiondS+ Ig

∫
∂Ωg

IiondS
]

(17)

= (ciχi + cgχg)
∂V
∂ t

+(χi + Igχg)Iion (18)

where cg and ci are the capacitances of the gap junction and cell membranes, Sg and Si are the surface
areas of ∂Ωg and ∂Ωi respectively, with χg =

Sg
Vcell

and χi =
Si

Vcell
. On our simplified geometry as given in

Figure 4 we will have that χi =
2(1−δ )

h and χg =
2δ

h .

The final form of the modified bidomain equations will therefore be

(ciχi + cgχg)
∂V
∂ t

= ∇x · (Σi∇x(V +φe))− (χi + Igχg)Iion, (19a)

∇x · ((Σi +Σe)∇xφe +Σi∇xV ) = 0. (19b)

3.2.2 Effect on the intracellular conductivity tensor

On a generalised geometry, we see that the tensor Σi will be changed via the solutions to (9), as the
conductivity scalar there denoted σi is modified to be a function of space.

On our simplified geometry, we are able to write down analytic solutions for Σi in both cases. In the
absence of gap junctions, the functions W i

1 and W i
2 given in (9) satisfy

∇
2W i

j = 0, j = 1,2.

The normal is given by (0,1) and so the boundary conditions become
∂W i

1
∂y

= 0, and
∂W i

2
∂y

=−1,

the solutions to which are

W i
1 = A1, W i

2 =−y+A2,

where A1 and A2 and constants (note that they are not functions of x as W i
1 and W i

2 are periodic in x).
Substituting this into (8) gives

Σi =
Vintra

Vcell

(
σi 0
0 0

)
, (20)

where Vintra is the volume of the intracellular space.

In the presence of gap junctions, the equations for W i
2 remain unchanged, and now W i

1 will satisfy
Laplace’s equation in both the intracellular space and the gap junction separately with the same boundary
condition as before. Therefore we have

∂W i
1

∂x
=

{
B1 0 < x < δ ,

B2 δ < x < L.
(21)

To find B1 and B2 we integrate the governing equation for W i
1, given in (9), across x = δ to give[

σ
∂W i

1
∂x

]δ+

δ−
= [−σ ]δ

+

δ− ,
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and therefore that

σiB2−σgB1 = σg−σi.

We then use the fact that W i
1 has zero mean in x to give us∫

Ωi

∂W i
1

∂x
dx = δB1 +(L−δ )B2 = 0.

Solving for B1 and B2 and substituting into (8) gives us that

Σ
(1,1)
i =

Vintra

Vcell
×

σiσgL
δσi +(L−δ )σg

.

Note that, when σg = σi, this reduces to the corresponding entry in (20) as anticipated. It is also worth
pointing out that, both with and without gap junctions included, we will have

Σe =
Vextra

Vcell

(
σe 0
0 0

)
, (22)

where Vextra is the volume of the extracellular portion of our periodic subunit.

4 Results of simulations

In order to investigate the effect of gap junctions on results of simulations, we solve both the continuum
system, given by the modified bidomain equations (19), and the discrete system, given in [(1),(2),(3),(4)]
with the transmembrane current given by (15), using a Beeler-Reuter model for the ionic current [1] in
both cases. We use a finite element method [9] with 320 nodes per cell in the discrete case and 80 nodes
covering the corresponding area in the continuum case, and use the PETSc library
(http://www.mcs.anl.gov/petsc) to solve the resulting linear systems.

We take an individual subunit to be of size 0.1 mm by 0.02 mm, with the intracellular portion 0.1 mm by
0.01 mm (so that, in the notation of Figure 2b, we have L = 0.1 mm, h = 0.02 mm and h1 = 0.01 mm),
using a 100 cell by 2 cell region. We simulate 50 ms of electrical activity, beginning the simulations
in equilibrium so that φi = Veq and φe = 0 everywhere. Conduction coefficients are set at σi = 0.175
µS/mm σe = 0.7 µS/mm, and the membrane capacitance cm = 0.01 µF/mm2, with these parameters
taken from [8]. We then apply an appropriate current stimulus, dependent on our solution parameters σg,
cg and Ig, between 5ms and 10 ms to both cells on the y-axis.

The table below summarises the different parameter sets used in each of our simulations, along with a
verbal characterisation of what we are simulating.

Parameter Values used in simulations
Model σg cg Ig Characterisation
Base 0.175 0.01 1 No gap junctions, models reduce to original forms

1 0.00175 0.01 1 Gap junctions, simply reducing conductivity
2 0.00175 0.01 0 Gap junctions, not allowing ion transport across membrane
3 0.00175 0.001 1 Gap junctions, reduced capacitance
4 0.00175 0.001 0 Gap junctions, reduced capacitance, no ion transport
5 0.00175 0 1 Gap junctions, fully insulating
6 0.00175 0 0 Gap junctions, fully insulting, no ion transport
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Figure 5: Results of simulations at 15 ms and 30 ms for our base case (left), in which gap junctions were
not modelled, and our most simple implementation of gap junctions (right) in which they were treated as
a region of reduced conductivity with identical properties to that of the cell.
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Figure 6: Results of simulations at 30 ms for all models, comparing the continuum solutions (left) and
discrete solutions (right) against one another, to see how our choice of model affects propagation.
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Figure 7: A magnification of the plots shown in Figure 6.
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4.1 Effect of introducing gap junctions

In Figure 5 we take spatial snapshots of the results of our simulations at two separate time points — 15
ms, seen towards the left of each subplot, and 30 ms, seen at the right of each subplot — for two of the
models mentioned above, in both the discrete and continuum formulations of the problem. We compare
our Base model in which gap junctions are not modelled, to Model 1 in which the gap junctions are
modelled as a region of reduced conductivity whose membrane properties are identical to those of the
remainder of the cell.

As expected, in the absence of gap junctions the discrete and continuum models give near-identical so-
lutions, as seen in Figure 5a. In such a situation the problems highlighted in the introduction concerning
the derivation of the continuum model are not applicable, and thus the continuum system provides an
accurate representation of the discrete problem. However, when gap junctions are introduced it is seen
in Figure 5b that the propagation speed in the continuum model does not match that of the discrete
model. The conduction velocity of the wave for the discrete problem is noticeably smaller than that for
the continuum problem, as observed by the small discrepancy in the solutions after 15ms and the larger
discrepancy after 30ms.

This discrepancy occurs because of the rapid spatial variation in the membrane potential in the discrete
case as the action potential propagates through a gap junction. Here, the solution lengthscale is of the
same order as an individual cell, and thus our key assumption when deriving the continuum model,
that we may ignore effects at cell-level and below, is no longer true. It is therefore the case that the
bidomain equations, when derived using the inherent cell-level parameters of our system, cannot be used
as an accurate representation of the propagation of the action potential if we include the effects of gap
junctions in our discrete model.

In addition, we also notice that the discrete simulations in the presence of gap junctions display the form
of ‘stepped’ action potential that is seen experimentally in [11]. As this is not seen in the absence of gap
junctions, we conclude that there should be some representation of a gap junction structure in a model of
cardiac electrophysiology in order to capture this more detailed form of the propagated action potential.
It is worth noting that the continuum model, in fact any continuum model, is unable to replicate such
behaviour — by its nature it cannot have quantities, in this case the intracellular conductivity, that vary
on the level of single cells.

4.2 Comparing implementations of gap junctions

Having seen that gap junctions change the results of both discrete and continuum simulations of cardiac
electrophysiology, ultimately causing the solutions of the two types of model to diverge, we wish to
see if the precise nature of the implementation of gap junctions further affects the characteristics of
solutions. To that end, in Figure 6 we plot the results of simulations of both continuum (left-hand figure)
and discrete (right-hand figure) versions of each model specified in Table 4 taken at a time of 30 ms. A
magnification of Figure 6 is given in Figure 7.

Whilst we see a difference in the position of the propagating wave — and thus the underlying wavespeed
— between each of the implementations of gap junctions, this change is much smaller than the initial
change brought by the introduction of gap junctions over our Base model. This suggests that the major
cause of the discrepancy between continuum and discrete solutions is the sharp change in conductivity
that we have between the cell and the gap junction.

Considering the plots in more detail, we see in Figure 7 that switching the ionic current off on the gap



14 Modelling the effect of gap junctions on tissue-level cardiac electrophysiology

junction membrane — going from Model 1 to 2, Model 3 to 4 or Model 5 to 6 — slows down the
propagated wave as expected, though by an equal amount in the continuum and discrete cases. Reducing
the capacitance of the gap junction membrane — Model 1 to 3 and Model 2 to 4 — again slows down
propagation, this time by a larger amount. However, further reducing the capacitance to zero — Model
3 to 5 and Model 4 to 6 — has a negligible effect on solutions. More importantly, we can see that such
changes in the results of the discrete model are mirrored in the continuum formulation of the problem,
specifically the associated change in propagation speed.

It is also clear from Figure 7 how the steepness of the propagating wave varies from continuum to discrete
models — in the continuum case the wave is moderately steep for the entirety of the upstroke, whereas
in the discrete case the wave is fairly shallow as it passes through each cell, and extremely steep inside
the gap junction. This reinforces our statement that gap junctions cause rapid spatial variation in the
potential.

5 Conclusion
The implementation of gap junctions into a standard model of cardiac electrophysiology causes a dis-
crepancy to occur between results of simulations of discrete and continuum versions of the system. This
is due to the rapid spatial variation in the membrane potential inside a gap junction that is caused by the
concomitant large decrease in conductivity in such a region. Given this, it is not possible to model the
contribution and effect of gap junctions on cardiac electrophysiology using a continuum system, and we
suggest that a hybrid method — using the discrete model around the upstroke of the propagated wave,
and a continuum model elsewhere — may enable us to retain accuracy and characterisation of solutions
whilst increasing computational tractability.

With regard to the precise implementation of gap junctions, we have seen that solutions will depend on
the value of the capacitance of the gap junction membrane, with an adapted version of the continuum
system matching the changes predicted by the discrete system. These results suggest it is important to
have an accurate value for the capacitance of the gap junction membrane when conducting simulations
of cardiac electrophysiology.
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