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Interaction and observation, categorically

Vincenzo Ciancia∗
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University of Amsterdam

This paper proposes to usedialgebrasto specify the semantics of interactive systems in a natural
way. Dialgebras are a conservative extension of coalgebras. In this categorical model, from the point
of view that we provide, the notions of observation and interaction are separate features. This is
useful, for example, in the specification of process equivalences, which are obtained as kernels of the
homomorphisms of dialgebras. As an example we present the asynchronous semantics of the CCS.

1 Introduction

The notions ofinteractionandobservationplay a key role in the semantics of concurrent and interactive
systems. Aninteractivesystem or process (imagine a web service, or an operating system) is typically
not required to terminate, but it is not always equivalent tothe deadlocked machine. This is because,
along the execution of a system, the external environment isallowed to interact with the program and
observe some side effects (typically, output from the system itself).

However clear in principle, this intuition is lost wheneverthe semantics of an interactive system
is modelled usinglabelled transition systems(LTSs) or their categorical generalisation, the so-called
coalgebras. The reason is that every interaction that a system makes with the external world, be it
originated from the environment, or from an internal actionof the system itself, is described in the same
way, as a transition from one state to the next.

In this work we turn our attention to a class of categorical models calleddialgebras. Dialgebras are a
straightforward generalisation of both algebras and coalgebras. We interpret these models as a framework
where one can describe separately the states of the system, the interactions that the environment and a
process may have in each state, and the resulting observations. In our interpretation, dialgebras provide
side-effecting operations, therefore providing both contexts and observations simultaneously.

The above is strongly reminiscent of the distinction between input and output in computer science.
Thinking of interaction with the environment as an input to aprocess, and observation as its output,
Mealy machines [5] come to mind. These are functionsI ×X → O×X, for X, I andO the set of states
of the system, possible input values, and possible output values, respectively. It turns out that one of the
simplest and more familiar examples of a dialgebra is a Mealymachine; in the same fashion, one of the
simplest and more familiar examples of coalgebra is an LTS. This motivates the following slogan.

Coalgebras generalise labelled transition systems; dialgebras generalise Mealy machines.

As it happens with coalgebras w.r.t. LTSs, the merit of the generalisation is in the fact that, since
dialgebras form a category, these generalised Mealy machines are now equipped with a standard notion
of equivalence, which is given by the kernel of morphisms of the category.

So, in our framework, the semantics of a programming language is given in terms of a dialgebra. The
latter, as we will see, is a functionf from a setFX to a setBX. F andB are parametrised inX, which is
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the set of states of a system.F describes a type ofexperimentsthat an ideal observer can conduct. Then,
results are observed, belonging to the setBX of possibleobservations. The way to define the semantics
is by choosing appropriate experiments and observations, and defining such a functionf . From this
information, using a small amount of category theory, a standard equivalence relation, called dialgebraic
bisimilarity, is defined onX. Roughly speaking, two processes are dialgebraic bisimilar if they exhibit the
same observations in the same experiments, and the states they reach after the experiments are bisimilar.

An example where it is useful to distinguish between interaction and observation isasynchronous
semantics. Asynchronous communication may be summarised by saying that “the observer can not see
the input actions of a process”. More precisely, the observer can not tell input actions from internal
computations. In the dialgebraic perspective that we propose on asynchrony, the observer can either
sit and look at the system, seeing its output and internal computations, or try to send messages to it.
However, a process can either read a message, or consume a message without actually reading it, and
store it for later processing. The observer can not tell the two cases apart.

We provide a dialgebraic semantics of the asynchronous CCS,and prove that the obtained equiv-
alence relation coincides with strong asynchronous bisimilarity. In this case, we make a distinction
between an underlyingoperational semanticswhich is expressed by the well-known LTS for the CCS,
and the dialgebraic semantics, built on top of it, which specifies the semantic equivalence relation. Bisim-
ilarity of the LTS of the operational semantics, which is also thesynchronoussemantics, is not taken into
account in the definition of the dialgebraic semantics.

Using a LTS is not necessary at all to specify a dialgebra. We do so mostly for the sake of sim-
plicity: the asynchronous LTS semantics of process calculiis already well-understood. The operational
semantics could in turn be defined as a dialgebra directly on the structure of processes (see§7 for a brief
discussion). On the other hand, the usage of a (however specified) operational semantics upon which
a process equivalence is based can be considered at least a recurring pattern for the design of process
equivalences. The definition of the semantic equivalence may be split in three steps, that we callexecute,
interact, observe:

execute: the system is run by the means of its operational semantics, specifying some side effects of the
process at each state of its execution;

interact: the observer does experiments on the running system;

observe: results are collected, allowing the observer to classify processes by how they react to experi-
ments, giving rise to the behavioural equivalence of choice.

In coalgebras, these three steps are often tied to each otherand not so easily separated. Dialgebras
give us a different perspective on bisimilarity, where someactions are originated by a running process,
and some others by the external environment. The process andthe environment may be very different,
and the syntax of experiments is not (necessarily) the same as the syntax of processes. This is not so
uncommon. Think e.g. of analysis or monitoring for securityprotocols. The entities (systems) that
are being “observed” may be unknown machines or even human beings. The syntax of experiments
conducted on such entities may have nothing in common with the entities themselves.

Example 1. For a classical example, think of an human (the observer) in front of a drink-vending ma-
chine. The observer can make experiments, such as pressing the buttons, inserting coins etc. A pre-
condition for being able to tell something (and eventually get a drink) is that the machine is running.
That is, a current state of the machine is defined, and the machine has an underlyingoperational se-
mantics, which is what the machine really does, independently from what the observer sees. While the
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machine is running, the observer performs its experiments,and observes some side-effects. The ma-
chines reaches a new state. This is an example where the “syntax of experiments” (e.g. inserting a coin,
or pressing a button) is not the “syntax of the vending machine” which would be describing its internal
mechanics.

Related work. The study of dialgebras in computer science was initiated in[4] for the categorical
specification of data types, and further investigated for the same purpose in [9]. So far, they have not
been explored in detail. In this work we divert from the earlier research line: we find applications of
dialgebras to programming language semantics, and look at the behavioural equivalences they induce on
processes. Moreover, even though we do not provide examplesin the current paper, we do not restrict our
attention just to the polynomial functors as the syntax of experiments (therefore, we use the equivalences
from kernels of morphisms instead of the relational liftingused in [9]). This is since we expect that more
complex functors may have useful applications (see§7).

Map of the paper. In §2 we give the definitions of algebras and coalgebras, for comparison with
dialgebras. In§3 we give the definition of a dialgebra and explain their intended use. In§4 we present
the asynchronous semantics of the CCS. In§5 we give a dialgebraic semantics to the CCS that coincides
with the asynchronous one. In§6 we informally discuss other examples of dialgebras. Finally in §7 we
sketch some possible future directions.

2 Algebras and Coalgebras

Algebras and coalgebras provide an established methodology for the specification of programming lan-
guage syntax and semantics. We give here a brief introduction to the definitions of algebra and coalgebra
in a category, tailored to a comparison between these two constructions and that of a dialgebra. For more
details and pointers to the rich existing literature on algebras and coalgebras, see [10].

First we give the preliminary notion of akernel. For the category-theoretical concepts that we men-
tion, we refer the reader to some basic category theory book (see e.g. [2]).

Definition 1. The kernel off : X →Y in a categoryC is the pullback (if it exists) of the diagramf , f .

WhenC = Set, the kernel off (up-to isomorphism) is the setker f = {(x1,x2) ∈ X ×X | f (x1) =
f (x2)}, equipped with the two obvious projections; this is an equivalence relation onX.

Definition 2. (algebra)Given a endofunctorF in a categoryC, anF-algebra is a pair(X, f : FX → X).
An homomorphismbetween twoF-algebras(X, f ) and(Y,g) is an arrowh : X → Y such thath◦ f =
g◦Fh, that is, the following diagram commutes:

FX FY

X Y

f g

Fh

h

WhenF is apolynomialfunctor, andC is Set, then the notion ofF-algebra coincides with the classical
notion of algebra for a signature (to recover the full power of equational specifications, one needs the
stronger notion of algebra of amonad, which is out of the scope of this discussion).
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Reminder: algebras specifyoperations on the elements of a set.

For example, one can specify the signature (not the equations) of a monoid by providing a setX and
the interpretation of composition and identity. In other words, a monoid can be regarded as an algebra
for the functorFX = 1+X×X, that is, a setX and a functionf : 1+(X×X)→ X. The functionf is the
co-pairing of f1 : 1→ X, which is the interpretation of the identity of the monoid, and f× : X×X → X,
which interprets composition.

Of particular relevance for programming language semantics is that algebras specify theabstract
syntaxof programming languages, by providing operations on abstract syntax terms that can be applied
to build larger terms. The functorF provides a syntax to describe operations on elements, and analgebra
(X, f ) gives the semantics of such a syntax, by computing elements out of these operations.

Definition 3. (coalgebra)Given an endofunctorB in a categoryC, a B-coalgebra is a pair(X, f : X →
BX). An homomorphismbetween twoB-coalgebras(X, f ) and(Y,g) is an arrowh : X → Y such that
Bh◦ f = g◦h, that is, the following diagram commutes:

X Y

BX BY

f g

h

Bh

A coalgebra in the categorySetof sets and functions is a functionf : X → BX for some behavioural
endofunctorB : X → X. The action ofB on objects yields a setBX for eachX, which is intended to be
the transition typeor observation typeof the system.

WhenBX = Pfin(L×X) andC is Set, so thatX is a set, then aB-coalgebraf coincides with the
classical notion of labelled transition system (LTS) with labels inL. Here,X is the set of states of the
system,L is the set of labels, and for allx∈ X, f (x) is a set oflabelled transitions, that is, pairs(ℓ,x′)
consisting of a label and a destination state.

Reminder: coalgebras specifyobservations on the elements of a set.

For example, one can specify an interactive system by providing a setX of states, and a transition
function f : X → Pfin(L×X) describing the non-deterministic observations that we canmake about the
execution of a process, such as an input, an output, or an internal computation. It is useful to think ofL,
in this specific case, as the type ofside effectsof the program execution.

The crucial fact about coalgebras is that they form a category, and the natural equivalence relation
obtained by the kernel of homomorphisms generalises bisimilarity of LTSs.

By changing the transition typeB, one gains generality w.r.t. LTSs. For instance, one can use
the probability distribution functorD in combination with other functors to express various degrees of
probabilistic systems [11].

3 Dialgebras

Behavioural equivalences, such as bisimilarity, are typically not based on the syntax of processes. Rather,
an externalobserveris assumed, that can see their behaviour. Processes are equivalent when the external
observer can not tell them apart.
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In this section we introduce dialgebras. We will see that thenatural equivalence relation induced by
morphisms is still based on behaviours. However, the external observer is now endowed with the power
to interact with the system, by doingexperimentsandobservingthe results.

Definition 4. (dialgebra)Given a categoryC, and two endofunctors1 F,B : C→ C, a(F,B)-dialgebrais
a pair(X, f ) whereX is an object andf : FX → BX is an arrow ofC.

We will just refer to such a structure as adialgebrawhenF andB are clear from the context. In the
remainder of this section, let us fix two endofunctorsF andB.

We callF the interaction functor, as it is intended to provide a syntax for constructing experiments.
The functorB is theobservationfunctor, which is the type of the observed results.

Definition 5. (dialgebra homomorphism)Given two dialgebras(X, f ) and(Y,g), adialgebra homomor-
phismfrom (X, f ) to (Y,g) is an arrowh : X →Y such thatg◦Fh= Bh◦ f , that is, the following diagram
commutes

FX FY

BX BY

f g

Fh

Bh

(F,B)-dialgebras and their homomorphisms form a category. Clearly, when B = Id (the identity
functor) one recovers the category ofF-algebras, and whenF = Id one recovers the category ofB-
coalgebras. In this work, we only focus on dialgebras in the categorySetof sets and functions.

Example 2. Non-deterministic Mealy machines are dialgebras for the functorsFX = I ×X andBX =
Pfin(O×X), for I the set of input values andO the set of output values.

A dialgebra allows one to specify a set of experimentsFX that, when executed troughf , give rise
to observations inBX. For a comparison, we mentionbialgebras. A bialgebra [12] is a pair( f ,g) of
an algebraf : FX → X and a coalgebrag : X → BX having the same underlying setX. The algebra
is used to construct elements, the coalgebra to observe them. Every bialgebra is also a dialgebra (the
compositeg◦ f : FX → BX). Whereas a bialgebra specifies a set equipped with two separate, although
possibly nicely interacting, coalgebraic and algebraic operations, adialgebra specifies a set equipped
with operations that behave algebraically and coalgebraically at the same time. The interpretation of the
“algebraic operations” (the experiments) of a dialgebra does not yield a result, but rather an observation
on it. When using dialgebras, just like in algebras, the observer can formally specify a structure (the
experiment) that will be executed; just like in coalgebras,the observer interacts with the system in a
step-wise fashion: at each state, an experiment can be conducted, yielding observations and possibly
subsequent states, on which further experiments are possible.

Reminder: dialgebras specifyoperations on the elements of a set, that yieldobservations as a result.

We now define the underlying equivalence of a dialgebra.

Definition 6. (dialgebraic bisimilarity)Given a dialgebra(X, f ), dialgebraic bisimilarity is the relation
≈⊆ X ×X induced by the kernel of any homomorphismsh : (X, f ) → (Y,g) on the underlying setX.
That is, we say thatx≈ y ⇐⇒ ∃(Y,g).∃h : (X, f )→ (Y,g).h(x) = h(y).

1In [4], F andB just are required to have the same codomain, not to be endofunctors. The simplified definition we adopt is
sufficient for this paper.
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In the rest of the paper, we are going to see how to use dialgebras to model asynchrony. An example
characterisation of the equivalence induced by morphisms as a back-and-forth condition, as typical in
bisimilarity of LTSs, is given in Definition 12 and Theorem 1.

4 The asynchronous CCS

4.1 Syntax and operational semantics

Thecalculus of communicating systems(CCS) [6] is a simple language for studying interactive systems,
featuring interleaved parallel composition and synchronization over named channels. In this paper, we
use the asynchronous semantics. The definitions we adopt come from the ones for theπ-calculus in [1];
we refer the reader to that work for an in-depth study of asynchrony in process calculi.

Let C denote a countable set ofchannels. Define Li = C, Lo = {c̄|c ∈ C}, Lτ = {τ}, L = Li ∪
Lo∪Lτ , the set ofinput labels, output labels, internal labels, andlabels, respectively. These labels are
observations on a system, representing sending (¯c) or receiving (c) an input signal on a channelc, or
doing an internal computation stepτ .

Definition 7. (CCS syntax)The syntax of the asynchronous CCS is defined by the followinggrammar,
wherec ranges over a countable setC of channel names.

P ::= /0 | τ .P | c.P | c̄ | P ‖ P | P+Q

We omit the replication and restriction constructs. This isdone for ease of explanation as adding
them does not affect our proofs. From now on, letX denote the set of agents. In the syntax, /0 represents
the empty process, that does nothing;τ .P performs an internal computation step and then behaves asP;
c.P waits for an input signal on channelc, and then behaves asP; c̄ sends an output signal on channelc;
P1 ‖ P2 is the parallel composition ofP1 andP2; P+Q denotes non-deterministic choice.

Definition 8. (CCS operational semantics)The operational semantics is given in the form of a LTS
t : X → Pfin(L×X), defined by the following rules:

c.P
c

−→ P(in) τ .P τ
−→ P(tau) c̄

c̄
−→ /0(out)

P
α

−→ P′

P ‖ Q
α

−→ P′ ‖ Q
(par)

Q
α

−→ Q′

P ‖ Q
α

−→ P ‖ Q′
(par′)

P
c

−→ P′ Q
c̄

−→ Q′

P ‖ Q
τ

−→ P′ ‖ Q′
(syn)

P
α

−→ P′

P+Q
α

−→ P′
(sum)

Q
α

−→ Q′

P+Q
α

−→ Q′
(sum′)

Rules(in), (tau), and(out) are straightforward. Rules(par) and (par′) allow components to run in
parallel in an interleaved fashion. Rule(syn) allows a process that can do an input and a process that can
do an output to synchronise. Rules(sum) and(sum′) allow a non-deterministic choice to take place.

4.2 Asynchronous bisimilarity

We define asynchronous bisimulation and bisimilarity directly for CCS terms.

Definition 9. (CCS asynchronous bisimilarity)A relation R⊆ X×X is anasynchronous simulationif
and only if, whenever(x,y) ∈ R, andx

α
−→ x′, then there isy′ such that:
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• if α = τ or α = c̄ for somec, theny
α

−→ y′ and(x′,y′) ∈ R;

• if α = c for somec, thenc̄ ‖ y
τ

−→ y′ and(x′,y′) ∈ R
or, equivalently
if α = c for somec, then(x′,y′) ∈ Rand eithery

c
−→ y′ or y

τ
−→ y′′ with y′ = c̄ ‖ y′′.

An asynchronous bisimulationis a simulationRsuch thatR−1 is a simulation.Asynchronous bisimilarity
is the largest bisimulation.

We writex∼ y wheneverx is asynchronous bisimilar toy, or equivalently there is some asynchronous
bisimulationR such that(x,y) ∈ R. In asynchronous bisimilarity, input labels can be matched“loosely”
by a τ transition that stores an output process in parallel with the execution. We are going to see how
to turn this definition into dialgebraic bisimilarity. Before that, we remark that synchronous bisimilarity
(that would be obtained by employing strong bisimilarity onthe LTS from Definition 8) is included in
the asynchronous one. The inclusion is strict. Two processes that are not synchronous bisimilar but are
asynchronous bisimilar arec.c̄. /0+ τ . /0 andτ . /0 (example adapted from [1], where a thorough discussion
can be found).

5 Observing interactions

Asynchronous bisimilarity does not coincide with the coalgebraic bisimilarity obtained from the tran-
sition system of Definition 8. We define a dialgebra whose set of states is that of the CCS agents, and
where dialgebraic bisimilarity is asynchronous bisimilarity.

5.1 Dialgebra for the asynchronous CCS

First, we define, and fix hereafter, a specific pair of interaction and observation functors.

Definition 10. (CCS interaction and observation functors)We let the interaction functor beFX = X+
Lo×X, and the observation functor beBX = Pfin((Lo∪Lτ)×X).

For any setX, an elemente of the disjoint unionFX is either in the formx or (c̄,x), for c∈C and
x ∈ X. Roughly,e is the syntax of an experiment where we can either observe theexecution ofx, or
send a signal tox on channelc. An elementt of BX is a set of pairs(c̄,x′) or (τ ,x′) for c ∈ C and
x′ ∈ X. The elementt is a transition tox′ labelled with either the observation of an output signal on a
certain channel, or of an internal computation step. No input labels appear. Input is modelled as the
argument of a function, instead of as a side-effect. This is in line with the idea that input is an action of
the environment, not an action of the process.

We now define a(F,B)-dialgebra for the CCS. From now on, wheneverf is a dialgebra, we use the

shorthande
β

−→ f x′ to denote that(β ,x′) ∈ f (e), and omit f when clear from the context.

Definition 11. (CCS dialgebraic semantics)The (F,B)-dialgebra f : FX → BX, whereX is the set of
CCS processes equipped with the operational semantics of Definition 8, is defined by the following rules:

x
α

−→ x′ α = τ ∨α = c̄

x
α

−→ f x′
(run)

x
c

−→ x′

(c̄,x)
τ

−→ f x′
(in)

x
τ

−→ x′

(c̄,x)
τ

−→ f c̄ ‖ x′
(store)
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Premises of rules use the operational semantics of Definition 8. Rule(run) expresses the fact that
we can observe the output and internal computation steps of asystem. Rule(in) states that whenever
a processx can do input, the experiment(c̄,x) yields the observation of an internal computation step.
By Rule(store), whenever a process can do an internal computation step, then it can also store an input
signal from the environment for subsequent processing. Theobservations for the(in) and(store) rules
are the same, therefore an observer can not distinguish the application of either one of the two rules.

5.2 Characterising dialgebraic bisimilarity

A characterization of the equivalence induced by dialgebrahomomorphisms for the functorsF andB of
Definition 10 can be given as follows.

Definition 12. (Back-and-forth bisimilarity of dialgebras)Given a(F,B)-dialgebra f : FX → BX, a
relationR⊆ X×X is aback-and-forth simulationif and only if, for all (x,y) ∈ Randc∈C:

1. wheneverx
α

−→ f x′, there isy′ such thaty
α

−→ f y′ and(x′,y′) ∈ R;

2. whenever(c̄,x)
τ

−→ f x′, there isy′ such that(c̄,y)
τ

−→ f y′ and(x′,y′) ∈ R.

A bisimulation is a simulationR such thatR−1 is a simulation. Two elements ofX are saidbisimilar if
and only if there is a bisimulation relating them. The corresponding relation is called bisimilarity.

We writex≃ y to denote thatx is bisimilar toy.

Proposition 1. Back-and-forth bisimilarity is an equivalence relation.

Theorem 1. (back-and-forth vs. kernel)When F and B are as in Definition 10, dialgebraic bisimilarity
from Definition 6 and back-and-forth bisimilarity from Definition 12 coincide.

Proof. Fix a dialgebra(X, f ). First, consider a dialgebra(Y,g) and h : (X, f ) → (Y,g). We show
that ker h is a back-and-forth bisimulation, therefore it is includedin ≃. Assumehx= hy for some
x,y ∈ X. For all α ∈ L, by definition of homomorphism, we haveg(Fh(α ,x)) = Bh( f (α ,x)). There-
fore g(α ,hy) = Bh( f (α ,x)). Let (β ,x′) ∈ f (α ,x). Then(β ,hx′) ∈ Bh( f (α ,x)), therefore(β ,hx′) ∈
g(α ,hy) = g(Fh(α ,y)), thus by commutativity(β ,hx′) ∈ Bh( f (α ,y)). Then there is somey′ such that
(β ,y′) ∈ f (α ,y) andhx′ = hy′. This proves thatker h is a simulation. Notice that the kernel of a function
is an equivalence relation, therefore(ker h)−1 = ker h), thus proving thatker h is a bisimulation. For the
other direction of the proof, let[x] denote the equivalence class ofx in X/≃ . Consider the quotient dialge-
bra(X/≃ , f/≃), with f/≃(α , [x]) = {(β , [x′])|(β ,x′) ∈ f (x)}. Notice thatf/≃ is well defined by definition
of ≃. The quotient functionhx= [x] is obviously a homomorphism of dialgebras, and it is the casethat
wheneverx≃ y thenh(x) = h(y).

Finally, we prove that asynchronous and back-and-forth bisimilarity coincide.

Theorem 2. (asynchronous vs. back-and-forth)Asynchronous bisimilarity from Definition 9 and back-
and-forth bisimilarity coincide for the set X of CCS agents,that is: for all x,y∈ X, we have x∼ y if and
only if x≃ y. Therefore, by Theorem 1, asynchronous bisimilarity and dialgebraic bisimilarity coincide.

Proof. We provide the proof just for completeness, as it is immediate from the characterisation of asyn-
chronous bisimilarity as a 1-bisimilarity in [1]. We prove that∼ is a back-and-forth bisimulation. Sym-
metry, and Case 1 from Definition 12 are obvious. For Case 2, suppose(c̄,x)

τ
−→ x′. Then we distinguish

two cases.
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• if Rule (in) is applied to(c̄,x), we havex
c

−→ x′. We now look at Definition 9. Sincex∼ y, we
havec̄ ‖ y

τ
−→ y′ with x′ ∼ y′. We inspect the rules in Definition 8. The rules that can be applied

to c̄ ‖ y are(par) and(syn) (and(par′) which is treated in the same way as(par)). Therefore we
have eithery

τ
−→ y′′ with y′ = c̄ ‖ y′′, or y

c
−→ y′. By applying either Rule(in) or (store) from

Definition 11, we obtain(c̄,y)
τ

−→ f y′ and sincex′ ∼ y′ we get the thesis.

• if Rule (store) is applied to(c̄,x), thenx
τ

−→ x′′ with x′ = c̄ ‖ x′′. Therefore,y
τ

−→ y′′ andx′′ ∼ y′′.
It is well known and easy to prove thatx′′ ∼ y′′ =⇒ c̄ ‖ x′′ ∼ c̄ ‖ y′′. Therefore by applying Rule
(store) we get(c̄,y)

τ
−→ y′ andx′ ∼ y′, q.e.d.

Next, we prove that≃ is an asynchronous bisimulation. Supposex≃ yandx
α

−→ x′. We look at Definition
9. The cases forα = τ or α = c̄ are obvious. Supposeα = c for somec. By Rule(in) in Definition 11
we have(c̄,x)

τ
−→ f x′ and byx≃ y we get(c̄,y)

τ
−→ f y′ with x′ ≃ y′. Either Rule(in) or (store) from

Definition 11 can be applied to(c̄,y). Therefore eithery
c

−→ y′, or y
τ

−→ y′′ with y′ = c̄ ‖ y′′. In both
cases, we have ¯c ‖ y

τ
−→ y′ andx′ ≃ y′, from which the thesis.

6 Discussion on further examples

The example that we present is very simple, and purposed to illustrate just the idea of an observer that
can interact with the examined system. More interesting dialgebras can be described by either moving
to a richer category thanSet, or by changing the interaction and observation functor. Webriefly describe
some possible constructions, whose detailed study is left for future work.

Complex systems Consider dialgebras of the formf : Pfin(X)→ L×Pfin(X). At each step in time,
from a setp ∈ Pfin(X), a side effect inL is observed, and a new set of elementsp′ is obtained. Such
a function may be used to represent systems where the semantics depends on a number of entities that
collaborate. At each step in time, the system evolves, some old elements may be “destroyed” and new
elements can be created, while some side effect inL takes place. The behaviour of the system ismore
than the sum of its parts, in the sense that it is not determined by the behaviour of singletons. The
semantics of{x}, that is,x in isolation, may be totally unrelated to the semantics of, say, the set{x,y}.
Notice that f : Pfin(X)→ L×Pfin(X) is also a coalgebra inSetfor the functorT(X) = L×X, having
Pfin(X) as underlying set. However, it’s obvious that the obtained notion of bisimulation is not the
same, even by just looking at types. Seeingf as a coalgebra, one gets a relation onPfin(X); seeing it
as a dialgebra, one gets a relation onX, that takes into account how elements behave when joined to the
same sets of other elements.

Chemical reactions In many cases programming language semantics has been inspired by chemi-
cal and biological processes. Consider the finite multi-setfunctor M (X) = {m : X → N | {x | m(x) 6=
0} is finite}. Think of X as a set of elements that take part inreactionsin variable quantities. A dialgebra
f : M (X) → M (X) specifies how a given reaction evolves by creating a multi-set of products from a
multi-set of reagents. The obtained notion of bisimilaritymakes reagents equivalent when substituting
one with the other in any reaction yields equivalent products, in the same quantities.

The π-calculus A very similar development to the one presented here, exemplifying the use of a dif-
ferent base category, is the semantics of the asynchronousπ-calculus. Similarly to what happens for
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the synchronous pi-calculus and coalgebras [3], one would use the functor categorySetI , whereI is the
category of of finite sets and injections. The semantics would involve the endofunctor for fresh name
allocationδ which is typical of functor categories, which is needed to properly model bound output.
Dialgebras usingδ correspond to Mealy machines with name allocation along output, whose study is
possibly of interest independently from the specific application of theπ-calculus.

Testing semantics Even though we spoke of interaction and observation, we did not mention so far
the family of testing equivalences(see [7]), where interaction and observation play a key role. Testing
equivalences are defined as those obtained by putting a process in parallel with an arbitrary other process
making use of a distinguished channel. Output on such channel signals that a test has been successful.
Binary dialgebras come to mind as an effective way to represent such kinds of equivalence relations.
However, in testing equivalences, one is not able to observehow many synchronisation steps between
processes are needed before the success signal is sent. Sucha semantics could be defined by observing
the behaviour of a process as a single “big step”; however, this would defeat the implicit coinductive
properties of dialgebras. A common feature of dialgebras and coalgebras is that observations lead to
successor states, and then in a coinductive fashion furtherexperiments/observations can be done on these
successor states. However, in the case of testing equivalences, there is no successor state: once success
is signalled, the experiment is concluded. Further investigation may yield non-obvious coinductive ways
to represent these kind of relations on processes.

7 Conclusions and future work

The construction we have seen in§5 has obvious similarities with barbed equivalence and withthe asyn-
chronous semantics of theπ-calculus by Honda and Tokoro (both described in [1]). That’s expectable,
since in the end we are trying to describe the same equivalence relation.

In the case of the asynchronous CCS, it is not difficult to recover a coalgebraic semantics. This is done
by translating the dialgebraic semantics along the isomorphismsX +Lo×X → Pfin((Lo+Lτ)×X) ∼=
(Li +1)×X →Pfin((Lo+Lτ)×X)∼= X → (Pfin((Lo+Lτ)×X))Li+1 (indeed, after noting thatLi

∼= Lo).
Notice that the latter is genuinely a coalgebra for the functor (Pfin(Lo+Lτ)×−)Li+1. It is not difficult to
see that such a translation preserves and reflects the equivalence induced by kernels of homomorphisms
(of dialgebras in one case, of coalgebras in the other).

Even though it might be interesting to derive a coalgebraic semantics for the asynchronous CCS,
we do not discuss the details of such a construction: the purpose of using this language as an example
is not to provide a new semantics for asynchronous process calculi. Rather, the asynchronous CCS is
possibly the simplest language where it makes sense to distinguish between moves of the environment
and moves of the system being examined in order to define the semantics. Our aim is to show how such a
distinction is naturally encoded using dialgebras, and their built-in definition of behavioural equivalence
makes them appealing as an alternative to coalgebras in the specification of interactive systems.

We summarise below some possible future directions and openquestions.

Inductively defined dialgebras. We defined a dialgebra for the asynchronous CCS by assuming an
existing operational semantics. It is indeed possible to specify such a semantics using dialgebras. First,
because coalgebras actuallyare dialgebras withF = Id. Moreover, one could easily define an(F,B)-
dialgebra, forF and B as in §5, directly by induction on terms forming the set of agentsX, in the
same fashion of bialgebras and distributive laws. It would be relevant to study distributive laws and
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specification languages for inductively defined dialgebras, following the same route of bialgebras. Doing
so, it would be possible to guarantee that a given dialgebraic semantics of a calculus is also a congruence
with respect to the operators of the algebra describing its syntax.

Logics Dialgebras are equipped in [9] withdialgebraic specifications, even though neither a full ade-
quacy result relating logical equivalence and bisimilarity, nor Birkoff-style theorems are established. It
ought to be clarified what is a logical formalism that adequately specifies dialgebras. Such a logic would
be an intermediate language between modal and equational logic. The work [8], relating dialgebras to
the so-calledabstract logicsis possibly relevant. This research line should take advantage of, and extend,
the many existing studies in the field of coalgebraic modal logic.

Non-polynomial interaction functors Dialgebras are parametrised in the interaction and observation
functors. Non-polynomial interaction functors, such as e.g. a probability distribution over the input
values, could provide valuable case studies. Modulo the observation functor being “probabilised”, too,
such dialgebras may be used to represent a kind of probabilistic Mealy machines, where the probability
distribution of the input determines that of the output. It should be understood whether in the case of
non-polynomial interaction functors there is some gain in expressive power w.r.t. coalgebras.

Minimisation Coalgebras have an elegant and simple minimisation procedure, based oniteration
along the terminal sequenceand generalising partition refinement for automata. Are there canonical
models in dialgebras? The results in [9] seem to point out that such a theory would be very difficult
in the presence of so-calledbinary methods, due to non-closure of bisimulations under union, and the
lack of a final dialgebra. However, the (dialgebraic) bisimilarity quotient may still exist in interesting
cases. More work is required on this side. The precise conditions when final dialgebras and bisimilarity
quotients exist should be clarified. Also notice that in [9]F is assumed to be polynomial. Since we seek
for non-polynomial interaction functors too, we expect that some work on the side of canonical models
will be needed in order to understand how bisimilarity of dialgebra can be decided, possibly by finite
representations derived from the definitions ofF andB.
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