
Bliudze, S., Bruni, R., Carbone, M., Silva, A. (Eds.); ICE 2011
EPTCS 59, 2011, pp. 52–67, doi:10.4204/EPTCS.59.5

c© V. Bono, L. Padovani
This work is licensed under the
Creative Commons Attribution License.

Polymorphic Endpoint Types for Copyless Message Passing

Viviana Bono Luca Padovani
Dipartimento di Informatica, Università di Torino, Italy

We presentPolySing♯, a calculus that models process interaction based on copyless message passing,
in the style of Singularity OS. We equip the calculus with a type system that accommodates polymor-
phic endpoint types, which are a variant of polymorphic session types, and we show that well-typed
processes are free from faults, leaks, and communication errors. The type system is essentially linear,
although linearity alone may leave room for scenarios wherewell-typed processes leak memory. We
identify a condition on endpoint types that prevents these leaks from occurring.

1 Introduction

Singularity OS is the prototype of a dependable operating system where processes share the same address
space and interact with each other solely by message passingover asynchronous channels. The overhead
of communication-based interactions is tamed by copyless message passing: onlypointersto messages
are physically transferred from one process to another. Static analysis of Singularity processes guarantees
process isolation, namely that every process can only access memory it owns exclusively.

In [2] we presentedCoreSing♯, a formalization of the core features ofSing♯ – the language used
for the implementation of Singularity OS – along with a type system ensuring that well-typed processes
are free from communication errors, memory faults, and memory leaks. At first sight it might seem
that these properties can be trivially enforced through a linear type system based on session types [10,
11]. However, in [2] we remarked how linearity alone can be too restrictive in some contexts and too
permissive in others. To illustrate why linearity can be toorestrictive, consider the code fragment

expose (a) { send(b, arg, *a); *a := new T(); }

which dereferences the pointera and sends*a on the endpointb. Linearity is violated right after the
send(arg, b, *a) command, since*a is owned both by the sender (indirectly, througha) as well as
by the receiver. The constructexpose is used by theSing♯ compiler to keep track of memory ownership.
In particular,Sing♯ allows pointer dereferentiation only withinexpose blocks. The semantics of an
expose(a) block is to temporarily transfer the ownership of*a from a to the process exposing the
pointer. If the process still owns*a at the end of theexpose block, the construct is well typed. In [2] we
showed that all we need to capture the static semantics ofexpose(a) blocks is to distinguish cells with
type∗t (whose content, of typet, is owned by the cell) from cells with type∗• (whose content is owned
directly by the process). At the beginning of theexpose block, a is accessed and its type turns from∗t
to ∗•; within the block it is possible to (linearly) use*a; at the end of the block,*a is assigned with the
pointer to a newly allocated object that the process owns, thus turninga’s type from∗• back to some∗s.

An example where linearity can be too permissive is given by the code fragment

(e, f) := open(); send(e, arg, f); close(e); (1)

which creates the two endpointse andf of a channel, sendsf as the argument of anarg-tagged message
one, and closese. This code usese andf linearly and is well typed by associatinge andf with suitable

http://dx.doi.org/10.4204/EPTCS.59.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

V. Bono, L. Padovani 53

endpoint typesT and S, whereT = !arg(S).end and S= µα .?arg(α).end. Observe that the code
fragment (1) usese in accordance with typeT and thatT andSaredual endpoint types(they describe
complementary actions). Yet, the code generates a memory leak: after theclose instruction, no reference
to f is available, therefore thearg-tagged message will never be received andf will never be deallocated.
In [2] we have shown that the leak produced by this code originates from the recursive typeS and can
be avoided by imposing a simple restriction on endpoint types. The idea is to define a notion ofweight
for endpoint types which roughly gives the “depth” of the message queues in the endpoints having those
types and to restrict endpoint types to those having finite weight. Then, one can show that the code (1) is
well typed only if endpoint types with infinite weight are allowed.

In this work we presentPolySing♯, a variant ofCoreSing♯ where we addbounded polymorphismto
endpoint types, along the lines of [8], while preserving allthe properties mentioned earlier. For instance,
the polymorphic endpoint type !m〈α〉(α).?m(α).end denotes an endpoint on which it is possible to send
anm-tagged message with an argument of any type, and then receive anotherm-tagged message whose
argument has the same type as that of the first message. It is possible to specify bounds for type variables,
like in !m〈α 6 t〉(α).?m(α).end, to denote that the type variableα ranges over anysubtypeof t, and to
recover unconstrained polymorphism by devising a typeTop that is supertype of any other type.

Now, it may come as a surprise that, when polymorphic endpoint types are allowed, the code frag-
ment (1) can be declared well typed without resorting to recursive types by takingT = !arg〈α〉(α).end
andS= ?arg〈α〉(α).end. Since the typeT of e is polymorphic,e accepts a message with an argument
of any type and, in particular, a message with argumentf. Fortunately, a smooth extension of the finite-
weight restriction we have introduced in the monomorphic case rules out this problematic example. The
idea is to estimate the weight of type variables by looking attheir bound. InT andS above, the type
variableα has no bound (or, to be precise, is bounded by the top typeTop) and therefore is given infinite
weight. Whenα occurs in a constraintα 6 t, we estimate the weight ofα to be the same as the weight
of t. The estimation relies on a fundamental relationship between weights and subtyping, whereby the
weight ofs is always smaller than or equal to the weight oft if s6 t. We show that forbidding the output
of messages whose argument has a type with infinite weight allows us to prove the absence of leaks,
together with the other desired properties. Our work is the first to formalize polymorphic endpoint types,
which are effectively described as a feature of Singularitycontracts [13] even though, to the best of our
knowledge, they never made it to the prototype implementation of Singularity. Also, the availability of
polymorphic endpoint types allows us to encode linear mutable cells. This renders the∗t and∗• types
superfluous and makes our model even more essential with respect to the one presented in [2].

The rest of the paper is organized thus: Section 2 presents anexample to introduce all the fundamental
concepts (endpoint types, subtyping, bounded polymorphism) of this work; in Section 3 we define the
syntax and operational semantics ofPolySing♯ and we formalize the notion of well-behaved process as a
process where faults, leaks, and communication errors do not occur; Section 4 defines the type system for
PolySing♯ and presents a soundness result (well-typed processes are well behaved). We discuss related
work in Section 5 and we draw some conclusions in Section 6. Proofs and additional technical material
can be found in the long version, which is available at the authors’ home pages.

2 An example

It has already been observed in the recent literature that session types can conveniently describe the
interface of distributed objects. For instance, the session type

SellerT= µα .(!offer(nat).?response(nat).α ⊕ !buy(string).end⊕ !leave().end)

54 Polymorphic Endpoint Types for Copyless Message Passing

may be used to describe (part of) the behavior of aSeller object as it can be used byBuyer. Buyer may
make an offer regarding an item he or she is interested to buy by sending aoffer message and receiving
a counteroffer fromSeller. After this exchange of messages, the protocol repeats itself. Alternatively,
Buyer maybuy the item by sending a message that contains the delivery address, or it mayleave the
virtual shop.Buyer andSeller are connected by a pair(c,d) of related endpoints:c : SellerT is given
to Buyer which can use it according to the protocolSellerT; d : SellerT is used bySeller and its
typeSellerT is the dual ofSellerT, where inputs have been replaced by outputs and vice versa. This
guarantees thatBuyer andSeller interact without errors.

Suppose now that we want to implement aBroker to whichBuyer can delegate the bargaining proto-
col with Seller. We may describeBroker in some pseudo-language, as follows:

1 BROKER(b : BrokerT) {

2 p0 := receive(b, price);

3 x := receive(b, seller);

4 p := p0;

5 while (better_deal(p0, p)) {

6 send(x, offer, compute_new_offer(p0, p));
7 p := receive(x, response);

8 }

9 send(b, price, p);
10 send(b, seller, x);
11 }

Buyer andBroker interact by means of another pair(a,b) of related endpoints,a : BrokerT in use by
Buyer (not shown here) andb : BrokerT in use byBroker. Broker accepts an initialprice p0 and the
endpoint ofSeller from Buyer (lines 2–3). Then, it engages the bargaining protocol withSeller (lines
4–8) until the best dealp is achieved. Finally, it returnsp and theSeller’s endpoint toBuyer (lines 9–10)
so thatBuyer can conclude the interaction withSeller appropriately.

Buyer interacts withBroker on the endpointa, whose type can be described by:

BrokerT= !price(nat).!seller(SellerT).?price(nat).?seller(SellerT).end

Observe thatBrokerT might be considered too precise, sinceBroker uses only a strict subset of the
functionalities supported bySeller and described inSellerT. To maximize reusability, it could be more
appropriate to replace the typeSellerT in BrokerT with

BargainT= µα .!offer(nat).?response(nat).α

which specifies the minimum set of functionalities ofSeller thatBroker actually uses.Buyer can still
delegate an endpoint of typeSellerT to Broker sinceSellerT is a subtype ofBargainT, which we
express as the relationSellerT6 BargainT. This is consistent with the notion of subtyping in object-
oriented languages: if we think of the message tags inSellerT as of the methods provided bySeller,
thenBargainT is one possibleinterfacethatSeller implements and in fact is the least interface needed
by Broker. The problem, in this case, is that when an endpoint is delegated,Buyer can no longer use it
(endpoints are linear resources). It is true thatBroker eventually returnsSeller’s endpoint toBuyer, but
by that time its type has been widened toBargainT andBuyer can no longer access the functionalities
in SellerT that have been hidden inBargainT. This lost information can be recovered using bounded
polymorphism and by giving a more precise type toa:

BrokerT= !price(nat).!seller〈α 6 BargainT〉(α).?price(nat).?seller(α).end

V. Bono, L. Padovani 55

Table 1: Syntax ofPolySing♯ processes and of heap objects.

P ::= Process
0 (idle)

| X (variable)
| close(u) (close channel)
| open(a,a).P (open channel)
| u!m(u).P (send)
| ∑i∈I u?mi(xi).Pi (receive)
| P⊕P (choice)
| P |P (composition)
| rec X.P (recursion)

µ ::= Heap
/0 (empty)

| a 7→ [a,q] (endpoint)
| µ ,µ (composition)

q ::= Queue
ε (empty)

| m(a) (message)
| q :: q (composition)

In this case, the protocol still allowsBuyer to send any endpoint corresponding toSeller whose
type conforms to (is a subtype of)BargainT, but it also specifies that the endpoint eventually returned
to Buyer has the same type as the one sent earlier. In general, once an endpoint has been delegated,
the delegator loses access to the endpoint as well as to any information about its type. This loss of
information, which alone justifies the interest for boundedpolymorphism in sequential programming, is
likely to occur much more frequently in our context where many resources are linear.

3 Language syntax and semantics

We fix some notation: we useP, Q, . . . to range over processes anda, b, . . . to range overheap pointers
(or simply pointers) taken from some infinite setPointers; we usex, y, . . . to range overvariables
taken from some infinite setVariables disjoint fromPointers and we letu, v, . . . range overnames,
which are elements ofPointers∪Variables; finally, we letX range overprocess variables.

The language of processes, defined by the grammar in Table 1, essentially is a monadic pi-calculus
equipped with tag-based message dispatching and primitives for handling endpoints. The process0 is
idle and performs no action. TermsrecX.PandX are used for building recursive processes, as usual. The
processu!m(v).P sends a messagem(v) on the endpointu and continues asP. A messageis made of atag
m along with itparameter v. The term∑i∈I u?mi(xi).Pi denotes a process that waits for a message from
the endpointu. The tagmi of the received message determines the continuationPi where the variable
xi is instantiated with the parameter of the message. We assumethat in every such term themi ’s are
pairwise distinct. Sometimes we will writeu?m1(x1).P1+ · · ·+u?mn(xn).Pn in place of∑n

i=1u?mi(xi).Pi.
The termopen(a,b).P denotes a process creating achannel, represented as two peer endpointsa andb.
The processclose(u) closes the endpoint located atu. The processesP⊕Q andP |Q are standard and
respectively denote the non-deterministic choice and the parallel composition ofP andQ. The sets of
free and bound names of every processP, respectively denoted byfn(P) andbn(P), are standard: the
constructopen(a,b).P binds botha andb in P, while ∑i∈I u?mi(xi).Pi bindsxi in Pi for eachi ∈ I . The
constructrec X is the only binder for process variables. We adopt the Barendregt convention for both
variables and process variables.

Example 3.1(linear mutable cell). The following process models a linear mutable cell located at c:

CELL(c) = rec X.(c?set(x).c!get(x).X +c?free().close(c))

56 Polymorphic Endpoint Types for Copyless Message Passing

Table 2: Reduction of systems.
(R-OPEN)
(µ ;open(a,b).P)→ (µ ,a 7→ [b,ε],b 7→ [a,ε];P)

(R-REC)
(µ ;rec X.P)→ (µ ;P{rec X.P/X})

(R-CHOICE)
(µ ;P⊕Q)→ (µ ;P)

(R-SEND)
(µ ,a 7→ [b,q],b 7→ [a,q′];a!m(c).P)→ (µ ,a 7→ [b,q],b 7→ [a,q′ :: m(c)];P)

(R-RECEIVE)
k∈ I

(µ ,a 7→ [b,mk(c) :: q];∑i∈I a?mi(xi).Pi)→ (µ ,a 7→ [b,q];Pk{c/xk})

(R-PAR)
(µ ;P)→ (µ ′;P′)

(µ ;P |Q)→ (µ ′;P′ |Q)

The user of the cell interacts with it on the peer endpoint of c. Initially, the cell is empty and offers
to its user the possibility of setting (with aset-tagged message) the content of the cell with a pointer
x, or deallocating (with afree-tagged message) the cell. In the first case, the cell transits into a new
state where the only possible operation is retrieving (witha get-tagged message) the content of the cell.
At that point, the cell returns to its original state. The cell is linear in the sense that it allows setting
its content only if the previous content has been retrieved.This cell implementation resembles that of a
1-place buffer, but we retain the name “cell” for continuitywith our previous work [2]. �

Heaps, ranged over byµ , . . . , are finite maps from pointers to heap objects represented asterms
defined according to the syntax in Table 1: the heap /0 is empty; the heapa 7→ [b,q] is made of an
endpoint located ata which is a structure referring to the peer endpointb and containing aqueue qof
messages waiting to be read froma. Heap compositionsµ ,µ ′ are defined only when the domains of the
heaps being composed, which we denote bydom(µ) anddom(µ ′), are disjoint. We assume that heaps
are equal up to commutativity and associativity of composition and that /0 is neutral for composition.
Queues, ranged over byq, . . . , are finite ordered sequences of messagesm1(c1) :: · · · :: mn(cn). We build
queues from the empty queueε and concatenation of messages by means of ::. We assume that queues
are equal up to associativity of :: and thatε is neutral for ::.

We define the operational semantics of processes as the combination of a structural congruence rela-
tion and a reduction relation. Structural congruence, denoted by≡, is the least congruence relation that
includes alpha conversion on bound names and the usual laws

P|0≡ P P|Q≡ Q |P P| (Q |R)≡ (P|Q) |R

PolySing♯ processes communicate with each other by means of the heap. Therefore, the reduction
relation defines the transitions ofsystemsinstead of processes, where a system is a pair(µ ;P) of a heap
µ and a processP. The reduction relation→, inductively defined in Table 2, is described in the following
paragraph. (R-OPEN) creates a new channel consisting of two fresh endpoints which refer to each other
and have an empty queue. (R-CHOICE) (and its symmetric, omitted) states that a processP⊕Q may
autonomously reduce to eitherP or Q leaving the heap unchanged. (R-SEND) describes the output of a
messagem(c) on the endpointa. The message is enqueued at the right end ofa’s peer endpoint queue.
(R-RECEIVE) describes the input of a message from the endpointa. The message at the left end of
a’s queue is removed from the queue, its tag is used for selecting some branchk ∈ I , and its parameter
instantiates the variablexk. (R-PAR) (and its symmetric, omitted) expresses reductions under parallel
composition. The heap is treated globally, even when it is only a sub-process to reduce. (R-REC) is the
usual unfolding of recursive processes. Observe that the Barendregt convention makes sure that in the

V. Bono, L. Padovani 57

unfolding P{rec X.P/X} of a recursive process no name occurring free inP is accidentally captured,
becausefn(P)∩ bn(P) = /0. Not shown in Table 2 is the usual rule (R-STRUCT) describing reductions
modulo structural congruence, which plays an essential role in ensuring thatopen(a,b).P is never stuck,
becausea andb can always be alpha converted to some pointers not occurringin dom(µ). There is
no reduction forclose(a) processes. In principle,close(a) should deallocate the endpoint located at
a by removing its association from the heap. However, since peer endpoints mutually refer to each
other, removing one endpoint could leave a dangling reference from the corresponding peer. Also, it is
convenient to treatclose(a) processes as persistent because, in this way, we keep track of the pointers
that have been properly deallocated. We will see that this information is crucial in the definition of
well-behaved processes (Definition 3.2). A process willingto deallocate a pointera and to continue as
P afterwards can be modelled asclose(a) |P. In the following we write⇒ for the reflexive, transitive
closure of→ and we write(µ ;P) X→ if there exist noµ ′ andP′ such that(µ ;P)→ (µ ′;P′).

In this work we characterize well-behaved systems as those that are free from faults, leaks, and
communication errors: afault is an attempt to use a pointer not corresponding to an allocated object or
to use a pointer in some way which is not allowed by the object it refers to; aleak is a region of the
heap that some process allocates and that becomes unreachable because no reference to it is directly or
indirectly available to the processes in the system; acommunication erroroccurs if some process receives
a message of unexpected type. We conclude this section formalizing these properties. To do so, we need
to define the reachability of a heap object with respect to a set of root pointers. Intuitively, a processP
may directly reach any object located at some pointer in the set fn(P) (we can think of the pointers in
fn(P) as of the local variables of the process stored in its stack);from these pointers, the process may
reach other heap objects by reading messages from other endpoints it can reach.

Definition 3.1 (reachable pointers). We say that c isreachablefrom a inµ , notation c≺µ a, if a 7→ [b,q ::
m(c) :: q′] ∈ µ . We write c≺∗

µ a for the reflexive, transitive closure of≺µ . Let reach(A,µ) = {c | ∃a∈
A : c≺∗

µ a}.

We now define well-behaved systems formally.

Definition 3.2 (well-behaved process). We say that P iswell behavedif (/0;P)⇒ (µ ;Q) implies:

1. dom(µ) = reach(fn(Q),µ);
2. Q≡ P1 |P2 impliesreach(fn(P1),µ)∩ reach(fn(P2),µ) = /0;

3. Q≡ P1 |P2 and (µ ;P1) X→ where P1 does not have unguarded parallel compositions imply either
P1 = 0 or P1 = close(a) or P1 = ∑i∈I a?mi(xi).Pi and a 7→ [b,ε] ∈ µ .

In words, a processP is well behaved if every residual ofP reachable from a configuration where the
heap is empty satisfies a number of conditions. Conditions (1) and (2) guarantee the absence of faults
and leaks. Indeed, condition (1) states that every pointer to the heap is reachable by one process, and
that every reachable pointer corresponds to an object allocated on the heap. Condition (2) states that
processes are isolated, namely that the sets of reachable pointers corresponding to different processes are
disjoint. Since processes of the formclose(a) are persistent, this also guarantees the absence of faults
where a process tries to use an endpoint that has already beendeallocated, or where the same endpoint is
deallocated twice. Condition (3) guarantees the absence ofcommunication errors, namely that if(µ ;Q)
is stuck (no reduction is possible), then it is because everynon-terminated process inQ is waiting for a
message on an endpoint having an empty queue. This configuration corresponds to a genuine deadlock
where every process in some set is waiting for a message that is to be sent by another process in the same
set. We only consider initial configurations with an empty heap for two reasons: first, we take the point
of view that initially there are no allocated objects; second, since we will need a well-typed predicate for

58 Polymorphic Endpoint Types for Copyless Message Passing

Table 3: Syntax of types.

T ::= Endpoint Type
end (termination)

| α (variable)
| !{mi〈αi 6 ti〉(si).Ti}i∈I (internal choice)
| ?{mi〈αi 6 ti〉(si).Ti}i∈I (external choice)
| µα .T (recursive type)

t ::= Type
Top (top type)

| T (endpoint type)

heaps and we do not want to verify heap well-typedness at runtime, we will make sure that the empty
heap is trivially well typed.

4 Type system

We introduce some notation for the type system: we assume an infinite set oftype variablesranged
over byα , β , Types are ranged over byt, s, . . . while endpoint types are ranged over byT, S,
The syntax of types and endpoint types is defined in Table 3. Anendpoint type describes the behavior
of a process with respect to a particular endpoint. The process may send messages over the endpoint,
receive messages from the endpoint, and deallocate the endpoint. The endpoint typeend denotes an
endpoint on which no further input/output operation is possible and that can be deallocated. An endpoint
type !{mi〈αi 6 ti〉(si).Ti}i∈I denotes an endpoint on which a process may send any messagemi with
i ∈ I . The message carries an argument of typesi and the type variableαi can be instantiated with any
subtype of the boundti (subtyping will be defined shortly). Depending on the tagmi of the message, the
endpoint can be used thereafter according to the endpoint type Ti. In a dual manner, an endpoint type
?{mi〈αi 6 ti〉(si).Ti}i∈I denotes and endpoint from which a process must be ready to receive any message
mi with i ∈ I . Again, si denotes the type of the message’s argument, whileti is the bound for the type
variableαi . Depending on the tagmi of the received message, the endpoint is to be used accordingto Ti.
Termsα andµα .T can be used to specify recursive behaviors, as usual. Types are either endpoint types
or the top typeTop, which is supertype of any other (endpoint) type.

Here are some handy conventions regarding types and endpoint types:

• we sometimes use an infix notation for internal and external choices and write !m1〈α1 6 t1〉(s1).T1⊕
·· · ⊕ !mn〈αn 6 tn〉(sn).Tn instead of !{mi〈αi 6 ti〉(si).Ti}i∈{1,...,n} and ?m1〈α1 6 t1〉(s1).T1 + · · ·+
?mn〈αn 6 tn〉(sn).Tn instead of ?{mi〈αi 6 ti〉(si).Ti}i∈{1,...,n};

• we omit the bound when it isTop and write, for example, !m〈α〉(s).T in place of !m〈α 6Top〉(s).T;

• we omit the bound specification〈·〉 altogether when useless (if the type variable occurs nowhere
else) and write, for example, !m(s).T;

• we omit the type of the argument when irrelevant.

We have standard notions of free and bound type variables for(endpoint) types. The only binders are
µ and the bound constraints for messages. In particular,µα .T bindsα in T and †m〈α 6 t〉(s).T where
†∈ {!,?} bindsα in s and inT but not int. We adopt the Barendregt convention for type variables. In
what follows we will consider endpoint types modulo renaming of bound variables and folding/unfolding
of recursions, that isµα .T = T{µα .T/α} whereT{µα .T/α} is the endpoint type obtained fromT by
replacing each free occurrence ofα with µα .T.

V. Bono, L. Padovani 59

The duality between inputs and outputs induces dual bounding modalities. In particular, a process
using an endpoint with type !m〈α 6 t〉(s).T may choose a particulart ′ 6 t to instantiateα and use
T{t ′/α} accordingly. In other words, the variableα is universally quantifiedover all the subtypes oft.
Dually, a process using an endpoint with type ?m〈α 6 t〉(s).T does not know the exact typet ′ 6 t with
which α is instantiated, since this type is chosen by the sender. In other words, the type variables of an
external choice areexistentially quantifiedover all the subtypes of the corresponding bounds.

Not every term generated by the grammar in Table 3 makes sense. Type variables bound by a recur-
sionµ must be guarded by a prefix (therefore a non-contractive endpoint type such asµα .α is forbidden)
and type variables bound in a constraint as in !m〈α 6 t〉(s).T can only occur ins and within the prefixes
of T. We formalize this last requirement as a well-formedness condition for types denoted by a judgment
I ,O ⊢ t whereI is a set of so-calledinner variables(those that can occur only within prefixes) andO

is a set of so-calledouter variables(those that can occur everywhere):

I ,O ⊢ end I ,O ⊢ Top
α ∈ O \I

I ,O ⊢ α
I ,O ∪{α} ⊢ T

I ,O ⊢ µα .T

†∈ {!,?} /0,I ∪O ⊢ ti
(i∈I) /0,I ∪O ∪{αi} ⊢ si

(i∈I)
I ∪{αi},O ⊢ Ti

(i∈I)

I ,O ⊢ †{mi〈αi 6 ti〉(si).Ti}i∈I

We say thatt is well formed if /0, /0 ⊢ t is derivable. Observe that well-formed (endpoint) types are
closed. Well formedness restricts the expressiveness of types, in particular types such as !m〈α 6 t〉(s).α
and ?m〈α 6 t〉(s).α are forbidden because ill formed. We claim that ill-formed types have negligible
practical utility: a process that instantiatesα with S6 T in !m〈α 6 T〉(s).α precisely knows its behavior
after the output operation; dually, a process that receivesa message from an endpoint with type ?m〈α 6

T〉(s).α cannot do any better than assuming thatα has been instantiated withT.
Duality expresses the fact that two processes accessing peer endpoints interact without errors if they

behave in complementary ways: if one of the two processes sends a message, the other process waits for
a message; if one process waits for a message, the other process sends; if one process has finished using
an endpoint, the other process has finished too.

Definition 4.1 (duality). We say thatD is aduality relationif (T,S) ∈ D implies either

• T = S= end, or

• T = ?{mi〈αi 6 ti〉(si).Ti}i∈I and S= !{mi〈αi 6 ti〉(si).Si}i∈I and(Ti,Si) ∈ D for every i∈ I,

• T = !{mi〈αi 6 ti〉(si).Ti}i∈I and S= ?{mi〈αi 6 ti〉(si).Si}i∈I and(Ti,Si) ∈ D for every i∈ I.

We say that T and S aredual if (T,S) ∈ D for some duality relationD .

It is easy to see that ifT andS1 are dual andT andS2 are dual, thenS1 = S2. In other words, the
duality relation induces a function· such thatT andT are dual for everyT.

An important property of well-formed endpoint types is thatduality does not affect their inner vari-
ables. Therefore, duality and the instantiation of inner variables commute, in the following sense:

Proposition 4.1. Let{α}, /0⊢ T. ThenT{s/α} = T{s/α}.

We now define subtyping. Because of bound constraints on typevariables, subtyping is relative to
an environment∆ = α1 6 t1, . . . ,αn 6 tn which is an ordered sequence of constraints such that eachαi

may only occur in thet j ’s with j > i. We writedom(∆) for the domain of∆ and∆(αi) to denote the
boundti associated with the rightmost occurrence ofαi ∈ dom(∆); we use• to denote the empty bound
environment. Subtyping is fairly standard, therefore we provide only a coinductive characterization (an
equivalent deduction system restricted to finite endpoint types can be found in [8]).

60 Polymorphic Endpoint Types for Copyless Message Passing

Definition 4.2 (subtyping). We say thatS is a coinductive subtypingif (∆, t,s) ∈ S implies either:

1. t = s, or

2. s= Top, or

3. t = α ∈ dom(∆) and(∆,∆(α),s) ∈ S , or

4. t = ?{mi〈αi 6 ti〉(si).Ti}i∈I and s= ?{mi〈αi 6 ti〉(s′i).Si}i∈J with I ⊆ J and((∆,αi 6 ti),si ,s′i) ∈ S

and((∆,αi 6 ti),Ti ,Si) ∈ S for every i∈ I, or

5. t = !{mi〈αi 6 ti〉(si).Ti}i∈I and s= !{mi〈αi 6 ti〉(s′i).Si}i∈J with J⊆ I and ((∆,αi 6 ti),s′i ,si) ∈ S

and((∆,αi 6 ti),Ti ,Si) ∈ S for every i∈ I.

We write∆ ⊢ t 6 s if (∆, t,s) ∈ S for some coinductive subtypingS and t6 s if • ⊢ t 6 s.

Item (1) states that subtyping is reflexive; item (2) states thatTop is indeed the top type; items (4)
and (5) are the usual covariant and contravariant rules for inputs and outputs respectively. Observe that
subtyping is always covariant with respect to the continuations and that we require the bounds on type
variables of related endpoint types be the same. This corresponds to the so-called “Kernel” variant of
bounded polymorphism as opposed to the “Full” one. We adopt the Kernel variant for simplicity, since
it is orthogonal to the rest of the theory. Also, the Full variant is known to be undecidable [8]. Finally,
item (3) allows one to deduce∆ ⊢ α 6 s if ∆ ⊢ ∆(α)6 sholds.

The reader may easily verify that subtyping is transitive (it is enough to show that{(∆, t1, t2) | ∃s :
∆ ⊢ t1 6 s& ∆ ⊢ s6 t2} is a coinductive subtyping). The following property is standard and shows that
duality is contravariant with respect to subtyping.

Proposition 4.2. T 6 S if and only ifS6 T.

Well-formedness of endpoint types is essential for Proposition 4.2 to hold in our setting. Consider, for
example, the endpoint typesT = !m〈α 6 ?m().end〉().α andS= !m〈α 6 ?m().end〉().?m().end whereT
is ill formed. ThenT 6Swould hold but ?m〈α 6 ?m().end〉().!m().end=S6T = ?m〈α 6 ?m().end〉().α
would not becauseα 6 ?m().end ⊢ !m().end 66 α . An alternative theory where well-formedness is not
necessary for proving Proposition 4.2 is given in [8] and consists in distinguishing dualized type variables
α from type variables and by having type constraints of the form t1 6 α 6 t2 with both lower and
upper bounds, so that the bounds of the corresponding dualized type variable are known and given by
t2 6 α 6 t1.

Typing the heap. The heap plays a primary role in our setting because inter-process communication
utterly relies on heap-allocated structures; also, most properties of well-behaved processes are direct con-
sequences of related properties of the heap. Therefore, just as we will check well typedness of a process
P with respect to some environment that associates the pointers occurring inP with the corresponding
types, we will also need to check that the heap is consistent with respect to the same environment. This
leads to a notion of well-typed heap that we develop in this section. The mere fact that we have this
notion does not mean that we need to type-check the heap at runtime. Well typedness of the heap will be
a consequence of well typedness of processes, and the empty heap will be trivially well typed. We will
express well-typedness of a heapµ with respect to a pairΓ0;Γ of environments whereΓ represents the
type of therootsof µ (the pointers that are not referenced by any other structureallocated in the heap)
andΓ0 describes the type of the pointers to allocated structures that are directly or indirectly reachable
from one of the roots of the heap.

Among the properties that a well-typed heap must enjoy is thecomplementarity between the endpoint
types associated with peer endpoints. This notion of complementarity does not coincide with duality

V. Bono, L. Padovani 61

because of the communication model that we have adopted, which is asynchronous. Since messages can
accumulate in the queue of an endpoint before they are received, the type of the endpoint as perceived by
the process using it and the actual type of the endpoint as assumed by the process using its peer can be
misaligned. On the one hand, we want to enforce the invariantthat the endpoint types of peer endpoints
are (and remain) dual, modulo the subtyping relation. On theother hand, this can only happen when
the two endpoints have empty queues. In general, we need to compute the actual endpoint type of an
endpoint taking into account its type as perceived by the process using itand the messages in its queue.
This is accomplished by thetail(·, ·) function below, which takes an endpoint typeT and a sequence
m1(s1) · · ·mn(sn) of specifications corresponding the messages enqueued intothe endpoint with typeT
and computes the residual endpoint type that assumes that all those messages have been received:

tail(T,ε) = T
k∈ I t 6 tk s6 sk{t/αk} tail(Tk{t/αk},m1(s

′
1) · · ·mn(s

′
n)) = S

tail(?{mi〈αi 6 ti〉(si).Ti}i∈I ,mk(s)m1(s
′
1) · · ·mn(s

′
n)) = S

From a technical point of viewtail is a relation, since there can be several possible choices for in-
stantiating the type variables in the endpoint type being processed. For example, we havetail(?m〈α 6

t〉(α).?m(α).end,m(s)) = ?m(t ′).end for everys6 t ′ 6 t. Nonetheless we will sometimes usetail as
a function and writetail(T,m1(s1) · · ·mm(sn)) in place of someS such thattail(T,m1(s1) · · ·mm(sn)) =
S. For instance, the notationtail(T,m1(s1) · · ·mm(sn)) 6 S′ means thatS6 S′ for someS such that
tail(T,m1(s1) · · ·mm(sn)) = S.

We now have all the notions to express the well-typedness of aheapµ with respect to a pairΓ0;Γ of
type environments.

Definition 4.3 (well-typed heap). We writeΓ0;Γ ⊢ µ if:

1. for every a7→ [b,q] ∈ µ we have b7→ [a,q′] ∈ µ and either q= ε or q′ = ε ;

2. for every a7→ [b,m1(c1) :: · · · :: mn(cn)] ∈ µ and b 7→ [a,ε] we havetail(T,m1(s1) · · ·mm(sn)) 6 S
where a: T ∈ Γ and b: S∈ Γ and ci : si ∈ Γ for i ∈ {1, . . . ,n};

3. dom(µ) = dom(Γ0,Γ) = reach(dom(Γ),µ);

4. reach({a},µ)∩ reach({b},µ) = /0 for every a,b∈ dom(Γ) with a 6= b.

Condition (1) requires that in a well-typed heap every endpoint comes along with its peer and that
at least one of the queues of peer endpoints be empty. This invariant is ensured by duality, since a well-
typed process does not send messages on an endpoint until it has read all the pending messages from the
corresponding queue. Condition (2) requires that the endpoint types of peer endpoints are dual, modulo
subtyping. More precisely, for every endpointa whose peerb has an empty queue there exists a residual
tail(T,m1(s1) · · ·mn(sn)) of its typeT whose dual is a subtype of the peer’s typeS. Condition (3) states that
the type environmentΓ0,Γ must specify a type for all of the allocated objects in the heap and, in addition,
every object (located at)a in the heap must be reachable from a rootb ∈ dom(Γ). Since the roots will
be distributed linearly to the processes of the system, thisguarantees the absence of leaks, namely of
allocated objects which are no longer reachable. Finally, condition (4) requires the uniqueness of the
root for every allocated object. This guarantees process isolation, namely the fact that every allocated
object belongs to one and only one process.

Typing processes. We want to define a type system such that well-typed processesare well behaved
and, in particular, such that well-typed processes do not leak memory. As we have anticipated in the

62 Polymorphic Endpoint Types for Copyless Message Passing

introduction, the critical situation that we must avoid is the possibility that an endpoint is enqueued into
its own queue, since this would cause the creation of a circular structure not owned by any process.

The intuition behind our solution is to use some property of types to detect — and avoid — the
configurations in which there exists some potential to create such circular structures. This property,
which we dubweightof a type, gives an upper bound to the length of chains of pointers linking endpoints.

Definition 4.4 (weight). We say thatW is acoinductive weight boundif (∆, t,n) ∈ W implies either:

• t = end, or

• t = !{mi〈αi 6 ti〉(si).Ti}i∈I , or

• t = α ∈ dom(∆) and(∆,∆(α),n) ∈ W , or

• t = ?{mi〈αi 6 ti〉(si).Ti}i∈I and n> 0 and((∆,αi 6 ti),si ,n−1) ∈ W and((∆,αi 6 ti),Ti ,n) ∈ W

for every i∈ I.

We write∆ ⊢ t ↓ n if (∆, t,n) ∈W for some coinductive weight boundW . Theweightof a type t with
respect to∆, denoted by‖t‖∆, is defined by‖t‖∆ = min{n∈ N | ∆ ⊢ t ↓ n} where we letmin /0= ∞. We
omit the environment∆ when it is empty and simply write‖t‖ instead of‖t‖•. When comparing weights,
we extend the usual total orders< and≤ over natural numbers so that n< ∞ for every n∈N and∞ ≤ ∞.

Like other relations involving types, the relation∆ ⊢ t ↓ n is parametric on an environment∆ spec-
ifying the upper bound of type variables that may occur int and expresses the fact thatn is an upper
bound for the weight oft. The weight oft is then defined as the least of its upper bounds, or∞ if
there is no such upper bound. A few weights are straightforward to compute, for example we have
‖end‖ = ‖!{mi〈αi 6 ti〉(si).Ti}i∈I‖ = 0 and‖Top‖ = ∞. Endpoints with typeend and those in a send
state have a null weight because their corresponding queuesare empty and therefore the chains of point-
ers originating from them has zero length. In the case ofTop, it does not have a finite weight since
Top is the type ofanyendpoint, and in particular of any endpoint with an arbitrary weight. Only end-
points in a receive state do have a strictly positive weight.For instance we have‖?m(end).end‖ = 1
and‖?m(?m(end).end).end‖ = 2, while ‖µα .?m(α).T‖∆ = ‖?m(Top).T‖∆ = ∞. The weight of type
variables occurring in a constraintα 6 t is given by the weight oft. In particular,‖α‖α6t = ‖t‖ and
‖?m〈α 6 t〉(α).end‖ = 1+ ‖t‖ (this latter equality holds if‖t‖ < ∞). In a sense, the (type) boundt for
α determines also a (weight) bound‖t‖ for α . Since the actual type with whichα will be instantiated
is not known, this approximation works well only if the relation between the weights is coherent with
subtyping. This fundamental property does indeed hold, as stated in the following proposition.

Proposition 4.3. t 6 s implies‖t‖ ≤ ‖s‖.

The typing rules for processes are inductively defined in Table 4. Judgments have the formΣ;∆;Γ ⊢P
and state that processP is well typed under the specified environments. The additional environmentΣ is a
map from process variables to pairs(∆;Γ) and is used for typing recursive processes. It plays a role intwo
rules only, (T-VAR) and (T-REC), which are standard except for the unusual premisedom(Γ) = fn(P)
in rule (T-REC) that enforces a weak form of contractivity on recursive processes. It states thatrec X.P
is well typed underΓ only if P actually uses the names indom(Γ). Normally, divergent processes such
asrec X.X can be typed in every environment. If this were the case, the processopen(a,b).rec X.X,
which leaksa andb, would be well typed. The idle process is well typed in the empty environment /0.
Since we will impose a correspondence between the free namesof a process and the roots of the heap,
this rule states that the terminated process has no leaks. Rule (T-CLOSE) states that a processclose(u) is
well typed provided thatu is the only name owned by the process and that it corresponds to an endpoint
with typeend, on which no further interaction is possible. Rule (T-OPEN) types the creation of a new

V. Bono, L. Padovani 63

Table 4: Typing rules for processes.

(T-IDLE)
Σ;∆; /0⊢ 0

(T-CLOSE)
Σ;∆;u : end ⊢ close(u)

(T-REC)
Σ,{X 7→ (∆;Γ)};∆;Γ ⊢ P dom(Γ) = fn(P)

Σ;∆;Γ ⊢ rec X.P

(T-OPEN)
Σ;∆;Γ ,a : T,b : T ⊢ P

Σ;∆;Γ ⊢ open(a,b).P

(T-SEND)
∆ ⊢ t ′ 6 t ‖s{t ′/α}‖∆ < ∞ Σ;∆;Γ ,u : S{t ′/α} ⊢ P

Σ;∆;Γ ,u : !m〈α 6 t〉(s).S,v : s{t ′/α} ⊢ u!m(v).P

(T-VAR)
Σ,{X 7→ (∆;Γ)};∆;Γ ⊢ X

(T-RECEIVE)

Σ;∆,αi 6 ti ;Γ ,u : Ti ,xi : si ⊢ Pi
(i∈I)

Σ;∆;Γ ,u : ?{mi〈αi 6 ti〉(si).Ti}i∈I ⊢ ∑i∈I u?mi(xi).Pi

(T-CHOICE)
Σ;∆;Γ ⊢ P Σ;∆;Γ ⊢ Q

Σ;∆;Γ ⊢ P⊕Q

(T-PAR)
Σ;∆;Γ1 ⊢ P Σ;∆;Γ2 ⊢ Q

Σ;∆;Γ1,Γ2 ⊢ P|Q

(T-SUB)
Σ;∆;Γ ,u : s⊢ P ∆ ⊢ t 6 s

Σ;∆;Γ ,u : t ⊢ P

channel, which is visible in the continuation process as twopeer endpoints typed by dual endpoint types.
Rules (T-CHOICE) and (T-PAR) are standard. In the latter, the type environment is split into disjoint
environments to type the processes being composed. Together with heap well-typedness, this ensures
process isolation. Rule (T-SEND) states that a processu!m(v).P is well typed ifu is associated with an
endpoint type !m〈α 6 t〉(s).S that permits the output ofm-tagged messages. The rule guesses the type
parametert ′ with which the type variableα is instantiated (an explicitly typed process might explicitly
provide t ′). The type of the argumentv must match the expected type in the endpoint type whereα
has been instantiated witht ′ and the continuationP must be well typed in a context where the message
argument has disappeared and the endpointu is typed according to a properly instantiatedS. This means
thatP can rely on the knowledge oft ′, namelyα is universally quantified over all the subtypes oft. The
condition ‖s{t ′/α}‖∆ < ∞ imposes thatv’s type must have a finite weight. Since the peer ofu must
be able to accept a message with an argument of types{t ′/α}, its weight will be strictly larger than
that of s{t ′/α}, or it will be infinite. In both cases, we are sure that the argumentv being sent is not
the peer ofu. Rule (T-RECEIVE) deals with inputs: a process waiting for a message from an endpoint
u : ?{mi〈αi 6 ti〉(si).Ti}i∈I is well typed if it can deal with anymi-tagged message. The continuation
process may use the endpointu according to the endpoint typeTi and can access the message argument
xi . The environmentΓ is enriched with the assumptionαi 6 ti denoting the fact thatPi does not know
the exact type with whichαi has been instantiated, but only its upper bound, namelyαi is existentially
quantified over all the subtypes ofti . Finally, rule (T-SUB) is a subsumption rule for assumptions: if a
processP is well typed with respect to a contextΓ ,u : s, it remains well typed if the type associated with
u is more precise than (is a subtype of)s.

Systems(µ ;P) are well typed if so are their components:

Definition 4.5 (well-typed system). We writeΓ0;Γ ⊢ (µ ;P) if Γ0;Γ ⊢ µ andΓ ⊢ P.

We conclude with two standard results about our framework: well-typedness is preserved by re-
duction, and well-typed process are well behaved. Subject reduction is slightly non-standard, in the
sense that types in the environment may change as the processreduces. This is common in session type
theories, since session types are behavioral types.

64 Polymorphic Endpoint Types for Copyless Message Passing

Theorem 4.1(subject reduction). LetΓ0;Γ ⊢ (µ ;P) and(µ ;P)→ (µ ′;P′). ThenΓ ′0;Γ ′ ⊢ (µ ′;P′) for some
Γ
′
0 andΓ ′.

Theorem 4.2(safety). Let⊢ P. Then P is well behaved.

Example 4.1. Consider the endpoint type

CellT= µα .(!set〈β 〉(β).?get(β).α ⊕ !free().end)

modeling the interface of a linear mutable cell. Then it is easy to verify that

c : CellT ⊢ CELL(c)

is derivable, whereCELL is the process presented in Example 3.1. Therefore,CELL is a correct imple-
mentation of a linear mutable cell.

SinceCellT begins with an internal choice we have‖CellT‖ = 0. This means that it is always
safe to send an empty cell as the argument of a message since the second premise of rule(T-SEND)
will always be satisfied. On the contrary, we have‖?get(β).CellT‖β6Top = ∞, therefore it seems like
initialized cells can never be sent as messages. However, ifsender and initializer are the same process,
there might be just enough information to deduce that the process is safe. For example, the judgment

a : t,b : !send(?get(t).CellT).end,c : CellT ⊢ c!set(a).b!send(c).close(b)

is derivable if‖t‖ < ∞. In this case, the sub-process b!send(c).close(b) is type checked in an environ-
ment where the (residual) endpoint type of c has been instantiated to?get(t).CellT whose weight is
‖?get(t).CellT‖= ‖t‖+1< ∞. �

Example 4.2. Suppose we want to implement a forwarder process that receives two endpoints with dual
types and forwards the stream of messages coming from the first endpoint to the second one. We might
implement the process thus:

FWD(a)= a?src(x).a?dest(y).rec X.(x?m(z).y!m(z).X+x?eos().y!eos().(close(x) |close(y) |close(a)))

However, the judgment

a : ?src〈α〉(Stream).?dest(Stream).end ⊢ FWD(a)

whereStream = µβ .(!m(α).β ⊕ !eos().end) is not derivable because there is no upper bound to the
weight ofα andFWD(a) attempts at sending z where z: α . HadFWD(a) been typable, it would be possible
to create a leak with the process

open(a,b).(FWD(a) |open(c,d).open(e, f).b!src(d).b!dest(e).c!m(f).c!eos().(close(b) |close(c))

which has the effect to enqueue f into its own queue. The processFWD becomes typable as soon asα in
a’s type is given a bound with a finite weight. �

5 Related work

Copyless message passing is one of the key features adopted by the Singularity OS [12] to compensate the
overhead of communication-based interactions between isolated processes. Communication safety and

V. Bono, L. Padovani 65

deadlock freedom can be ensured by checking processes againstchannel contractsthat aredeterministic,
autonomous, andsynchronizing[15]. As argued in [7] and shown in [2], the first two conditions make
it possible to split contracts into pairs of dual endpoint types, and to implement the static analysis along
the lines of well known session type theories [10, 11]. In [2]it was also observed that these conditions
are insufficient for preventing memory leaks and it was shownhow to address the issue by imposing
a “finite-weight” restriction to endpoint types. In the present paper, we further generalize our solution
by allowing infinite-weight endpoint types in general, although only endpoints with finite-weight can
actually be sent as messages (see the extra premise of rule (T-SEND)). As a matter of fact, [7] already
noted that the implementation of ownership transfer posed some consistency issues if endpoints not in a
send-statewere allowed to be sent as messages, but no relation with memory leaks was observed. Since
our “finite-weight” condition is a generalization of thesend-statecondition (send-stateendpoints always
have null weight), our work provides a formal proof that thesend-statecondition is sufficient also for
avoiding memory leaks. Other works [7, 9] introduce apparently similar, “finite-weight” restrictions on
session types to make sure that message queues of the corresponding channels are bounded. Our weights
are unrelated to the size of queues and concern the length of chains of pointers involving queues.

Polymorphic contracts and endpoint types of the Singularity OS [13] have never been formalized
before nor do they appear to be supported by the Singularity RDK. Our polymorphic endpoint types are
closely related to the session types in [8], which was the first work to introduce bounded polymorphism
for session types. There are a few technical differences between our polymorphic endpoint types and the
session types in [8]: we unify external and internal choicesrespectively with input and output operations,
so as to model Singularity contracts more closely; we admit recursive endpoint types, while the support
for recursion was only informally sketched in [8]. This led us to define subtyping coinductively, rather
than by means of an inductive deduction system. Finally, we dropped lower type bounds and preferred
to work with a restricted language of well-formed endpoint types which we claim to be appropriate in
practice. Another work where session types are enriched with bounded polymorphism is [6], but in
that case polymorphism is restricted to data, while in [8] and in the present paper type variables range
over behaviors as well. Interestingly, all the critical endpoint types in [2] that violate the “finite-weight”
restriction are recursive. This is no longer the case when (bounded) polymorphism is added and in fact
there are finite endpoint types that can cause memory leaks ifsent as messages.

A radically different approach for the static analysis of Singularity processes is given by [17, 18],
where the authors develop a proof system based on a variant ofseparation logic[14]. However, leaks
in [17] manifest themselves only when both endpoints of any channel have been closed. In particular,
it is possible to prove that the code fragment (1) is correct,although it does indeed leak some memory.
This problem has been subsequently recognized and solved in[16]. Roughly, the solution consists in
forbidding the output of a message unless it is possible to prove (in the logic) that the queue that is going
to host the message is reachable from the content of the message itself. In principle this condition is
optimal, in the sense that it should permit every safe output. However, it relies on the knowledge of
the identity of endpoints, that is a very precise information that is not always available. For this reason,
[16] also proposes an approximation of this condition, consisting in tagging endpoints of a channel with
distinct roles(basically, what are calledimportingandexportingends in Singularity). Then, an endpoint
can be safely sent as a message only if its role matches the oneof the endpoint on which it is sent. This
solution is incomparable to the one we advocate – restricting the output to endpoints with finite-weight
type – suggesting that it may be possible to work out a combination of the two.

There exist a few works on session types [1, 4] that guaranteea global progress property for well-
typed systems where the basic idea is to impose an order on channels to prevent circular dependencies
that could lead to a deadlock. Not surprisingly, the critical processes (such as (1)) that we rule out

66 Polymorphic Endpoint Types for Copyless Message Passing

thanks to the finite-weight restriction on the type of messages are ill typed in these works. It turns
out that a faithful encoding of (1) into the models proposed in these works is impossible, because the
open(·, ·) primitive we adopt createsboth endpoints of a channel within the same process, while the
session initiation primitives in [1, 4] associate the freshendpoints of a newly opened session to different
processes running in parallel. This invariant – that the same process cannot own more than one endpoint
of the same channel – is preserved in well-typed processes because of a severe restriction: whenever an
endpointc is received, the continuation process cannot use any endpoint other thanc and the one from
which c was received.

6 Conclusion and future work

In [2] we have formalizedCoreSing♯, a core language of software isolated processes that communi-
cate through copyless message passing. Well-typed processes are shown to be free from faults, leaks,
and communication errors. In the present paper we have extended the type system ofCoreSing♯ with
bounded polymorphism, on the lines on what has been done for session types in [8]. Bounded poly-
morphism increases the expressiveness of types and improves modularity and reusability of components.
In our setting, where resources – and endpoints in particular – arelinear, we claim that bounded poly-
morphism is even more useful in order to avoid the loss of typeinformation that occurs when endpoints
are delegated and therefore exit the scope of the sender process (Section 2). We have shown that the
finite-weightrestriction we introduced in [2] scales smoothly to the richer type language, despite the fact
that polymorphism augments the critical situations in which a leak may occur (recursive types are no
longer necessary to find apparently well-typed processes that leak memory, as shown in Section 1). This
is mostly due to a nice property of weights (Proposition 4.3). Unlike [2], we have omitted cells and
open cell types, basically because they can be encoded thanks to the increased expressiveness given by
(bounded) polymorphism (Examples 3.1 and 4.1).

With respect toSing♯, our model still differs in a number of ways: first of all,PolySing♯ processes
are terms of a process algebra, whileSing♯ is an imperative programming language similar toC♯. As
a consequence, there is no direct mapping ofSing♯ programs ontoPolySing♯ processes, even though
we claim that our calculus captures all of the peculiar features ofSing♯, namely the explicit memory
management (with respect to the exchange heap), the controlled ownership of memory allocated in the
exchange heap, and the contract-based communication primitives. Second, in [2] and in the present paper
we do not deal with mutable record structures nor with mutable arrays but only with mutable cells. The
extension to the general framework is straightforward and does not pose new technical problems. Finally,
the fact that we do not take into account non-linear values isindeed a limitation of the model presented
here, but we plan to extend it in this direction as described next.

We envision two developments for this work. The first one is toenrich the type system with non-linear
types, those denoting resources (such as permanent services) that can be shared among processes. Even
though it is plausible to think that the technical details are relatively easy to work out (non-linear types
are supported by [8] and in most other session type theories)we see this enhancement as a necessary
step forPolySing♯ to be a useful model of Singularity processes. The second development, which looks
much more challenging, is the definition of an algorithm for deciding subtyping (Definition 4.2). As
observed in [8], bounded polymorphic session types share many properties with the type language in the
systemF<: [3]. Therefore, while it is reasonable to expect that properties and algorithms for extensions
of F<:with recursive types [5] carry over to our setting, the exactdetails may vary.

V. Bono, L. Padovani 67

Acknowledgments. We are grateful to the anonymous referees for their detailedcomments and re-
views, and to the organizers of the ICE workshop for setting up the interactive reviewing process.

References

[1] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini & Nobuko
Yoshida (2008):Global Progress in Dynamically Interleaved Multiparty Sessions. In: CONCUR’08, LNCS
5201, Springer, pp. 418–433, doi:10.1007/978-3-540-85361-9_33.

[2] Viviana Bono, Chiara Messa & Luca Padovani (2011):Typing Copyless Message Passing. In: ESOP’11,
LNCS 6602, Springer, pp. 57–76, doi:10.1007/978-3-642-19718-5_4.

[3] Luca Cardelli, Simone Martini, John C. Mitchell & Andre Scedrov (1994):An Extension of System F with
Subtyping. Information and Computation109(1/2), pp. 4–56, doi:10.1006/inco.1994.1013.

[4] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino & Luca Padovani (2009):Foundations
of Session Types. In: PPDP’09, ACM, pp. 219–230, doi:10.1145/1599410.1599437.

[5] Dario Colazzo & Giorgio Ghelli (2005):Subtyping, recursion, and parametric polymorphism in kernel Fun.
Information and Computation198(2), pp. 71–147, doi:10.1016/j.ic.2004.11.003.

[6] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Elena Giachino & Nobuko Yoshida (2007):Bounded
Session Types for Object-Oriented Languages. In: FMCO’06, LNCS 4709, Springer, pp. 207–245, doi:10.

1007/978-3-540-74792-5_10.

[7] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, OrionHodson, Galen Hunt, James R. Larus & Steven
Levi (2006): Language support for fast and reliable message-based communication in Singularity OS. In:
EuroSys’06, ACM, pp. 177–190, doi:10.1145/1217935.1217953.

[8] Simon Gay (2008):Bounded polymorphism in session types. Mathematical Structures in Computer Science
18(5), pp. 895–930, doi:10.1017/S0960129508006944.

[9] Simon Gay & Vasco T. Vasconcelos (2010):Linear type theory for asynchronous session types. Journal of
Functional Programming20(01), pp. 19–50, doi:10.1017/S0956796809990268.

[10] Kohei Honda (1993):Types for dyadic interaction. In: CONCUR’93, LNCS 715, Springer, pp. 509–523,
doi:10.1007/3-540-57208-2_35.

[11] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998):Language primitives and type disciplines for
structured communication-based programming. In: ESOP’98, LNCS 1381, Springer, pp. 122–138, doi:10.

1007/BFb0053567.

[12] Galen Hunt, James Larus, Martı́n Abadi, Mark Aiken, Paul Barham, Manuel Fähndrich, Chris Hawblitzel,
Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steensgaard, David Tarditi, Ted Wobber & Brian Zill
(2005):An Overview of the Singularity Project. Technical Report MSR-TR-2005-135, Microsoft Research.

[13] Microsoft (2004): Singularity design note 5: Channel contracts. Technical Report, Microsoft Research.
Available athttp://www.codeplex.com/singularity.

[14] Peter W. O’Hearn, John C. Reynolds & Hongseok Yang (2001): Local Reasoning about Programs that Alter
Data Structures. In: CSL’01, LNCS 2142, Springer, pp. 1–19, doi:10.1007/3-540-44802-0_1.

[15] Zachary Stengel & Tevfik Bultan (2009):Analyzing singularity channel contracts. In: ISSTA’09, ACM, pp.
13–24, doi:10.1145/1572272.1572275.

[16] Jules Villard (2011):Heaps and Hops. Ph.D. thesis, Laboratoire Spécification et Vérification, ENS Cachan,
France.

[17] Jules Villard, Étienne Lozes & Cristiano Calcagno (2009):Proving Copyless Message Passing. In:
APLAS’09, LNCS 5904, Springer, pp. 194–209, doi:10.1007/978-3-642-10672-9_15.

[18] Jules Villard,Étienne Lozes & Cristiano Calcagno (2010):Tracking Heaps That Hop with Heap-Hop. In:
TACAS’10, LNCS 6015, Springer, pp. 275–279, doi:10.1007/978-3-642-12002-2_23.

http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-642-19718-5_4
http://dx.doi.org/10.1006/inco.1994.1013
http://dx.doi.org/10.1145/1599410.1599437
http://dx.doi.org/10.1016/j.ic.2004.11.003
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1017/S0960129508006944
http://dx.doi.org/10.1017/S0956796809990268
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://www.codeplex.com/singularity
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1145/1572272.1572275
http://dx.doi.org/10.1007/978-3-642-10672-9_15
http://dx.doi.org/10.1007/978-3-642-12002-2_23

	1 Introduction
	2 An example
	3 Language syntax and semantics
	4 Type system
	5 Related work
	6 Conclusion and future work

