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Secure orchestration is an important concern in the internet of service. Next to providing the required
functionality the composite services must also provide a reasonable level of security in order to protect
sensitive data. Thus, the orchestrator has a need to check whether the complex service is able to satisfy
certain properties. Some properties are expressed with metrics for precise definition of requirements. Thus,
the problem is to analyse the values of metrics for a complex business process.

In this paper we extend our previous work on analysis of secure orchestration with quantifiable proper-
ties. We show how to define, verify and enforce quantitative security requirements in one framework with
other security properties. The proposed approach should help to select the most suitable service architecture
and guarantee fulfilment of the declared security requirements.

1 Introduction

Orchestration of complex web services is a multidimensional problem. Various criteria must be considered
when different alternatives exist. Typically, one of such criteria is security. Recently, the security issues of
service composition are receiving major attention [20, 22, 4, 7, 21, 9]. Among them, formal methods have
been successfully applied for modelling and analysing several different aspects of service security. In practice,
these techniques generate a formal abstraction of the services under analysis. Then, a verification procedure is
applied to find a formal proof of compliance between the model and the security specifications.

The first difficulty arises from service abstraction. Indeed, it is crucial that services are modelled in a “safe”
way, i.e., without neglecting any security-relevant behaviour they can generate. The problem is that this feature
is not always guaranteed as specification and implementation is often developed independently.

Although several, effective algorithms for software verification exist, e.g., model checking [11], they often
require some modification to be applied to web services. Indeed, the algorithms typically check the compliance
between a specification and a model and, if the check fails, they return a description of the detected error, e.g., a
behaviour of the model that violates the specification. However, web services are designed and developed sepa-
rately and they commonly have different and independent security requirements. Moreover, they are oriented to
the composition and they can produce many different models, i.e., one for each possible orchestration. Hence,
the verification process cannot just focus on an illegal orchestration, but should help in finding valid ones.

Service usages are often based on security metrics. Metrics conveniently use mathematical values to rep-
resent some “qualities” of a service. Several authors, e.g., see [23, 18], proposed mathematical models for the
definition and composition of security metrics.

In this paper we propose an extension of previous work (see [12, 13]) on secure service orchestration
integrating facilities for composing and verifying security metrics. In particular, we start from the service
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model proposed by Bartoletti et al. [4]. Roughly, they propose a type and effect system for producing safe
abstractions of the behaviour of web services. Then, the authors verify these abstractions against the security
policies, locally specified by each service, to find a valid composition.

We extend their model by introducing metric checks and metric annotations on their abstractions. We use a
mathematical structure, called c-semiring, in order to generalise our model and be independent from the metrics
used for the analysis, but still be able to reason on these metrics. Metric annotations are obtained through a
new, improved type and effect system. In this way, we generate metric-annotated abstractions which contain
both security and metric requirements. All the requirements are applied to different portions of the service
orchestration through a local scope.

The main advantage of this approach is the possibility to model and compose both security and metric
requirements in a single framework. Service developers apply security policies and metric checks to some
parts of their services. Our type and effect system extracts history expressions from the implementation of the
services. History expressions safely denote the behaviour of service invocations. Within a history expression,
the type and effect system adds extra annotations for metrics, metric checks and security framings. Then, we
adopt the same verification procedure described in [4] with special pre-processing steps for assigning correct
metric labels to each service. The final result is a complete framework for defining, modelling, verifying, and
enforcing both security and metric requirements in order to find valid service orchestrations.

This paper is structured as follows. Section 2 introduces the working example we will develop during
our presentation. In Section 3 we describe our extension of the programming language λ req and we define its
operational semantics. Then, Section 4 presents our type and effect system and Section 5 describes the analysis
of security and metric requirements. Finally, Section 7 concludes the paper.

2 Running example

The travel agency BestTravel offers a travel planning service to its customers. BestTravel exploits existing
services for implementing the complex task of (i) booking a connection (consisting of one or more flights) to
the destination, (ii) booking a hotel room, (iii) paying the acquired items (i.e., flights and hotel room), and
(iv) providing the customer with a signed receipt. As usual in service-oriented architectures, the four subtask
described above are provided by existing web services.

The service developer starts from an abstract workflow describing the behaviour of BestTravel and produces
a corresponding implementation. The abstract workflow depicts the atomic operations that the service must
implement and how they compose each other. In the case of BestTravel, most of the atomic operations are
invocations to other services. Figure 1 shows the abstract workflow of BestTravel.

Figure 1: Abstract workflow for BestTravel.

Reading Figure 1 (from left to right), we can understand the service behaviour. In words, a session of
BestTravel works as follows. The service runs two procedures in parallel (rooted in �). The first one (upper
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e,e′ ::=
∗ unit
r resource
x variable
α(e) access event
if b then e else e′ branch
λzx.e abstraction
ee′ application
ϕ[e] security framing
γ 〈e〉 metric framing
reqρ τ −→ τ ′ service request

λx.e
de f
= λzx.e with z 6∈ f v(e)

λ.e
de f
= λx.e with x 6∈ f v(e)

e;e′
de f
= (λ.e′)e fork e and e′

de f
= (e′;λx.x)e

(reqρ τ
ϕ,γ−−→ τ ′)e

de f
= ϕ

[
γ
〈
(reqρ τ −→ τ ′)e

〉]
where f v is the standard function returning the set of free vari-
ables of an expression e.

Table 1: Syntax of λ reqand abbreviations

path of the workflow) is responsible for booking a flight connection for the travel destination. In practice,
BestTravel invokes a service looking for a direct flight, i.e., search direct flight. Then the execution can take
two alternative branches ( � node): it can invoke a payment service for booking the flight, i.e., book flight, or it
can start a new research for a multiple-flight connection, namely an itinerary, and book it, i.e., search itinerary
and book itinerary. Concurrently, the second process (lower path) invokes services for searching and booking
a hotel, i.e., search hotel and book hotel. When the two parallel procedures terminate, BestTravel iteratively
invokes a digital signature service, i.e., sign line, for applying integrity and authenticity tokens to the hotel
receipt and terminates.

A requirement of BestTravel is to have risk level of the performed tasks (in particular, flight booking, hotel
reservation and receipt signature) less than 75. Therefore, two problems must be solved: (i) statically estimate
risk for the composition plans; (2) in case some execution path in the composition plan fails the requirement,
dynamically check the risk of selected paths and prevent the failure of the requirement if a risky path is selected.

3 Service structure

In this section we present an extended version of λ -calculus, called λ req [4]. First, we extend our previous work
with two main novelties: parallel composition and metric facilities. Parallel agents in this work are defined
without modifying the original syntax of the calculus. We obtain it by re-defining the operational semantics
of λ req. Second, we incorporate metrics into our formalism using special operations for denoting metric anno-
tations and metric constraints. These operators are interpreted in a c-semiring mathematical structure. Metric
facilities allow us to model metrics which are used in service composition.

3.1 Syntax

First, we define the syntax of expressions e,e′ as shown in Table 1. Briefly, ∗ is the closed, side effects-
free expression, r,r′ ∈R denotes system resources and x,y are variables. Access events α(e),β (e′) represent
the access to a certain resource, resulting from the evaluation of the event argument, through a specific op-
eration/channel (e.g., α and β ). Conditional term if b then e else e′ represents a branch between two
expressions (where b is a boolean guard). A function is defined through the term λzx.e, where e is the function
body in which x is the formal parameter and z denotes the function itself (for recursive invocations). Instead, the
term ee′ denotes the application of a function e to a parameter e′. We feel free to use parenthesis for grouping
either a function or its argument in order to improve readability. Security framing is used to apply the scope of
a security policy ϕ to a term. We also use metric framing for expressing a term laying in the scope of a metric
constraint γ . Finally, a service request reqρ τ −→ τ ′ denotes the invocation of a service having a certain func-
tional interface, i.e., τ −→ τ ′ shows that the function requires a type τ as input and produces type τ ′ as output,
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1 λx.(search flight for(x);
if is available

then reserve(FLIGHT No);FLIGHT No

else NO FLIGHT)

2 λx.(search flight for(x);
if is available

then reserve(FLIGHT No);FLIGHT No

else if can overbook

then overbook(FLIGHT No);FLIGHT No

else NO FLIGHT)

3 λx.(generate travel to(x);reserve(ITINERARY);
insurance(ITINERARY);ITINERARY)

4 λx.(generate travel to(x);reserve(ITINERARY);
ITINERARY)

5 λx.(find hotel 3s(x);book(HOTEL);
HOTEL RESV)

6 λx.(if high season

then find hotel 2s(x) else find hotel 4s(x);
book(HOTEL);HOTEL RESV)

7 λx.((if registered user

then ∗ else var charge(x));buy(x);RCPT)

8 λx.(const charge(x);buy(x);RCPT)

9 λx.sign 64(x);SIGNED DOC

10 λx.sign 128(x);SIGNED DOC

Figure 2: Implementation of the services of Example 1.

and is labelled with a unique identifier ρ . Although, it is hard to create the λ req representation for non experts
such the model may be created automatically, similar to transformation of Java code [3].

For the sake of presentation, we introduce some useful abbreviations (see Table 1). Moreover, to improve
the readability we feel free to use simple expressions for conditional guards, e.g., is available or is empty,
which have a straightforward interpretation in the context we use them. We also use upper cases for resources,
e.g., HOTEL and FLIGHT, and lower cases for actions, e.g., book(. . .) and buy(. . .).

According to the standard λ req theory, we define security policies through usage automata [2]. Usage
automata resemble non deterministic finite state automata (NFA) defined over the alphabet of access events.
A sequence of actions is compliant with a certain policy if its corresponding usage automata does not reach a
final, offending state reading the trace, i.e., valid traces are those rejected by the automata (see [2] for details).

Our main focus in this section is on the definition of metric constraints. Indeed, we introduce a syntax for
defining metric checks which then we apply through metric framing. In particular a metric check has the form
γ = T ≥T d where T is a metric name, ≥T is its order relation and d is an element of T . Here we slightly abuse
our notation for the sake of simplicity, in order to show that the metric computed for a business process must
be better than some predefined value (i.e., threshold). In practice, a metric check is satisfied by a value d′ if
d′ ≥T d. If so we write d′ ∈ γ .

Example 1. We continue our running example. We assume the (sets of) resources: I = {ITINERARY}, F =
{FLIGHT No,NO FLIGHT}, H = {HOTEL RESV}, B =I ∪F ∪H and D = {RCPT,SIGNED DOC}. In Figure 2
we propose the λ req implementation of the services informally introduced in Section 2.

Intuitively, service 1 receives an input airport x and searches a direct flight (action search flight for).
Then, depending on the is available boolean flag, the service either reserves a seat (reserve) and re-
turns the flight number FLIGHT No, or returns the NO FLIGHT value. Service 2 works similarly. The main
difference is that, if the flight is not available, it checks whether it is possible to make an overbooking reser-
vation (can overbook flag) and proceeds with the reservation (overbook) before returning the flight number
or the NO FLIGHT value. Instead, service 3 finds a sequence of flights for the destination, namely an itinerary
(generate travel to). Then the itinerary is reserved (reserve), a travel insurance is stipulated (insurance)
and the itinerary is returned. Service 4 resembles 3, but no insurance is activated. Hotel booking services, i.e.,
services 5 and 6, receive a destination city x and book an hotel (action book) before returning the hotel reser-
vation HOTEL RESV. The main difference between the two services is that service 5 looks for a 3 stars hotel
(action find hotel 3s) while service 6, after discriminating on the flag high season, searches either a 2
stars or a 4 stars hotel (actions find hotel 2s and find hotel 4s, respectively). Payment services 7 and 8
receive an item identifier x and return an electronic receipt RCPT after performing a purchase operation (action
buy). However, while 8 charges the operation with a constant, extra amount (action const charge), service
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1 λx.(γ〈λzy.

2
...

... if is empty then SIGNED DOC else (reqρ1 D −→D)y;zy 〉

3
... fork γ〈(λy′.(reqρ2 B −→D)y′)((reqρ3 C −→H )CITY)〉

4
... and γ〈λy′′.(if no direct flight then (reqρ4 B −→D)((reqρ5 A −→I )AIRPORT)

5
...

... else (reqρ6 B −→D)y′′)((reqρ7 A −→F )AIRPORT) 〉 )

Figure 3: Implementation of BestTravel.

7 applies either no commission charge or a variable amount (action var charge). Finally, signing services
accept a document x and return a signed version of it SIGNED DOC. The only difference between them is that 9
uses a 64 bit key for the signing process (action sign 64) while 10 uses a 128 bit ones (sign 128).

Note, that with several alternative services which provide the same functionality we have several different
possible execution paths which have different security properties.

Example 2. We assume the existence of the resources: A = {AIRPORT} and C = {CITY}. In Figure 3 we
propose a λ req implementation of the workflow of the BestTravel service, called eB.

In words, eB carries out three tasks: it concurrently runs (i) a hotel booking process (line 4) and (ii) a
flight booking one (lines 5-6) and, then, (iii) executes a signature procedure (line 2). The first process consists
of an invocation to a hotel search service using the resource CITY. The result is then passed as input for (an
invocation to) a payment service. Similarly, the second process requests a itinerary searching service using the
resource AIRPORT. Then, according the evaluation of the guard no direct flight, the service either starts a
new request to flight searching service and proceeds with the payment or just invokes a payment service. The
final result of this concurrent execution is the document returned by the first process. This value is then used as
the actual parameter of the last operation of the service. It consists of a recursive function which, depending on
the guard is empty, can either return the resource SIGNED DOC or invoke a signing service and loop.

All the three tasks are subject to a metric requirement γ = Risk ≤ 75, i.e., each of them must be executed
under a risk factor lower than 75 ($).

3.2 C-Semirings

Our framework exploits the notion of c-semiring for the abstraction of metrics and operators over metrics [6].
Usage of this mathematical structure allow us to provide a generic framework for all metrics which could be
considered as c-semirings. A c-semiring consists of a set of values D (e.g., natural or real numbers), and two
types of operators: multiplication (⊗) and summation (⊕) of values and constraints. Formally, a c-semiring is
defined as follows (see the work of S. Bistarelli et. al., for more details [6]).

Definition 1. A c-semiring T is a tuple 〈D,⊕,⊗,0,1〉 where

• D is a (possibly infinite) set of elements and 0, 1 ∈ D;

• ⊕, being an addition defined over D, is a binary, commutative (i.e., d1,d2 ∈ D⇒ d1⊕d2 = d2⊕d1) and
associative (i.e., d1,d2,d3 ∈ D⇒ d1⊕ (d2⊕d3) = (d1⊕d2)⊕d3) operator such that 0 is its unit element
(i.e., d1 ∈ D⇒ (d1⊕0 = d1 = 0⊕d1);

• ⊗, being a multiplication over D, is a binary, commutative and associative operator such that 1 is its unit
element and 0 is its absorbing element (i.e., d1 ∈ D⇒ d1⊗0 = 0 = 0⊗d1);

• ⊗ is distributive over additive operator (d1⊗ (d2⊕d3)) = (d1⊗d2)⊕ (d1⊗d3);

In this work we focus on a special subset of c-semirings:

Definition 2. c∗-semiring is a c-semiring with ⊕ satisfying the following condition: ∀d1,d2 ∈ D d1⊕ d2 =
d1 or d1⊕d2 = d2
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(S−Ev1)
〈η ,d,e〉 →π 〈η ′,d′,e′〉

〈η ,d,α(e)〉 →π 〈η ′,d′,α(e′)〉
(S−Ev2)

F(α,r) = d′

〈η ,d,α(r)〉 →π 〈ηα(r),d⊗d′,∗〉

(S−Req)
e` : τ

H−→ τ ′ ∈ Srv π(ρ) = `〈
η ,d,(reqρ τ −→ τ ′)v

〉
→π 〈η ,d,e`v〉

(S−App1)
〈η ,d,e1〉 →π 〈η ′,d′,e′1〉

〈η ,d,e1e2〉 →π 〈η ′,d′,e′1e2〉

(S−App2)
〈η ,d,e2〉 →π 〈η ′,d′,e′2〉

〈η ,d,e1e2〉 →π 〈η ′,d′,e1e′2〉
(S−App3) 〈η ,d,(λzx.e)v〉 →π 〈η ,d,e{v/x,λzx.e/z}〉

(S−Sec1)
〈η ,d,e〉 →π 〈η ′,d′,e′〉 η ′ |= ϕ

〈η ,d,ϕ[e]〉 →π 〈η ′,d′,ϕ[e′]〉
(S−Sec2)

η |= ϕ

〈η ,d,ϕ[v]〉 →π 〈η ,d,v〉

(S−Met1)
〈η ,d,e〉 →π 〈η ′,d′,e′〉 d′ ∈ γ

〈η ,d,γ 〈e〉〉 →π 〈η ′,d′,γ 〈e′〉〉
(S−Met2)

d ∈ γ

〈η ,d,γ 〈v〉〉 →π 〈η ,d,v〉

(S−If)
〈
η ,d,if b then ett else eff

〉
→π

〈
η ,d,eB(b)

〉
Table 2: Operational semantics of λ req

Definition 3. ≤T is a total order over the set D, such that d1 ≤T d2 iff d1⊕d2 = d2.

In this work we need a reverse operation for summation ⊕−1 which is defined as follows.

Definition 4. d1⊕−1 d2 = d1 iff d1⊕d2 = d2.

In words, this operation always returns the worst possible value.

Property 1. Operation ⊕−1 is associative, commutative, idempotent, distributive over ⊗, and monotone1.

Example 3. Regarding to the security targets BestTravel is going to use two metrics: trust and risk. Trust is
often computed as a probability that the requested service is going to behave as agreed. Thus, trust could be
seen as a value between 0 and 1, which is aggregated by multiplying and the higher value is considered better
than a lower one. C∗-semiring for trust value formally is defined as follows: 〈[0,1],max,×,0,1〉. This type of
c-semirings is known as possibilistic semiring.

Risk, considered as possible losses, has the domain of positive real numbers. Multiplication of risks is
summation of possible losses, when the lower value is, naturally, considered more preferable than the higher
one. Therefore, c∗-semiring for risk could be seen as 〈N+∪{∞},min,+,∞,0〉, known as tropical semiring.

3.3 Operational Semantics

Service execution is driven by the operational semantics defined in Table 2. Intuitively, a computation step
consists of a reduction from a source configuration to a target one. Configurations are tuples 〈η ,d,e〉 where
η is an execution trace, i.e., the sequence of events performed so far (ε denotes the empty execution trace);
d is the current metric value; and e is a λ req term, which describes the part of the service under evaluation.
The operational semantics is driven by a composition plan π which is responsible for providing a mapping
between each service request and an actual service, in symbols π(ρ) = ` where ρ and ` are request and service
identifiers, respectively. In the following we also use→∗π for the transitive closure of→π .

Below, we provide an informal explanation of the operational semantics rules. To be performed, an action
α requires its argument e to be evaluated first (rule (S−Ev1)). If the action target reduces to a resource r, the ac-
tion takes place and the current history η is extended with the corresponding event α(r) (rule (S−Ev2)). Also,

1A link with proofs:http://www.iit.cnr.it/staff/artsiom.yautsiukhin/Resources/ICE-Proofs.pdf.

http://www.iit.cnr.it/staff/artsiom.yautsiukhin/Resources/ICE-Proofs.pdf
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ACTION RESOURCE VALUE

reserve FLIGHT No 15
reserve ITINERARY 15
overbook FLIGHT No 20
insurance ITINERARY 10

find hotel 2s CITY 30
find hotel 3s CITY 20
find hotel 4s CITY 15

ACTION RESOURCE VALUE

book HOTEL 20
var charge · 8

const charge · 5
buy FLIGHT No 10
buy HOTEL RESV 10
buy ITINERARY 20

sign 64 · 1

Table 3: Definition of function FRisk.

the current metric is updated with the metric value for the event α(r). F is a metric and context-dependent pre-
defined function which assigns a metric value to every event. In practice, function F can be found analytically
(e.g., risk=probability×impact), derived form past experience, i.e., using monitoring or assigned by experts
(e.g., number of successful virus attacks). A conditional expression is reduced to one of its branches (i.e., ett
and eff

2) depending on the value of its guard b (rule (S−If)). Here we assume an evaluation function B, assign-
ing to each possible guard a boolean value, is to be defined. Rules (S−App1), (S−App2) and (S−App3) define
the behaviour of function application. Briefly, a function e and its argument e′ are both reduced to values, i.e.,
terms that admit no further reduction. The steps of the two reductions are executed in a non deterministic way,
without any fixed priority between the choice of (S−App1) and (S−App2). When both computations generate a
value, i.e., a lambda abstraction and its argument, the application reduces to the body of the function where the
formal parameter x is replaced by the actual value v and the variable z is substituted with the function itself (rule
(S−App3)). Note that, along the paper, we use v,v′ to denote values, i.e., closed, effect-free terms being either
∗, resources, λ -abstractions or service requests. Rules (S−Sec1) and (S−Sec2) define the behaviour of the
security framing. Basically, a security framing behaves as its target unless it tries to extend the current history
η to an illegal trace. When the target expression reduces to a value, the policy framing can be removed, i.e.,
the corresponding security check is deactivated, if the current history is a legal one. Similarly, (S−Met1) and
(S−Met2) rule metric checks. In words, a metric check forces metric values generated during the execution of
a term e to comply with a constraint γ . Finally, service requests (rule (S−Req)) works by running the service e`
with actual parameter v. Among all the compatible services, i.e., those having the same behavioural interface
specified by the request ρ , appearing in the service repository Srv3, one is selected according to the current
composition plan π . Note that the interface of actual services is also annotated with a history expression H
which represent the service contract (see Section 4 for more details on this point).

Example 4. Let e1 be the implementation of service 1 proposed in Example 1. We assume B(is available)=
tt, and consider the semiring Risk introduced in Example 3 and the function FRisk which returns the values
shown in Table 3 (where missing entry evaluate to 0 and · stands for any compatible value). Then, we have the
following computation forF= 〈ε,0,(e1)AIRPORT〉 (where AIRPORT is a resource in A ).

F→π

〈
ε,0,

search flight for(AIRPORT);
if is available

then reserve(FLIGHT No);
FLIGHT No

else NO FLIGHT

〉
→∗π

〈
search flight for(AIRPORT),0,

if is available
then

reserve(FLIGHT No);
FLIGHT No
else NO FLIGHT

〉

→π

〈
search flight for(AIRPORT),0, reserve(FLIGHT No);

FLIGHT No

〉
→∗π

〈
search flight for(AIRPORT)

reserve(FLIGHT No)
,15,FLIGHT No

〉

2Where tt and ff stand for “true” and “false”, respectively.
3Here we assume a service repository to be always available at runtime. In short, a repository is a finite set of tuples, each of them

containing at least the service interface and being uniquely identified by the service location `.
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H,H ′ ::= ε | h | α(r) | H · H ′ | H + H ′ | H | H ′ | d#H | ϕ[H] | γ 〈H〉 | µh.H

Table 4: Syntax of history expressions

In words, the computation proceeds as follows. The first step consists in applying the rule (S−App3) which,
in practice, replaces all the occurrences of x with AIRPORT. The second reduction collapses two rules, i.e.,
(S−Ev2) and (S−App3). As a result of the rule (S−Ev2) a new event, that is search flight for(AIRPORT),
is added to the execution trace ε . Also, according to the given definition of FRisk, the current metric is updated.
Recalling the c∗-semiring specified in Example 3, we note that the multiplication operation over risk values
is the sum, then 0⊗ 0 = 0+ 0 = 0. The subsequent step evaluates the conditional guard is available and
chooses the “then” branch (rule (S−If)). Finally, the last piece of computation repeats the operations described
above and updates the current configuration by both adding a new event to the execution history and changing
the current metric value (i.e., 0⊗ 15 = 0+ 15 = 15). Since the term appearing in the last configuration is a
value, i.e., the resource FLIGHT No, the computation terminates.

4 Type and effect system

In this section we present our proposal for a type and effect system. It derives from the type and effect system
presented in [4] from which it inherits most of its rules.

4.1 History expressions

Briefly, a type and effect system carries out the extraction of behavioural description from a certain expression
while typing it. We use history expressions for representing the behaviour of a program in terms of the execution
histories it can generate at runtime.

The main novelties introduced by our type and effect system are (i) parallel composition and (ii) metric
annotation. Parallel composition denotes two elements which can run concurrently, in an interleaving fashion.
Instead, metric annotation associate a metric value to a certain behaviour. Table 4 reports the syntax of history
expressions.

A history expression can be the empty one ε , a variable h or an access event α(r). Valid history expressions
are also concatenations (H ·H ′), unions (H +H ′), parallel compositions (H | H ′), metric-annotated expressions
(d#H), security framings (ϕ[H]), metric checks (γ 〈H〉) and least fix-point, recursive expressions (µh.H).

A history expression denotes a set of execution traces. We use a denotational semantics to bind each history
expression to the corresponding set of traces. The semantic function J·K· is defined in Table 5. Note that we use
the environment δ for mapping variables to set of traces.

A ε expression denotes the singleton containing the empty trace (we use ε for both void history expressions
and empty traces as they are clearly identified by the context). The semantics of a variable h corresponds to the
set of histories associated to it in δ . A history expression α(r) denotes the singleton {α(r)}. The semantics of a
sequence H ·H ′ is the set of traces ηη ′ such that η ∈ JHKδ and η ′ ∈ JH ′Kδ . Similarly, the semantics of a choice
is the union between the sets denoted by the two sub-expressions. Parallel history expressions H | H ′ denote
the set of all the possible interleaving of traces belonging to the two sub-expressions. Interleaving semantics
is defined through the binary operator

(·
·
)
. Intuitively, if one of the two considered histories is ε , the operator(·

·
)

returns the other one. Instead, for non-empty traces it generates all the possible sequences representing
concurrent executions. This process is obtained by considering all the possible prefixes of one trace, adding
the first action of the other trace and recursively applying the

(·
·
)

operator to the remaining “tails”. In the style
of [5], security framing denotes execution histories wrapped between two special actions [ϕ and ]ϕ (for brevity,
we write ϕ[X ] in place of [ϕ ·X ·]ϕ ). These special actions mark the activation and deactivation points of a policy.
Following a similar reasoning, the semantics of γ 〈H〉 is the set of traces denoted by H wrapped by the special
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JεKδ = {ε} Jα(r)Kδ = {α(r)} JH ·H ′Kδ = JHKδ JH ′Kδ JH +H ′Kδ = JHKδ ∪ JH ′Kδ

Jϕ[H]Kδ = ϕ[JHKδ ] Jd#HKδ = JHKδ Jγ 〈H〉Kδ = γ 〈JHKδ 〉 JhKδ = δ (h)

JH | H ′Kδ =
⋃

η∈JHKδ ,η
′∈JH ′Kδ

(
η

η ′

)
Jµh.HKδ =

⋃
n>0

f n(ε) where f (X) = JHKδ{X/h}

where the binary function
(·
·
)

is recursively defined as follows.

(1)
(

η

ε

)
= {η} (2)

(
η

αη ′

)
=
{

η1αη̃

∣∣∣ η̃ ∈ (η ′

η2

)
∧η1η2 = η

}

Table 5: Denotational semantics

actions 〈γ and 〉γ (with the obvious meaning). Finally, µh.H denotes a fix point operation over the set of traces
denoted by H (see [5] for further detail).

Moreover, we introduce a partial order relationv between history expressions such that H vH ′⇔∀δ .JHKδ ⊆
JH ′Kδ .

4.2 Typing relation

In the following we introduce our typing rules. The main difference with respect to the rules proposed in
previous works is that here we generate metric annotated history expressions during the typing process. Before
presenting the typing rules, we need to introduce types and type environments.

Definition 5. (Types and type environments)

τ,τ ′ ::=unit |R | τ H−→ τ ′ Γ,Γ′ ::= /0 | Γ;x : τ

A type can be both a simple type, i.e., unit or the resource domain R4, or a function from type τ to type τ ′.
Functional types also carry a history expression H which represents the latent effect of invoking the function.
Then, a type environment Γ, being either the empty one /0 or the one obtained through a new binding Γ;x : τ , is
a mapping from variables to types.

The typing relation has the form Γ,H ` e : τ . It must be read as “under the environment Γ and carrying the
effect H, expression e has type τ”. The rules in Table 6 define the typing relation.

Briefly, the expression ∗ has unit type and generates no side effects (H = ε , rule (T−Unit)) while a resource
r, being also side effect free, has type R (rule (T−Res)). The type of a variable x depends on the typing context
provided by Γ (rule (T−Var)). Abstractions (rule (T−Abs)) has an empty effect and produce a functional
type τ

H−→ τ ′ from their input to their output types. The latent effect H is the one obtained from typing the
function body. Rule (T−Ev) requires more attention. Indeed, we say that an expression α(e), having type unit,
generates a history expression which is the sequence between the history expression deriving from typing its
argument e and the summation (i.e., a finite sequence of choice operators) of all the possible access actions α

to a compatible resource r ∈R. Also, all of these access events are annotated with the metric value provided
by the function F . The application of a function e to an argument e′, i.e., rule (T−App), has type equal to the
return type of e and a history effect which is the sequence between (1) the two effects of e and e′ in parallel and
(2) the latent effect of the function. Security and metric framing (rules (T−Frm) and (T−Met)) have the same

4For simplicity here we assume a single set R, but, in general, we assume to have a finite number of resource domains R1, . . . ,Rn
s.t.

⋃
i Ri = R
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(T−Unit) Γ,ε ` ∗ : unit (T−Res) Γ,ε ` r : R (T−Var) Γ,ε ` x : Γ(x) (T−Abs)
Γ;x : τ;z : τ

H−→ τ ′,H ` e : τ ′

Γ,ε ` λzx.e : τ
H−→ τ ′

(T−Ev)
Γ,H ` e : R

Γ,H · ∑
r∈R

(F(α,r)#α(r)) ` α(e) : unit
(T−App)

Γ,H ` e : τ
H ′′−−→ τ ′ Γ,H ′ ` e′ : τ

Γ,(H | H ′) ·H ′′ ` ee′ : τ ′
(T−Frm)

Γ,H ` e : τ

Γ,ϕ[H] ` ϕ[e] : τ

(T−Met)
Γ,H ` e : τ

Γ,γ 〈H〉 ` γ 〈e〉 : τ

(T−If)
Γ,H ` e : τ Γ,H ` e′ : τ

Γ,H ` if g′ then e else e′ : τ

(T−Wkn)
Γ,H ` e : τ H v H ′

Γ,H ′ ` e : τ

(T−Req)
I = {H | e` : τ

H−→ τ ′ ∈ Srv}

Γ,ε ` reqρ τ −→ τ ′ : τ
∑X∈I X−−−−→ τ ′

Table 6: Typing relation

type as their targets and produce wrapped history expressions. Rule (T−Wkn) says that we can always type an
expression under a more general history expression. Finally, rule (T−Req) says that a service request has the
same type of its signature but for its latent effect which is obtained as the disjunction of all the (latent effects of
the) possible servers appearing in the repository Srv.
Example 5. Consider service 9, we call its implementation e9, of Example 1. Writing it without abbreviations
we obtain: e9 = λzx.(λwy.SIGNED DOC)sign 64(x). Then consider the function FRisk of Table 3. We type e9 as
follows.

Γ′,ε ` SIGNED DOC : D

Γ,ε ` λwy.SIGNED DOC : τ
ε−→D

Γ(x) = D

Γ,H9 ` sign 64(x) : unit

Γ,H9 ` (λwy.SIGNED DOC)sign 64(x) : D

/0,ε ` e9 : D
H9−→D

where H9 = 1#sign 64(RCPT)+1#sign 64(SIGNED DOC), Γ = x : D ;z : D
H9−→D and Γ′ = Γ;y : τ;w : τ

ε−→D .
Following a similar reasoning we type all the services of example 1 as shown in Figure 4. For brevity, in the
following we use Hi to denote the latent effect of service ei.
Example 6. Using the notation introduced in the previous examples for denoting the history expressions of
services, we type the BestTravel implementation eB as in Figure 5. We call HB the latent effect labelling the
arrow type of eB.

The main result on the type and effect system is type safety. In words, type safety guarantees that effects
produced by the type and effect system safely denote the behaviour of services.
Theorem 1. If Γ,H ` e : τ and 〈ε,d,e〉 →∗π 〈η ,d′,v〉 then ∀δ .η ∈ JHKδ .

Interestingly, the extensions presented in this paper do not invalidate this result originally proved by Bar-
toletti et. al. [4]. In the next section, we show that history expressions safety is also preserved under metric
factorization.

5 Security and metric analysis

5.1 History expressions and semirings

Metric annotations are used to label a history expression with metric values which are expected to be produced
dynamically. However, metric annotations are locally associated with parts of a history expression while, in
general, it would be preferable to have a single value labelling the whole expression. In particular, we are
interested in a procedure which turns a history expression into a corresponding normal form.
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e1 : A

0#search flight for(AIRPORT)·((
15#reserve(FLIGHT No)+

0#reserve(NO FLIGHT)

)
+

(
20#overbook(FLIGHT No)+
0#overbook(NO FLIGHT)+ ε

))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→F

e2 : A
(0#search flight for(AIRPORT))·(15#reserve(FLIGHT No)+0#reserve(NO FLIGHT))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→F

e3 : A
(0#generate travel to(AIRPORT))·(15#reserve(ITINERARY))·(10#insurance(ITINERARY))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→I

e4 : A
(0#generate travel to(AIRPORT))·(15#reserve(ITINERARY))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→I

e5 : C
(20#find hotel 3s(CITY))·(20#book(HOTEL))−−−−−−−−−−−−−−−−−−−−−−−−−−→H

e6 : C
(30#find hotel 2s(CITY)+15#find hotel 4s(CITY))·(20#book(HOTEL))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→H

e7 : B

ε+




8#var charge(ITINERARY)+
8#var charge(FLIGHT No)+
8#var charge(NO FLIGHT)+
8#var charge(HOTEL RESV)

·


20#buy(ITINERARY)+
10#buy(FLIGHT No)+
0#buy(NO FLIGHT)+
10#buy(HOTEL RESV)




−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→D

e8 : B


5#const charge(ITINERARY)+
5#const charge(FLIGHT No)+
5#const charge(NO FLIGHT)+
5#const charge(HOTEL RESV)

·


20#buy(ITINERARY)+
10#buy(FLIGHT No)+
0#buy(NO FLIGHT)+
10#buy(HOTEL RESV)


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→D

e9 : D
1#sign 64(RCPT)+1#sign 64(SIGNED DOC)−−−−−−−−−−−−−−−−−−−−−−−−→D

e10 : D
0#sign 128(RCPT)+0#sign 128(SIGNED DOC)−−−−−−−−−−−−−−−−−−−−−−−−−−→D

Figure 4: Types inferred from the services of Example 1.

eB : unit

 γ

〈
(H1 +H2) ·

 (H7 +H8)
+

((H3 +H4) · (H7 +H8))

〉
∣∣∣∣∣∣∣γ
〈 (H5 +H6)

·
(H7 +H8)

〉·γ 〈µh.((H9 +H10) ·h+ ε)〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→D

Figure 5: Type of BestTravel.

Definition 6. A history expression H is said to be in metric normal form (MNF), iff H = d#H ′ and H ′ contains
no metric annotations.

In Table 7 we propose a set of equivalences that we use to move and compose metric annotations appearing
in history expressions. The rules in Table 7 define the correspondence between the history expressions and the
semiring operators. In particular, we can always add a multiplication-neutral annotation to a history expression,
nested annotations are commutative and can be reduced to a semiring multiplication and choice correspond to
the inverse of a semiring addition, namely a subtraction. Also parallel composition can be annotated with the
(result of the) multiplication between the two subexpressions annotations. A security framing is orthogonal to
metric annotation, i.e., they do not affect each other. Instead, metric checks have a precise effect on annotations.
As a matter of fact, we can remove a metric check by forcing its target to be annotated with the difference (⊕−1)
between the inner annotation and the threshold of γ . Finally, a recursion is annotated with the least fix point of
the function Φ that extracts the metric annotation from the inner history expression after annotating the bounded
variable h.

A crucial property we want to prove on the equation rules of Table 7 is that they do not invalidate the
semantics of history expressions. Such property guarantees that history expression transformations do not
affect the safety property stated by theorem 1.

Property 2. For all history expressions H and H ′ if H ≡ H ′ then ∀δ .JHKδ = JH ′Kδ
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H ≡ 1#H d1#d2#H ≡ d2#d1#H ≡ d1⊗d2#H d1#H1 ·d2#H2 ≡ d1⊗d2#(H1 ·H2)

d1#H1 +d2#H2 ≡ d1⊕−1 d2#(H1 +H2) d1#H1 | d2#H2 ≡ d1⊗d2#(H1 | H2) ϕ[d#H]≡ d#ϕ[H]

γ 〈d#H〉 ≡ d̄#γ 〈H〉 where γ = T ≥T d′ and d̄ = d⊕−1 d′

µh.H ≡ d̄#µh.H ′ where d̄ =
⊕

n

−1
Φ

n(0) and Φ(d) = d′⇔


H[d#h/h]≡ d′#H ′

∧
d′#H ′ is in MNF

Table 7: Equational rules.

Example 7. Having in mind that ⊕−1 is max for Risk , consider the history expression H2 of Example 5

H2 = (0#search flight for(AIRPORT)) · (0#reserve(FLIGHT No)+15#reserve(NO FLIGHT))

H2 ≡ 0⊗ (0⊕−1 15)#(search flight for(AIRPORT) · (reserve(FLIGHT No)+reserve(NO FLIGHT)))

Note, that the right side of the previous equivalence is in MNF. According to the operations of the semiring
Risk , the resulting annotation value is 15.

Example 8. We write the MNF of the history expressions of Example 5. For brevity, we write Hi ≡ di#H ′i to
emphasise the metric annotation of the MNF without showing the structure of H ′i .

H1 ≡ 20#H ′1 H2 ≡ 15#H ′2 H3 ≡ 25#H ′3 H4 ≡ 15#H ′4 H5 ≡ 40#H ′5
H6 ≡ 50#H ′6 H7 ≡ 28#H ′7 H8 ≡ 25#H ′8 H9 ≡ 1#H ′9 H10 ≡ 0#H ′10

Intuitively, Example 8 shows that every history expression appearing in our working example has an equiv-
alent MNF. In general, we know that all the history expressions can be reduced to a corresponding MNF as
stated by the following property.

Property 3. For each history expression H there exists H ′ such that H ≡ H ′ and H ′ is in MNF.

The last property we show is metric safety, which characterizes the most important quality of the metric
annotations we generate.

Theorem 2. If Γ,H ` e : τ and H ≡ d̄#H ′ such that d̄#H ′ is in MNF, then for each execution 〈η ,d,e〉 →∗π
〈η ′,d′,e′〉 holds that d′ ≤T d⊗ d̄.

Similarly to type safety, this theorem guarantees that metric annotations produced by our equational theory
provide an upper bound to the metric values generated by the execution of a term. As each of them has a
corresponding MNF, this theorem can be universally applied to any history expression.

5.2 Discussion

During the presentation we have shown how our formalism can be applied to the modelling of complex business
processes. In this part of the article we describe how the proposed theory can be applied to the verification and
analysis of the security properties of web services.

Basically, our proposal offers facilities that can be applied to all the stages of service design, implementation
and execution. Statically, service designers can write their policies on execution histories and security metrics.
Then, developers apply the scope of the policies to the service implementation. Finally, each service runs with
proper checks controlling that the execution complies with the specification.

These steps suffice to carry out the analysis of possible configurations of a complex abstract business pro-
cess. The goal is to check whether the possible configurations satisfy desired policies. This information is
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required in order to decide if we can avoid run-time controls. Naturally, if a configuration satisfies a policy or
the worst possible metric value is better than a threshold, there is no need for an additional control.

Note, that we assume that the declared policies/metrics for a specific service are genuine and the services
are typed by a trusted type and effect system (implementation). Although this assumption is not true in general,
here we focussed on the considered problem, i.e., aggregation of metrics and check of composite properties.

In order to check that a certain business process satisfies properties or has sufficiently good metric value
the analyst starts for a λ req implementation of an abstract workflow, as it is shown in Example 2. Then, we
assume the service repository and c∗-semirings for considered metrics to be defined similar to Examples 1
and 3. The next step is to type the service implementation similar to Example 5 and 6. Finally, we aggregate
metrics annotations, as it is done in Example 7. During this process, several analysis on the validity of history
expressions can be carried out in order to prevent illegal service compositions. For a description of these
techniques we refer the interested reader to [4, 12].
Example 9. We use the history expressions in MNF shown in Example 8 to compute the MNF of HB. Consid-
ering the history expression appearing in Figure 5, we can replace every instance of Hi with the corresponding
MNF di#H ′i . Then we obtain the following equivalences.

HB ≡ (γ 〈HF〉 | γ 〈HH〉) · γ 〈HS〉

HF ≡
(
(20#H ′1 +15#H ′2) ·

(
(28#H ′7 +25#H ′8)+((25#H ′3 +15#H ′4) · (28#H ′7 +25#H ′8))

))
HH ≡

(
(40#H ′5 +50#H ′6) · (28#H ′7 +25#H ′8)

)
HS ≡ µh.((1#H ′9 +0#H ′10) ·h+ ε)

Applying the rules of Table 7, we can reduce to the following history expression.

HB ≡ (γ 〈73#H ′F〉 | γ 〈78#H ′H〉) · γ 〈∞#H ′S〉

Recalling that γ = Risk≤ 75 we conclude with the equivalences below.

(γ 〈73#H ′F〉 | γ 〈78#H ′H〉) · γ 〈∞#H ′S〉 ≡ (73#γ 〈H ′F〉 | 75#γ 〈H ′H〉) ·75#γ 〈H ′S〉 ≡ 223#((γ 〈H ′F〉 | γ 〈H ′H〉) · γ 〈H ′S〉)

Interestingly, we note that, among the three instances of γ , only the first one applies to a history expression
satisfying the restriction, i.e., 73 ∈ γ . We cannot say the same for the other two instances. However, our
semantics for metric framing forces the execution of all the parts of the service to respect risk constraints. In
this way, even though some parts of the service are labelled with ∞, the overall risk is a finite value, i.e., 223.

Since the last two instances fail the restriction the dynamic analysis is required. Note, that the hotel reser-
vation part of the process may use services H5 and H8 with the overall risk level 65 < 75. Therefore, during
the execution we guard the second and the third instances to guarantee the low risk level values. There is no
need to guard the first instance, since it satisfies the restriction in any case. Imagine, that during the execution
H6 service has been selected. Before executing the next step the guard must check the resulting value, using
the same rules as for the static analysis. In case H8 is selected the execution is allowed (75 ≤ 75). Otherwise,
if H7 is chosen the restriction fails (78 > 75) and the execution is halted (or another action is performed, e.g., a
report about the failure is sent to the customer and provider).

6 Related work

Outsourcing processing of sensitive data to external parties requires some assurances, that the data will be well
protected while processed and transmitted. Unsurprisingly, several authors claimed that security requirements
must be included into the agreement between service customer and service provider [15, 16]. Our work extends
the existing state of the art with a unified approach for checking security properties and security metrics of
complex business processes which appear as statements in such agreements.
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Many authors proposed formal languages for specifying and verifying agreements, also called contracts,
between a service provider and a customer. Padovani [21] proposes a language for defining service contracts
and presents a theory for the automatic generation of service orchestrators. Subcontract relations are used to
find a matching between the contract offered by a service and the requirements of its clients. Similarly, Bravetti
and Zavattaro [8] present a language for the specification of service contracts. Their contracts have a process
algebra-based semantics and allow for the specification of composed services. Contract composition can be
verified to guarantee that the interaction of a group of services does not violate the specifications. Even though
these works do not focus on security analysis, their contracts can be adapted to model security requirements.

Martinelli and Matteucci [17] presented a framework for the synthesis of a secure orchestrator, i.e., an
agent which drives the interaction between two services guaranteeing that a certain security policy is respected.
Although, the proposals described above use contracts for the specification and analysis of history-based [1]
service properties, none of them allows for the definition of security metrics and restrictions on them.

In order to check whether a complex business process satisfies some quantitative requirements aggregation
of security metric values for atomic services is required. For example, Cheng et. al. [10] aggregated downtime
metric, considering business process like a simple set of activities, i.e., regardless the operational flow.

In contrast, Jaeger et. al. [19] have shown that some metrics could be aggregated differently depending on
the structural activity used for joining the atomic services. In this work all metrics were considered separately.
Moreover, the author did not considered security metrics. Yu et. al. [24, 23] applied the idea of Jeager at. al. for
selection of the best process among several alternatives. The authors defined aggregation functions for several
metrics and aimed at selection of the best alternative which satisfies the constraints specified in the agreement.
First the authors defined a utility function and proposed to solve a 0-1 multi-dimension multi-choice knapsack
problem (MMKP) only for a sequential order [23]. Solutions for a general workflow were proposed later [24].

Massacci and Yautsiukhin [18] proposed a method and an algorithm for aggregation of security metrics.
The authors also solved the problem of selection the best (i.e., more secure) alternative, though a wider range
of metrics were considered (these metrics cannot be used in classical algorithms for finding the shortest path).
The method was extended for checking several metrics at the same time using Pareto optimality strategy [14].

In our work we do not have a goal to select the business process which has the best metric value. Moreover,
we assume that some processes which do have a value worse than desired may still satisfy the policy if a more
secure execution path is selected for a specific invocation. Therefore, our proposal allows making a decision at
design time and supporting control at run-time.

7 Conclusion

In this paper we presented a novel approach for dealing with the analysis and verification of both security and
metric requirements of web services. Our system is developed on existing solutions for modelling security and
metric-based requirements. The result is a unified framework for (i) the definition and application of security
and metric policies within service implementation, (ii) the automatic extraction of history expressions carrying
metric annotations and (iii) the computation (through an equational theory) of metric values which safely predict
the expected behaviour of services. Our proposal requested a new type and effect system, extending existing
approaches, to be defined. Interestingly, we found that adding metric annotations does not invalidate the type
safety property, i.e., annotations are orthogonal to the history expressions.

The present work is a first step toward a complete model for the specification and verification of quantitative
and qualitative, non functional requirements for web services. Further effort is requested in order to generalise
our approach. In particular, we aim at defining a procedure for generating orchestration plans starting from the
history expressions produced by our type and effect system. Such method has been presented in [4] for metric-
free history expressions and we believe that similar results can be extended to our proposal. Another limitation
of the current model is our static description of metric value for the events. Even though we think that assigning
metric values to events is a reasonable way to model the actual behaviour of services, it is not always correct to
assume these values to keep unchanged in time. Indeed, many metrics aim at modelling dynamic evolution of
some property, e.g., reputation or number of system failures, which we cannot model with our approach.
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[19] G. Rojec-Goldmann M.C. Jaeger & G. Mühl. (2005): QoS Aggregation in Web Service Compositions. In: Proc. of

EEE-05. doi:10.1109/EEE.2005.110
[20] Hanne Riis Nielson & Fleming Nielson (2007): A flow-sensitive analysis of privacy properties. In: Proceedings of

the 20-th IEEE Computer Security Foundations Symposium, pp. 249 –264. doi:10.1109/CSF.2007.4
[21] Luca Padovani (2008): Contract-Directed Synthesis of Simple Orchestrators. In: Proceedings of the 19th interna-

tional conference on Concurrency Theory, Springer-Verlag, pp. 131–146. doi:10.1007/978-3-540-85361-9 13
[22] S. Rossi & D. Macedonio (2009): Information flow security for service compositions. In: Proc. of ICUMT-09, pp. 1

–8. doi:10.1109/ICUMT.2009.5345455
[23] Tao Yu & Kwei-Jay Lin (2005): A Broker-Based Framework for QoS-Aware Web Service Composition. In: Proc. of

EEE-05). doi:10.1109/EEE.2005.1
[24] Tao Yu, Yue Zhang & Kwei-Jay Lin (2007): Efficient algorithms for Web services selection with end-to-end QoS

constraints. ACM Transactions on the Web 1. doi:10.1145/1232722.1232728

http://dx.doi.org/10.1007/978-3-642-03459-6_4
http://dx.doi.org/10.1016/j.entcs.2009.11.020
http://dx.doi.org/10.3233/JCS-2009-0357
http://dx.doi.org/10.1007/978-3-540-71389-0_4
http://dx.doi.org/10.1145/256303.256306
http://dx.doi.org/10.1007/978-3-642-00945-7_1
http://dx.doi.org/10.1007/978-3-540-77351-1_4
http://dx.doi.org/10.1145/1328438.1328471
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1007/978-3-642-16074-5_4
http://dx.doi.org/10.1016/j.sysarc.2010.09.001
http://dx.doi.org/10.1145/366173.366195
http://dx.doi.org/10.1007/978-0-387-36584-8_2
http://dx.doi.org/10.1007/978-3-540-79230-7_9
http://dx.doi.org/10.1145/1314257.1314265
http://dx.doi.org/10.1109/EEE.2005.110
http://dx.doi.org/10.1109/CSF.2007.4
http://dx.doi.org/10.1007/978-3-540-85361-9_13
http://dx.doi.org/10.1109/ICUMT.2009.5345455
http://dx.doi.org/10.1109/EEE.2005.1
http://dx.doi.org/10.1145/1232722.1232728

	1 Introduction
	2 Running example
	3 Service structure
	3.1 Syntax
	3.2 C-Semirings
	3.3 Operational Semantics

	4 Type and effect system
	4.1 History expressions
	4.2 Typing relation

	5 Security and metric analysis
	5.1 History expressions and semirings
	5.2 Discussion

	6 Related work
	7 Conclusion

