
M. Carbone, I. Lanese, A. Silva, A. Sokolova (Eds.):
5th Interaction and Concurrency Experience (ICE’12).
EPTCS 104, 2012, pp. 67–82, doi:10.4204/EPTCS.104.7

Enforcing Architectural Styles in Presence of
Unexpected Distributed Reconfigurations∗

Kyriakos Poyias Emilio Tuosto
Department of Computer Science, University of Leicester, UK

kyriakos@le.ac.uk emilio@le.ac.uk

Architectural Design Rewriting (ADR, for short) is a rule-based formal framework for modelling
the evolution of architectures of distributed systems. Rules allow ADR graphs to be refined. After
equipping ADR with a simple logic, we equip rules with pre- and post-conditions; the former con-
straints the applicability of the rules while the later specifies properties of the resulting graphs. We
give an algorithm to compute the weakest pre-condition out of a rule and its post-condition. On top
of this algorithm, we design a simple methodology that allows us to select which rules can be applied
at the architectural level to reconfigure a system so to regain its architectural style when it becomes
compromised by unexpected run-time reconfigurations.

1 Introduction

Modern applications are very rarely developed as “stand-alone” software; as a matter of fact, even simple
applications are nowadays open in the sense that they are typically able to connect and/or be integrated
with other applications such as those in service-oriented or cloud computing. Also, this kind of soft-
ware tend to be autonomic, namely it needs to automatically adapt to the (often unpredictable) run-time
changes.

Openness magnifies the complexity of such software. In fact, open systems are subject to unex-
pected reconfigurations that may hinder their execution and drive computations into erroneous states in
an unanticipated manner. Detecting and tackling those states of the computation at run-time is crucial
to re-establish correct configurations from which the computation can safely restart. For example, the
reaction to the failure of a service S, may redirect the requests of the clients to another service S′.

A problem that can arise in those cases is that the run-time reconfigurations may compromise the
alignment with the expected abstract architecture. In the client-service scenario mentioned above, the
choice of S′ may cause the violation of some architectural constraints designed e.g. to balance the load.

In this paper we propose to use high-level designs of software architectures to drive system reconfig-
urations so that desirable architectural properties (expressed as logical invariants) are maintained when
reconfigurations are necessary. Software architectures specify the structure and interconnections of a
software product. Ordinary computation can change the state, but they are very rarely allowed to modify
the architecture. In this context it is also crucial to preserve architectural styles [14] that allow one (i)
to specify (reusable) design patterns, (ii) to confine the parts to be reconfigured, and (iii) to control the
architectural changes.

Our approach hinges on a formal language for specifying software architectures, their refinements,
and their style. Methodologically, we adopt ADR [4] as our architectural description language. As sur-
veyed in § 2, ADR models systems as (hyper)graphs that is a set of (hyper)edges sharing some nodes;
respectively, edges represent distributed components (at some level of abstraction) while nodes represent
∗This work has been supported by FP7-PEOPLE-2011-IRSES MEALS

http://dx.doi.org/10.4204/EPTCS.104.7

68 Enforcing Architectural Styles in Presence of Unexpected Reconfigurations

communication ports. Also, ADR features refinement rules of the form L→ R where L is a (hyper)edge
and R a (hyper)graph meant to replace L with R within a given graph. In ADR, a system corresponds
to a configuration of elements (i.e. nodes and edges) that can be related to the architecture graph com-
ponents and expected to respect the architectural style specified by the refinement rules. Such elements
can interact through their connections according to run-time interactions (run-time reconfigurations) not
represented at the architectural level. A main reason for adopting ADR is that it has been designed
to support the alignment of architecture-related information with run-time behaviour in order to drive
execution.

A technical contribution of this paper (§ 3 and § 4) is to generalise ADR with asserted productions,
that is refinement rules of the form

{ψ}L→ R{ϕ} where ψ and ϕ are the pre- and post-conditions, respectively (1)

The intuition is that (1) can be applied only to graphs satisfying ψ to obtain a graph satisfying ϕ . For
this, we use a simple logic for hyper graphs.

In ADR, architectural styles are formalised in terms of productions that describe the legal configu-
rations of systems. We generalise this by envisaging architectural styles as set of productions together
with invariants (expressed as closed formulae of our logic) which can be thought of as contracts that
architectures have to abide by.

The main result of the paper is an algorithm (§ 5) to compute the weakest pre-condition from the
post-condition of a production. Also, we use such algorithm to devise a methodology to re-establish the
architectural style specified for a system when run-time reconfigurations compromise it.

Synopsis A short overview of ADR is given in § 2 (for simplicity, we do not describe ADR reconfigu-
ration; the interested reader is referred e.g. to [4] for the technical details). We introduce a simple logic
for ADR in § 3. Basic definitions to specify our algorithm are in § 4 while the algorithm is in § 5. In § 6
we describe a methodology that relies on the algorithm in § 5 to recover architectural styles compro-
mised by run-time reconfigurations. An application of the methodology is given in § 7. Related work are
discussed in § 8. Concluding remarks and future work is in § 9.

2 A walk through ADR

We briefly overview ADR; we borrow from [4] the main definitions and notations (slightly adapting them
to our needs).

In the following, N and E are two countably infinite and disjoint sets (of nodes and edges respec-
tively), X∗ def

= {(x1, . . . ,xn)
∣∣x1, . . . ,xn ∈ X} is the set of finite lists on a set X , and x̃ ranges over X∗. Also,

abusing notation, we sometimes use x̃ to indicate its underlying set of elements.

Definition 1 ((Hyper)graphs). A (hyper)graph is a tuple G = 〈V,E, t〉 where V ⊆N and E ⊆ E are finite
and t : E→V ∗ is the tentacle function.

Given a graph G, we denote with VG, EG, and tG its nodes, edges, and tentacle function, respectively.
An edge e ∈ EG is connected to a list of nodes via tG and the arity of e is the length of tG(e).

Definition 2 (Graph morphism). Let G and H be two graphs. A graph morphism from G to H is a
pair of functions 〈σV : VG → VH ,σE : EG → EH〉 s.t. σV and σE preserve the tentacle functions, i.e.
σ∗V ◦ tG = tH ◦σE , where σ∗V is the homomorphic extension of σV to V ∗G.

K. Poyias, E. Tuosto 69

In ADR, graphs are typed over a fixed type graph via typing morphisms. A graph G is typed over a
type graph Γ through τG if τG is a morphism from G to Γ.

Definition 3 (ADR graph). Let Γ be a type graph equipped with a map η : EΓ→{0,1}. An ADR graph
G is a (hyper)graph typed over Γ through τG if τG is a morphism from G to Γ; we call e ∈ EG terminal if
η(σ(e)) = 0 and non-terminal if η(σ(e)) = 1.

This is reminiscent of string grammars where terminal symbols correspond to terminal edges and
non-terminal symbols to non-terminal edges.

Example 1. Let V = {•} ⊆ N and E = {C,BF,FF,Fls,Fl,P,PF} ⊆ E. Consider the type graph Γ =
〈V,E, t,η〉 where t : C 7→ (•) and t : e 7→ (•,•) for each e ∈ E \ {C}, with η(e) = 0 if e ∈ {C,FF} and
η(e) = 1 otherwise. The graph G = 〈{u1, . . . ,u4},{ f f , f l1, f l2}, t ′〉 where t ′ is defined as t ′ : f f 7→
(u2,u1), t ′ : f l1 7→ (u3,u2), and t ′ : f l2 7→ (u4,u2) can be typed on Γ by τG mapping all the nodes to •,
f l1 and f l2 to Fls, and f f to FF. �

Hereafter, we fix a typed graph Γ and tacitly assume that all graphs G are typed over Γ via a morphism
τG. Intuitively, Γ yields the vocabulary of the architectural elements to be used in the designs; moreover,
Γ specifies how these elements can be connected together (e.g., as in Example 1).

Type and typed graphs have a convenient visual notation. Nodes are circles and edges are drawn as
(labelled) boxes; single- and double-lined boxes represent terminal and non-terminal edges, respectively.
Tentacles are depicted as lines connecting boxes to circles; conventionally, directed tentacles indicate the
first node attached to the edge and the others are taken clockwise. The visual notation for typed graphs
include the graph and its typing morphism. Nodes are paired with their types while an edge label e : e′

represents the fact that the typing morphism maps the edge e of the graph to the edge e′ of the type graph.

Example 2. In the visual notation described above, the type graph Γ and the graph G of Example 1 can
be respectively drawn as

FF // • e^^

C

OO fl1 : Fls // u3•

u1• ff : FF // u2• fl2 : Fls // u4•

where, to simplify the type graph, we use e ∈ {BF,Fls,Fl,P,PF} (instead on drawing an edge for each
non-terminal edge of Γ. �

Definition 4 (Typed Graph morphisms). A morphism between Γ-typed graphs f : G1 → G2 is a typed
graph morphism if it preserves the typing, i.e. such that τG1 = τG2 ◦ f .

Definition 5 (Productions). A (design) production p is a tuple 〈L,R, i : VL → VR〉 where L is a graph
consisting only of a non-terminal edge attached to distinct nodes; R is an ADR graph (with both terminal
and non-terminal edges); the nodes in Im(i) (the image of i) are called interface nodes.

Design productions can be thought of as rewriting rules that, when applied to a graph G, replace a
non-terminal (hyper)edge of G matching L with a fresh copy of R (we remark that our morphisms are
type-preserving). Also productions have a suitable visual representation illustrated in the next example.

70 Enforcing Architectural Styles in Presence of Unexpected Reconfigurations

Example 3. The graphical representation below represents a design production.

Fls

• u2• f : Fl // u• p : P // u1• •

Since the production above will be used later (cf. Example 7) we will refer to it as bookFlight. The
left-hand-side (LHS) of bookFlight is an edge of type Fls (denoted in the left-upper corner of the
dotted-box) whose nodes are those outside the dotted box; we omit the identities of such nodes when
immaterial. The right-hand-side (RHS) of bookFlight is the graph inside the dotted box. The mapping
i of bookFlight is represented by the dotted lines. �

The application of asserted productions (cf. Definition 9) encompasses that of ADR productions
hence we give here only an example to illustrate how productions are applied.

Example 4. Consider the production bookFlight of Example 3. In the following rewriting

f f : FF // u1• f f : FF // u1•

u• f ls : Fls

mm

u• f : Fl // u2• p : P

nn

bookFlight +3

the unique edge of type Fls in the leftmost graph is replaced by an instance of the RHS of bookFlight.
Note that the rest of the graph (consisting only of the edge f f) including the interface nodes is left
unchanged while a fresh node u2 is created. �

3 A logic for ADR

We use a simple logic tailored on ADR. Basically, our logic is a propositional logic to predicate on
(in)equalities of nodes. In the following we let D,D′, . . . range over edges of Γ.

Definition 6 (ADR logic). Let V be a countably infinite set of variables for nodes (ranged over by
x,y,z, . . .). The set L of (graph) formulae for ADR is given by the following grammar:

ψ,ϕ ::= x= y | > | ¬ϕ | ϕ1∧ϕ2 | ∀D(x̃).ϕ

In formulae of the form ∀D(x̃).ϕ , the occurrences of y ∈ x̃ in ϕ are bound, x̃ has the length of the arity
of D and x̃ are pairwise distinct.

Logic L is parametrised with respect to the type graph Γ used in quantification. Variables not in the
scope of a quantifier are free and the set fv(ϕ) of free variables of ϕ ∈L is defined accordingly; also,
we abbreviate x1 = x2∧ . . .∧xn−1 = xn with x1 = x2 = . . .= xn−1 = xn and we define ⊥ as ¬>, x 6= y as
¬(x= y), ϕ ∨ψ as ¬(¬ϕ ∧¬ψ), ϕ → ψ as ¬ϕ ∨ψ , and ∃D(x̃).ϕ as ¬∀D(x̃).¬ϕ .

The models of our logical formulae are ADR graphs.

K. Poyias, E. Tuosto 71

Definition 7 (Satisfaction relation). An ADR graph G satisfies ϕ ∈L under the assignment h : V→VG

(in symbols G |=h ϕ) iff

ϕ ≡>, or
ϕ ≡ x= y and h(x) = h(y), or
ϕ ≡ ¬ϕ ′ and G 2h ϕ ′, or
ϕ ≡ ϕ1∧ϕ2 and G |=h ϕ1 and G |=h ϕ2, or
ϕ ≡ ∀D(x̃).ϕ and G |=h[x̃7→ũ] ϕ for any d(ũ) ∈ G s.t. τG(d) = D

Note that in the last case of Definition 7, each bound variable in x̃) is replaced with a node.
Fact. For each h,h′ : V→VG, if h|fv(ϕ) = h′|fv(ϕ) then G |=h ϕ iff G |=h′ ϕ .
By the above property, in G |=h ϕ we can restrict to finite mappings h that only assign variables in fv(ϕ).
Hereafter, we write G |= ϕ when fv(ϕ) = /0.

Example 5. The formula φex = ∀D(x,y).∃D′(z).x= z describes graphs such that each edge of type D is
connected to one of type D′ on the first tentacle. For instance, consider the graphs

Gvalid =
u2• d1 : D // u1• d′ : D′oo

u4• d2 : D

OO Ginvalid =
u2• d1 : D // u1• d′ : D′oo

u4• d2 : D // u3•

then Gvalid satisfies φex whereas Ginvalid does not because d2 is not connected to any edge of type D′. �

More interesting formulae are given in the next two examples.

Example 6. The formula

noEdge〈D〉 def
= ∀D(x̃).⊥ (2)

characterises the graphs that do not contain edges of a given type. �

Formulae of the form (2) will be used in Definition 11 (hereafter, we write noEdge〈D1, . . . ,Dn〉 for
noEdge〈D1〉∧ . . .∧noEdge〈Dn〉).

The next example shows that, despite its simplicity, our logic is quite expressive when “taken modulo
productions”.

Example 7. By the production below, a non-terminal edge of type C can be replaced by a chain of two
edges of type C. The formula path D C requires instead that any two different nodes attached to an edge
of type D are connected by an edge of type C.

C

• u2• c1 : C // u• c2 : C // u1• •
path D C def

= ∀D(x,y).x 6= y→∃C(u,v).(x= u∧y = v)

The production and the formula above characterise graphs that contain paths of edges of type C between
any two distinct nodes connected by an edge of type D. Note that even though there is no edge of type D
in the production, path D C quantifies over edges of type D in the graph. �

72 Enforcing Architectural Styles in Presence of Unexpected Reconfigurations

ψ
h // L i //

σ

��

R
ι

ϕ
h′oo

R′� _

��
G
ww π // G′

Figure 1: Asserted design productions

4 Design by Contract for ADR

Our notion of contracts hinges on asserted productions, namely ADR productions decorated with pre-
and post-conditions expressed in the logic L given in § 3.

Definition 8 (Asserted productions). If p = 〈L,R, i〉 is a production, h,h′ : V→N, and ψ,ϕ ∈L then
{ψ,h} p {ϕ,h′} is an asserted production iff h(fv(ψ))⊆VL, and h′(fv(ϕ))⊆VR.

An asserted production generalises ADR productions and it intuitively requires that if p is applied
to a graph G that satisfies ψ then the resulting graph is expected to satisfy ϕ . The maps h and h′ in
Definition 8 allow pre- and post-conditions to predicate on nodes occurring in the LHS or the RHS of p.

An instance G′ of a graph G is a graph G′ isomorphic to G that does not share nodes or edges with
G. The application of an asserted production to a graph consists of replacing an homomorphic image of
the edge of the LHS with a new instance of the RHS and then connecting it to the interface nodes. This
is formalised in the next definition and schematically illustrated in Figure 1.

Definition 9 (Applying asserted productions). Let p = 〈L,R, i〉 be a production, G a graph, and σ a
morphism from L to G. We say that π = {ψ,h} p {ϕ,h′}, an asserted production, is applicable to G via
σ iff G |=σ◦h ψ .

Given an instance R′ of R through the isomorphism ι : R→ R′ such that ER′∩EG = /0 and VR′∩VG = /0
a graph (G′ =)G[σ(e) 7→ R′′] is the application of π to G wrt σ iff R′′ = R′[ι(r) 7→ σ(i−1(r))

∣∣ r ∈ Im(i)].
A production π is valid when any application of π to a graph satisfying the precondition of π yields a
graph satisfying the post condition of π .

Examples 8 and 9 show how asserted productions are applied to graphs.

Example 8. Let ψ
def
= ∀Fls(x,y).x 6= y and let π

def
= {ψ, /0} bookFlight {φ , /0} be an asserted production

of bookFlight given in Example 3. If G is the leftmost graph in the rewriting of Example 4, then we
have G 6|= ψ (under the unique morphism σ from L to G). In fact, x and y are mapped to the same node
u1 of G. �

Example 9. The rewriting below

f f : FF // u1• f f : FF // u1•

u• f ls : Fls // u3• u• f : Fl // u2• p : P // u3•
bookFlight +3

is obtained by the asserted production π in Example 8; according to Definition 9, edge f ls on the left is
replaced by an isomorphic instance of R preserving the interface nodes u1 and u3. �

K. Poyias, E. Tuosto 73

We remark that Definition 9 generalises the rewriting mechanism (hyper-edge replacement) [6] of
ADR, in fact {>, /0} p {>, /0} applies exactly as normal ADR productions.

5 Extracting contracts for ADR productions

The application of an asserted production {ψ,h} p {ϕ,h′} to a graph satisfying ψ does not necessarily
yield a graph satisfying ϕ (this can be trivially noted by taking a production with ⊥ as post-condition).
We give an algorithm to compute the weakest pre-condition given a post-condition and a production in
the style of the seminal work on predicate transformers of Dijkstra [7]. We first give some auxiliary
definitions and notations.

Hereafter, bound variables in a formula are assumed distinct from its free variables and bound only
once. An environment E is the product of three finite partial maps E (1) : V→ {∀,∃}, E (2) : V→ EΓ,
and E (3) : V→N. Hereafter, we write 0 for the empty environment, E (x)

as
= q D G when x is quantified

by q ∈ {∀,∃} (that is E (1)(x) = q), attached to an edge of type D (that is E (2)(x) = D), and mapped to
node of G (that is E (3)(x) ∈VG); if G consists of a node n, we simply write E (x)

as
= q D n. Also, we use

” ” as a wild-card writing e.g. E (x)
as
= q G when we are not interested in the type assigned to x (i.e.,

E (x)
as
= q G abbreviates E (1)(x) = q and E (3)(x) ∈VG).

Definition 10 (Auxiliary Mapping). Let p= 〈L,R, i〉 be a production. We write R◦ def
= VR\ Im(i) to denote

the internal nodes of p, and R̄ def
= N \VR to denote the nodes outside p. Given ψ1,ψ2,ψ3 ∈L the map

eqp,ψ1,ψ2,ψ3
x1=x2 (E) is:

eqp,ψ1,ψ2,ψ3
x1=x2 (E) =

> if E (x1)
as
= ∃ n,E (x2)

as
= ∃ n and n ∈ R◦

⊥ if E (x1)
as
= ∀ R◦ and (E (x2)

as
= ∃ R̄ or E (x2)

as
= ∃ Im(i))

⊥ if E (x1)
as
= ∀ R◦,E (3)(x2) ∈ R◦ and E (3)(x1) 6= E (3)(x2)

ψ1 if E (x1)
as
= ∀ R◦ and E (x2)

as
= ∀ D R̄

ψ2 if E (x1)
as
= ∀ D n and E (x2)

as
= ∀ D′ n and n ∈ R◦

ψ3 otherwise

that, depending on E , returns either ψ j, >, or ⊥.

The map eqp,ψ1,ψ2,ψ3
x1=x2 (E) in Definition 10 is parametrised with ψ1, ψ2, and ψ3. Intuitively,

eqp,ψ1,ψ2,ψ3
x1=x2 (E) inspects the environment E and returns >, ⊥, ψ1, ψ2, or ψ3. The variables x1 and x2 in

an equality are quantified/assigned in E . More precisely,

• eqp,ψ1,ψ2,ψ3
x1=x2 (E) returns > when x1 and x2 are both existentially quantified and assigned to internal

nodes of R, the RHS of p, then the application of p guarantees the equality x1 = x2 regardless the
graph it is applied to;

• eqp,ψ1,ψ2,ψ3
x1=x2 (E) returns ⊥ when one of the nodes, say x1 is universally quantified and assigned to

an internal node of R while x2 is either not internal or internal but assigned to a different node than
x1;

• in the other cases, eqp,ψ1,ψ2,ψ3
x1=x2 (E) returns either ψ1, ψ2, or ψ3; as it will be more clear after

Definition 11, such conditions state the absence of some edges from the graph p is applied to or
the validity of a suitable node equality.

A formula φ ∈L is in negation normal formal form when it is closed and negation occurs only in
front of equalities. It is trivial to see that all formulae of L have an equivalent negation normal form.

74 Enforcing Architectural Styles in Presence of Unexpected Reconfigurations

Definition 11 (Weakest pre-conditions). Let p = 〈L,R, i〉 be a production, E an environment and Z =
{z1, . . . ,zm} ⊆ V where m is the arity of L, ϕ ∈L in negation normal form, h : fv(ϕ)→VR be injective,
and h̄ : Z→VL a bijection.

The predicate W h̄
h (p,ϕ) def

= wdp,ψ
E (ϕ)∧wpp,h̄

h,E (ϕ) — where the predicate transformers wdp,ψ
E (ϕ) and

wpp,h̄
h,E (ϕ) are defined below — is the weakest pre-condition of p with post-condition ϕ under h, h̄.

The maps wdp,ψ
E (ϕ) and wpp,h̄

h,E (ϕ) are defined below where, in the clauses for quantifiers ∀D(x̃).

and ∃D(x̃). we assume that {v1, . . . ,vn} ⊆ R̄ is a fixed set of (representative) external nodes. Also, the
condition ũ on R ·D holds iff ũ∩R◦ = /0 when R does not have edges of type D.

wdp,ψ
E (x1 = x2) = eqp,noEdge〈D〉,noEdge〈D,D′〉,ψ

x1=x2 (E)

wdp,ψ
E (x1 6= x2) = ¬eqp,⊥,>,¬ψ

x1=x2 (E)

wdp,ψ
E (>) = >

wdp,ψ
E (φ ∧φ ′) = wdp,ψ

E (φ)∧wdp,ψ
E (φ ′)

wdp,ψ
E (φ ∨φ ′) = wdp,ψ

E (φ)∨wdp,ψ
E (φ ′)

wdp,ψ
E (∀D(x̃).φ) =

∧
ũ on R·D

wdp,ψ
E ′ (φ)

where x̃= x1, . . . ,xn and ũ = u1, . . . ,un ∈ (VR∪{v1, . . . ,vn})∗
and E ′ = E [x j 7→ (∀,D,u j)

∣∣ j = 1, . . . ,n]

wdp,ψ
E (∃D(x̃).φ) =

∨
ũ on R·D

wdp,ψ
E ′ (φ)

where x̃= x1, . . . ,xn and ũ = u1, . . . ,un ∈ (VR∪{v1, . . . ,vn})∗
and E ′ = E [x j 7→ (∃,D,u j)

∣∣ j = 1, . . . ,n]

wpp,h̄
h,E (x1 = x2) = eqp,noEdge〈D〉,noEdge〈D,D′〉,y1=y2

x1=x2 (E)

where y j = h̄−1(i−1(h(x j))) if h(x j) ∈ Im(i), and y j = x j otw

wpp,h̄
h,E (x1 6= x2) = ¬eqp,y1=y2,>,y1=y2

x1=x2 (E)

where y j = h̄−1(i−1(h(x j))) if h(x j) ∈ Im(i), and y j = x j otw

wpp,h̄
h,E (>) = >

wpp,h̄
h,E (φ ∧φ ′) = wpp,h̄

h,E (φ)∧wpp,h̄
h,E (φ

′)

wpp,h̄
h,E (φ ∨φ ′) = wpp,h̄

h,E (φ)∨wpp,h̄
h,E (φ

′)

wpp,h̄
h,E (∀D(x̃).φ) =

∧
ũ on R·D

∀D(x̃).wpp,h̄
h,E ′(φ)

where x̃= x1, . . . ,xn and ũ = u1, . . . ,un ∈ (VR∪{v1, . . . ,vn})∗
and E ′ = E [x j 7→ (∀,D,u j)

∣∣ j = 1, . . . ,n]

wpp,h̄
h,E (∃D(x̃).φ) =

∨
ũ on R·D

(
∃D(x̃).wpp,h̄

h,E ′(φ)∨wdp,⊥
h,E ′(φ)

)
where x̃= x1, . . . ,xn and ũ = u1, . . . ,un ∈ (VR∪{v1, . . . ,vn})∗
and E ′ = E [x j 7→ (∃,D,u j)

∣∣ j = 1, . . . ,n]

The weakest pre-condition is the conjunction of the predicates computed by the predicate transform-

K. Poyias, E. Tuosto 75

ers wdp,ψ
E and wpp,h̄,h,E on the post condition ϕ . The first transformer simply checks that the production

p can guarantee the post-condition for some pre-condition.
The most interesting cases in Definition 11 are the ones for equality x1 = x2 dealt by the auxiliary

map eqp,ψ1,ψ2,ψ3
x1=x2 (E). If both x1 and x2 are existentially quantified and assigned to the same internal nodes

of p, the calculated weakest pre-condition is >; in fact, whatever graph the production is applied to, the
post-condition would be guaranteed by the RHS of p. Instead ⊥ is returned when say x1 is universally
quantified and (i) x2 is assigned to an interface node and it is existentially quantified variable, or (ii)
it is assigned to an internal node of R different from the one assigned to x2. (Note that in (i) if x2
were universally quantified, there might be a chance to guarantee the equality if no edges of the type
quantifying the variables were in the graph p is applied to.) In fact, eqp,ψ1,ψ2,ψ3

x1=x2 (E) returns ⊥ if (i) x1 is
mapped to a fresh node in the RHS of p (i.e., an internal node of p) while x2 is mapped to a node outside
p or (ii) if they are mapped to two fresh nodes of the RHS of p because the semantics of ADR does not
allow such identifications on the internal nodes of a production. The equality x1 = x2 may hold if x1 and
x2 are mapped on the same internal node provided that no edge in the graph p is applied to is typed as
the type of the edges insisting on the variables, otherwise the universal quantification will be spoiled.
Likewise, if both variables are universally quantified but one is internal and the other is external (not
in p), then the weakest pre-condition returns noEdge〈D〉 where D is the type of the external variable.
Intuitively, the graph resulting from the application of p to a graph with an e edge of type D, would
violate the quantification of x1 and x2 since e cannot insist on fresh nodes introduced by p. In all other
cases, wpp,h̄

h,E (x1 = x2) requires the initial graph to satisfy the same equality on the nodes corresponding
to the variables of the post-condition; this requires that if either x1 and x2 are assigned to an interface
node (that is h(x j) ∈ Im(i)) it has a counterpart variable z ∈ {z1, . . . ,zm}mapped (through h̄) on the node
i−1(x1) or i−1(x2) in L.

The remaining cases are trivial but for the quantifications ∀D(x̃).φ and ∃D(x̃).φ where the com-
puted pre-conditions require φ to be satisfied under any “reasonable” assignment to x̃ for the universal
quantification or one “reasonable” assignment to x̃ for the existential quantification; this means that such
variables are assigned in any possible way either to nodes in R or to a fixed set of nodes v1, . . . ,vn outside
R; the choice of such nodes is immaterial the crucial point being just that they refer to nodes outside R
(i.e., as many as the variables in x̃).

Proposition 1. If ψ and ϕ are logically equivalent L -formulae, then wdp,ψ
E (ψ) (resp. wpp,h̄

h,E (ψ)) is

logically equivalent to wdp,ψ
E (ϕ) (resp. wpp,h̄

h,E (ϕ)).

The next example shows how to compute weakest pre-conditions.

Example 10. Consider ϕ ∈L and the production p below; let R be the RHS of p:

ϕ
def
= ∀B(x,y).∀C(z).y = z p def

=
A

u◦ b : B // u1• •

The first step to compute W h̄
h (p,φ) def

= wdp,>
0 (ϕ)∧wpp,h̄

/0,0(ϕ) where h̄ refers to the interface nodes applies
the quantification case in Definition 11 and yields(∧

j=1,2,3

wdp,>
E j

(ϕ ′)
)
∧

(∧
j=1,2,3

∀B(x,y).wpp,h̄
0,E j

(ϕ ′)
)

76 Enforcing Architectural Styles in Presence of Unexpected Reconfigurations

given that E1 = {x 7→ (∀,B,u1),y 7→ (∀,B,u)}, E2 = {x 7→ (∀,B,u1),y 7→ (∀,B,v1)} and E3 = {x 7→
(∀,B,v1),y 7→ (∀,B,v2)} are the only assignments to consider (since v1 and v2 are representative nodes
outside R while u1 the unique node on R’s interface, and u its unique internal node).

The second step applies again this case for ∀C(z) (for both wdp,>
E j

(ϕ ′) and wpp,h̄
0,E j

(ϕ ′)) and yields

(∧
j,k=4,5

wdp,>
E j∪Ek

(ϕ ′′)
)
∧

(∧
j,k=4,5

∀B(x,y).∀C(z).wpp,h̄
0,E j∪Ek

(ϕ ′′)
)

where E4 = {z 7→ (∀,C,u1)} and E5 = {z 7→ (∀,C,v1)}; in fact there is no edge of type C in the RHS of
p (hence v1 is representative external node and u1 is its unique interface node).

Finally, applying the auxiliary map eqp,ψ1,ψ2,ψ3
x1=x2 (E) for node equality, we get∧

j,k

wdp,ψ
E j∪Ek

(ϕ ′′) = (>∧noEdge〈C〉)∧ (>∧>)∧ (>∧>) = noEdge〈C〉 (3)

∧
j,k

∀B(x,y).∀C(z).wpp,h̄
0,E j∪Ek

(ϕ ′′) = ∀B(x,y).∀C(z).noEdge〈C〉 ∧ ∀B(x,y).∀C(z).y = z (4)

Note that, the weakest pre-conditions is the conjunction of (3) and (4), that is

W h̄
h (p,φ) = noEdge〈C〉 ∧ ∀B(x,y).∀C(z).noEdge〈C〉 ∧ ∀B(x,y).∀C(z).y = z

this is consistent with the fact that φ can only be satisfied by graphs that do not have any edges of type C
due to the internal node u introduced by the production p. �

Theorem 1. Let p = 〈L,R, i〉 be a production, ϕ ∈ L , h : fv(ϕ)→ VR be injective, h̄ : Z→ VL be a
bijection, and π be the asserted production {W h̄

h (p,ϕ)} p {ϕ,h}. For any ADR graph G and morphism
from L to G, if G |=h◦i W h̄

h (p,ϕ) then π(G,σ) |=h ϕ .

Theorem 2. For any closed formula ψ such that {ψ,h′} p {ϕ,h} is a valid production then ψ implies
W h̄

h (p,ϕ).

6 A methodology for recovering invalid configurations

In this paper, we envisage architectural styles as formalised by a set of ADR productions combined with
a closed formula of our logic specifying an invariant of the system as illustrated in Example 11 below.

Example 11. Consider the run-time reconfiguration

S // u• Coo F // u• CoobadServer() //

where S changes as illustrated to model a failure F . By imposing an invariant that states that every client
has to be connected to a non-failed server, the invalid configuration can be identified and recovered. �

We give a basic methodology for recovering a system to a valid state when run-time configurations
compromise it. We will assume that ADR graphs may be subject to run-time changes. Instead of giving
a formal definition for such graph rewritings, for the sake of this paper it is enough to consider simple

K. Poyias, E. Tuosto 77

local rewritings whereby edges may become corrupted and in turn compromise the desired architectural
style in terms of the specified invariant. In § 9 we briefly discuss more complex methodologies that we
plan to consider in the future developments.

We are interested in computations that start from a system configuration, say s0, that corresponds
to an initial graph, say G0, supposed to satisfy the invariant, say φinv. The system may evolve at run-
time through a series of reconfigurations (ri) that are reflected at the architectural level as schematically
represented in the diagram (5) below (where Gi ` si stands for si can be parsed as Gi):

G0 → G1 → ··· → Gk−1 → Gk → ···
ᵀ ᵀ · · · ᵀ ᵀ · · ·
s0

r1 s1
r2 · · · rk−1 sk−1

rk sk
rk+1 · · ·

(5)

We assume that most of the run-time reconfigurations produce graphs that do not violate φinv. Occasion-
ally, the graph obtained by a run-time reconfiguration, say Gi, may violate φinv. Our approach essentially
computes how to rewrite graph Gi to a graph Gi+1 satisfying φinv and then reflect this into si by means of
reconfigurations leading to a state si+1 with architecture Gi+1.

We propose a simple methodology that can select a production that when applied to Gi induces a
reconfiguration of the violating system into a state whose style satisfies φinv. We assume a monitoring
mechanism that triggers our methodology whenever a reconfiguration yields to an invalid system.

Once, the productions and an architectural invariant φinv yielding the architectural style of interest
are established (as done in Example 11), our methodology consists of the following steps:

1. The architecture (say G) corresponding to the configuration of the current system is computed
through ADR parsing.

2. Check that G satisfies φinv.

3. If G 2 φinv then, for each production p, compute the weakest pre-condition φ wrt φinv.

4. Select a production p (if any) such that G |= φ and apply it to G to determine the reconfiguration
needed for the system to reach a valid state.

In step 1, we rely on the parsing mechanism of ADR (cf. [4]) whereby productions can be used
“backward” to retrieve the architecture of a configuration. For space limit, we do not present the parsing
mechanism and refer the interested reader to [4]. In step 2, we assume that an underlying monitoring
mechanism uses the |= relation of our logic to determine if the graph G computed in step 1 violates
the invariant. In such case, step 3 uses the algorithm on each production to compute their weakest
preconditions (this step does not need to be re-iterated at each reconfiguration). Finally, in step 4, if
the architecture of the violating system satisfies one of the computed preconditions, such production is
a candidate to establish a new architecture and trigger the appropriate reconfigurations on the invalid
system. Note that the morphism that invalidate G |= φinv indicates which part of the system has to be
rewritten, while the production p suggests plausible reconfigurations.

In § 7 we apply the methodology above to a small example.

7 Applying the methodology

We consider a scenario where a flight search engine allows users to book flights.
First, we use the type graph in Example 2 to model our scenario in ADR. Note that, in the type

graph of Example 2, there is only one type of node • while the types of edges are C (for clients), BF

78 Enforcing Architectural Styles in Presence of Unexpected Reconfigurations

f1 : Fl // z• p : P

��
c : C // v• f f : FF // w• fn : Flsbb

f1 : Fl // z• p f : PF

��
c : C // v• f f : FF // w• fn : Flsbb

(a) (b)

Figure 2: A simple scenario

(for the booking flights services), FF (for the broker service finding flights), Fls (for the different flights
available), Fl (for the flight to be booked), and P and PF (for completed or failed payment services,
respectively). Consider the following productions:

findFlights

BF

•
u2• f f : FF // u• f s : Fls // u1• •

bookFlight

Fls

•
u2• f : Fl // u• p : P // u1• •

browseFlights

Fls f1 : Fls

��
•

u2• f2 : Fls // u1• •

noFlights

Fls

•
u2•

u1• •

deleteFlight

Fl

•
u2•

u1• •

where findFlights establishes a broker service FF, bookFlight yields a flight (Fl) connected to a
payment service (P), browseFlights generates as many flights as necessary, and finally deleteFlight
and noFlights respectively remove and stop adding flights to the design.

Services can either be composed with other services using findFlights and bookFlight like for
instance when one chooses a specific flight and the system needs to “invoke” another service (payment
service) to complete the request, or branch using the production browseFlights to represent the differ-
ent flights a customer can choose from.

Figure 2(a) shows the architectural style of a system where a client books a flight and successfully
pays for it. Initially, the client searches for a flight by invoking the f indFlight service which, in turn, in-
vokes different airlines about their flights. Once a flight is selected a payment service is used to complete
the transaction.

Sometimes, failures are possible during the payment; this is modelled in Figure 2(b) where the pay-
ment edge P reconfigures as an PF edge. We show how to apply our methodology in this scenario.

The style we consider consists of the productions above and the invariant

φFl = ∃Fl(x1,x′1). ∃P(x′2,x2). x1 = x2

that specifies that some flight Fl has to be connected to a successful payment P.
Following the methodology presented in § 6, we need to check if graph Gb given in Figure 2(b)

satisfies the invariant φFl and find that Gb 2 φFl. In fact, there is no edge of type P in Gb so we invoke
W h̄

h (p,φFl) on every production p where h is /0 (since φFl is a closed formula) and h̄ maps the inter-
face nodes of p. We have W h̄

/0 (p,φFl) = φFl for all p 6= bookFlight whereas, for p = bookFlight,
W h̄

/0 (p,φFl) =>.
We show that W h̄

/0 (p,φFl) acts in the same way (and yields φFl) for any p 6= bookFlight since such

productions do not have edges of type Fl or P in their RHS. We have to compute wdp′
/0 (φFl)∧wpp′,h̄

/0,0 (φFl)

K. Poyias, E. Tuosto 79

by first applying the case of existential quantification (cf. Definition 11):(∨
j=1,...,5

wdp
E j
(φ ′Fl)

)
∧

(∨
j=1,...,5

∃Fl(x1,x′1).wpp,h̄
/0,E j

(φ ′Fl)∨wdp
E j
(φ ′Fl)

)
where φ ′Fl= ∃P(x′2,x2). x1 = x2. Let v1 and v2 be representative nodes outside the RHS of the productions
above, u1 and u2 be interface nodes of the productions. The assignments

E1 = { x1 7→ (∃,Fl,u1), x′1 7→ (∃,Fl,v1) }
E2 = { x1 7→ (∃,Fl,u2), x′1 7→ (∃,Fl,v1) }
E3 = { x1 7→ (∃,Fl,v1), x′1 7→ (∃,Fl,u1) }
E4 = { x1 7→ (∃,Fl,v1), x′1 7→ (∃,Fl,u2) }
E5 = { x1 7→ (∃,Fl,v1), x′1 7→ (∃,Fl,v2) }

are the only ones to consider for the first quantification. Instead, for the other existential quantification
∃P(x′2,x2) yields(∨

j,k=7,...,11

wdp′
E j∪Ek

(φ ′′Fl)
)
∧

(∨
j,k=7,...,11

∃Fl(x1,x′1).∃P(x′2,x2).wpp′,h̄
/0,E j∪Ek

(φ ′′Fl)∨wdp′
E j∪Ek

(φ ′′Fl)
)

where φ ′′Fl is the equality x1 = x2 and the assignments E7, . . . ,E11 are:

E7 = { x2 7→ (∃,P,u1), x′2 7→ (∃,P,v1) }
E8 = { x2 7→ (∃,P,u2), x′2 7→ (∃,P,v1) }
E9 = { x2 7→ (∃,P,v1), x′2 7→ (∃,P,u1) }

E10 = { x2 7→ (∃,P,v1), x′2 7→ (∃,P,u2) }
E11 = { x2 7→ (∃,P,v1), x′2 7→ (∃,P,v2) }

Finally, applying the case for node equality in the auxiliary map eqp,ψ1,ψ2,ψ3
x1=x2 (E) of Definition 11, we get∨

j,k

wdp
E j∪Ek

(φ ′′Fl) = >∨>∨·· ·=> (6)

∨
j,k

∃Fl(x1,x′1).∃P(x′2,x2).wpp,h̄
/0,E j∪Ek

(φ ′′Fl) = (φFl ∨ ⊥) ∨ (φFl ∨ ⊥) ∨ . . . = φFl (7)

which yield W h̄
/0 (p,φFl) since (6) and (7) respectively correspond to wdp

/0(φFl) and wpp,h̄
/0,0(φFl).

We now consider p = bookFlight and show that W h̄
/0 (p,φFl) = >. As in the previous case, we

consider the quantifications for which we have to consider the extra mappings due to Fl and P:

E6 = {x1 7→ (∃,Fl,u),x′1 7→ (∃,Fl,u2)}
E12 = {x′2 7→ (∃,P,u1),x2 7→ (∃,P,u)}

where u1 and u2 are the production’s interface nodes as before and u is its unique internal node. By the
quantification cases we have(∨

j,k

wdp
E j∪Ek

(φ ′′Fl)
)
∧

(∨
j,k

∃Fl(x1,x′1).∃P(x′2,x2).wpp,h̄
/0,E j∪Ek

(φ ′′Fl)∨wdp
E j∪Ek

(φ ′′Fl)
)

80 Enforcing Architectural Styles in Presence of Unexpected Reconfigurations

where j = 1, . . . ,6 and k = 7, . . . ,12.
Finally, applying the case for node equality in the auxiliary map eqp,ψ1,ψ2,ψ3

x1=x2 (E) of Definition 11, we
get ∨

j,k

wdp
E j∪Ek

(φ ′′Fl) = >∨>∨·· ·=> (8)

∨
j,k

∃Fl(x1,x′1).∃P(x′2,x2)wpp,h̄
/0,E j∪Ek

(φ ′′Fl) = (∃Fl(x1,x′1).∃P(x′2,x2).> ∨ >) ∨ . . . = > (9)

Note that the weakest pre-conditions is the conjunction of (8) and (9), that is (wdp
0(φFl)∧wpp,h̄

/0,0(φFl))=>
The next step requires that we check whether the graph Gb given in Figure 2(b) satisfies any of the

weakest pre-conditions computed. Gb 2 ∃Fl(x1,x′1).∃P(x′2,x2).x1 = x2 but instead Gb |=> and therefore
we know that by applying the production bookFlight we get a graph G′b that satisfies the invariant φFl.

8 Related work

Formal approaches based on architectural styles to control architectural reconfigurations have been pro-
posed, among other, in [11, 1, 12, 4]. In those proposals reconfigurations are typically applied uniformly
across the design. For instance, in [12, 4] graph grammars and hyper-edge replacements are used to
represent styles in terms of graph configurations freely generated by some productions (and it is not easy
to specify conditions to extract subsets of such graph-languages).

Our work mitigates this effect by means of asserted productions that provide a finer control on the
applicability conditions as done in other graph-transformation approaches. For instance, our approach
is similar to the one in [10] where graph programs are extended to programs over high-level rules with
application conditions; on such programs weakest pre-conditions can be defined automatically. Nev-
ertheless, [10] aims at verifying computational properties of systems rather than architectural ones and
does that in a different way only after generating the various state systems. In [9] constraints on the
architecture are used to guarantee invariants of systems. More precisely, reconfigurations can occur only
if such constraints are not violated. This is not always realistic in open systems, therefore they do not
impose limitations on run-time reconfigurations and search for new reconfigurations that can lead the
system in a desired state.

In [5] an assume-guarantee mechanism is adopted to provide a learning algorithm which provides an
assumption satisfying a sufficient condition in order for the component to guarantee the given invariant.
This is achieved by model checking every component of the system against an invariant. This is similar
to the weakest pre-condition we present in this paper but instead of computing the weakest assumption
for every component of the system we compute the weakest pre-condition for every design production.
We can later use our algorithm for applying the methodology described in § 6 for identifying the possible
design production(s) (if any) to aid in fixing the architectural violation of the system.

In [2] the authors present an approach for designing safe systems by inspecting whether certain
reconfigurations can lead to invalid graphs that represent invalid systems. This is achieved by verifying
that the backward application of reconfigurations to a forbidden graph pattern cannot lead to a graph
pattern representing a safe system (a set of forbidden graph patterns model an invariant). This method
can provide a safe system in the sense that it cannot lead to a state that violates a structural invariant by
the use of reconfigurations but it is very complex to handle unexpected system failures.

In [8] self-healing systems are modelled by specifying different types of rules; for the ideal system
behaviour, for different predictable failures and for fixing the different failures identified earlier. This

K. Poyias, E. Tuosto 81

approach is different to what we propose in this paper as they design the rules according to the misbe-
haviours they expect at run time and do not necessarily handle unexpected failures or changes of the
system.

Different approaches to specify self-managing systems are surveyed in [3]. The authors group the
different approaches according to their ability to select different reconfigurations that should occur to
re-establish a correct state. They present three type of selections namely, called pre-defined selection (a
reconfiguration is chosen prior to the execution based on a pre-defined selection), constrained selection
from a pre-defined set (a reconfiguration designed for the given situation is chosen) and unconstrained se-
lection (unconstrained choice regarding the appropriate change to make). All the approaches presented in
the survey lie in either of the former two categories and according to [3], none of the approaches survyed
falls in the unconstrained selection category. Our approach does not lie neither in the pre-defined nor in
constrained selection categories. It is not clear to us if our approach can be considered an unconstrained
selection. In fact, we do not choose the reconfigurations to apply according to the misbehaviours ex-
pected at run time. Instead we use our weakest pre-condition algorithm to identify which of the existing
configurations (not designed for the specific violation) can re-establish the architectural style of our sys-
tem. We remark that most of the rules given at design time typically are meant to specify the architectural
style of a system, not its misbehaviours (for instance, in ADR this might be addressed with reconfigu-
ration rules rather than productions). However, even if some productions were introduced to tackle (or
prevent) some misbehaviours, our approach enables such rules to be used also for unexpected violations.

9 Conclusion and future work

We introduced a methodology inspired by Design by Contract (DbC) [13] to guarantee properties of
architectural designs. Technically this is achieved by (i) equipping ADR with a logic tailored to express
such properties and (ii) devising an algorithm to compute weakest pre-conditions for ADR productions.

Albeit very simple, our logic can express rather interesting properties (cf. Example 6). It allows us
to improve the expressiveness of ADR and to specify interesting properties exploiting the ’hierarchical
nature’ of ADR graphs. This paper is a first step in the exploration of the use of DbC in architectural
style reconfigurations.

Using our methodology we can fix architecturally our graphs, provided that we have the appropriate
productions to do this. Currently, our methodology works if there is a single production for recovering a
failure, but we see this work as a first step towards the more realistic situation where to tackle failures one
tries to apply a number of productions. More precisely, one could compute a sequence of productions
by iterating the methodology in § 6 on the weakest pre-condition obtained at every “round” (starting
from the invariant) until either false or a valid style is reached. We note that this opens other interesting
questions. For example, when different sequences of productions are found, one could devise criteria to
order them, or else to try to find criteria for good or best strategies. Generalising our idea for computing
’strategies’ based on many productions to recover failures could be a a very interesting future direction.

We expect such research to lead to extensions of the logic and also like stated earlier extensions to the
methodology to be able to handle more complex violations that might require more design productions
to fix a system’s architecture.

Acknowledgements The authors thank Andrea Vandin for valuable comments and suggestions.

82 Enforcing Architectural Styles in Presence of Unexpected Reconfigurations

References
[1] Robert Allen, Rémi Douence & David Garlan (1998): Specifying and Analyzing Dynamic Software Architec-

tures. In: FASE, pp. 21–37, doi:10.1007/BFb0053581.
[2] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein & Daniela Schilling (2006): Symbolic invariant verifi-

cation for systems with dynamic structural adaptation. In: ICSE, pp. 72–81, doi:10.1145/1134285.1134297.
[3] Jeremy S. Bradbury, James R. Cordy, Jürgen Dingel & Michel Wermelinger (2004): A sur-

vey of self-management in dynamic software architecture specifications. In: WOSS, pp. 28–33,
doi:10.1145/1075405.1075411.

[4] Roberto Bruni, Alberto Lluch-Lafuente, Ugo Montanari & Emilio Tuosto (2008): Style-Based Architectural
Reconfigurations. In: Bulletin of the EATCS, pp. 161–180.

[5] Jamieson M. Cobleigh, Dimitra Giannakopoulou & Corina S. Pasareanu (2003): Learning Assumptions for
Compositional Verification. In: TACAS, pp. 331–346, doi:10.1007/3-540-36577-X 24.

[6] Frank Drewes, Hans-Jörg Kreowski & Annegret Habel (1997): Hyperedge Replacement, Graph Grammars.
In: Handbook of Graph Grammars, pp. 95–162, doi:10.1142/9789812384720 0002.

[7] Dijkstra W. Edsger (1975): Guarded commands, non-determinancy and a calculus for the derivation of
programs. In: Language Hierarchies and Interfaces, pp. 111–124, doi:10.1007/3-540-07994-7 51.

[8] Hartmut Ehrig, Claudia Ermel, Olga Runge, Antonio Bucchiarone & Patrizio Pelliccione (2010): Formal
Analysis and Verification of Self-Healing Systems. In: FASE, pp. 139–153, doi:10.1007/978-3-642-12029-
9 10.

[9] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley R. Schmerl & Peter Steenkiste (2004): Rain-
bow: Architecture-Base Self-Adaptation with Reusable Infrastructure. IEEE Computer 37(10), pp. 46–54,
doi:10.1109/MC.2004.175.

[10] Annegret Habel, Karl-Heinz Pennemann & Arend Rensink (2006): Weakest Preconditions for High-Level
Programs. In: ICGT, pp. 445–460, doi:10.1007/11841883 31.

[11] Dan Hirsch, Paola Inverardi & Ugo Montanari (1999): Modeling Software Architectures and Styles with
Graph Grammars and Constraint Solving. In: WICSA1, pp. 127–144.

[12] Daniel Le Métayer (1998): Describing Software Architecture Styles Using Graph Grammars. IEEE Trans.
Software Eng. 24(7), pp. 521–533, doi:10.1109/32.708567.

[13] Bertrand Meyer (1992): Applying Design by Contract. IEEE COMPUTER 25, pp. 40–51,
doi:10.1109/2.161279.

[14] Mary Shaw & David Garlan (1996): Software Architectures: Perspectives on an emerging discipline. Prentice
Hall.

http://dx.doi.org/10.1007/BFb0053581
http://dx.doi.org/10.1145/1134285.1134297
http://dx.doi.org/10.1145/1075405.1075411
http://dx.doi.org/10.1007/3-540-36577-X_24
http://dx.doi.org/10.1142/9789812384720_0002
http://dx.doi.org/10.1007/3-540-07994-7_51
http://dx.doi.org/10.1007/978-3-642-12029-9_10
http://dx.doi.org/10.1007/978-3-642-12029-9_10
http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1007/11841883_31
http://dx.doi.org/10.1109/32.708567
http://dx.doi.org/10.1109/2.161279

	1 Introduction
	2 A walk through ADR
	3 A logic for ADR
	4 Design by Contract for ADR
	5 Extracting contracts for ADR productions
	6 A methodology for recovering invalid configurations
	7 Applying the methodology
	8 Related work
	9 Conclusion and future work

