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This paper studies context bisimulation for higher-order processes, in the presence of parameteriza-
tion (viz. abstraction). We show that the extension of higher-order processes with process parameter-
ization retains the characterization of context bisimulation by a much simpler form of bisimulation
called normal bisimulation (viz. they are coincident), in which universal quantifiers are eliminated;
whereas it is not the same with name parameterization. These results clarify further the bisimulation
theory of higher-order processes, and also shed light on the essential distinction between the two
kinds of parameterization.
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1 Introduction

Higher-order processes differ from first-order (name-passing) ones in that they can transmit them-
selves (i.e. integral programs) in communication. This mechanism of process-passing provides an al-
ternative yet essentially distinct way from name-passing to achieve mobility. That distinction lies in
several aspects, among which the behavioral theory is of pivotal importance. As a basis of behavioral
theory, bisimulation theory has been studied since the very early work on higher-order processes. The
most well-know (and probably standard) bisimulation is context bisimulation [7]. It was proposed to im-
prove on the previous forms of bisimulation, including (applicative) higher-order bisimulation [14] [15],
by considering the sent process and residual process at the same time. It then continued to draw atten-
tion [9] [16] [2] [1] [5] [12].

Related work and motivation

Context bisimulation, in its original form, is not so convenient in that, for example, it involves uni-
versal quantifiers when comparing output (as well as input), i.e. in the output clause of the definition of
context bisimulation one has to check the matching of the output action with respect to all possible con-
texts. Here matching means the output action of one process can be simulated with an output by the other
and the resulting derivatives are bisimilar again. That is a particularly heavy burden. This situation is
improved by the so-called normal bisimulation, which characterizes context bisimulation (i.e. coincident
with it) but requires only the checking with some special context (see an example below) [7] [9] [1].

A common methodology for establishing such a characterization in [7] [9] [1] consists of two main
ingredients: (1) Showing a factorization theorem using triggers. The factorization theorem provides a
mechanism of relocating a (sub)process to a new place, and setting up a pointer to the new place for
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potential use. Such a pointer is represented by a trigger. (2) Showing the coincidence of context and
normal bisimulation with the help of an intermediate bisimulation equivalence called triggered bisimula-
tion, which is defined on a subclass of higher-order processes communicating only triggers. This design
of normal bisimulation, particularly the special context used in it, is guided by the factorization theorem
as described above.

We exemplify below the simplification of context bisimulation by normal bisimulation in basic
higher-order processes [9], equipped with the basic operators including input prefix (a(X).P in which
X is a bound variable), output prefix (aA.P), parallel composition (P |Q) and restriction ((c)P in which
c is a bound name). Notice that E[X ] denotes a process with the free occurrence of X (i.e. not bound
by an input prefix a(X).P), E[A] denotes substituting A for all free occurrences of X in E[X ], output
action (c̃)aA means sending over (port) name a a process A containing a set c̃ of bound names, and the
replication operation !m.A is a derivable one in a higher-order setting [15]. We use ≈ for context bisim-
ilarity (i.e. the equivalence induced by context bisimulation), and ∼= for normal bisimilarity (complete
definitions are given in Definitions 1,2). First of all, the factorization theorem is stated as below (m is
fresh, i.e. it does not occur in E[A]).

E[A]≈ (m)(E[Trm] | !m.A), where the trigger Trm ≡ m.0

Intuitively, using factorization theorem one can extract from E[A] the process A that might cause differ-
ence to its behavior. For instance,

A |Q≈ (m)((m.0 |Q) | !m.A)

Now suppose P and Q are basic higher-order processes, and are bisimilar with respect to either
bisimulation equivalence (i.e. context bisimulation or normal bisimulation). We focus on the output
clauses of context bisimulation and normal bisimulation, since the input case is similar. Note f n(E[X ])
returns the free names of E[X ] (i.e. not bound by restriction), and for simplicity we do not claim the
existence of d̃,B,Q′ below.

• The output clause of context bisimulation is

If P
(c̃)aA−−−→P′, then Q

(d̃)aB
=⇒Q′ s.t. for every E[X ] with f n(E[X ]) ∩ (c̃ ∪ d̃) = /0, (c̃)(P′ |E[A]) ≈

(d̃)(Q′ |E[B]).
• The output clause of normal bisimulation is

If P
(c̃)aA−−−→P′, then Q

(d̃)aB
=⇒Q′ s.t. for some fresh m, (c̃)(P′ | !m.A)∼= (d̃)(Q′ | !m.B).

The intuition behind the simplification is that using the factorization theorem one can extract process A
(respectively B) in E[A] (respectively E[B]), so in context bisimulation one obtains the following, due to
the congruence property of ≈,

R1
de f
= (c̃)(P′ |(m)(E[Trm] | !m.A))

≈

≈
(d̃)(Q′ |(m)(E[Trm] | !m.B))

de f
= R2

≈

(c̃)(P′ |E[A]) ≈
(d̃)(Q′ |E[B])

where each dotted line connects two processes that are related by context bisimilarity (≈). Then by the
congruence property of ≈, one can eliminate the common part in processes R1 and R2 (i.e. E[Trm] and
restriction on m), and thus arrive at the form of the output clause in normal bisimulation.
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The above has explained how the normal bisimulation works in basic higher-order processes [9] [1].
This paper concentrates on the extension of normal bisimulation, including its relevant technique, to
higher-order processes with parameterization (also known as abstraction, akin to that in lambda-calculus;
we postpone some examples until before stating the contribution), which still lacks full discussion.

Although parameterization is considered in [7], the definition of higher-order processes in [7] in-
cludes both name-passing and process-passing, and the coincidence between context bisimulation and
normal bisimulation is studied in such a mixed language. So one does not know clearly whether the
normal bisimulation can be extended to a pure higher-order setting with parameterization. To the best of
our knowledge, it has not been discussed thoroughly whether such characterization, together with related
technique such as trigges, is still applicable in a pure higher-order calculus extended with the two kinds
of parameterization (on names and on processes) respectively. In general, it is still not clear whether the
characterization result can be extended to an enriched higher-order setting. Yet the question whether the
context bisimulation has such a convenient characterization of normal bisimulation in a parameterized
setting is significant in broader research, as well as in improving the bisimulation theory itself (i.e. no
universal checking is demanded). It would be interesting to know the answer to this question also be-
cause it is already known that parameterization can strictly enhance the expressiveness power of mere
process-passing [3]; thus potential difference in the behavior theory of a more expressive calculus can be
revealed. Relevantly in the study of expressiveness, a simpler yet equivalent form of context bisimula-
tion would probably render much easier the proof of soundness (i.e. two processes are equivalent only
if their encodings are equivalent), which requires the establishing of context bisimulation in a handy
way. For instance, when comparing name-passing and processing [8] [17], the soundness demands that
two name-passing processes are equivalent (e.g. early bisimilar) only if their translations to process-
passing processes are context bisimilar. In this case, establishing normal bisimulation instead of context
bisimulation would be much more convenient.

In this paper, we explicitly examine the normal characterization of context bisimulation in pure
higher-order processes with parameterization; this time the language is not mixed, that is we study each
parameterization separately, so that the essential difference can be revealed. We use Π to denote the basic
(strict) higher-order pi-calculus, with the elementary operators (higher-order input and output, parallel
composition, restriction) and without any first-order fragment. Notation ΠD

n (respectively Πd
n) stands for

the calculus extending Π with process parameterization (respectively name parameterization) of arity n
(n ∈ N and N is the set of natural numbers); ΠD (respectively Πd) is the union of ΠD

n (respectively Πd
n).

For example, the process P1 below is a Π process (it means outputting X on name a and continuing as
null); P2 is a ΠD

1 process; P3 is a Πd
1 process. The parameterization operation is denoted by (leftmost) 〈·〉.

In the case of P2, the X is a parameterized variable that can be instantiated with an application (rightmost
〈·〉), for instance P2〈A〉 results in the process aA.0. We will formally define the calculi in section 2.

P1
de f
= aX .0 P2

de f
= 〈X〉aX .0 P3

de f
= 〈x〉xX .0

More often than not, process (respectively name) parameterization is understood as certain abstraction
on processes (respectively names) in the literature. So parameterization and abstraction may be used
interchangeably.

Contribution

The main contribution of this paper can be summarized as below.
• In the calculus ΠD

n (ΠD as well), we have normal bisimulation and it indeed characterizes con-
text bisimulation. We prove the coincidence by re-exploiting the available method from [7] [9].
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Moreover, a technical novelty here is that the proof is given in a more direct way, rather than first
resorting to an intermediate bisimulation called triggered bisimulation by restricting to a sub-class
of processes as described above.

• The approach of normal bisimulation (i.e. simple characterization of context bisimulation with
normal bisimulation) cannot be extended to the calculus Πd

n (Πd either). That is, one cannot reuse
the explicit technique of ‘normal’ bisimulation from [7] [9]. We provide a counterexample and
some detailed discussion.

Since bisimulation theory often serves as the basis (or tool) for more advanced studies, these results pro-
vide a reference point for related work on higher-order calculi. They also shed light on the expressiveness
of parameterization, because the contrast between the two results above reveals an essential separation
between parameterization on process and names. Furthermore, such distinction also stresses the intrin-
sic complexity of name-handling (in a strictly higher-order setting without name-passing). So it will be
interesting to look for some other kind of simpler characterization of context bisimulation in presence of
name parameterization.

Organization

The paper is organized as follows. In section 2, we define the calculi Π,ΠD
n ,Π

d
n , and the standard

form of context bisimulation. Section 3 proves that there indeed exists the normal bisimulation that
characterizes context bisimulation in ΠD

n (n ∈ N). On the other hand, Πd
n does not have such characteri-

zation in general, which we show in section 4. In section 5, we provide the conclusions and some further
discussions.

2 Calculi

In this section, we define the calculus Π, and its variants ΠD
n ,Π

d
n within which the context bisimula-

tion is examined.

2.1 Calculus Π

The Π processes, denoted by uppercase letters (A,B,E,F,P,Q,R,T...) and their variant forms (e.g.
T ′), are defined by the following grammar (Πseg is used to provide convenience for defining the variants
of Π). Lowercase letters represent channel names, whereas X ,Y,Z stand for process variables.

T ::= Πseg

Πseg ::= 0
∣∣∣ X
∣∣∣ u(X).T

∣∣∣ uT ′.T
∣∣∣ T |T ′

∣∣∣ (c)T
The operators are: prefix (u(X).T,uT ′.T ), parallel composition (T |T ′), restriction ((c)T ) in which c is
bound (or local); they have their standard meaning, and parallel composition has the least precedence.
As usual some convenient notations are: a for a(X).0; a for a0.0; mA for mA.0; τ.P for (a)(a.P |a);
sometimes a[A].T for aA.T (for the sake of clarity); ·̃ for a finite sequence of some items (e.g. names,
processes), and c̃d̃ for the concatenation of c̃ and d̃. By standard definition, f n(T̃ ), bn(T̃ ), n(T̃ ); f v(T̃ ),
bv(T̃ ), v(T̃ ) respectively denote free names, bound names, names; free variables, bound variables and
variables in T̃ . Closed processes contain no free variables, and are studied by default. A fresh name
or variable is one that does not occur in the processes under consideration. Name substitution T{ñ/m̃}
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and higher-order substitution T{Ã/X̃} are defined structurally in the standard way. E[X̃ ] denotes E with
variables X̃ , and E[Ã] stands for E{Ã/X̃}. We work up-to α-conversion and always assume no capture.

We use the following version of replication as a derived operator [15] [5]: !φ .P
de f
= (c)(Qc |cQc), Qc

de f
=

c(X).(φ .(X |P) |cX), where φ is a prefix.
The operational semantics is given in Figure 1. Symmetric rules are omitted. The rules are mostly

self-explanatory. For example, in higher-order input (a(A)), the received process A becomes part of the
receiving environment through a substitution; in higher-order output ((c̃)aA), the process A is sent with
a set of local names for prospective use in further communication. In the first rule of the second row,
we slightly abuse the notation, i.e. f n(A)−{c̃,a} means the free names of A minus the names in c̃ and
a, which excludes the possibility of d=a. Symbols α,β ,λ , ... denote actions, whose subject (e.g. a in
action a(A)) indicates the channel name on which it happens. Operations f n(),bn(),n() can be similarly

defined on actions. =⇒ is the reflexive transitive closure of the internal transition ( τ−→), and λ
=⇒ is

=⇒ λ−→=⇒. λ̂
=⇒ is =⇒ when λ is τ and λ

=⇒ otherwise. τ−→k means k consecutive τ’s. P=⇒·R Q means
P=⇒Q′ for some Q′ and Q′R Q (i.e. (Q′,Q) ∈R), where R is a binary relation. We say relation R is
closed under (variable) substitution if (E{A/X},F{A/X}) ∈ R for any A,X whenever (E,F) ∈ R, in
which E,F (possibly) have free occurrence of variable X . A process diverges if it can perform an infinite
τ sequence.

a(X).T
a(A)−−→T{A/X} aA.T aA−→T

T λ−→T ′

(c)T λ−→(c)T ′
c 6∈ n(λ ) T1

a(A)−−→T ′1,T2
(c̃)a[A]−−−−→T ′2

T1 |T2
τ−→(c̃)(T ′1 |T ′2)

T
(c̃)a[A]−−−−→T ′

(d)T
(dc̃)a[A]−−−−→T ′

d ∈ f n(A)−{c̃,a} T λ−→T ′

T |T1
λ−→T ′ |T1

bn(λ )∩ f n(T1) = /0

Figure 1: Semantics of Π

2.2 Calculi ΠD
n and Πd

n

Parameterization extends Π with the syntax and semantics in Figure 2. 〈U1,U2, ...,Un〉T is a pa-
rameterization where U1,U2, ...,Un are the pairwise distinct formal parameters to be instantiated by the
application T 〈K1,K2, ...,Kn〉where the parameters are instantiated by concrete objects K1,K2, ...,Kn. Ap-
plication binds tighter than prefixes and restriction. In the rule of Figure 2, |Ũ |=|K̃| requires the sequence
of parameters and the sequence of instantiating objects should be equally sized. It also expresses that
the parameterized process can do an action only after the application happens. Calculus ΠD

n , which has
process parameterization (or higher-order abstraction), is defined by setting Ũ , K̃ to be X̃ , T̃ ′ respectively.
Calculus Πd

n , which has name parameterization (or first-order abstraction), is defined by setting Ũ , K̃ to
be x̃, ũ respectively. For convenience, names (ranged over by u,v,w) are divided into two disjoint sub-
sets: name constants (ranged over by a,b,c, ...,m,n); name variables (ranged over by x,y,z). Process

T ::= Πseg

∣∣∣ 〈U1,U2, ...,Un〉T
∣∣∣ T 〈K1,K2, ...,Kn〉

T{K̃/Ũ} λ−→ T ′

F〈K̃〉 λ−→ T ′
if F

de f
= 〈Ũ〉T (|Ũ |= |K̃|= n)

Figure 2: Π with parameterization

expressions (or terms) of the form 〈X̃〉P or 〈x̃〉P, in which X̃ and x̃ are not empty, are parameterized pro-
cesses. Terms without outmost parameterization are non-parameterized processes, or simply processes.
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We mainly focus on (closed) processes. Only free variables can be effectively parameterized (i.e. it does
not make sense to parameterize a bound variable); they become bound after parameterization. In the
syntax, redundant parameterizations, for example 〈X1,X2〉P in which X2 /∈ f v(P), are allowed. A ΠD

n
(n≥ 1) process is therefore definable in ΠD

n+1 (similar for Πd
n). In the case of 〈X̃〉P, it can be coded up by

setting an additional fresh dummy variable Y (of no use) to obtain 〈X̃ ,Y 〉P. Sometimes related notations
are slightly abused if no confusion is caused.

Type systems for the processes of ΠD
n and Πd

n can be routinely defined in a similar way to that in [7].
We do not present the type system and always assume type consistency, since such a type system is not
important for the discussion in this paper. Without loss of generality, we stipulate that the processes of
ΠD

n and Πd
n are strictly abstraction-passing, i.e. all the transmitted objects are parameterized processes;

accordingly, it is assumed that all the process variables have the type of abstractions, so an occurrence
of a variable X typically takes the form X〈T ′〉 in some context. This can be justified by two facts: firstly
a non-parameterized process can be treated as a special case of parameterization; secondly to the aim of
this paper, the characterization of context bisimulation in the case of non-parameterized processes has
been examined in depth by Sangiorgi [9].

T ≡ T ′, if they are α-convertible to each other,
i.e., a(X).T ≡ a(Z).T{Z/X},(c)T ≡ (d)T{d/c}

T |0≡ T, T |(T ′ |T ′′)≡ (T |T ′) |T ′′, T |T ′ ≡ T ′ |T
(c)(d)T ≡ (d)(c)T, (c)λ .T ≡ 0 whenever the subject of λ is c
(c)(T |T ′)≡ (c)T |T ′ whenever c /∈ f n(T ′)

(〈Ũ〉T )〈K̃〉 ≡ T{K̃/Ũ}, |Ũ |= |K̃|= n

Figure 3: Structural congruence
The semantics of parameterization renders it somewhat natural to deem application as some (extra)

rule of structural congruence, denoted by ≡, which is defined in Figure 3 in a standard way [6] [9]. In
addition to the standard algebraic laws (concerning parallel composition and restriction), the last rule of
application is included. So the rule below can used in place of that in Figure 2.

T ≡ T1,T1
α−→T2,T2 ≡ T ′

T α−→T ′

2.3 Context Bisimulation

The bisimulation equivalence of higher-order processes we intend to examine is the context bisimu-
lation. The form of its definition is the same for the calculi defined above.

Definition 1 (Context bisimulation). A symmetric binary relation R on closed processes is a context
bisimulation, if whenever PR Q the following properties hold:

1. If P α−→P′ and α is τ or a(A), then Q α̂
=⇒Q′ for some Q′ and P′R Q′;

2. If P
(c̃)aA−−−→P′ then Q

(d̃)aB
=⇒Q′ for some d̃,B,Q′, and for every process E[X ] s.t. {c̃, d̃}∩ f n(E) = /0 it

holds that (c̃)(E[A] |P′) R (d̃)(E[B] |Q′).
Process P is context bisimilar to Q, written P ≈,Q, if PR Q for some context bisimulation R. Relation
≈ is called context bisimilarity.
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Context bisimulation can be extended to general (open) processes in a standard way, i.e. suppose
f v(T,T ′)⊆ X̃ , then T ≈ T ′ if T{Ã/X̃} ≈ T ′{Ã/X̃} for all closed Ã. Similarly the extension to parame-
terized processes is: 〈X̃〉T ≈ 〈X̃〉T ′ if T{Ã/X̃} ≈ T ′{Ã/X̃} all closed Ã.

Relation ∼ is the strong version of ≈. For clarity, notation ≈L (resp. ∼L ) indicates the context
bisimilarity (resp. strong context bisimilarity) of calculus L (Π,ΠD

n , or Πd
n); we simply use ≈ (resp.

∼) when it is clear from context. It is well-known that context bisimilarity is an equivalence and a
congruence with respect to prefixing, parallel composition and restriction; see [7] [8] [9] [10]. Notice
E[X ] is different from the well-known concept of contexts, which neglect name capture (i.e. the case a
free name falls into the scope of some restriction of the same name). That is E[X ] is sensitive to name
capture and should use α-conversion to avoid that. Otherwise, such two α-convertible processes like
(m)a[m.0].m.b and (n)a[n.0].n.b would be distinguishable by context bisimilarity using E[X ]≡ (m)X as
the receiving environment (the latter can produce a visible action on b while the former does not), which
is contradictory because α-convertibility shall entail context bisimilarity.

3 Normal bisimulation in ΠD
n

In this section, we show that in ΠD
n we have normal bisimulation that characterizes context bisimula-

tion. For convenience, we focus on ΠD
1 ; the result can be readily extended to ΠD

n . We first define normal

bisimulation, and then prove the coincidence theorem. Hereinafter Trm
de f
= 〈Z〉mZ denotes a trigger with

(trigger name) m.
The form of normal bisimulation and the proof schema stem from the result in [7] [9] [1]. However,

as mentioned, we go beyond those works in several respects. Firstly, the processes under inspection
here are purely higher-order without name-passing, and capable of parameterization on processes only.
Secondly, although the schema for the proof of the characterization of context bisimulation using normal
bisimulation exploits those works, the technical details are not the same. More specifically, different from
the approaches in [1], where the so-called index technique is essentially used to deal with actions, and
in [7] [9], where an intermediate equivalence called triggered bisimulation is used and processes are first
transformed into a subclass called triggered processes, we prove the coincidence of normal bisimulation
and context bisimulation in a more direct and easier way.

3.1 Definition of normal bisimulation

Definition 2. A symmetric binary relation R on closed processes of ΠD
1 is a normal bisimulation, if

whenever PR Q the following properties hold:

1. If P τ−→P′, then Q=⇒Q′ for some Q′ s.t. P′R Q′;

2. If P
a(Trm)−−−−→P′ and Trm ≡ 〈Z〉mZ (m is fresh), then Q

a(Trm)
=⇒ Q′ for some Q′ s.t. P′R Q′;

3. If P
(c̃)aA−−−→P′ then Q

(d̃)aB
=⇒Q′ for some d̃,B,Q′, and it holds that (m is fresh)

(c̃)(P′ | !m(Z).A〈Z〉) R (d̃)(Q′ | !m(Z).B〈Z〉)

which can be rephrased as (c̃)(P′ |E ′[A])R (d̃)(Q′ |E ′[B]) where the E ′[X ]
de f
= !m(Z).X〈Z〉 holding

A and B is special, in contrast to the general requirement in context bisimulation.

Process P is normal bisimilar to Q, written P ∼=,Q, if PR Q for some normal bisimulation R. Relation
∼= is called normal bisimilarity.
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Remark The strong version of ∼= is denoted by '. Notation ∼=L (resp. 'L ) indicates the normal
bisimilarity (resp. strong normal bisimilarity) of calculus L , if any; we simply use ∼= (resp. ') when
there is no confusion. It can be shown in a standard way that normal bisimilarity is an equivalence and
a congruence; see [7] [9] for a reference.

The rest of this section is mainly devoted to the (technical) proof of the following theorem.

Theorem 3. In ΠD
1 , normal bisimilarity coincides with context bisimilarity; that is ∼==≈.

3.2 Normal bisimulation characterizes context bisimulation

A key step in proving Theorem 3 is to prove the Factorization theorem (Theorem 6). First we need
some preparation, i.e. the two lemmas below. Intuitively, these two lemmas state some distributive
laws concerning the replication !m(Z).A〈Z〉 (m is fresh) that are useful in the proof of the Factorization
theorem.

Lemma 4. Suppose E[X ],E1[X ],E2[X ] belong to ΠD
1 , and let m /∈ f n(E,E1,E2,A).

(1) If m /∈ f n(α), then

(m)(α.E[Trm] | !m(Z).A〈Z〉)≈ α.(m)(E[Trm] | !m(Z).A〈Z〉)

(2) It holds for output prefix that

(m)(aB1.E1[Trm] | !m(Z).A〈Z〉)≈ (m)(aB2.E1[Trm] | !m(Z).A〈Z〉)

where B1 ≡ E2[Trm], B2 ≡ (m)(E2[Trm] | !m(Z).A〈Z〉).
(3) It holds for parallel composition that

(m)(E1[Trm] |E2[Trm] | !m(Z).A〈Z〉)
≈ (m)(E1[Trm] | !m(Z).A〈Z〉) |(m)(E2[Trm] | !m(Z).A〈Z〉)

Proof. The proof is based on a standard argument on establishing bisimulations, where the scope of
restriction concerning m is the critical part. The details are thus omitted.

Lemma 5. Suppose E1[X ] belongs to ΠD
1 , and let m be fresh. It holds for every A,B (of the type of

abstraction) that

B〈(m)(E1[Trm] | !m(Z).A〈Z〉)〉 ≈ (m)(B〈E1[Trm]〉 | !m(Z).A〈Z〉)

Proof. Suppose B≡ 〈Y 〉T , it amounts to prove

T{T1/Y} ≈ (m)(T{T2/Y}| !m(Z).A〈Z〉)
where T1 ≡ (m)(E1[Trm] | !m(Z).A〈Z〉) and T2 ≡ E1[Trm]

This can be done by a simple induction on the structure of T in a routine way. The details pertaining to
establishing bisimulation during the induction would not raise major obstacle.

Now we are ready to show the Factorization theorem. As mentioned, this theorem offers some
method to relocate a subprocess, which might cause difference in behavior, and set up a reference to it
with the help of a trigger, while maintaining the equivalence with respect to context bisimilarity. The
proof of Theorem 6 is put in appendix A.
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Theorem 6 (Factorization). Given a E[X ] of ΠD
1 , let m be fresh and notice Trm ≡ 〈Z〉mZ. It holds for

every A (of the type of abstraction) that

(1) if E[Trm] is non-parameterized, i.e. not an abstraction, then

E[A]≈ (m)(E[Trm] | !m(Z).A〈Z〉)

(2) else if E[Trm]≡ 〈Y1〉 · · · 〈Yk〉E ′ for some k ≥ 1 and non-parameterized E ′, then

E[A]≈ 〈Y1〉 · · · 〈Yk〉((m)(E ′ | !m(Z).A〈Z〉))

With the help of factorization theorem (Theorem 6), below we give the proof of Theorem 3.

Proof of Theorem 3. The fact that ≈ implies ∼= barely needs argument, because the former demands
more and the latter is actually a special case of it. So we focus on the other direction. To achieve this,

we show the relation R
de f
= {(P,Q) |P ∼= Q} (i.e. normal bisimilarity ∼=) is a context bisimulation up-to

≈ [11] [13] (the definition is standard and thus omitted), by using mainly the factorization theorem.
There are several cases to analyze in terms of the definition of context bisimulation. Notice we

use weak transitions in the bisimulation, which is somewhat a standard variant of the corresponding
bisimulation. Moreover we focus on the case when the first result (1) of theorem 6 applies, the case
when the other applies can be handled in a similar (and easier) way.

• Internal action. This case is trivial, because the clauses in context bisimulation and normal bisim-
ulation are the same.

• Input. If P
a(A)
=⇒P′, then we want to show that

Q
a(A)
=⇒Q′ for some Q′ (1)

and P′ ≈ R ≈ Q′ (2)

W.l.o.g. suppose P′ ≡ E[A] for some E[X ] (i.e. from P
a(X)
=⇒ intuitively). So P

a(Trm)
=⇒ E[Trm] for some

fresh m. Since P∼= Q, we know

Q
a(Trm)
=⇒ F [Trm] for some F

and
E[Trm]∼= F [Trm] (3)

Thus
Q

a(A)
=⇒F [A]

de f
= Q′

which fulfills (1). We know from (3) and the congruence properties of ∼= that

(m)(E[Trm] | !m(Z).A〈Z〉)∼= (m)(F [Trm] | !m(Z).A〈Z〉)

Now by factorization theorem (Theorem 6), we have

E[A]≈ (m)(E[Trm] | !m(Z).A〈Z〉)R (m)(F [Trm] | !m(Z).A〈Z〉)≈ F [A]

which arrives at (2).
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• Output. If P
(c̃)aA
=⇒P′, then we want to show that (notice {c̃, d̃}∩ f n(E) = /0)

Q
(d̃)aB
=⇒Q′ for some d̃,B,Q′ (4)

and for every E[X ], (c̃)(E[A] |P′)≈ R ≈ (d̃)(E[B] |Q′) (5)

The argument can be conducted in a pretty similar way to that in the previous case for input; this
time one attaches a process E[Trm] and also uses the congruence properties of ∼=.

Since P∼= Q, we have Q
(d̃)aB
=⇒Q′ which fulfills (4), and also

(c̃)(P′ | !m(Z).A〈Z〉)∼= (d̃)(Q′ | !m(Z).B〈Z〉) (6)

We know from the congruence properties and (6) that

(m)((c̃)(P′ | !m(Z).A〈Z〉) |E[Trm])∼= (m)((d̃)(Q′ | !m(Z).B〈Z〉) |E[Trm]) (7)

By some simple structural adjustment and the factorization theorem (Theorem 6), we know the lhs
(left hand side) and rhs (right hand side) of (7) are equivalent to (c̃)(E[A] |P′) and (d̃)(E[B] |Q′)
respectively. So we have

(c̃)(E[A] |P′)≈ (lhs of (7))R (rhs of (7))≈ (d̃)(E[B] |Q′)

This is exactly what (5) says.

The proof is completed now.

Remark.

• The success of the characterization of context bisimulation using normal bisimulation in ΠD
n can

be attributed to the fact that ΠD
n processes are purely higher-order, i.e. no names can be passed but

only (parameterized) processes (carrying names), and moreover no names can be parameterized.
Thus one can delay the instantiation of a process parameterization by moving it elsewhere with the
help of triggers.

• We mentioned in the introduction that in [1], the index technique is utilized to show that strong
normal bisimulation characterizes strong context bisimulation, within a calculus capable of both
name-passing and process-passing but without any parameterization. A critical point there is that
indices can be used to precisely pinpoint the matching of actions from the processes when going
through some intermediate transformation (e.g. factorization). We believe, by combining the
technique in that paper with the approach in this section, one can further show that ∼ and '
coincide in the calculus ΠD

n . The key point in this combination is that we can reuse the approach in
this section for proving the coincidence in the strong case, except that we need to harness indices
to mark and filter out the extra τ actions brought about by the operation of factorization, and thus
the precise matching of strong actions can be established.

4 Normal bisimulation in Πd
n

In this section, we examine context bisimulation in Πd
n , particularly Πd

1 for simplicity. We show that,
unlike that in ΠD

1 , the technique of normal bisimulation [7] [9] cannot be extended to Πd
1 that is endowed
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with name parameterization instead of process parameterization. To this end, we show the negative fact
in two steps. Firstly, we discuss the possible form of normal bisimulation, toward giving some intuition.
Then we provide a counterexample, to show that the expected form of normal bisimulation does not work
out. Therefore finding a useful characterization of context bisimulation may amount to exploiting further
the essence (e.g. expressiveness) of Πd

n .

Possible form of normal bisimulation

Along the line of the very original idea of normal bisimulation [7] [9], we pretend having the ‘normal
bisimulation’, among which the largest one is denoted by ∼=′. This would lead to the argument below.

• A trigger now should be defined as Trm
de f
= 〈z〉mz, because it is supposed to carry names rather than

processes. This immediately brings about a critical problem. That is, name-passing is not allowed
in Πd

1 , and we only admit abstraction-passing.

• In the definition of ∼=′, the output clause should take the following form.

If P
(c̃)aA−−−→P′ then Q

(d̃)aB
=⇒Q′ for some d̃,B,Q′, and it holds that (m is fresh)

(c̃)(P′ |E[A]) R (d̃)(Q′ |E[B])

where particularly it should be that E[X ]
de f
= !m(z).X〈z〉 in line with the trigger form. Again, the

special environment E[X ] does not belong to the calculus Πd
1 .

• As for the input clause of ∼=′, one meets with similar obstacle.

So intuitively, the failure of trigger technique, and thus the failure of the factorization theorem, de-
prives Πd

1 of the normal bisimulation. Furthermore, below we provide a counterexample to exhibit the
deprival of normal bisimulation in Πd

1 .

A counterexample

We examine the following example: W
de f
= A〈d〉, in which A

de f
= 〈x〉x. Obviously W belongs to Πd

1

and is able to fire an action on d, i.e. W ≡ d d−→0. However if one tries to factorize out the subprocess A,
some contradiction arises by the examining below.

1) One is supposed to replace A with a trigger of certain (general) form, say T , which has to be an
abstraction on a name (to remain well-typed); so T must take the shape 〈z〉T ′, and we have after a
substitution

W{T/A} ≡ T ′{d/z} (8)

Now some sugar should be added, i.e. some context F is needed to contain W{T/A} so that the
resulting process bi-simulates W . Let us suppose F is of the form

(c̃)([·] |G[A])

in which G should have A, in conformance to the rationale of factorization. Then generally, in
terms of bisimulation, F [T ′{d/z}] should engage in some internal moves between T ′{d/z} and
G[A], so that in its current (different) position, A can do the same action d after an instantiation on
x. It is the responsibility of T ′ to convey the particular information of d to G.
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2) Holding back a little bit, a crux is that there is no way to transmit, with the help of any process
(let alone a trigger), a concrete name for instantiation of the abstraction (e.g. in (8)) to the newly-
assigned place for future access, because all the processes here are strictly higher-order.

Hence we conclude that the technique of normal bisimulation does not work for Πd
n . This result also

sheds light on the expressiveness of Πd
n . It reflects that name parameterization offers more flexibility

than process parameterization in expressiveness so that its bisimulation does not have a similar (simpler)
characterization. We give more discussion in the conclusion below.

5 Conclusion

This paper provides some results on the characterization of context bisimulation in parameterized
higher-order processes, and thus offers some tool as well as some insights for the bisimulation theory in
higher-order paradigm. Firstly, we show that when extended with process parameterization, higher-order
processes possess the characterization of context bisimulation by normal bisimulation. Secondly, we
show that this technique of normal bisimulation, at least in its original form, cannot be extended to char-
acterizing context bisimulation in presence of name parameterization. This separation result implies that
the two kinds of parameterization have some essential difference. It will offer some potential reference
for relevant research, for instance expressiveness studies.

There is some work worth further consideration.

• Finding some appropriate proof technique for the context bisimulation in Πd
n . To some extent,

Πd
n is more useful than ΠD

n , which can strictly enhance the expressiveness of Π [3], because it
consists of some name-handling primitive, though it is still a higher-order language (i.e. no name-
passing). So in order to make Πd

n more convenient when studying related topics, for example
expressiveness and applications like modeling-verifying, there should be some proof technique
for its canonical bisimulation equivalence, i.e. the context bisimulation. Since a standard normal
characterization based on triggers is not available, one has to search for other ways to simplify
the work on proving/checking whether two processes are context bisimilar. This may need some
restriction on name abstraction or some other novel technique catering for certain motivation.

• Extension of the available characterization and related proof technique to more general higher-
order models. For a long time, normal bisimulation and trigger technique has seen successful
application and been deemed as a somewhat general method of dealing with higher-order pro-
cesses (even applicable in some first-order process models). However, the result here implies that
the normal approach, i.e. proof of context bisimulation up-to trigger and context, deserves more
examination. Sometimes it would be better to study a general form of bisimulation in some general
higher-order model. This is advantageous in that the usefulness of the available technique can be
further tested, and also more essence of the behavior equivalence in higher-order processes can be
hopefully revealed. A possible direction is to follow the idea in [12] where environmental bisim-
ulation is proposed for higher-order models, and examine the proof technique of environmental
bisimulation that is shown to coincide with canonical bisimulation in various higher-order models.
In such a more general model, one may exploit some general proof technique (e.g. up-to certain
normal feature) of different nature.
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Appendix

A Proof of Section 3

In this appendix, we give the proof of the factorization theorem in section 3.

Proof of Theorem 6: Factorization. The proof is by induction on the structure of E. The cases 1,2,3 are
the base cases.

1. E is 0 or E is Y and Y 6= X . These cases are trivial.

2. E is X . Notice this time E[Trm] is Trm ≡ 〈Z〉mZ ≡ 〈Y 〉mY (up-to alpha-conversion), so the second
statement of this theorem applies and the two terms of interest are

A and 〈Y 〉((m)(mY | !m(Z).A〈Z〉)

Suppose A≡ 〈Z′〉F , then it is easy to verify that for each B one has

F〈B〉 ≈ (m)(mB | !m(Z).F{Z/Z′}

which completes this case.

3. E is X〈E1〉. This can be proven by showing the following relation R is a context bisimulation
up-to ∼ (this technique is standard [9] [13] and we omit its definition here).

R
de f
= {(A〈E1〉,(m)(Trm〈E1〉 | !m(Z).A〈Z〉) |m is fresh }∪ ≈

Let (A〈E1〉,(m)(Trm〈E1〉 | !m(Z).A〈Z〉) ∈R and A≡ 〈Z′〉T ; so the pair is actually

(T{E1/Z′},(m)(mE1 | !m(Z).T{Z/Z′})

There are mainly two cases to consider.

• (m)(mE1 | !m(Z).T{Z/Z′}) α−→T ′. Then α must be τ , and thus

T ′ ≡ (m)(T{E1/Z′}| !m(Z).T{Z/Z′})

By T{E1/Z′}=⇒T{E1/Z′} (null transition), since m is fresh, it can be easily seen that,

T{E1/Z′} ∼ T{E1/Z′}R T{E1/Z′} ∼ T ′

• T{E1/Z′} α−→T1. Then this is simulated by

(m)(mE1 | !m(Z).T{Z/Z′})
τ−→ (m)(T{E1/Z′}| !m(Z).T{Z/Z′})
α−→ (m)(T1 | !m(Z).T{Z/Z′}) de f

= T2

So it holds in a straightforward way that

T1 ∼ T1 R T1 ∼ T2
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The following cases 4,5,6,7,8,9 are cases involving the induction hypothesis (ind. hyp. for short).
Notice that we will only consider the case when statement (1) in the theorem applies, and the case
for (2) can be dealt with similarly.

4. E is 〈Y 〉E1. Then we have by ind. hyp.

E[A]≡ 〈Y 〉E1[A]
≈ 〈Y 〉((m)(E1[Trm] | !m(Z).A〈Z〉))

To conclude this case, we have to show

〈Y 〉((m)(E1[Trm] | !m(Z).A〈Z〉))≈ 〈Y 〉((m)(E1[Trm] | !m(Z).A〈Z〉))

This is immediate and the right-hand-side is exactly the second claim (2) of this theorem.

5. E is aE2.E1. Then we have

E[A]≡ aE2[A].E1[A]
≈ a[(m)(E2[Trm] | !m(Z).A〈Z〉)].((m)(E1[Trm] | !m(Z).A〈Z〉)) (ind. hyp.)
≈ (m)(a[(m)(E2[Trm] | !m(Z).A〈Z〉)].E1[Trm] | !m(Z).A〈Z〉) (Lemma 4(1))
≈ (m)(aE2[Trm].E1[Trm] | !m(Z).A〈Z〉) (Lemma 4(2))

The last equation gives exactly what we expect.

6. E is a(Y ).E1. This is similar (and easier) than the previous case.

7. E is E1 |E2. Then we have

E[A]≡ E1[A] |E2[A]
≈ (m)(E1[Trm] | !m(Z).A〈Z〉) |(m)(E2[Trm] | !m(Z).A〈Z〉) (ind. hyp.)
≈ (m)(E1[Trm] |E2[Trm] | !m(Z).A〈Z〉) (Lemma 4(3))

The last equation completes this case.

8. E is (c)E1. This is similar to the previous case.

9. E is E2〈E1〉. This case can be reduced to the case E is Y 〈E1〉 and Y 6= X , because if E2 is not
a variable (i.e. an abstraction) or is X , then it can be handled in a way that falls into one of the
previous cases (up-to structural congruence). So we have

E[A]
≡ Y 〈E1[A]〉
≈ Y 〈(m)(E[Trm] | !m(Z).A〈Z〉)〉 de f

= T (ind. hyp.)

We want to show that T ≈ (m)(Y 〈E1[Trm]〉 | !m(Z).A〈Z〉) i.e. for every B,

B〈(m)(E1[Trm] | !m(Z).A〈Z〉)〉 ≈ (m)(B〈E1[Trm]〉 | !m(Z).A〈Z〉)

This is immediately from Lemma 5.

The proof is now completed.
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