
M. Carbone, I. Lanese, A. Lluch-Lafuente, A. Sokolova (Eds.):
6th Interaction and Concurrency Experience (ICE 2013)
EPTCS 131, 2013, pp. 52–67, doi:10.4204/EPTCS.131.6

Choreography Synthesis as Contract Agreement

Julien Lange
University of Leicester, UK

jlange@le.ac.uk

Alceste Scalas
University of Cagliari, Italy

alceste.scalas@unica.it

We propose a formal model for distributed systems, where each participant advertises its require-
ments and obligations as behavioural contracts, and where multiparty sessions are started when a set
of contracts allows to synthesise a choreography. Our framework is based on the CO2 calculus for
contract-oriented computing, and borrows concepts and results from the session type literature.

It supports sessions where the number of participants is not determined beforehand, and keeps
CO2’s ability to rule out participants that are culpable if contracts are not fulfilled at runtime. We
show that we have progress and session fidelity in CO2, as a result of the honesty of participants —
i.e., their ability to always adhere to their contracts.

1 Introduction

Distributed applications are nowadays omnipresent but even for seemingly simple cases, there is still a
pressing need to make sure they do work as their designers intended. Indeed, such systems are difficult to
design, verify, implement, deploy, and maintain. Besides the intrinsic issues due to the underlying exe-
cution model (concurrency, physical distribution, etc.), applications have to be designed within a strange
paradox: they are made of components that, on the one hand, collaborate with each other and, on the
other hand, may compete for resources, or for achieving conflicting goals. This paradox is especially
relevant in inter-organisational service-oriented scenarios, where services may be deployed by different
entities: even under common policies, the implementations may reflect diverging and changing require-
ments, up to the point of departing from the agreed specifications. This issue is reflected in standards
such as [15], which includes runtime monitoring and logging to check that interactions in SOAs actually
adhere to agreed policies and service descriptions.

Along the lines of [5, 4], we propose a formal model for distributed systems where contracts drive
interactions: components advertise behavioural contracts; such contracts are used at runtime to establish
multiparty agreements, and such agreements steer the behaviour of components. Therefore, contracts
are not just a specification or a design mechanism anymore, rather they become a pivotal element of the
execution model.

In this work, we combine two approaches: session types [11] and contract-oriented computing [5].
From the former, we adopt concepts, syntax and semantics — and in particular, the interplay between lo-
cal behaviours and choreographies (i.e., between local types and global types) as a method for specifying
and analysing the interactions of participants in a distributed system. However, in our framework we do
not assume that a participant will necessarily always adhere to its specification, nor that a global descrip-
tion is available beforehand to validate the system. From the contract-oriented computing approach, we
adopt CO2 [4], a generic contract-oriented calculus where participants advertise their requirements and
obligations through contracts, and interact with each other once compliant contracts have been found.
Here, we tailor CO2 to a multiparty model where contracts have the syntax of local types. We say that
contracts c1, . . . ,cn are compliant when, roughly, they can be used to synthesise a choreography — i.e.,
a global type whose projections are c1, . . . ,cn themselves [14]. Once a set of compliant contracts has

http://dx.doi.org/10.4204/EPTCS.131.6

J. Lange and A. Scalas 53

been found, a CO2 session may be established, wherein the participants who advertised the contracts can
interact. However, in line with what may happen in real life scenarios, the runtime behaviour of these
participants may then depart from the contracts: the calculus allows to model these situations, and reason
about them.

1.1 Contributions

Our framework models multiparty contractual agreements as “tangible” objects, i.e., choreographies.
This allows us to rely on results and properties from the session type literature — in particular, the
well-formedness of a choreography ensures that contractual agreements enjoy knowledge of choice,
error/deadlock freedom, and progress. Furthermore, it allows us to easily check that some meta-level
properties are satisfied at runtime, e.g., on the number of involved participants, whether or not the session
may terminate, etc.

Our adaptation of CO2 to a multiparty, choreography-based contract model preserves the properties
of the original calculus. In particular, if a system gets stuck, it is possible to identify which participants
violated their contracts.

We also discuss how the properties of a well-formed choreography are reflected in a context where
participants can misbehave. We introduce global progress and session fidelity in CO2, again inspired
by analogous concepts in theories based on session types. We show that they hold in systems where all
participants are honest (i.e., they always respect their contracts in any context) — even when a participant
takes part in multiple sessions.

Synopsis. The rest of the paper is structured as follows. In the rest of this section, we introduce an
example that we use to motivate and illustrate our framework. In Section 2, we introduce a multiparty
contract model based on choreography synthesis. In Section 3, we present our version of CO2 and
highlight its main features. In Section 4, we define the notion of honesty and its practical importance
in our contract-oriented scenario. In Section 5, we present our results, which link the notion of honesty
to the progress and safety of a CO2 system (due to lack of space, the proofs are relegated to an online
appendix [13]). Finally, we discuss related work and conclude in Section 6.

1.2 A motivating example

In this section, we introduce a running example to illustrate our framework. We use A,B, . . . for participant
names, and a,a′,b, . . . for participant variables, and use the colour blue to highlight contracts.

Consider the following distributed scenario: an online store A allows two buyers b1 and b2 to make a
joint purchase through a simplified protocol: after they both request the same item, a quote is sent to b1,
who is then expected to either place an order (order) or end the session (bye); the store also promises to
notify b2 about whether the order was placed (ok) or cancelled (bye). A’s behaviour is described by the
following contract:

cA = b1?req;b2?req;b1!quote;(b1?order;b2!ok+b1?bye;b2!bye)

What kind of contracts would be compliant with cA? One answer consists in the following contracts,
advertised by buyers B1 and B2.

cB1 = a!req;a?quote;
(
b′2!ok;a!order⊕b′2!bye;a!bye

)
cB2 = a′!req;

(
b′1?ok;a′?ok+b′1?bye;a′?bye

)

54 Choreography Synthesis as Contract Agreement

Here, B1 promises to send the request to the store (a), wait for the quote, and then notify the other
buyer (b′2) before accepting or rejecting the store offer; symmetrically, B2’s contract sends the request to
the store (a′), and then expects to receive the same notification (either ok or bye) from both the other buyer
(b′1) and the store itself. Each contract represents the local viewpoint of the participant who advertises
it: cA represents the local viewpoint of the store, and thus it does not (and indeed, it cannot) capture the
communications between B1 and B2.

An agreement among cA, cB1 and cB2 may be found by replacing the participant variables in each
contract with actual names, e.g., with substitutions {A/a,a′}, {B1/b1,b

′
1} and {B2/b2,b

′
2}. Such an agreement

is based on the existence of the following choreography (i.e., global type), which can be synthesised
similarly to what is done in [14]:

GAB1B2 = B1→A : req ;B2→A : req ;A→B1 :quote ;
(B1→B2 :ok ;B1→A :order ;A→B2 :ok + B1→B2 :bye ;B1→A :bye ;A→B2 :bye)

The ability to synthesise GAB1B2 guarantees that the global type is well-formed and projectable back to
the initial contracts cA, cB1 and cB2 (with the substitutions above); this, in turn, guarantees progress and
safety [14] of the contractual agreement.

However, in a realistic scenario, the existence of a contractual agreement among participants does
not guarantee that progress and safety will also hold at runtime: in fact, a participant may advertise a
contract promising some behaviour, and then fail to respect it — either maliciously or accidentally. Such
failure may then cascade on other participants, e.g., if they remain stuck waiting for a promised message
that is never sent.

This sort of situations can be modelled using the CO2 calculus. A CO2 system for the store-and-two-
customers example may be implemented as follows:

S1 = (x,y,z)
(
A[tellA ↓x cA . fuse .PA] | B1[tellA ↓y cB1 .PB1] | B2[tellA ↓z cB2 .PB2]

)
Here, participant A advertises its contract cA to itself via the primitive tellA↓x cA, where x is used as a
session handle for interacting with other participants. B1 and B2 advertise their respective contracts to A

with a similar invocation.
In this example, A also plays the role of contract broker: once all contracts have been advertised,

the fuse prefix can establish a new session, based on the fact that the global agreement GAB1B2 can be
synthesised from cA, cB1 and cB2 . This new session is shared among participants A, B1 and B2.

At this point, the execution of the system (i.e., the continuation of processes PA, PB1 and PB2) is not
required to respect the contracts. In fact, we will see that when the contracts are violated, the calculus
allows for culpable participants to be always ruled out. Furthermore, we will discuss honesty, i.e., the
guarantee that a participant will always fulfil its advertised contracts — even in contexts where other
participants fail to fulfil theirs. When such a guarantee holds, the contractual progress and safety are also
reflected in the runtime behaviour of the CO2 system.

Other possible agreements. Our contract model allows for other scenarios. For instance, a participant
B12 may impersonate both customers, and promise to always accept the store offer, by advertising the
following contract:

cB12 = a′′!req;a′′!req;a′′?quote;a′′!order;a′′?ok

where the request to the store (a′′) is sent twice (i.e., once for each impersonated customer). In this case,
if we combine cA and cB12 with substitutions {A/a′′}, {B12/b1,b2}, we can find an agreement by synthesising

J. Lange and A. Scalas 55

the following global type:

GAB12 = B12→A : req ;B12→A : req ;A→B12 :quote ;B12→A :order ;A→B12 :ok

Similarly to the previous case, this scenario may be modelled with the following CO2 system:

S2 = (x,w)
(
A[tellA ↓x cA . fuse .PA] | B12[tellA ↓w cB12 .PB12]

)
where the fuse prefix can now create a session involving A and B12.

The participants in the CO2 systems S1 and S2 may also be combined, so to obtain:

S12 = (x,y,z,w)
(
A[tellA ↓x cA . fuse .PA] | B1[tellA ↓y cB1 .PB1] | B2[tellA ↓z cB2 .PB2]

| B12[tellA ↓w cB12 .PB12]
)

In this case, after all contracts have been advertised to A, either a session corresponding to GAB1B2 , or to
GAB12 may take place, thus involving a different number of participants depending on which contracts are
fused. In such cases, it makes sense to consider whether one of the agreements should take precedence
over the other, and which criteria should drive this choice.

2 A Choreography-Based Contract Model

We introduce a contract model based on concepts and results from the session types literature. Individual
contracts are expressed using the syntax of local session types; while contractual compliance is based on
global types synthesis: a set of contracts is compliant if it is possible to synthesise a choreography from
it, as described in [14]. For simplicity, we adopt syntax and semantics in the style of [8, 10]: we use
participant names (instead of channels) for message exchange, i.e., we consider systems with just one
channel between each pair of participants.

Syntax & Semantics. Let P and P be disjoint sets of, respectively, participant names (ranged over by
A,B, . . .) and participant variables (ranged over by a,b, . . .). Let a,b range over P∪P . The syntax of
contracts below is parametrised wrt sorts (ranged over by e) which abstract data types (either simple or
complex). We use the colour blue for single contracts and green for systems of contracts.

T ,T ′ ::= T | T ′ | A〈c〉 | (AB) : ρ | 0
c,c′ ::=

⊕
i∈I ai!ei;ci | ∑i∈I a?ei;ci | µ x.c | x

A contract c may be either: (i) an internal choice ⊕, with the intuitive semantics that after sending the
message ei to participant ai, behaviour ci take places; (ii) an external choice ∑, saying that if a message
of sort ei is received from a, then behaviour ci takes place; or (iii) a recursive behaviour. We assume that
∀i 6= j ∈ I : (ai,ei) 6= (a j,e j) in internal choices, ∀i 6= j ∈ I : ei 6= e j in external choices, and that ⊕ and
+ are associative and commutative. We write fv(c) for the free participant variables in c.

A system of contracts T may be either: (i) a parallel composition of systems T | T ′; or (ii) a named
contract A〈c〉, saying that participant A promises to behave according to c; (iii) a queue (AB) : ρ of
messages from A to B. In a system T , we assume that there is at most one queue per pair of participants,
(i.e., one channel per direction), and that participant names are pairwise distinct.

56 Choreography Synthesis as Contract Agreement

We consider systems of contracts as processes whose semantics is given by the following main re-
duction rules (see the online appendix [13] for the omitted ones):

A〈B!e;c0⊕c1〉 | (AB) :ρ | T A→B:e−−−→ A〈c0〉 | (AB) :ρ · e | T
A〈B?e;c0+c1〉 | (BA) :e ·ρ | T A←B:e−−−→ A〈c0〉 | (BA) :ρ | T

The first rule says that, after an internal choice, participant A puts a message e on its queue for participant
B. The second rule says that A’s external choice can receive a message of the right sort from an input
queue BA. We write T A�B:e−−−→ T ′ when either T A→B:e−−−→ T ′ or T A←B:e−−−→ T ′, and Q(T) for the parallel
composition of the empty queues connecting all pairs of participants in T .

Example 2.1. From the example in Section 1.2, consider the instantiated contracts of the store A and its
customer B12. We illustrate the initial system, and how it progresses:

T AB12Q = A〈cA {A/a′′}{B12/b1,b2}〉 | B12〈cB12 {A/a′′}{B12/b1,b2}〉 | (AB12) : [] | (B12A) : []
= A〈B12?req;B12?req; . . .〉 | B12〈A!req;A!req; . . .〉 | (AB12) : [] | (B12A) : []

B12→A:req−−−−−−→ A〈B12?req;B12?req; . . .〉 | B12〈A!req; . . .〉 | (AB12) : [] | (B12A) : req
A←B12:req−−−−−−→ A〈B12?req; . . .〉 | B12〈A!req; . . .〉 | (AB12) : [] | (B12A) : []

Choreography Synthesis as Compliance. We briefly introduce the compliance relation that tells
whether some contracts can be combined to describe a correct interaction. We reuse the main results
from [14]: a typing system which assigns a (unique) global type to a set of local types. We say that a set
of contracts (i.e., local types) is compliant if it can be assigned a choreography, i.e., a global type.

For simplicity, we use only a subset of the global types originally supported (we conjecture that
extending this would not pose any difficulties). The main difference is that, in the style of [8, 10], we
replace channels with participant names.

The syntax of global types is as follows:

G ::= A→B :e ;G | G +G ′ | G | G ′ | µ x.G | x | 0

where the first production means that a participant A sends a message of sort e to B, then interactions in G
take place; G +G ′ means that either interactions in G , or in G ′ take place; G | G ′ means that interactions
in G and G ′ are executed concurrently; the rest of the productions are for recursive interactions, and end.

Similarly to the original synthesis, we use judgements of the form Γ ` T I G , where Γ is an environ-
ment to keep track of recursion variables, T is a system of contracts, and G is the global type assigned to
T . We say that a system of contracts T has global type G , if one can infer the judgement ◦ ` T I G from
the rules in the online appendix [13] (simplified from [14]) where ◦ is the empty context Γ. Essentially,
the synthesis rules allow to execute a set of contracts step-by-step, while keeping track of the structure
of the interactions in a global type.

The main properties that we are interested in — and that are guaranteed by the synthesis — is that
the inferred global type is (i) well-formed, and (ii) projectable back to the original contracts. Essentially,
this means that each local type must be single-threaded, and that knowledge of choice is preserved — i.e.,
each choice is made by exactly one participant, and all the others are either made aware of the choice, or
they have the same behaviour whatever choice is made.

J. Lange and A. Scalas 57

Example 2.2. Building up on the example from Section 1.2, we combine the contract of store A with
those of customers B1 and B2, and we obtain the system:

T AB1B2 = A〈cA {B1/b1}{B2/b2}〉 | B1〈cB1 {A/a}{B2/b′2}〉 | B2〈cB2 {A/a′}{B1/b′1}〉
= A〈B1?req;B2?req;B1!quote;(B1?order;B2!ok+B1?bye;B2!bye)〉

| B1〈A!req;A?quote;(B2!ok;A!order⊕B2!bye;A!bye)〉
| B2〈A!req;(B1?ok;A?ok+B1?bye;A?bye)〉

which can be assigned the following global type:

GAB1B2 = B1→A : req ;B2→A : req ;A→B1 :quote ;
(B1→B2 :ok ;B1→A :order ;A→B2 :ok + B1→B2 :bye ;B1→A :bye ;A→B2 :bye)

that is to say that ◦ ` T AB1B2 I GAB1B2 holds. Instead, if we combine the store A with B12 we have

T AB12 = A〈cA {B12/b1,b2}〉 | B12〈cB12 {A/a′′}〉
= A〈B12?req;B12?req;B12!quote;(B12?order;B12!ok+B12?bye;B12!bye)〉

| B12〈A!req;A!req;A?quote;A!order;A?ok〉

GAB12 = B12→A : req ;B12→A : req ;A→B12 :quote ;B12→A :order ;A→B12 :ok

and, again, the judgement ◦ ` T AB12 I GAB12 holds.

3 A Multiparty Version of CO2

We introduce a version of the CO2 calculus (for COntract-Oriented computing) [4] adapted to multiparty
contracts and sessions. Let S and S be disjoint sets of, respectively, session names (ranged over by
s,s′, . . .) and session variables (ranged over by x,y,z . . .). Let u,v, . . . range over S∪S .

Syntax & Semantics. The syntax of CO2 is given by the following productions:

Processes P,Q ::= ∑i∈I pi .Pi
∣∣ P | Q

∣∣ (~u,~a)P
∣∣ X(~u,~a)

∣∣ 0
Prefixes p ::= τ

∣∣ tella↓u c
∣∣ fuse

∣∣ dou
a e

Latent contracts K ::= ↓u A says c
∣∣ K | K

Systems S ::= A[P]
∣∣ A[K]

∣∣ s[T]
∣∣ S | S

∣∣ (~u,~a)S
∣∣ 0

CO2 features CCS-style processes, equipped with branching ∑ (not to be confused with the choice op-
erator used in contracts), parallel composition |, restrictions of session and participant variables, and
named process invocation. The prefixes are for internal action (τ), contract advertisement (tell↓), session
creation upon contractual agreement (fuse), and execution of contractual actions (do). A latent contract
of the form ↓u A says c represents the promise of participant A to fulfil c by executing do-actions on a
session variable u. CO2 systems may be parallel compositions of processes A[P] (where A is the partici-
pant executing P), latent contracts A[K] (where A is the participant to which the contracts in K have been
advertised), and established sessions s[T] (where s is a session name, and T is a system of stipulated con-
tracts as in Section 2). We assume well-formed systems where each participant A has at most one process
A[P]. Note that CO2 process and system productions allow to delimit both session names/variables (~u)
and participant variables (~a), but not participant names, which are considered public.

58 Choreography Synthesis as Contract Agreement

We give the main reduction rules for the semantics of CO2 (where + and | are standard associative
and commutative operators):

[CO2 -TELL] A[tellB ↓x c .P+P′ | Q] −→ A[P | Q] | B[↓x A says c]

[CO2 -FUSE]
K Bσ

π T ~a= dom(π) ~u = dom(σ) img(σ) = {s} s fresh

(~u,~a)
(
A
[
fuse .P+P′ | Q

]
| A[K] | S

)
−→ (s)(A[P | Q]σπ | s[T | Q(T)] | Sσπ)

[CO2 -DO]
T A�B:e−−−→ T ′

s[T] | A
[
dos

B e .P+P′ | Q
]
−→ s

[
T ′
]
| A[P | Q]

[CO2 -TELL] allows a participant A to advertise a contract c to B; as a result, a new latent contract is created,
recording the fact that it was promised by A. [CO2 -FUSE] establishes a new session: the latent contracts
held in A[K] are combined, and their participant variables substituted, in order to find an agreement, i.e.,
a T which satisfies the relation K Bσ

π T (see Definition 3.2 below). Provided an agreement is found, fresh
session variable s and participants names are shared among the parties, via substitutions σ and π; within
the session, the involved contracts become stipulated (as opposed to “latent”, before the agreement).
Rule [CO2 -DO] allows A to perform an input/output action e towards B on session s, provided that T
permits it. The omitted CO2 rules are standard, and they are listed in the online appendix [13]: they
cover internal actions, parametric processes, parallel composition, and delimitations.

When needed, we label CO2 system transitions: S
A : p−−→ S′ means that S reduces to S′ through a prefix

p fired by participant A.

Example 3.1. Consider the CO2 system:

S = A[dos
B int+dos

B bool] | s[A〈B!int〉 | B〈A?int〉 | (AB) : [] | (BA) : []] | B[dos
A int]

Here, the CO2 process of participant A can perform an action towards B on session s, with either a
message of sort int or bool. However, A’s contract in s only specifies that A should send a message of
sort int to B: therefore, according to rule [CO2 -DO], only the first branch of A may be chosen, and the
system reduces as follows.

S
A : dos

B int−−−−−→ A[0] | s[A〈0〉 | B〈A?int〉 | (AB) : int | (BA) : []] | B[dos
A int]

B : dos
A int−−−−−→ A[0] | s[A〈0〉 | B〈0〉 | (AB) : [] | (BA) : []] | B[0]

A main difference between our adaptation of CO2 and the original presentation comes from the way
we specify session establishment. We adopt the session agreement relation defined below.

Definition 3.2 (Agreement relation K Bσ
π T). Let K ≡

∣∣
i∈I ↓xi Ai says ci, such that ∀ i 6= j ∈ I : Ai 6= A j,

and let π : P → P and σ : S → S be two substitutions mapping participant variables to names, and
session variables to names, respectively. Also, let T ≡

∣∣
i∈IAi〈ci〉π . We define:

K Bσ
π T ⇐⇒

dom(σ) =
⋃

i∈I {xi} ∧ dom(π) =
⋃

i∈I fv(ci)
∧
∀i ∈ I : ∀a ∈ fv(ci) : π(a) 6= Ai ∧ ∃G : ◦ ` T I G

Intuitively, a system of stipulated contracts T is constructed from a set of latent contracts K, using
a substitution π that maps all the participant variables in K to the participant names in K itself. If it
is possible to synthesise a global type G out of T , then the relation holds, and a contractual agreement

J. Lange and A. Scalas 59

exists. The first two conditions, on σ and π , guarantee that all the session and participant variables
are indeed instantiated. The third condition ensures that within a contract ci, belonging to Ai, no free
participant variable in ci is substituted by Ai itself. Note that due to the condition imposed on K, each
participant may have at most one contract per session.

Example 3.3. We now illustrate how Definition 3.2 works. Consider the following CO2 system, with A,
B1, B2 from Section 1.2, and T AB1B2 from Example 2.2:

S1 = (x,y,z)
(
A[tellA ↓x cA . fuse .PA] | B1[tellA ↓y cB1 .PB1] | B2[tellA ↓z cB2 .PB2]

)
−→−→−→ (x,y,z)

(
A[fuse .PA] | A[↓x A says cA | ↓y B1 says cB1 | ↓z B2 says cB2] | B1[PB1] | B2[PB2]

)
A : fuse−−−−→ (s)S′1 = (s)

(
A[PA]σπ | s[T AB1B2 | Q(T AB1B2)] | B1[PB1]σπ | B2[PB2]σπ

)
where σ = {s/x,y,z} and π = {A/a,a′,B1/b1,b

′
1,B2/b2,b

′
2}

The initial system S1 is the one considered in Section 1.2, where all the participants are ready to
advertise their respective contracts to the store A, by using a tellA↓-primitive. This has the effect of
creating corresponding latent contracts within A. Once all the latent contracts are in a same location,
they may be fused. In this case, given σ and π as above, Definition 3.2 is indeed applicable: the domains
of σ and π comply with the definition’s premises, and we already saw that a system consisting of cA,
cB1 and cB2 may be assigned a global type. Hence, a new session s is created, based on the system of
contracts T AB1B2 , plus the queues connecting all pairs of participants. The session variables of the latent
contracts being fused (i.e., x for participant A, y for B1, and z for B2) are all substituted with the fresh
session name s in the processes PA, PB1 and PB2 , via σ . Similarly for participant variables which are
substituted with participant names, via π .

The CO2 semantic rules are to be considered up-to a standard structural congruence relation ≡ (cf.
[13]): we just point out that A[K] | A[K′]≡ A[K | K′] allows to select a compliant subset from a group of
latent contracts, before performing a fuse — thus adding flexibility to the synthesis of choreographies.

Example 3.4. Consider the system:

. . .B[fuse .P | Q] | B
[
↓x A1 says a!int | ↓y A2 says a′?int | ↓z A3 says b?bool

]
. . .

The fuse prefix cannot be fired: no contract matches A3’s, and thus the three latent contracts cannot be
assigned a global type. However, by rearranging the system with congruence ≡, we have:

. . .B[fuse .P | Q] | B
[
↓x A1 says a!int | ↓y A2 says a′?int

]
| B[↓z A3 says b?bool] . . .

It is now possible to synthesise a global type A1→A2 : int, and a session may be created for A1 and A2.
A3’s latent contract may be fused later on.

3.1 Flexibility of Session Establishment

We highlight the flexibility of our definition of contract agreement, together with the semantics of CO2,
by discussing three features: (i) contracts may use a mix of participant names and variables, (ii) different
contracts may use common participant variables, and (iii) the definition of agreement may be easily
extended.

60 Choreography Synthesis as Contract Agreement

Contracts with both participant names and variables. A may want to sell an item to a specific
participant B, via any shipping company that provides a package tracking system. A’s contract may be:

B!price;B?ack;a!request;a?tracking;B!tracking

saying that the seller A must send a price to the buyer B; once B has acknowledged, A must send a shipping
request to a shipper a — who must send back a tracking number, which is then forwarded to B. This
contract may be fused only if B takes part in the session, while the role of shipper a may be played by
any participant.

Contracts sharing participant variables. Consider the CO2 process:

. . .A[tellA↓x(b!request) . . .X(~z,b)] . . . where X(~z,b) :=(y,b′)tellA↓y(b
′!quote; . . .b!address) . . .X(~z,b)

Here, A advertises two contracts: the first one (b!request) is used by A to find a shipping company, and
the second (b′!quote; . . .b!address) to sell items. The two contracts are linked by the common variable
b: whenever the first one is fused, variable b is instantiated to a participant name, say B, which is also
substituted in the second. This means that whenever a new selling session starts, B will also be involved
as the receiver of the address message.

Possible extensions. The participants firing fuse-primitives are playing the role of brokers in our frame-
work. Depending on their implementation, brokers may also have some obligations in the contracts they
fuse, or they may want to enforce some general policy — therefore they may have additional require-
ments before agreeing to start a session. For instance, a broker may not want to start a session with too
many participants as it may be too resource demanding (too many connections etc.). Another broker may
want to start sessions that terminates after a limited number of interactions, because it has a short life
expectancy, e.g., due to an approaching scheduled maintenance. Another kind of broker may precisely
want to start sessions which do not terminate, e.g., if the broker is interested in resilient services.

Several variations of the fuse primitive are possible thanks to the fact that we base contract agree-
ments on objects representing the overall choreography. We introduce fuse[n], a version of fuse that only
fuses sessions where there are at least n participants; fuseT , which has the additional constraint that no
recursive behaviour is allowed in the synthesised choreography (therefore ensuring that the session will
eventually terminate), and fuseR, which only creates sessions when the synthesised choreography never
terminates (i.e., it only consists of recursive behaviours).

The three extensions may be defined directly via small modifications of Definition 3.2:

• fuse[n]: we add the condition |P(G)| ≥ n, where P(G) is the set of participants in G ;
• fuseT : we add the condition that there should not be any recursion variable x in G ;
• fuseR: we add the condition that 0 does not appear in G .

This kind of properties must be checked for at global level because it cannot always be decided by
looking at the individual contracts. For instance, a participant might exhibit a recursive behaviour in one
of the branches of an external choice, while the participant it interacts with may always choose a branch
that is not recursive. Note that none of these variations actually affect the results that follow, since the
original fuse primitive is also blocking. The variations only restrict some of its applications. Further
variations of fuse are sketched in Section 6, as future work.

J. Lange and A. Scalas 61

4 The Problem of Honesty

In this section, we discuss and define the notion of honesty [4], i.e., the ability of a participant to always
fulfil its contracts, in any context. Broadly speaking, in our contract-oriented setting, honesty is the
counterpart of well-typedness in a session type setting: the static proof that a participant always honours
its contracts provides guarantees about its runtime behaviour.

As seen in Example 3.1, each do prefix within the process of a participant, say A[P], is driven by the
contract that A promised to abide by. In a sense, CO2 is culpability-driven, according to Definition 4.1
below: when a participant is culpable, it has the duty of making the session progress according to its
contract.

Definition 4.1 (Culpability). Let S be a CO2 system with a session s, i.e., S≡ (~u,~a)(A[P] | s[T] | S1). We
say that A is culpable in S (at session s) when there exist B and e such that T A�B:e−−−→.

A culpable participant can overcome its status by firing its do prefixes, according to [CO2 -DO], until
another participant becomes culpable or session s terminates. Hence, as long as a culpable participant
A does not enable a do-prefix matching a contractual action, A will remain culpable. Note that when a
participant is involved in multiple sessions, it may result culpable in more than one of them.

When a participant A is always able to fulfil its contractual actions (i.e., overcome its culpability),
no matter what other participants do, then it is said to be honest (cf. Definition 4.9). This is a desirable
property in a distributed contract-oriented scenario: a participant may be stuck in a culpable condition
either due to “simple” bugs (cf. Example 4.7), or due to the unexpected (or malicious) behaviour of other
participants (cf. Example 5.6). Therefore, before deploying a service, its developers might want to ensure
that it will always be able exculpate itself.

Formally, as in [1], we base the definition of honesty on the relationship between the ready sets of
a contract, and those of a CO2 process. We call the former contract ready sets, and the latter process
ready sets. The concept of contract ready sets is similar to [9, 4, 1], where only bilateral contracts are
considered. Here, we adapt it to suit our multiparty contract model.

Definition 4.2 (Contract Ready Sets). The ready sets of a contract c, written CRS(c), are:

CRS(c) =

CRS(c′) if c = µ x.c′

{{(Ai,ei)} | i ∈ I} if c =
⊕

i∈I Ai!ei;ci and I 6=∅
{{(A,ei) | i ∈ I}} if c = ∑i∈I A?ei;ci

Intuitively, when a participant A is bound to a contract c, the ready sets of c tell which interactions A
must be able to perform towards other participants. Each interaction has the form of a pair, consisting of
a participant name and a message sort. The interactions offered by an external choice are all available at
once, while those offered by an internal choice are mutually exclusive.

Example 4.3. Consider the system of contracts T AB1B2 from Example 2.2 — and in particular, the stipu-
lated contracts therein, with substitution π = {A/a,a′,B1/b1,b

′
1,B2/b2,b

′
2} from Example 3.3:

c̃A = cAπ = B1?req;B2?req;B1!quote;(B1?order;B2!ok+B1?bye;B2!bye)
˜cB1 = cB1π = A!req;A?quote;(B2!ok;A!order⊕B2!bye;A!bye)
˜cB2 = cB2π = A!req;(B1?ok;A?ok+B1?bye;A?bye)

We have CRS(c̃A) = {{(B1, req)}}: in other words, at this point of the contract, an interaction is expected
between A and B1 (since A is waiting for req), while no interaction is expected between A and B2.

62 Choreography Synthesis as Contract Agreement

Let us now equip T AB1B2 with one queue between each pair of participants, and let it perform the
request exchange between B1 and A, with the transitions:

T AB1B2 | Q(T AB1B2)
B1→A:req−−−−−→ A←B1:req−−−−−→ T ′AB1B2

| Q(T AB1B2)

We have that c̃A in T ′AB1B2
is now reduced to:

c̃A′ = B2?req;B1!quote;(B1?order;B2!ok+B1?bye;B2!bye)

and thus we have CRS(c̃A′) = {{(B2, req)}}, i.e., A is now waiting for a request from B2.
If we let the system reduce further, c̃A′ reaches its external choice:

c̃A′′ = B1?order;B2!ok+B1?bye;B2!bye

Now, the ready sets become CRS(c̃A′′) = {{(B1,order),(B1,bye)}}, i.e., A must handle both answers from
B1. Instead, when ˜cB1 reduces to its internal choice, we have:

˜cB1
′′ = B2!ok;A!order⊕B2!bye;A!bye

Thus, its ready sets become CRS(˜cB1
′′) = {{(B2,ok)} ,{(B2,bye)}}: B1 is free to choose either branch.

Example 4.3 shows that, when a contract c of a principal A evolves within a system T , its ready sets
change. Now we need to define the counterpart of contract ready sets for CO2 processes, i.e., the process
ready sets. Again, we adapt the definition from [1] to our multiparty contract model.

Definition 4.4 (Process Ready Set). For all CO2 systems S, all participants A,B and sessions u, we define
the set of pairs:1

PRSu
A(S) =

{
(B,e) | ∃~v,~a,P,P′,Q,S′ : S≡ (~v,~a)

(
A
[
dou

B e .P+P′ | Q
]
| S0
)
| S1 ∧ u 6∈~v

}
Intuitively, Definition 4.4 says that the process ready set of A over a session u in a system S contains

the interactions that A is immediately able to perform with other participants through its dou prefixes.
Just as in contract ready sets, the interactions are represented by participant/sort pairs.

Next, we want to characterise a weaker notion of the process ready set, so it only takes into account
the first actions on a specific session that a participant is ready to make.

Definition 4.5 (Weak Process Ready Set). We write S
6=(A : dou)−−−−−→ S′ iff:

∃B, p : S
B : p−−→ S′ =⇒ (A 6= B ∨ ∀e : ∀C : p = dov

C e =⇒ u 6= v)

We then define the set of pairs WPRSu
A(S) as:

WPRSu
A(S) =

{
(B,e) | ∃S′ : S

6=(A : dou)−−−−−→∗ S′ ∧ (B,e) ∈ PRSu
A

(
S′
)}

In Definition 4.5, we are not interested in the actions that do not relate to the session u. Thus, we
allow the system to evolve either by (i) letting any other participant other than A do an action, or (ii)
letting A act on a different session than u, or (iii) do internal actions.

We now introduce the final ingredient for honesty, that is the notion of readiness of a participant.

1The side contition “u 6∈~v” of Definition 4.4 deals with cases like S0 = (s)(A[dos
B int]) and S = S0 | s[A〈B!int〉 | . . .] | . . .:

without the side condition, PRSu
A(S0) = {{(B, int)}}— hence, by Def. 4.6, A would result to be ready in S.

J. Lange and A. Scalas 63

Definition 4.6 (Readiness). We say that A is ready in S iff, whenever S ≡ (~u,~b)S0 for some ~u,~b and
S0 ≡ s[A〈c〉 | · · ·] | · · · , the following holds:

∃X ∈ CRS(c) : ((B,e) ∈X =⇒ (B,e) ∈WPRSs
A(S1))

Definition 4.6 says that a participant A is ready in a system S whenever its process ready sets for
a session s will eventually contain all the participant/sort pairs of one of the contract ready sets of A’s
contract in s. When a participant A is “ready”, then, for any of its contracts c, the CO2 process of A is
(eventually) able to fulfil at least the interactions in c’s prefix.
Example 4.7. We have seen that, after fusion of the latent contracts of S1 (in Ex. 3.3) we obtain:

(s)S′1 ≡ (s)
(
A[PAσπ] | s[T AB1B2 | Q(T AB1B2)] | B1[PB1σπ] | B2[PB2σπ]

)
where the substitutions σ and π are also from Ex. 3.3. Let us define the processes (after substitutions):

PAσπ = dos
B1
req .dos

B2
req .dos

B1
quote .

(
dos

B1
order .dos

B2
ok + dos

B1
bye .dos

B2
bye
)

PB1σπ = τ .dos
A req .do

s
A quote .do

s
A order

PB2σπ = dos
A req .

(
dos

B1
ok .dos

A ok + dos
B1
bye .dos

A bye
)

Thus, we have:
PRSs

A(S
′
1) = {(B1, req)} = WPRSs

A(S
′
1)

PRSs
B1
(S′1) = ∅ 6= {(A, req)} = WPRSs

B1
(S′1)

PRSs
B2
(S′1) = {(A, req)} = WPRSs

B2
(S′1)

Note that the τ prefix in PB1 prevents B1 from interacting immediately with A on session s, although it is
“weakly ready” to do it. Hence, considering that the weak process ready sets of each participant in S′1
match their respective contract ready sets in T AB1B2 (Example 4.3) according to Definition 4.6 we have
that participants A, B1 and B2 are all ready in (s)S′1.

Before defining honesty formally, we need to characterise the class of systems for which this concept
is meaningful, i.e., those systems where a participant is not (yet) involved in latent contracts nor active
sessions.
Definition 4.8 (Initial System). A CO2 system S is A-initial if S has no sub-term of the form ↓ A says c
or A〈c〉 with c 6≡ 0. A CO2 system S is initial when it is A-initial for each participant A in S.
Definition 4.9 (Honesty). We say that A[P] is honest iff, for all A-initial S≡ (~u,~b)(A[P] | S0) s.t. S→∗ S′,
A is ready in S′.

A process A[P] is said to be honest when, for all contexts and reductions that A[P] may be engaged
in, A is persistently ready. In other words, there is a continuous correspondence between the interactions
exposed in the contract ready sets and the process ready sets of the possible reductions of any system
involving A[P]. The definition rules out contexts with latent/stipulated contracts of A, otherwise A could
be made trivially dishonest, e.g. by inserting a latent contract ↓u A says c that A cannot fulfil.
Example 4.10. Consider the process B1[tellA ↓y cB1 .PB1] of system S1, as defined in Examples 3.3 and
4.7. We show that this process is not honest. In fact, S1 can reduce as S1 −→∗ (s)S′1 −→∗ (s)S′′1 , where:

(s)S′′1 = (s)
(
A
[
dos

B1
order .dos

B2
ok + dos

B1
bye .dos

B2
bye
]

| s
[
A〈B1?order;B2!ok+B1?bye;B2!bye〉
| B1〈B2!ok;A!order⊕B2!bye;A!bye〉 | B2〈B1?ok;A?ok+B1?bye;A?bye〉
| (AB1) : [] | (B1A) : [] | (AB2) : [] | (B2A) : [] | (B1B2) : [] | (B2B1) : []

]
| B1[do

s
A order] | B2

[
dos

B1
ok .dos

A ok + dos
B1
bye .dos

A bye
])

64 Choreography Synthesis as Contract Agreement

At this point, we see that there is a problem in the implementation of B1: it does not notify the other buyer
before making an order. In fact, B1’s process is trying to perform dos

A order, but its contract requires that
dos

B2
ok is performed first (or dos

B2
bye, if the quote is rejected). This is reflected by the mismatch between

B1’s process ready set in S′′1 , and its contract ready sets, in session s:

PRSs
B1
(S′′1) = {{(A,order)}}

CRS(B2!ok;A!order⊕B2!bye;A!bye) = {{(B2,ok)} ,{(B2,bye)}}

In terms of the above definitions, there exists a system S1 — containing B1[tellA ↓y cB1 .PB1] — that reduces
to a (s)S′′1 where B1 is not ready (Definition 4.6). Therefore, B1[tellA ↓y cB1 .PB1] is not honest. In fact, B1
is culpable in (s)S′′1 , according to Definition 4.1.

As in [1], the definition of honesty subsumes a fair scheduler, eventually allowing participants to fire
persistently (weakly) enabled do actions.

Honesty is not decidable in general [4], but for a bilateral contract model it has been approximated
either via an abstract semantics [4] or a type discipline [1] for CO2. We believe that these approximations
may be easily adapted to our setting (see Section 6 for more details).

5 Results

We now give the main properties of our framework. We ensure that two basic features of CO2 hold in our
multiparty adaptation: the state of a session always allows to establish who is responsible for making the
system progress (Th. 5.1) and honest participants can always exculpate themselves (Th. 5.3). We then
formalise a link between the honesty of participants, and two key properties borrowed from the session
types setting: Th. 5.4 introduces session fidelity in CO2; and Th. 5.5 introduces a notion of progress in
CO2, based on the progress of the contractual agreement (and its choreography).

Theorem 5.1 (Unambiguous Culpability). Given an initial CO2 system S, if S→∗ S′ ≡ (~u,~b)(s[T] | · · ·)
such that T 6≡ 0, then there exists at least one culpable participant in S′.

Theorem 5.1 says that in an active session established through a fuse reduction, there is always at
least one participant A[P] who leads the next interaction. Thus, if a corresponding dos

Be prefix is not in P,
S may get stuck, and A is culpable.

Example 5.2. Consider the system S′′1 in Example 4.10, and the system of contracts in its session s:

Ts = A〈B1?order;B2!ok+B1?bye;B2!bye〉
| B1〈B2!ok;A!order⊕B2!bye;A!bye〉 | B2〈B1?ok;A?ok+B1?bye;A?bye〉
| (AB1) : [] | (B1A) : [] | (AB2) : [] | (B2A) : [] | (B1B2) : [] | (B2B1) : []

We have Ts
B1�B2:ok−−−−−→ and Ts

B1�B2:bye−−−−−−→. Hence, B1 is responsible for the next interaction, and culpable
for S′′1 being stuck.

Theorem 5.3 (Exculpation). Given an A-initial CO2 system S0 with A[P] honest, whenever S0 −→∗ S ≡

(~u,~a)(s[T] | S1) and A is culpable in S at session s, there exist B and e such that: S
A : p−−→∗ A : doBs e−−−−→ where

p = τ or p = tell ↓ .

Theorem 5.3 follows from the definition of honesty, formalising that honest participants can always
overcome their culpability, by firing their contractual do actions (possibly after advertising other con-
tracts or performing some internal actions).

J. Lange and A. Scalas 65

Theorem 5.4 (Fidelity). For all initial systems S with only honest participants, if S is such that S−→∗ S′≡
(~u,~a)(A[P] | s[T] | S0), then (S′

6=(A : dos)−−−−−→∗ A : dos
B e−−−−→) ⇐⇒ (T A�B:e−−−→) (where

6=(A : dou)−−−−−→∗, as in Def. 4.5,
intuitively stands for any reduction not involving session s).

Theorem 5.4 says that each (honest) participant will strictly adhere to its contracts, once they have
been fused in a session. It follows directly from the semantics of CO2 (that forbid non-contractual do
prefixes to be fired) and from the definition of honesty.

Theorem 5.5 below introduces the notion of global progress, which is slightly different from the
contractual progress. In fact, progress in CO2 is only meaningful after a session has been established,
and thus a culpable participant exists. A system without sessions may not progress because a set of
compliant contracts cannot be found, or a fuse prefix is not enabled. In both cases, no participant may
be deemed culpable, and thus responsible for the next move. However, the system may progress again if
other (honest) participants join it, allowing a session to be established.

Theorem 5.5 (Global Progress). Given an initial CO2 system S0 with only honest participants, if S0 −→∗
S≡ (~u,~a)(s[T] | S1) with T 6≡ 0, then S−→.

Theorem 5.5 follows from the definition of honesty (i.e., participants are always ready to fulfil their
contracts), the fact that contract compliance guarantees contractual progress [14], Theorem 5.3, and the
semantics of CO2 (in particular, rule [CO2 -DO]). This result also holds for systems where a process takes
part in multiple sessions: the honesty of all participants guarantees that all sessions will be completed.

Example 5.6. We now give a simple example on a system with multiple sessions. We show how a seem-
ingly honest process (B) could be deemed culpable due to the unexpected behaviour of other participants,
and how honest participants guarantee progress of the whole system. Consider:

S = (x,y,z,w)
(
A[tellA ↓x (B!int) . fuse . fuse] | B

[
tellA ↓y (A?int) . tellA ↓z (C!bool) .doy

A int .do
z
C bool

]
| C[tellA ↓w (B?bool) .dow

B bool]
)

After all four contracts have been advertised to A and fused, the system reduces to:

S′ = (s1,s2)
(
A[0] | B[dos1

A int .dos2
C bool] | C[dos2

B bool]

| s1[A〈B?int〉 | B〈A!int〉 | (AB) : [] | (BA) : []] | s2[B〈C!bool〉 | C〈B?bool〉 | (BC) : [] | (CB) : []]
)

Even if both sessions s1 and s2 enjoy contractual progress, S′ is stuck: A does not perform the promised
action, thus remaining culpable in s1; B is stuck waiting in s1, thus remaining culpable in s2.2 Indeed, nei-
ther A nor B are ready in S′, and thus they are not honest in S. Hence, global progress is not guaranteed.
Let us now consider the following variant of S, where all participants are honest:

Ŝ = (x,y,z,w)
(
A[(tellA ↓x (B!int) .dox

B int) | fuse | fuse] | C[tellA ↓w (B?bool) .dow
B′ bool]

| B
[
tellA ↓y (A?int) . tellA ↓z (C!bool) .

(
doy

A int .do
z
C bool+ τ .

(
doy

A int | doz
C bool

))])
In this case, A will respect its contractual duties, while B will be ready to fulfil its contracts on both
sessions — even if one is not activated, or remains stuck (here, τ represents an internal action, e.g., a
timeout: if the first doy

A int cannot reduce, B falls back to running the sessions in parallel). The honesty
of all participants in Ŝ guarantees that, once a session is active, it will reach its completion.

2In this case, B is deemed culpable in s2 because its implementation did not expect A to misbehave.

66 Choreography Synthesis as Contract Agreement

6 Concluding remarks

In this work, we investigated the combination of the contract-oriented calculus CO2 with a contract model
that fulfils two basic design requirements: (i) it supports multiparty agreements, and (ii) it provides an
explicit description of the choreography that embodies each agreement. These requirements prompted us
towards the well-established results from the session types setting — in particular, regarding the interplay
between a well-formed global type and its corresponding local behaviours. We introduced the concepts
of global progress and session fidelity in CO2, also inspired from the analogous concepts in theories
based on session types. We built our framework upon a simple version of session types, and yet it turns
out to be quite flexible, allowing for sessions where the number of participants is not known beforehand.

Related work. The origin of CO2 goes back to [5]. The calculus was generalised in [2, 3] to suit
different contract models (e.g., contracts as processes or logic formulæ). In [4], it has been instantiated
to a theory of bilateral contracts inspired by [9]. A negative result in [4] is that the problem of honesty
(Section 4) is not decidable. A type system for CO2 processes providing a decidable approximation of
honesty was introduced in [1]. This result relies on the product between a finite state system (approx-
imating contracts) and a Basic Parallel Process (approximating a CO2 process). Considering that the
systems of contracts in this work form a (strict) subset of the local/global types in [10], for which each
configuration is reachable by a 1-buffer execution, we believe that the type system in [1] may be adapted
to our setting.

The seminal top-down approach of multiparty session types has been first described in [11]. In sum-
mary, the framework works as follows: designers specify a choreography (i.e., a global type), which is
then projected onto local behaviours (i.e., local types), which in turn are used to type-check processes. A
dual approach was introduced in [14]: from a set of local types it is possible to synthesise a choreography
(i.e., a global type). This is precisely the result we use as a basis for our definition of compliant contracts.

The semantic correspondence between global types and projected local behaviours has been investi-
gated in [12, 8]. To the best of our knowledge, no other contract model besides ours is based on explicit
choreography synthesis. A related approach is presented in [7]: multiple contracts are considered com-
pliant when their composition (i.e., the system of contracts) guarantees completion. In our work, progress
(subsuming completion) is provided by the synthesis of a global type. In [6], contracts are considered
compliant when their composition adheres to a predetermined choreography; in our framework, however,
no choreography is assumed beforehand.

Future work. We plan to extend our work so to offer even more flexibility. For example, by intro-
ducing a parameterised fuse primitive which starts a session according to different criteria, when more
than one agreement is possible (as in our introductory example). For instance, one could choose the
agreement involving the most (or least) number of participants. These criteria may be based on a seman-
tic characterisation of global types, e.g., as the ones in [12, 8]. We also plan to study the possibility for
a participant to be involved in a session under multiple contracts, e.g., a bank advertising two services,
and a customer publishing a contract which uses both of them in a well-formed choreography.

Another research direction is the concept of “group honesty”. In fact, the current definition of hon-
esty is quite strict: it basically verifies each participant in isolation, thus providing a sufficient (but not
necessary) condition for progress. Consider, for example, a CO2 system like:

S = (x,y)
(
A[tellA ↓x (B!int⊕B!bool) . fuse .dox

B int] | B
[
tellA ↓y (A?int+A?bool) .doy

A int
])

B is dishonest, since it is not ready for the bool branch of its contract. However, the system S has progress:
when B establishes a session with A, the latter will never take the bool branch; hence, B will not remain
culpable. This kind of “group honesty” may be used to validate (sub-)systems of participants developed

J. Lange and A. Scalas 67

by the same organization: it would ensure that they never “cheat each other”, and are collectively honest
when deployed in any context. Furthermore, the group honesty of all participants in a system S may turn
out to be a necessary condition for the global progress of S.

Acknowledgements. We would like to thank Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino
for their valuable advice, discussions and comments. We would also like to thank the anonymous re-
viewers for their suggestions. This work is partially supported by Aut. Region of Sardinia under grants
L.R.7/2007 CRP-17285 (TRICS) and P.I.A. 2010 project “Social Glue”, and by MIUR PRIN 2010-11
project “Security Horizons”, and by EU COST Action IC1201 (BETTY).

References
[1] M. Bartoletti, A. Scalas, E. Tuosto & R. Zunino (2013): Honesty by Typing. In: FMOODS/FORTE, pp.

305–320. Available at http://dx.doi.org/10.1007/978-3-642-38592-6_21.
[2] M. Bartoletti, E. Tuosto & R. Zunino (2011): Contracts in distributed systems. In: ICE, pp. 130–147.

Available at http://dx.doi.org/10.4204/EPTCS.59.11.
[3] M. Bartoletti, E. Tuosto & R. Zunino (2012): Contract-oriented Computing in CO2. Scientific Annals in

Comp. Sci. 22(1), pp. 5–60. Available at http://dx.doi.org/10.7561/SACS.2012.1.5.
[4] M. Bartoletti, E. Tuosto & R. Zunino (2012): On the Realizability of Contracts in Dishonest Systems. In:

COORDINATION. Available at http://dx.doi.org/10.1007/978-3-642-30829-1_17.
[5] M. Bartoletti & R. Zunino (2010): A Calculus of Contracting Processes. In: LICS. Available at http:

//doi.ieeecomputersociety.org/10.1109/LICS.2010.25.
[6] M. Bravetti, I. Lanese & G. Zavattaro (2009): Contract-Driven Implementation of Choreographies. In: TGC,

LNCS 5474. Available at http://dx.doi.org/10.1007/978-3-642-00945-7_1.
[7] M. Bravetti & G. Zavattaro (2008): A Foundational Theory of Contracts for Multi-party Service

Composition. Fundam. Inform. 89(4). Available at http://iospress.metapress.com/content/

x7613955410077k2/.
[8] G. Castagna, M. Dezani-Ciancaglini & L. Padovani (2012): On Global Types and Multi-Party Session. Log-

ical Methods in Comp. Sci. 8(1). Available at http://dx.doi.org/10.2168/LMCS-8(1:24)2012.
[9] G. Castagna, N. Gesbert & L. Padovani (2009): A theory of contracts for Web services. ACM Trans. on Prog.

Lang. and Sys. 31(5). Available at http://doi.acm.org/10.1145/1538917.1538920.
[10] P.M. Deniélou & N. Yoshida (2012): Multiparty Session Types Meet Communicating Automata. In: ESOP.

Available at http://dx.doi.org/10.1007/978-3-642-28869-2_10.
[11] K. Honda, N. Yoshida & M. Carbone (2008): Multiparty asynchronous session types. In: POPL. Available

at http://doi.acm.org/10.1145/1328438.1328472.
[12] I. Lanese, C. Guidi, F. Montesi & G. Zavattaro (2008): Bridging the Gap between Interaction- and Process-

Oriented Choreographies. SEFM ’08. Available at http://dx.doi.org/10.1109/SEFM.2008.11.
[13] J. Lange & A. Scalas (2013): Choreography Synthesis as Contract Agreement + Appendix. Available at

http://tcs.unica.it/publications.
[14] J. Lange & E. Tuosto (2012): Synthesising Choreographies from Local Session Types. In: CONCUR. Avail-

able at http://dx.doi.org/10.1007/978-3-642-32940-1_17.
[15] OASIS (2012): Reference Architecture Foundation for Service Oriented Architecture. Comm. Spec. 01, v.1.0.

Available at http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html.

http://dx.doi.org/10.1007/978-3-642-38592-6_21
http://dx.doi.org/10.4204/EPTCS.59.11
http://dx.doi.org/10.7561/SACS.2012.1.5
http://dx.doi.org/10.1007/978-3-642-30829-1_17
http://doi.ieeecomputersociety.org/10.1109/LICS.2010.25
http://doi.ieeecomputersociety.org/10.1109/LICS.2010.25
http://dx.doi.org/10.1007/978-3-642-00945-7_1
http://iospress.metapress.com/content/x7613955410077k2/
http://iospress.metapress.com/content/x7613955410077k2/
http://dx.doi.org/10.2168/LMCS-8(1:24)2012
http://doi.acm.org/10.1145/1538917.1538920
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://doi.acm.org/10.1145/1328438.1328472
http://dx.doi.org/10.1109/SEFM.2008.11
http://tcs.unica.it/publications
http://dx.doi.org/10.1007/978-3-642-32940-1_17
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html

	1 Introduction
	1.1 Contributions
	1.2 A motivating example

	2 A Choreography-Based Contract Model
	3 A Multiparty Version of CO2
	3.1 Flexibility of Session Establishment

	4 The Problem of Honesty
	5 Results
	6 Concluding remarks

