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We propose a monitoring mechanism for recording the evolution of systems after certain computa-
tions, maintaining the history in a tree-like structure. Technically, we develop the monitoring mecha-
nism in a variant of ADR (after Architectural Design Rewriting), a rule-based formal framework for
modelling the evolution of architectures of systems.

The hierarchical nature of ADR allows us to take full advantage of the tree-like structure of the
monitoring mechanism. We exploit this mechanism to formally define new rewriting mechanisms
for ADR reconfiguration rules. Also, by monitoring the evolution we propose a way of identifying
which part of a system has been affected when unexpected run-time behaviours emerge. Moreover,
we propose a methodology to suggest reconfigurations that could potentially lead the system in a
non-erroneous state.

1 Introduction

We present a technical development of the Architectural Design Rewriting model (ADR) [4] that com-
bines the features of ADR described in [4, 11]. We take the motivation of our work from the problems
arising in modern software development. Software systems are no longer static and become more and
more dynamic; because of their very interactive nature, such systems are starting to be studied under
new angles [6]. For instance, software needs to adapt to the (often unpredictable) changes of the (virtual
and physical) environment it operates in. The term autonomic computing has been coined to mark such
systems [7], which present new degrees of complexity since they require high levels of flexibility and
adaptiveness [8].

Such complexity calls for rigorous methods at very early stages of software development. Architec-
tural Description Languages (ADLs) used to design such systems have to be able to guarantee software
quality and correctness by being flexible to adapt from their initial designs, and also be able to predict
the possible problems that could arise during the execution of such systems. Formal approaches aim to
devise robust engineering practices to form reliable software products to mitigate the issues described
above. Arguably, those approaches focus on software behaviour; correctness and efficiency of software
play in fact a crucial role not only in critical systems but also in daily-life applications. In the design
phase, semi-formal methods are typically adopted; as an example, the use of modelling languages is
combined with design patterns to devise a model that can be checked. This approach may involve for-
mal techniques (e.g., type or model checking) to guarantee properties of applications while non-formal
techniques (or tools not supported by formal approaches) are typically used to tackle architectural design
aspects. Our research agenda envisages the combination of those approaches with techniques to address
the issues above at the design level. We believe that a rigorous treatment at the design level would allow
to identify and solve many problems that are currently tackled only by inspecting or testing code.

We describe a formal framework that is able to tackle the architectural/structural aspects of the de-
sign and allow designers to identify and address problems at a higher level. In [11] we advocate a
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design-by-contract (DbC approach) for ADLs that allows the specification of contracts that architectures
have to abide by. On these grounds, in [11] we propose a methodology that is able to compute structural
“rearrangements” of systems’ architecture to adapt themselves when an erroneous state is reached. Tech-
nically, the DbC approach in [11] is developed by extending ADR [4] with asserted production rules,
that is rules for architectural transformations equipped with logical pre- and post-conditions. In this
way, asserted productions become contracts that guarantee the architectural style when they are applied.
The concept of architectural style is crucial in software architectures [12]. In ADR, the architectural
style of a system is formalised in terms of productions rules, namely rules that can be used to generate
specific configurations of the architectural elements. As surveyed in § 2, ADR models architectures as
(hyper)graphs that is a set of (hyper)edges sharing some nodes; respectively, edges represent architec-
tural elements (at some level of abstraction) while nodes represent components’ interfaces. Also, ADR
production rules take the form p : L→ R where L is an edge and R an (hyper)graph; rule p is meant to
replace L with R within a given graph. The main contribution in [11] is an algorithm that computes a
weakest pre-condition ψ out of a post-condition ϕ and a production rule. We prove a theorem that guar-
antees that the application of the rule to a configuration satisfying ψ yields a configuration satisfying the
post-condition ϕ . This algorithm can be used to compute a reconfiguration if the current configuration
violates the invariant. Roughly, in [11] we envisage architectural styles according to the equation:

architectural style = production rules+ invariants (1)

where an invariant is the property the designer requires of the application.

A summary of our contributions. The main contributions of this paper can be summarised as an
extension and a refinement of the methodology in [11].

The extension consists in the adaptation of the methodology to encompass reconfiguration mecha-
nism of ADR. As a matter of fact, ADR features complex reconfigurations that cannot be captured by
production rules. Such complex reconfigurations can be envisaged as a model of run-time evolution of
systems that describe what complex rearrangements could happen during execution. This is technically
done by specifying term rewriting rules in an algebra where terms are interpreted as proofs of the style
of graphs. Here we broaden the applicability of the methodology in [11] to a more general setting that
allows the iteration of the methodology in [11] when reconfigurations violate the style. A limitation of
the methodology in [11] was due to the fact that style violations could be fixed only considering “top-
down” application of productions. In this paper we take into account also violations of the style due to
complex reconfigurations. To achieve this we have to identify the “positions” in the system where viola-
tions occur. This allows us to apply our methodology only to the parts of the system affected by the ill
reconfiguration. Also, we propose here a systematic reiteration of the methodology when an immediate
way to recover the style cannot be found. This yields a more general and efficient framework.

Intuitively, the equation (1) now becomes

architectural style = production rules+ reconfiguration rules+ invariants

This generalisation is possible due to the introduction of a monitoring approach that fully exploits the
features of ADR.

The refinement we propose here regards the rewriting mechanism of ADR and, more importantly, its
underlying monitoring capability. Indeed, as observed in [4], a distinctive aspect of ADR is that it features
the canonical view of software architectures in terms of connected architectural elements as well as a
hierarchical view of software architectures that is paramount in the design phase. Although [4] advocates
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the use of the architectural view as a useful mechanism to be exploited in complex reconfigurations, no
actual formalisation has been provided on how this could be achieved and the parsing features of ADR
had been only sketched in [4]. More precisely, we start by proposing minor changes to the original
rewriting mechanism of ADR that distinguishes edge as terminal and non-terminal at the type level and
allows only non-terminal edges to be rewritten (for each edge type, either all the edges of that type can be
rewritten or none of them). Our generalisation eliminates such distinction; an edge can be rewritten if it
is marked as “replaceable” in the graph. Therefore, we allow edges of the same type to be rewritten or not
depending on how they are marked in the graph. (We note that the original ADR rewriting mechanism
can still be obtained: if one decides that an edge type is non-terminal, then all edges of that type have
to be replaceable while for types of terminal edges, all edges have to be marked as non-replaceable.)
Besides some simplification in the technical presentation of ADR (which is now more uniform), such
generalisation brings in extra flexibility. In fact, a replaceable edge can be refined by introducing new
versions of a rule that differs only for the “replaceability” of some edges.

In addition we introduce a monitoring mechanism that is also exploited to define an efficient parsing
of ADR graphs. Our monitoring mechanism keeps track of the application of reconfiguration rules and
uses such information when the graph has to be parsed (to identify the part that violates a style). The
application of a reconfiguration rule affects such information that need to be updated accordingly.

Summing up, one can enforce the architectural style of the system in presence of complex reconfig-
uration that may violate the style; this can be achieved by

1. defining a monitoring mechanism,

2. repeatedly adapting the methodology in [11] exploiting the parsing features defined here.

Structure of the paper. § 2 overviews ADR and introduces its new variant as well as it summarises
the results in [11]. § 3 defines our monitoring approach. § 4 gives the new rewriting mechanism hinging
on our monitoring approach. § 5 gives the refinement of our methodology. § 6 draws some conclusions.

2 A Variant of ADR

In the following, N and E are two countably infinite and disjoint sets (of nodes and edges respectively),
X∗ def

= {(x1, . . . ,xn)
∣∣ x1, . . . ,xn ∈ X} is the set of finite lists on a set X , and x̃ ranges over X∗. Also, abusing

notation, we sometimes use x̃ to indicate its underlying set of elements.

Definition 1 ((Hyper)graphs and morphisms [4]) A (hyper)graph is a tuple G = 〈V,E, t〉 where V ⊆N
and E ⊆ E are finite and t : E→V ∗ is the tentacle function connecting edges e ∈ E to a list of nodes; the
arity of e is the length of tG(e). It is convenient to write e(ũ) ∈ G for e ∈ EG, tG(e) = ũ⊆VG; also, given
a graph G, VG, EG, and tG respectively denote the nodes, the edges, and the tentacle function of G.

Given two graphs G and H, a morphism from G to H is a pair of functions 〈σV : VG→VH ,σE : EG→
EH〉 s.t. σV and σE preserve the tentacle functions, i.e. σ∗V ◦ tG = tH ◦σE , where σ∗V is the homomorphic
extension of σV to V ∗G.

In ADR, graphs are typed over a fixed type graph via typing morphisms. As usual an ADR graph G
is typed over a type graph Γ through τG if τG is a morphism from G to Γ.

Definition 2 (Typed graphs) Let Γ be a type graph. An ADR graph G is a (hyper)graph typed over Γ

through τG if τG is a morphism from G to Γ.
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Example 1 Take the type graph Γ = 〈V,E, t〉 where V = {•,◦} ⊆N, E = {C,B,FF,Fls,Fl,BF,P,PF} ⊆
E, and t : C 7→ (•), t : B 7→ (•,◦), and t : e 7→ (•,•) for each e ∈ E \{B,C}.
The graph G = 〈{u1,u2,u3,u4},{ff ,fl1,fl2}, t ′〉 where t ′ is defined as t ′ : ff 7→ (u2,u1), t ′ : fl1 7→ (u3,u2),
and t ′ : fl2 7→ (u4,u2) can be typed on Γ by τG mapping all the nodes to •, fl1 and fl2 to Fls, and ff to FF.

Hereafter, we fix a typed graph Γ and tacitly assume that all graphs G are typed over Γ via a morphism
τG. Intuitively, Γ yields the vocabulary of the architectural elements to be used in the designs; moreover,
Γ specifies how these elements can be connected together (e.g., as in Example 1).

For technical reasons we introduce a slight variant of ADR; instead of considering edges as non-
terminal and terminal edges, the new version of ADR allow more liberal rewriting mechanism by mark-
ing in a graph the edges that can be replaced. Technically, this is obtained by considering pairs 〈G,θ〉
where G is a graph and θ : EG → {0,1} is the replaceability map; an edge e ∈ EG is replaceable iff
θ(e) = 1. Abusing notation we will implicitly assume that any graph G is equipped with a replaceablility
map which we will denote by θG.

Type and typed graphs have a convenient visual notation. Nodes are circles and edges are drawn
as (labelled) boxes; tentacles are depicted as lines connecting boxes to circles; conventionally, directed
tentacles indicate the first node attached to the edge and the others are taken clockwise. The boxes of
edges of type graphs are shaded, while the edges in a graph are either single- and double-lined boxes; the
former represent non-replaceable edges while the latter represent replaceable ones. The visual notation
for typed graphs include the graph and its typing morphism. Nodes are paired with their types while an
edge label e : e′ represents the fact that the typing morphism maps the edge e of the graph to the edge e′

of the type graph.
Example 2 In the visual notation described above, the type graph Γ and the graph G of Example 1 can
be respectively drawn as

C // • e``

◦ B

OO fl1 : Fls // u3•

u1• ff : FF // u2• fl2 : Fls // u4•

where, to simplify the type graph, we use e ∈ E \{B,C} (instead of drawing an edge for each edge of Γ

with arity two).

Definition 3 (Typed Graph morphisms) A morphism between Γ-typed graphs f : G1→ G2 is a typed
graph morphism if it preserves the typing, i.e. such that τG1 = τG2 ◦ f .

Note that replaceablility maps are not considered in Definition 2.

Definition 4 (Productions) A (design) production p is a tuple 〈L,R, i : VL → VR〉 where L is a graph
consisting of a single repleaceble edge attached to distinct nodes and R is a graph; the nodes in Im(i)
(the image of i) are called interface nodes.

Design productions can be thought of as rewriting rules that, when applied to a graph G, replace
a replaceable (hyper)edge of G matching L with a fresh copy of R (we remark that our morphisms are
type-preserving).

Example 3 Take the following graphs:

GL = 〈{a,b},{ f s}, f s 7→ (a,b)〉

GR = 〈{u1,u2,u},{ f ls, pa}, tR :

{
f ls 7→ (u,u2)

pa 7→ (u1,u)
〉
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with f s of type type Fls, f ls of type Fl, and pa of type P. (Note that GL is a single-edge graph.)
The production bookFlight = 〈GL,GR, ibookFlight〉 has GL and GR as left-hand side (LHS) and

right-hand side respectively; the interface of bookFlight is given by the map defined as follows:

ibookFlight :

{
a 7→ u1

b 7→ u2

namely, a (resp. b) corresponds to the first (resp. second) node of f s.

Like ADR graphs, productions have an appealing visual representation that we illustrate in the next
example that depicts the production of Example 3.

Example 4 The graphical representation below corresponds to the production bookFlight in Exam-
ple 3.

bookFlight

fs : Fls

b• u2• fls : Fl // u• pa : P // u1• a•

The dotted square and the dotted lines represent the LHS and the map ibookFlight; the name and type of
the edge of the LHS is in the top-left corner of the dotted box and the name of the production is given on
the top of the dotted square. The RHS of bookFlight is depicted inside the dotted box

The next example illustrates how productions are applied to graphs; the details will be given in § 2 for
asserted productions, which encompass ADR productions.

Example 5 Consider the production bookFlight of Example 4. Below, the unique edge of type Fls is
replaced by an instance of the RHS of bookFlight.

ff : FF // u1• ff : FF // u1•

u• fls : Fls

ll

u• f : Fl // u2• p : P

mm

bookFlight+3

Note that the rest of the graph (consisting only of the edge ff ) including the interface nodes is left un-
changed while a fresh node u2 is created.

We overview the Design by Contract (DbC) approach for ADR introduced in [11]. Note that the
variant of ADR given in § 2 generalises the rewriting mechanism originally defined in [4], therefore the
results in [11] can be easily adapted to the variant of ADR presented here.

Properties of graphs are expressed in a simple logic tailored for ADR. In the following we let D,D′, . . .
range over edges of Γ.

Definition 5 (ADR logic [11]) Let V be a countably infinite set of variables for nodes (ranged over by
x,y,z, . . .). The set L of (graph) formulae for ADR is given by the following grammar:

ψ,ϕ ::= x= y | > | ¬ϕ | ϕ1∧ϕ2 | ∀D(x̃).ϕ

In formulae of the form ∀D(x̃).ϕ , the occurrences of y ∈ x̃ in ϕ are bound, x̃ has the length of the arity
of D and x̃ are pairwise distinct.
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Basically, L is a propositional logic to predicate on (in)equalities of nodes and it is parametrised with
respect to the type graph Γ used in quantification. Variables not in the scope of a quantifier are free and the
set fv(ϕ) of free variables of ϕ ∈L is defined accordingly; also, we abbreviate x1 = x2∧ . . .∧xn−1 = xn

with x1 = x2 = . . . = xn−1 = xn and we define ⊥ as ¬>, x 6= y as ¬(x = y), ϕ ∨ψ as ¬(¬ϕ ∧¬ψ),
ϕ → ψ as ¬ϕ ∨ψ , and ∃D(x̃).ϕ as ¬∀D(x̃).¬ϕ . The models of L are ADR graphs together with an
interpretation of the free variables of formulae.

Definition 6 (Satisfaction relation) A graph G satisfies ϕ ∈ L under the assignment h : V→ VG (in
symbols G |=h ϕ) iff

ϕ ≡>, or
ϕ ≡ x= y and h(x) = h(y), or
ϕ ≡ ¬ϕ ′ and G 2h ϕ ′, or
ϕ ≡ ϕ1∧ϕ2 and G |=h ϕ1 and G |=h ϕ2, or
ϕ ≡ ∀D(x̃).ϕ and G |=h[x̃7→ũ] ϕ for any d(ũ) ∈ G s.t. τG(d) = D

Note that in the last clause of Definition 6, each bound variable in x̃ is instantiated with a node. It is easy
to prove that we can restrict to finite mappings that only assign the free variables of formulae. Namely,
for each h,h′ : V→VG, if h|fv(ϕ) = h′|fv(ϕ) then G |=h ϕ iff G |=h′ ϕ . We write G |= ϕ when fv(ϕ) = /0.

Example 6 Consider the formulae

noEdge〈D〉 def
= ∀D(x̃).⊥ (2)

φex
def
= ∀D(x,y).∃D′(z).x= z (3)

Formula (2) characterises the graphs that do not contain edges of a given type while the formula (3)
describes graphs such that each edge of type D is connected to one of type D′ on the first tentacle. For
instance, consider the graphs

Gvalid =
u2• d1 : D // u1• d′ : D′oo

u4• d2 : D

OO Ginvalid =
u2• d1 : D // u1• d′ : D′oo

u4• d2 : D // u3•

then Gvalid satisfies φex whereas Ginvalid does not, because d2 is not connected to any edge of type D′.

Fix an ADR production p = 〈L,R, i〉. Our notion of contracts hinges on asserted productions, namely
ADR productions decorated with pre- and post-conditions expressed in the logic L . Given ψ,ϕ ∈L
and two assignments h,h′ : V→N, an asserted production is an expression of the form

{ψ,h} p {ϕ,h′} where h(fv(ψ))⊆VL and h′(fv(ϕ))⊆VR (4)

An asserted production generalises ADR productions and it intuitively requires that if p is applied to a
graph G that satisfies ψ then the resulting graph is expected to satisfy ϕ . The assignments h and h′ in (4)
allow pre- and post-conditions to predicate on nodes occurring in the LHS or the RHS of p.

Operationally, an asserted production π can be applied to a graph G by replacing an “instance” of the
LHS in G (identified by an matching homomorphism) with a new instance of the RHS and connecting
the interface nodes accordingly, provided that G satisfies the precondition of π (under the matching
homomorphism). For the variant of ADR proposed in § 2 we just have to impose the condition that the
homomorphic image of the LHS of π has to be a replaceable edge. This is schematically illustrated in
Figure 1 (cf. [11]) and demonstrated in Examples 7 and 8.
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Figure 1: Asserted design productions

Example 7 Consider the production bookFlight given in Example 4 and the asserted production

π
def
= {ψ, /0} bookFlight {>, /0} where ψ

def
= ∀Fls(x,y).x 6= y

Then, π cannot be applied to the leftmost graph G in the rewriting of Example 5 because G 6|= ψ (under
the unique morphism σ from L to G). In fact, x and y are mapped to the same node u1 of G.

Example 8 The rewriting below is obtained by applying π in Example 7.

ff : FF // u1• ff : FF // u1•

u• fls : Fls // u3• u• f : Fl // u2• p : P // u3•

bookFlight+3

The edge fls is replaced by an isomorphic instance of R preserving the interface nodes u1 and u3.

Note that the application of an asserted production generalises the hyper-edge replacement mechanism
of ADR; in fact, {>, /0} p {>, /0} applies exactly as normal ADR productions.

An asserted production π is valid when any application of π to a graph satisfying the precondi-
tion of π yields a graph satisfying the post condition of π . Obviously, not all asserted productions
{ψ,h} p {ϕ,h′} are valid (this can be trivially noted by taking ϕ to be ⊥). In [11] we define an algo-
rithm1 Wh′(p,ϕ) that, given a production p and a post-condition ϕ , returns a weakest pre-condition ψ so
that {ψ,h} p {ϕ,h′} is valid.

The next example is adapted from [11].

Example 9 Consider ϕ ∈L and the production pay below:

ϕ
def
= ∀B(x,y).∀C(z).y = z pay

def
=

P
u◦ b : B // u1• •v

We remark that the post-condition ϕ requires that every edge of type B is connected (on its second
tentacle) to every edge of type C. The computed weakest pre-condition is

W /0(pay,ϕ) = noEdge〈C〉 ∧ ∀B(x,y).∀C(z).noEdge〈C〉 ∧ ∀B(x,y).∀C(z).y = z

We remark that W /0(pay,ϕ) imposes that for the validity of the asserted production it is necessary that
the graph does not have any edges of type C. In fact, production pay will generate an edge of type B
whose second tentacle is attached to an internal node u that cannot be shared with any edge of type C
already appearing in the graph.

1 For simplicity, we ignore the assignments and environments that the algorithm in [11] uses to compute weakest precondi-
tions.
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3 Tracking ADR Architectural Reconfigurations

A key aspect of ADR is to envisage systems as ensembles of designs, that is components with interfaces.
Designs are supposed to be generated by means of productions and can be subject to run-time recon-
figurations modelled as reconfiguration rules. The use of productions yields two pivotal ingredients of
ADR. For clarity, we consider only productions as it is just a matter of technicality to adapt this section
to asserted productions.

Firstly, productions implicitly equip designs with a hierarchical structure that can be formalised as
the “derivation tree” determining the design. In fact, a set of ADR productions induces a multi-sorted
algebraic signature Σ where the sorts are the type edges in the type graph2 and the operations are the
productions themselves, once a total order on the edges in the RHS of the production is fixed. Hereafter,
we fix such an order3 and, given the RHS R of a production, we write R[ j] for the j-th edge in R. With
this construction, an ADR production becomes an operation with type

E1× . . .×En→ L (5)

where Ek is the type of the k-th edge in the RHS of the production (according to the chosen order on
edges in the RHS) and L is the type of the edge in the LHS. In other words, an ADR production like
in (5) can be envisaged as an operation in some algebras of designs that builds a design G of type L
out of designs Gk of type Ek (for 1≤ k ≤ n). This corresponds to a “bottom-up” development (whereby
designs are assembled out of other components) and, as observed in [4], it parallels the “top-down”
generation of designs (similar to context-free grammars) reviewed in § 2. Moreover, one could consider
the terms (with sorted variables to model partial designs) built on Σ and adopt the obvious operational
interpretation: G is obtained by replacing the j-th edge in the RHS with G j (and connecting the interface
nodes as appropriate). The elements of such term algebra correspond to the proof that a given design can
be assigned some type.

Example 10 The production bookFlight in Example 4 yields the operation

bookFlight : Fl×P→ Fls

assuming that in the chosen order, f is smaller than p.

Secondly, ADR exploits the algebraic view of productions to model complex architectural reconfigu-
rations that cannot be captured by productions. In fact, design can evolve for instance when components
have to be removed, added, or assembled in a different way. Architectural reconfigurations are naturally
modelled as transformation of elements in the Σ-term algebra with variables TermΣ,X (where X is the
set of variables). Formally, this is achieved by defining a term rewriting system on TermΣ,X ; namely, a
reconfiguration rule takes the form

t→ t ′ (6)

where t, t ′ ∈ TermΣ,X are linear terms (that is each variable occurs at most once in t and similarly for t ′)
and the variables occurring in t ′ also occur in t.

Example 11 Combining the operation in Example 10 with the one associated to the production in Ex-
ample 4 one could build the term bookFlight(x,pay(y)) of type Fls (provided that x is of type Fl and
y is of type B.

2In the original ADR presentation, the sorts are just the non-terminal edges. In our variant, this can be simplified by taking
all edges of the type graph as sorts.

3The chosen order is completely arbitrary and does not affect the construction described above.
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Below we give an example of simple reconfigurations.

Example 12 Consider the following productions:
browseFlights

Fl f1 : Fl // x3•

•
x2• f2 : Fl // x1• •

bookF

Fl

•
x2• f : Fl // x• c : Client // x1• •

We can define the following reconfiguration rule:

cf : browseFlights(x,bookF(y,z))→ browseFlights(bookF(x,z),y)

f1 : Fl // u3•

u2• f2 : Fl // u1• c : Client // u4•

cf
=⇒

f1 : Fl // u3• c : Client // u4•

u2• f2 : Fl // u1•

Observe that, unlike in the application of ADR productions, the identity of edge c is preserved when
applying the reconfiguration rule cf. Also, for simplicity in Example12 we take c to be just a single
edge, but the effect of cf would be the same if instead of edge c we had a complex graph of type
Client: the whole graph would have been moved from node u1 to node u4.

A result in [4] shows that the simple condition that an ADR rewriting system where all reconfigu-
ration rules of form (6) have t and t ′ of the same sort guarantees that the architectural style is preserved
when the system evolves.

In this paper we exploit the algebraic presentation of ADR production and reconfiguration mecha-
nisms and combine them together with a tracking mechanism that is used to recover possible run-time
misbehaviour.

Definition 7 below formalises our tracking mechanism using some trees to record graphs’ evolution
due to productions and reconfigurations respectively. We introduce some technical machinery first.

We consider forests of trees with vertexes drawn from a set N (hereafter we will call the nodes of the
trees vertices’s in order to distinguish them from the graph’s nodes); if f : X → Y is a partial map then
we write f (x) ↑ when f is undefined on x and we let dom f = X \ {x ∈ X

∣∣ f (x) ↑}. Hereafter, we fix
a finite set of productions P to denote all the productions of the system. A tracking Environment T is
pair of two injective finite partial maps

T (1) : N→ E×N∗, and T (2) : N→P,

and we use 0 to denote the empty environment (that is the environment undefined on all n ∈ N).
Basically, given a forest T , we use an environment T (such that dom T is the set of vertices’s of T )

so to decorate each vertex of T with two attributes:

• T (1)(n) assigns an edge with its list of nodes to the vertices’s of T , and

• T (2)(n) assigns a production to the vertex n in T .

It is convenient to write T (n)
as
= e(x̃) · p when T (1)(n)= e(x̃) and T (2)(n)= p. Also, in the following we

use a notation inspired by object-oriented programming to manipulate trees; more precisely, we consider
trees T (and their nodes n) as objects and write T.addTree(n,T1, . . . ,Tk) to add the trees Th as sub-trees
of T by rooting them at the vertex n in T ; that is, the resulting tree will be T where vertex n has the root
of T1, . . . ,Tk as new children. Also, we let deg n to be the degree of a vertex n, n[ j] to be its j-th child,
and (abusing notation) we allow ourselves to identify trees consisting only of a root with the root vertex.



K. Poyias, E. Tuosto 77

Definition 7 (Tracking productions) Let G0, . . . ,Gm be a sequence of graphs s.t. for each 0 ≤ j < m,
G j+1 is obtained from G j by applying a production p j ∈P with morphisms σ ′j : L j→G j and σ j : R j→
G j+1 where L j and R j are the LHS and RHS of p j, respectively.

We associate to each G j a tracking forest Tj and a tracking environment T j as follows:
• let r be the number of edges in G0, forest T0 = n1, . . . ,nr consists of r single-vertex trees with roots
n1, . . . ,nr taken pairwise distinct. Environment T0 is defined as the map that takes the m-th vertex
in the forest T0 to the m-th edge of G0; formally,

T0[nm 7→ em(x̃m)· ↑] for 1≤ m≤ r

where em = G0[m] and x̃m are the nodes in G0 that em is attached to;

• Let k j be the number of edges in the RHS of p j (that is, k j is the cardinality of ER j ), and let n be

the inverse image of σ ′j(e j(x̃ j)) through T
(1)
j s.t. T

(1)
j (n) = σ ′j(e j(x̃ j)) and, for 1≤ l ≤ k j, let T ′l

be a tree made of just a fresh vertex node, then

Tj+1 = Tj.addTree(n,T ′1, . . . ,T
′

k j
)

Environment T j+1 is obtained by updating T j in the following way:

T j+1 =

{
T j[n 7→ σ ′j(e j(x̃ j)) · p j, T ′l 7→ σ j(R j[l])· ↑

∣∣ l = 1, . . . ,k] if ER j 6= /0
T j[n 7→ σ ′j(e j(x̃ j)) · p j, T ′1 7→↑ · ↑] if ER j = /0

Despite some technical intricacy, Definition 7 is conceptually simple. Basically, we add to Tj as many
fresh vertexes as the edges in the RHS of the production p j; such vertexes become the children of the
vertex n in Tj associated with the LHS σ ′j(e j). Accordingly, the environment T j+1 updates T j recording
edges and productions associated to n and the fresh roots of T ′l . Observe that each forest Tj has r trees,
with r the number of edges of G0. Indeed, the evolution of G0 involves only the replacement of such
edges (and those produced by such replacements). Therefore, we can record the application of p j to G j

in a node of one of the trees representing the evolution of one of the initial edges of G0.

Example 13 Consider the production browseFlights from Example 12. For presentation purposes we
use p j(e) to indicate the j-th application of the production browseFlights on an edge e.

G0 :
u2• f : Fl // u1• T0 :

x• TO : x 7→ [ f (u1,u2),↑]

⇓ p0( f )

G1 : f1 : Fl // u3•

u2• f2 : Fl // u1•

T1 :
x•

x1•
x2•

T1 : x 7→ [ f (u1,u2), p0]
x1 7→ [ f1(u3,u2),↑]
x2 7→ [ f2(u1,u2),↑]

⇓ p1( f2)

G2 : f1 : Fl // u3•

u2• f3 : Fl // u4•

f4 : Fl // u1•

T2 :
x•

x1•
x2•

x3•
x4•

T2 : x 7→ [ f (u1,u2), p0]
x1 7→ [ f1(u3,u2),↑]
x2 7→ [ f2(u1,u2), p1]
x3 7→ [ f3(u4,u2),↑]
x4 7→ [ f4(u1,u2),↑]
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Graph G0 represents the initial graph, T0 its corresponding tree mapped to an initial environment
T0 as defined in Definition 7. By applying browseFlights to f we obtain G1. Since the RHS of
browseFlights generates two edges we have to add two nodes in T0 as children of the node corre-
sponding to f to obtain T1. Finally, we update the map of x in T0 to add the production applied to f
and add two new mappings for the fresh nodes of T1 to get T1. We now repeat this procedure for every
application of a production.

Hereafter, we will show the environment T within the tree T as shown in the example below.
Example 14 This example shows a simplified way of representing the tree T together with the environ-
ment T . We borrow the tree T1 and the environment T1 from Example 13 to show this visual simplifica-
tion.

[ f (u1,u2), p0]

[ f 2(u1,u2), p1]

[ f4(u1,u2), ↑][ f3(u4,u2), ↑]

[ f1(u3,u2), ↑]

4 A new rewriting mechanism

Following the recording mechanism in Definition 7 we define a new rewriting mechanism for ADR re-
configurations. Our approach hinges on tracking trees similar to those in Definition 7. The new rewriting
approach will also allow us to keep track of changes due to reconfigurations.

Given a term t ∈ TermΣ,X and a tracking tree T , the bow tie relation t ./ T holds iff t and T are
isomorphic “up to the leaves” of t; more precisely, the tree obtained by considering just the internal
nodes of t is isomorphic to T . This is formalised in Definition 8
Definition 8 (Bow tie relation) The relation ./ in defined as

t ./ T ⇐⇒ t ∈X or T 2(�) = p ∧ t = p(t1, . . . , tk) ∧
∧

j=1,...,k

t j ./ �[ j]

where � is the root of T .
Given a reconfiguration rule ρ : t → t ′, relation ./ given in Definition 8 allows us to identify which
parts of a graph match the LHS of ρ exploiting the correspondence between tracking trees and graphs.
A sub-tree T ′ of T matches t iff t ./ T ′. Assuming t ./ T ′ holds then given a variable x occurring in t,
Definition 9 returns the sub-tree of T ′ (say Tx) corresponding to x. This is obtained by applying t @x T ′

and is formalised below.

Definition 9 (Tree of a variable) Let x be a variable occurring in t, � be the root of T , 1 ≤ j ≤ k, and
x ∈ t j denote that t j contains variable x then

t @x T =

{
T if t = x
t j @x �[ j] if T (2)(�) = p ∧ t = p(t1, . . . , tk) ∧ x ∈ t j

returns the subtree of T corresponding to x if T can mach a path from the root of t to x.



K. Poyias, E. Tuosto 79

R

R′

L

L′(n̂1, . . . , n̂k)

E j(n̄ j,1, . . . , n̄ j,l j)

G j(n̆1 j , . . . , n̆l j)

ι
−1
L ιR

i

δ
σ

Figure 2: Term to graph morphisms and maps (cf. Definition 10)

Definition 10 builds a graph γ(t) out of a term t ∈ TermΣ,X . γ inspects t inductively and generates a
graph corresponding to the productions associated to t. In the places of the variables of t, γ generates an
edge of the appropriate type. More precisely γ(t) returns a triplet of fresh edges, nodes, and a mapping-
function that relates variables of t the fresh edges generated. For clarity, in Fig. 2 we provide a visual
view of the morphism and mappings of Definition 10.

Definition 10 (From Term to Graph) Let p = 〈L,R, i : VL→VR〉 ∈P and t ∈ TermΣ,X .

γ(t) =


(e, [n1, . . . ,nh], η : t 7→ e) if t ∈X ,

((G1∪·· ·∪Gr)σ , δ , η1;σ ∪·· ·∪ηr;σ) if t = p(t1, . . . , tr),
γ(t j) = (G j,δ j,η j) for 1≤ j ≤ r

where in the first clause,

• e is a fresh edge of the type corresponding to t,

• [n1, . . . ,nh] are its (e’s) fresh pairwise distinct nodes and

• η is the mapping of the variable t to the fresh edge e

and in the second clause,

• δ j = [n̆1 j , . . . , n̆l j ] for each 1≤ j ≤ r and

• if ιL : L→ L′ and ιR : R→ R′ are the isomorphisms from L and R to two fresh graphs L′ and R′ (s.t.
all their nodes and edges are fresh) respectively then

– δ = ιR(i(ι−1
L ([n̂1, . . . , n̂k]))) where [n̂1, . . . , n̂k] are the nodes of L′ and

– for 1≤ m≤ l j, σ : n̆m 7→ ιR(n̄ j,m) where [n̄ j,1, . . . , n̄ j,l j ] are the nodes of the j-th edge of R.

Definition 10 builds a graph γ(t) out of a term t. Intuitively, γ inspects t “bottom-up” and it associates
disjoint designs (graphs G j with interfaces δ j) to each sub-term of t (note that fresh edges attached to
fresh nodes are associated to each variable of t); then γ composes the disjoint designs according to the
production p which is rendered by replacing the nodes through the substitution σ in Definition 10.

Definition 11 below establishes how to apply a reconfiguration rule to a graph.

Definition 11 (Applying reconfiguration rules) Fix a reconfiguration rule ρ : t → t ′ with X being the
set of variables of t, a graph G, and a tracking tree T of G with the corresponding environment T ; let
T ′ be a sub-tree of T such that t ./ T ′. For x ∈ X, let T ′x = t @x T ′ be the sub-tree of T ′ corresponding
to x. An application of ρ to G wrt T is a graph G′ = G[GL 7→ Gt ] where
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• GL =
m⋃

l=1

T (1)(nl) where n1, . . . ,nm are the leaves of T ′, and

• Gt = γ(t ′)[η(x) 7→Gx
∣∣ x ∈ X ] where Gx is the sub-graph of G corresponding to x and it is defined

as Gx =

h j⋃
l=1

T (1)(nl) with n j,1, . . . ,n j,h j being the leaves of T ′x .

Finally, given the sub-trees T ′x computed above, we replace the tree T ′ in T with a fresh sub-tree T ′′ cor-
responding to t ′ where we replace the vertexes corresponding to the variables of t ′ with the appropriate
sub-trees T ′x . We then update the environment T so that it maps all the nodes of T ′′ up to the sub-trees
T ′x to the productions associated to them through t ′.

We observe that, using Definition 10, Definition 11 simply replaces the graph corresponding to γ(t) with
the graph corresponding to γ(t ′) where the edges corresponding to the variables of t ′ are replaced by the
corresponding sub-graphs of G identified through the proper morphisms.

Example 15 Let us consider again the productions cf in Example 12; for readability here we use t and
t ′ to refer to the LHS and RHS of cf respectively and we also abbreviate browseFlights with brF:

cf : brF(x,bookF(y,z)) → brF(bookF(x,z),y)

t :

brF•

x• bookF•

y
• z•

→ t ′ :

brF•

bookF•
y
•

x• z•

Fix an environment T and consider the graph G below:

G :

f1 : Fl // u3•

u2• f3 : Fl // u1• c1 : Client // u4•

f4 : Fl // u5• c2 : Client

66

To apply cf to G we have to identify a tree in the forest tracking G; this is done inspecting each tree of
the forest with ./ . Suppose that this yields the tree

T ′ :
[ f (u1,u2):Fl,brF]•

[ f1(u3,u2):Fl,↑]•
[ f2(u1,u2):Fl,bookF]•

[ f3(u1,u2):Fl,↑]•
[c(u1,u4):Client,addC]

•

[c1(u1,u4):Client,↑]
•

[c2(u1,u4):Client,↑]
•

such that t ./ T ′, then
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1. using t @ T ′ we can obtain the sub-tree of T ′ corresponding to each variable of t and get

tx @x T ′ =
[ f1(u3,u2):Fl,↑]• ty @y T ′ =

[ f3(u1,u2):Fl,↑]•

tz @z T ′ =

[c(u1,u4):Client,addC]
•

[c1(u1,u4):Client,↑]
•

[c2(u1,u4):Client,↑]
•

By taking the union of all the edges mapped through T to the leaves to the sub-trees correspond-
ing to each variable we obtain sub-graphs of G corresponding to each one. Observe that z is
not mapped to a single node T ′. This is the reason we need to take the union of all the edges
corresponding to the leaves of tz @z T ′ in order to obtain its sub-graph.

2. identify the sub-graph of G corresponding to T ′; similarly to step 1 we take the union of all the
edges mapped through T to the leaves of T ′ to obtain:

GL :
f1 : Fl // u3• c1 : Client

��
u2• f3 : Fl // u1• c2 : Client // u4•

3. use γ(t ′) to construct a graph corresponding to t ′

γ(t ′) :
e1 : Fl // v3• e3 : Client // v4•

v2• e2 : Fl // v1•

4. γ(t ′) represents the graph corresponding to t ′ where in the place of the variables it contains a
dummy edge of the appropriate type. This is where step 1 comes in place. We replace all the
dummy edges in γ(t ′) with the graphs corresponding to the variables of the dummy edges to obtain
Gt ′ .

Gt ′ :
f1 : Fl // u3• c1 : Client

��
u2• f3 : Fl // u1• c2 : Client // u4•

5. the last step requires that we replace GL in G with Gt ′ .

5 Recovering invalid configurations

In [11] we gave a basic methodology for recovering a system to a valid state when a run-time configura-
tion compromises its architectural style. The main objective of our approach in [11] can be observed in
Example 16 below.

Example 16 ( [11]) Consider the run-time reconfiguration

S // u• Coo F // u• CoobadServer() //

where S changes as illustrated to model a failure F. By imposing an invariant that states that every client
has to be connected to a non-failed server, the invalid configuration can be identified and recovered.
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The fact that we can now record the evolution of our graphs gives us many advantages. The moni-
toring mechanism introduced in 3 and the way we apply reconfigurations now gives us the potential to
identify which part of the graph (say G) has been re-written. Using the tree corresponding to the affected
sub-graph (say GR) one can identify the last production applied by observing the parent node of the
leaves corresponding to GR.

By using the monitoring system one can now spot where a violation may have occurred and attempt
to fix such violations without considering or parsing the whole graph in every possible way.

Our methodology consists of the steps 1÷5 below 4. Steps 3÷4 are inherited from [11].

1. The architecture (say G) corresponding to the configuration of the current system is computed
using the tracking tree T and the corresponding environment T of the system.

2. Identify the sub-tree TR of T (t ′ ./ TR) that corresponds to the RHS term t ′ of the reconfiguration
applied.

3. Check whether G satisfies φinv (G |= φinv).

(a) If G |= φinv then the style is not violated.
(b) If G 2 φinv then go to step 4

4. For each production p, compute the weakest pre-condition ψ with respect to φinv.

(a) Select a production p : L→ R and let σ : L→ G be the morphism from L to G such that
G\σ(EL) |= ψ (if any); apply p to G to determine the reconfiguration needed for the system
to reach a valid state.

(b) If the designer considers not satisfactory the reconfigured system obtained in the previous
stage or if there is no production p such that G\σ(EL) |= ψ , then the designer may either,
repeat step 4a by replacing G with G\σ(EL) and φinv with ψ or, try step 5.

5. Given TR computed in step 2 the designer can select a 2-tier subtree T ′R of TR that contains a parent
vertex and all its leaf children correspond to replaceable edges through the environment T . Using
T ′R in Definition 12 we parse the graph as defined below and repeat step 4.

Definition 12 (Parsing) Given a graph G, a corresponding 2-tier sub-tree T with root � and an envi-
ronment T . p : L i→ R is the production returned from T (2)(�). Given an instance L′ of L through
the isomorphism ι : L→ L′ and let σ ′ : R→ G a graph G′ = G \ (EG ∪σ ′(R◦))∪ L′′ (R◦ refer to the
internal nodes of R) is the graph obtained by parsing G with p under the morphism σ ′ iff L′′ = L′[ι(l) 7→
σ ′(i(l))

∣∣ l ∈ Im(i)] and there exist no edge in G that is non-replaceable.

Identifying the architecture of a system is non-deterministic in the original specification of ADR
(cf. [4]). Using our approach we can identify and retrieve the architecture of the system with all the
information of how it has been adapted so far using our monitoring mechanism. This mechanism is used
in step 1 for retrieving graph G and in step 2 for identifying the subtree of the tracking tree that has been
reconfigured. In step 3, we assume that an underlying monitoring mechanism uses the |= relation of our
logic to determine if the graph G identified in step 1 violates the invariant. In such case, step 4 uses the
weakest pre-condition algorithm [11] on each production to compute their weakest pre-conditions (this
step does not need to be re-iterated at each reconfiguration but instead all the weakest pre-conditions can
be computed offline and reused accordingly). In step 4a, if the graph representing the violated system
satisfies one of the computed weakest pre-conditions then the corresponding production is a candidate to

4 Recall that the designer has to specify productions and the architectural invariant φinv so to establish the architectural style
of interest (as done in Example 16).
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re-establish the architectural style and trigger the appropriate reconfigurations on the invalid system. In
step 4b the designer has to decide whether to stop or continue the process. In the latter case, the idea is to
repeat steps 4 and 4a replacing G with G\σ(EL) and φinv with ψ so to compute the weakest pre-condition
of the weakest pre-condition computed in the previous iteration. This, allows us to exploit every possible
sequence of productions that can be applied in order to enforce the architectural style. Note that the
morphism that invalidates G |= φinv indicates which part of the system has to be rewritten, while the
production p suggests plausible reconfigurations. If the above steps do not prove to be satisfactory then
in step 5 the designer uses the tree computed in step 2 and selects which branch of the tree can be
abstracted using the parsing mechanism in Definition 12. After parsing the graph we repeat steps 4 ÷ 5
until either, a possible sequence of productions is identified that can potentially fix the architectural style,
or, the designer decides to stop the process.

6 Conclusion

In this paper we defined a framework that allows us to exploit the “hierarchical nature” of ADR graphs.
In particular, we used the functional reading of ADR productions as well as its reconfigurations that
preserve the identity of components throughout the rewriting. Our framework permits to tackle cer-
tain architectural aspects of the design and allows the designer to identify and address problems at the
architectural level.

Also, we refine the methodology proposed in [11] to automatically compute possible reconfigurations
that recover from architectural style violations. Our refinement iteratively computes the weakest pre-
condition to find a possible sequence of reconfigurations (if any) that re-establishes the architectural
style of the system.

In this paper we focused on the development of the technical presentation of our framework. We pro-
posed a monitoring mechanism through which the evolution of a computation is recorded and maintained
in a tree-like structure reflecting the hierarchical nature of ADR graphs. We then exploit this mechanism
to formally define more efficient parsing algorithms as well as more efficient ways of applying reconfig-
urations. Interestingly, this approach brings forth the definition of a new rewriting mechanism for ADR
reconfiguration rules. More precisely, instead of parsing an ADR graph searching for a sub-graph match-
ing the RHS of a reconfiguration rule, we propose a rewriting mechanism that visits the trees describing
the graph evolution to find the match. We argue that this is more efficient than parsing the graph at the
negligible cost of recording the evolution of the system through the monitoring. One could argue that the
run-time monitoring of the system could be inefficient. In this respect, we note that a form of monitoring
is necessary when dealing with self-configuring or self-healing systems; quoting [9] “autonomic system
might continually monitor its own use”. Since autonomic systems are the reference systems of this work,
and, as a matter of fact, a form of monitoring is indispensable in order to identify run-time violation
of the style, we argue that our approach simply adds to the necessary monitoring activities the cost of
tracking the evolution of systems.

This paper completes and refines the framework initially proposed in [11]. We contemplate a new
research direction to devise autonomic systems where component managers use architectural elements
in the reconfigurations they distill. From this point of view, ADR is particularly suitable due to the
fact that it can represent not only architectural level aspects of systems, but it can also be used to rep-
resent operational semantics by e.g. encodings of process calculi or modelling languages [3, 2]. This
would immediately establish a connection between DbC approaches of abstractions levels close to the
implementation of systems (for instance, see [1, 10]) with the DbC approach for ADR suggested in [11].
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We conclude by commenting about the linearity conditions imposed on the reconfigurations rules
(c.f. (6) and Definition 11). The linearity of the LHS of a reconfiguration rule can be relaxed at the cost
of making the semantic of the matching more complex since multiple occurrences of the same variable
would account for checking the existence of an isomorphism among different subgraphs. Instead, the
linearity condition on the RHS of a production can be relaxed by simply using the counterpart semantic
mechanism described in [5] to keep track of one copy of the variable. Finally, we note that in [4],
reconfigurations rules of the form r(x) : p(y)→ q(x,y) are considered, where x act as a parameter of
the rule that can be used in its LHS or RHS. Such rules can be easily added to our framework using
Definition 11 by mapping η(x) to the fresh input graph.
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