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Subzero automata is a class of tree automata whose acceptance condition can express probabilistic
constraints. Our main result is that the problem of determining if a subzero automaton accepts some
regular tree is decidable.

1 Introduction

In the fundamental paper [5] Rabin proved that the monadic second order logic (MSO) of the full binary
tree is decidable using the automata method. This proof technique can be roughly described as follows:
(1) an appropriate notion of tree automaton is defined; (2) every formula φ of the MSO logic is effectively
associated to an automaton Aφ such that that φ is true if and only if Aφ accepts a non-empty language; (3)
the emptiness problem, that is deciding if Aφ accepts a non-empty language, is proved to be decidable.
The latter point is typically established using combinatorial reasoning about the graph structure of Aφ .

Recently, Michalewski and Mio have investigated in [4] an extension of the MSO logic of the full
binary tree, called MSO + ∀=1, capable of expressing probabilistic properties. While the full logic
MSO + ∀=1 is undecidable (see Section 5 of [4]), the decidability of an interesting fragment called
MSO+∀=1

π (see Section 6 of [4]), capable of expressing many probabilistic properties useful in program
verification such as those definable by the logic pCTL and its variants, is an open problem.

Bojańczyk proposed in [1] to use the automata method to prove the decidability of the weak frag-
ment of MSO+ ∀=1

π , where second-order quantification is restricted to finite sets, which is still suf-
ficiently expressive to express most useful probabilistic properties in program verification. Namely,
Bojańczyk has: (1) introduced a special class of zero automata and (2) proved that for every formula φ

of weakMSO+∀=1
π one can effectively associate a zero automaton Aφ such that φ is true if and only if

Aφ accepts a non-empty language.
Hence what is still missing from Bojańczyk’s approach is a proof of decidability of the emptiness

problem of zero automata. In this paper we consider a simplified version of zero automata introduced by
Bojańczyk1. We call the simplified class subzero automata and prove the following result:

Theorem 1. Given a subzero automaton A , it is decidable if there exists a regular tree (i.e., repre-
sentable as a finite directed graph) which is accepted by A .

However we also observe that:

Proposition 2. There exists a subzero automaton A such that the language accepted by A is not empty
but does not contain a regular tree.

∗Henryk Michalewski was supported by Poland’s National Science Centre grant no. 2012/07/D/ST6/02443 and Matteo Mio
was supported by“Projet Émergent PMSO” of the École Normale Supérieure de Lyon and Poland’s National Science Centre
grant no. 2014-13/B/ST6/03595.

1This simplification makes the presentation smoother. At the same time, the regular emptiness problem for subzero automata
seems to be equally difficult as the regular emptiness problem for zero automata. Admittedly, in order to characterize the full
strength of weakMSO+∀=1

π one needs a class of automata more refined than the one analyzed in this paper. We accept this
drawback in order to keep the presentation as simple as possible.

http://dx.doi.org/10.4204/EPTCS.223.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 On the Regular Emptiness Problem of Subzero Automata

Recall that Rabin’s regularity theorem [5] asserts that a Rabin’s tree automaton accepts some tree if
and only if it accepts some regular tree. Hence Proposition 2 states that subzero automata do not enjoy
this nice property. In turn, this fact implies that our result (Theorem 1) does not yet solve the emptiness
problem of subzero automata.

Nevertheless the proof method we use to prove Theorem 1 is quite interesting as it not based on two-
player (stochastic) games, graph algorithms or similar techniques based on combinatorics on graphs, but
on the design of a deduction system capable of deriving assertions such as “from state s the automaton
A has an accepting run”. To the best of our knowledge this approach has not yet been used in the
literature and we believe that it can be applied to the emptiness problems of other classes of automata.
Indeed, our preliminary investigations indicate that also the full result, the decidability of the (not just
regular) emptiness problem of zero automata, might be provable by the design of a (significantly more
complicated) proof system. The purpose of this paper is to illustrate the main ideas behind the use of
deductive proof systems in the simpler context of the proof of Theorem 1.

Related work. In [2], Carayol, Haddad and Serre have introduced the new automata model of quali-
tative tree automata, a variant of Rabin’s tree automata with a probabilistic acceptance condition. Main
results from [2] about qualitative automata include: (1) the class of languages definable by qualitative
automata is incomparable with the class of regular languages, i.e., there are some languages definable by
qualitative automata that are not definable by Rabin’s automata, and vice versa, (2) qualitative automata
enjoy the Rabin’s regularity theorem, that is they accept some tree if and only if they accept some regular
tree, (3) the emptiness of qualitative automata is decidable.

The work of [2] on qualitative automata is closely connected with ours on subzero automata. Firstly,
some useful results from [2] are exploited in this work. For example, our proof of Proposition 2 is similar
in the spirit to the argument used in [2] to show that there exists a language defined by a qualitative tree
automaton which is not accepted by any Rabin’s tree automaton. Secondly, as we show in Section 4,
the class of languages definable by subzero automata includes all regular languages and all languages
definable by qualitative automata (cf. Proposition 13). Hence,

Proposition 3. Subzero automata constitute a strict generalization of both Rabin’s automata and quali-
tative automata.

Note that, since qualitative automata enjoy the Rabin’s regularity property, our main Theorem 1 implies
the decidability of the emptiness problem of qualitative automata.

Thirdly, the proof of the decidability of qualitative automata uses known results from finite game-
theory, namely the positional determinacy of 2 1

2 -player turn-based parity games, and graph algorithms
to solve such games. Instead, since subzero automata do not enjoy the Rabin’s regularity property, our
proof method is entirely different and is based on the design of a deductive system. Lastly, while the
classes of zero-automata and subzero-automata have been introduced to solve the decision problem for
a logic (weakMSO+∀=1

π ), the class of qualitative automata does not seem to be connected to a logical
theory.

2 Technical background

Multisets. A multiset over a set Q of elements is formally a function w :Q→N. We will only consider
multisets over finite sets Q. We will use intuitive brackets notations with repetitions to denote multisets.
For example, w= {q1,q1,q2} is the multiset w over {q1,q2,q3} defined by w(q1)= 2, w(q2)= 1 and
w(q3)=0. We denote with ⊆ the pointwise order on Q→ N and we say that w is a sub(multi)set of w′ if
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w ⊆ w′. The meet (infimum) operation on the lattice Q→ N is denoted by u. The length of w, denoted
by |w| is the sum of all multiplicities of w, i.e., |w|= ∑

q∈Q
w(q).

Definition 4 (Maximal submultiset). For a fixed finite set Q and multisets w and u, we say that v is the
maximal sub(multi)set of w restricted to u, if v = wuu.

Example. If Q = {q, p,r} and w = {q,q,q, p, p,r} and u = {q,q,q,q,q, p}, then wu u is equal to
{q,q,q, p}.

Tree notation. The tree automata we consider in this paper define sets of infinite binary trees with
labels from a certain given alphabet. We identify a node in a tree with a sequence x ∈ 2∗, with 2 denoting
the set of directions {0,1}. We write trees(Σ) for the set of trees labelled by Σ, i.e. the set of all functions
2∗ → Σ. In the proofs, we will also talk about partial trees, where the set of nodes in the domain in
not necessarily all of 2∗, but some prefix-closed subset thereof. We use standard terminology for trees:
node, root, left child, right child, ancestor and descendant. In case of partial trees, we can also talk about
leaves, which are nodes without any children. The following definition is standard.

Definition 5. A tree t ∈ trees(Σ) is regular if it is representable as the infinite unfolding of a finite directed
graph whose nodes are labeled by Σ.

Equivalently, a tree t is regular if and only if up-to isomorphism it has only finitely many subtrees.

Probability measure over paths. A path in the infinite binary tree can be identified with an infinite
sequence in 2ω which can be also viewed as an infinite prefix-closed set of nodes that is totally ordered
by the prefix relation. Given w∈ 2∗ and π ∈ 2ω we write w≤ π if w is a finite prefix of π . The set
2ω , endowed with the topology generated by the basic clopen sets Uw = {x ∈ 2ω | w ≤ x}, for w∈ 2∗,
is homeomorphic to the Cantor space. We consider the coin-flipping complete Borel measure µ on 2ω

uniquely determined by the assignment µ(Uw)=
1

2|w| on the basic clopen sets, where |w| denotes the
length of w. The measure µ is also known as the Lebesgue or the uniform measure. Intuitively µ models
the stochastic process of generation of an infinite path in the full binary tree by a sequence of coin tosses.
A µ-measurable subset A⊆2ω is called null or negligible if it has measure 0, i.e., if µ(A)=0. See, e.g.,
[3] for a reference on the subject.

3 Subzero Automata

In this section we define a class of tree automata generalizing ordinary nondeterministic parity automata,
called subzero automata, which itself is a simplification of the class of zero automata introduced in [1].
We assume some familiarity with tree automata over infinite trees as in, e.g., [6].

Definition 6. A subzero automaton consists of a tuple

Q︸︷︷︸
states

Σ︸︷︷︸
input alphabet

δ ⊆ Q×Σ×Q×Q︸ ︷︷ ︸
transition relation

≤ ⊆ Q×Q︸ ︷︷ ︸
total order on Q

with all components finite, together with two sets of states: Qall ⊆ Q︸ ︷︷ ︸
all states

, Qzero ⊆ Q︸ ︷︷ ︸
zero states

.
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The first part of the definition matches that of ordinary nondeterministic parity tree automata 2. The
total order ≤ on states indicates the priority of states, with q1 ≤ q2 meaning that the state q2 has higher
priority than q1. The new aspect of the above definition is the presence of two sets of states Qall and
Qzero, which determine two different conditions that a run must satisfy to be accepting. The following
notion of run in a subzero automaton corresponds to the usual one of nondeterministic tree automata
and is entirely standard.

Definition 7 (Runs). A run of a subzero automaton on a tree t∈ trees(Σ) is a labeling ρ ∈ trees(Q) of
the full binary tree with states, which is consistent with the transition relation, that is, if some node x∈2∗

is labeled with q and has left and right children labeled by q0 and q1, respectively, then the automaton
has a transition of the form (q,a,(q0,q1)), where a is the letter labeling the vertex x in t.

Definition 8 (Maximal state). Given an infinite branch π in a run we write maxinf(π) for the maximal
(in the order ≤) state appearing infinitely often in the branch.

The following is the crucial definition regarding subzero automata:

Definition 9 (Accepting run). A run ρ is accepting if the following two conditions hold:

1. ∀π.(maxinf(π) ∈ Qall), i.e., for all infinite branches π in ρ , it holds that maxinf(π) ∈ Qall,

2. µ({π | maxinf(π) ∈ Qzero}) = 0, i.e., the probability of the set of branches π in ρ , such that
maxinf(π) ∈ Qzero, is 0.

Hence a run is accepting if all of its branches satisfy the the Qall condition and only a negligible set
of paths satisfies the Qzero condition.

Definition 10 (Acceptance of subzero automata). A tree t∈ trees(Σ) is accepted from a state q∈Q of
the automaton if there exists an accepting run ρ∈ trees(Q) with the root labeled by q.

4 Examples

In this section we illustrate the notion of subzero automata with a few illustrative examples.

Example 11. A subzero automaton with Qzero= /0 is just an ordinary nondeterministic parity automa-
ton. Indeed the second acceptance condition in Definition 10 trivializes in this case, and the set Qall can
be seen as the collection of states having even priority.

Remark. The above example shows that subzero automata can define all regular sets of trees. This
shows a difference between subzero automata and qualitative automata of [2] as the latter class can
not define all regular languages (Proposition 20 in [2]).

Example 12. Consider the following subzero automaton

Q = {q,⊥} Σ = {a,b} δ = {(q,a,⊥,⊥),(q,b,q,q),(⊥,a,⊥,⊥),(⊥,b,⊥,⊥)}

with Qall=Q and Qzero = {q}. This is a deterministic automaton where ⊥ is a sink state. Since Qall=Q,
the first acceptance condition in Definition 10 trivializes. Thus the language L⊆ trees({a,b}) accepted
by this automaton consists of those trees t such the set of branches in t having only b’s has probability 0.

2In an ordinary nondeterministic parity tree automaton to each state is assigned a priority. Every nondeterministic parity
automaton can be transformed into an equivalent parity tree automaton such that to each state is assigned a unique priority.
This unique priority determines a total order on states. We decided to use a total order in Definition 6, because this simplifies
notationally our main proof — we avoid an induction over a finite partial order in favor of an induction over a finite total order.
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The language L is an interesting example of a non-regular set (Theorem 21 in [2]) definable by a
qualitative automaton of [2]. In fact, the above example can be generalized to a complete characterization
of languages defined by qualitative automata in terms of subzero automata:
Proposition 13. Qualitative tree automata of [2] define the same languages as subzero automata such
that Qall=Q.

Hence subzero automata generalize both ordinary parity nondeterministic automata and qualitative
tree automata.

Our last example is slightly more involved and will show that there exists a subzero automaton A
accepting a nonempty set of trees but not accepting any regular tree (Proposition 2 in Introduction and
proof of Theorem 21 in [2]). We first provide the definition of the language L3⊆ trees({a,b}) accepted
by A and only after describe the structure of A .
Definition 14. Let L1 ⊆ trees({a,b}) be the set of trees over the alphabet Σ = {a,b} such that from every
vertex x it is possible to reach a descendant vertex y labeled by the letter a, or as an MSO formula:

L1 = {t | ∀x.∃y.
(
x≤ y∧a(y)

)
}

Let L2 ⊆ trees({a,b}) be the set of trees such that the the set of infinite paths having infinitely many
occurrences of the letter a has probability 0:

L2 =
{

t | µ
(
{π | π has infinitely many a’s}

)
= 0
}

Lastly, let L3 = L1∩L2.
Proposition 15 ([2]). The following assertions hold:

1. the language L1 is regular,

2. the language L2 is not regular,

3. the language L3 is not regular and does not contain any regular tree.

Proof. Clearly L1 is a regular language as it is defined by the simple MSO formula provided above.
We will now show that L3 is not regular. This will immediately imply that L2 is not regular as well,

because otherwise L3 = L1 ∩ L2 would also be regular since regular languages are closed under finite
intersections.

To show that L3 is not regular, by Rabin’s regularity theorem, it suffices to prove that it is nonempty
but it does not contain any regular tree.

Claim 16. L3 is not empty.

Proof. In order to verify L3 is not empty we construct a concrete tree t ∈ trees({a,b}) in L3. To do
this, fix any mapping f : N→ N such that f (0)=0 and for all n > 0 holds f (n) > n+∑

n−1
i=0 f (i). We

say that a vertex x∈ {0,1}∗ of the full binary tree belongs to the block n-th if its depth |x| is such
that f (n) ≤ |x| < f (n+ 1). Each block can be seen as a forest of finite trees (see Figure 1) of depth
f (n+ 1)− f (n). We now describe the tree t. For each n, all nodes of the n-th block are labeled by b
except the leftmost vertices of each (finite) tree in the block (seen as a forest). Figure 1 illustrates this
idea. Clearly t is in L1.

Let En be the random event (on the space of infinite branches of the full binary tree) of a path having
the f (n+1)-th vertex labeled by a. Then, by construction of t, the probability of En is exactly 1

2 f (n+1)− f (n) .
This implies that µ(E0)+µ(E1)+ . . .≤∑

∞
n=0

1
2 f (n+1)− f (n) ≤ 1

2 + . . .+ 1
2n ≤ 1. The Borel-Cantelli lemma

implies that the probability of infinitely many events En happening is 0. Hence the probability of the set
of paths having infinitely many a’s is 0. Therefore t∈L2 and thus t∈L3.
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b

a bb . . .. . .

a bb . . .. . . a bb . . .. . .

Figure 1: A prefix of a tree t ∈ L3 up to the level f (2).

Claim 17. L3 does not contain any regular tree t.

Proof. Indeed, let G be the finite graph (where each vertex can reach exactly two vertices) representing
t. We can view G as a finite Markov chain where all edges have probability 1

2 . From the assumption that
t ∈L1, we know that every vertex in G can reach a vertex labeled a. By elementary results of Markov
chains, a random infinite path in G will almost surely visit infinitely many times states labeled by a and
this is a contradiction with the hypothesis that t∈L2.

The proofs of the above two Claims finish the proof of the Proposition.

Both L1 and L2 are easily definable by subzero-automata. A concrete and conveniently small
subzero-automaton defining L3 is presented below.

Definition 18. Let A be the subzero automaton with Q = {∃,R,>}, transition relation defined as δ =
{(q,a,>,>),(q,b,∃,R),(q,b,R,∃) | q ∈Q}, order on states ∃< R <>, Qall = {>,R} and Qzero = {>}.

Observe that the automaton is deterministic on reading the letter a and nondeterministic on the letter
b. Intuitively, the state > is reached exactly when the letter a is read. When the letter b is read, non-
deterministically the automaton guesses which of the two children of the current vertex will lead to a
further letter a by labeling it with ∃ while the other child is labeled with R.

Proposition 19. The automaton A recognizes the language L3.

5 Decidability of the regular emptiness problem of subzero automata

We define the regular emptiness problem of subzero automata as follows.

Definition 20 (Regular Emptiness Problem). Given a subzero automaton A decide if A accepts some
regular tree (in the usual sense of Definition 5).

The main result of this paper, stated as Theorem 1 in the Introduction, is that the regular emptiness
problem of subzero automata is decidable. To prove Theorem 1 we introduce in this section a deductive
system whose rules depend on A . We will then show that a regular tree is accepted by the automaton
if and only if a certain assertion is derivable syntactically in the deductive system. Furthermore, we
show that if a derivation exists, then a derivation of bounded depth (in the size of the automaton) exists.
Therefore the derivation search space is finite and this implies that the regular emptiness problem of
subzero automata is decidable. We now proceed with some technical definitions needed to formulate the
rules of the deductive system. We begin by introducing the notion of partial runs in subzero automata.
Intuitively, these are like accepting runs (Definition 9) but can be partial trees and have leaves. In what
follows we fix a generic subzero automaton.
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Definition 21 (Partial runs). A partial run with n ports is a partial binary tree labelled by states, with a
partition of its leaves into nonempty sets X1, . . . ,Xn, called ports, subject to the following conditions:

• consistency with the transition function, i.e., if some node has state q and its children have states
q0,q1, then the automaton has a transition of the form (q,a,(q0,q1)), for some letter a;

• for every Xi, all leaves in Xi are labelled by the same state which is called the type of the port Xi

(for i 6= j it may happen that two ports Xi and X j have the same type).

• (all condition) every infinite path in the partial run has maxinf state in Qall.

• (zero condition) the set of infinite paths having maxinf state in Qzero has probability 0.

Note, by comparison with Definition 9, that every accepting run is also a partial run without any
ports. Our proof system will manipulate statements about partial runs.

Definition 22 (Profiles). We define a profile to be an expression of the form p
≤q−→ {q1, · · · ,qn}, where

p,q ∈ Q and {q1, . . . ,qn} is a multiset over Q. Hence, formally, a profile is a triple in Q×Q×NQ.

p

r s

q s

q s

q s

q s

q . . .

q p

p port q port q port

Figure 2: A partial run with root p, one port of type p and two ports of type q.

In what follows we reserve the letter v,w to range over (possibly empty) multisets over Q and simply
write p

≤q−→ w for an arbitrary profile. We write max(w) to indicate the maximal state (with respect to
the order ≤ of the automaton) in w.

Definition 23 (Profile of a partial run). We say that a partial run with n ports (X1, . . . ,Xn) has profile

p
≤q−→ {q1, . . . ,qn}, if:

1. p is the state in the root, and

2. every leaf in the i-th port Xi has type qi, and
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3. q is the maximal state, according to the total order on states, that labels any inner state (i.e., not a
leaf) of the partial run.

Figure 2 illustrates the concept of a partial run on an example of a subzero automaton with four

states {p,q,r,s}. The run has profile p
≤max({p,q,r,s})−→ {p,q,q} with one port of type p and two ports of

type q. Note that every accepting run, which is a partial run without ports, with root labeled by p has

profile p
≤max(Q)−→ /0.

Definition 24 (Realizable partial run). We say that a profile is realizable if it is the profile of some partial
run.

Accordingly, the subzero automaton A accepts some tree from a state q0∈Q if and only the profile

q0
≤max(Q)−→ /0 is realizable.

5.1 The Deductive System

In this subsection we fix a given subzero automaton A and define a deductive system to derive profiles
from other profiles. The deductive system has one axiom rule (A), three unary derivation rules (WL),
(SL) and (D), and one binary deduction rule (U), as listed in Figure 3.

Axiom (A): if there is a transition (p,a,q,r)

p
≤p−→ {q,r}

p
≤p−→ {p}∪w

Weak Looping (WL): if p ∈ Qall \Qzero

p
≤p−→ w

p
≤p−→ {p}∪w

Strong Looping (SL): if p ∈ Qall and w 6= /0

p
≤p−→ w

p
≤q−→ {r}∪w r ≤s−→ v

Unification (U):
p
≤max(q,s,r)−→ w∪ v
p
≤q−→ w∪{r,r}

Deduplication (D):
p
≤q−→ w∪{r}

Figure 3: Calculus for profiles. Variables p,q,r,s range over Q and variables w,v range over multisets over Q.

The crucial properties of the deductive system are formulated as the following theorem and corollary.

Theorem 25. The following assertions hold:

Soundness: if a profile p
≤q−→ w is derivable in the deductive system then p

≤q−→ w is realizable by
a regular tree.

Completeness and Boundedness: if a profile p
≤q−→ w is realizable by a regular tree then it is

derivable in the deductive system with a derivation of size3 smaller or equal than f (q, |w|), where
f is a primitive recursive function f :N×N→ N (we identify the linearly ordered set of states Q
with the corresponding initial segment of natural numbers {0, . . . , |Q|−1}).

3The size of a derivation tree is defined as the number of its vertices.
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The proof of Theorem 25, together with the definition of f , is presented in Sections 6 and 7.

Corollary 26. The regular emptiness problem of subzero automata is decidable.

Proof. For a given initial state q0 ∈Q, the automaton A accepts some tree if and only if there exists

some accepting run starting from q0, i.e., if there exists a realizable partial run having profile q0
≤max{Q}−→

/0. It follows from Theorem 25 that such a run exists if and only if there exists a valid derivation of

q0
≤max{Q}−→ /0 having size at most f (q, |w|). The number of derivations of size (i.e., number of nodes) at

most f (q, |w|) is finite. Indeed note by inspection of each of the six rules of the derivation system that,

for each vertex p
≤q−→ w in a derivation the number of valid premises is finite. Therefore the existence

of a derivation of q0
≤max{Q}−→ /0 of size at most f (q, |w|) can be checked in finite time by enumerating all

such derivations.

The upper bound provided by the primitive recursive function f :N×N→ N is by no means tight,
and better upper bounds might exist. The main goal of this work has been to establish the decidability of
the regular emptiness problem. The analysis of its computational complexity is an interesting topic for
future work.

6 Proof of Soundness

We need to show that if a profile is derivable then it is realizable by a regular tree. We prove this by
induction on the complexity of the derivation tree.

Case (A): The base case is given by profiles derived by application of the axiom rule (A). In this
case, the profile is of the form p

≤p−→ {q,r} for some transition (p,a,q,r), with a∈Σ, of the automaton.

Therefore the following tree is a regular partial run with profile p
≤p−→ {q,r}.

p

q r

Figure 4: The partial run corresponding to the axiom rule (A).

Case (WL): Assume the derivation ends with an application of the weak looping rule (WL).

p
≤p−→ {p}∪w

Weak Looping (WL): if p ∈ Qall \Qzero

p
≤p−→ w

By induction hypothesis, we can assume that the profile p
≤p−→ {p}∪w is realizable by some regular

partial run ρ . To obtain a realization of p
≤p−→ w, we simply “unfold” or “loop” in the partial run ρ as

illustrated in Figure 5. When viewing ρ as a finite graph, this corresponds in adding a loop from all ports
labeled by p to the root p.



10 On the Regular Emptiness Problem of Subzero Automata

p

p

p

p

p

p

p

pp

...

Figure 5: Illustration of the (WL) rule. From left to right, the original partial run is iteratively plugged into the port p.

This construction is correct, because p is the greatest (w.r.t. the order ≤ on states) in any root-to-
port path, and p ∈ Qall. Hence all new infinite paths generated by this unfolding have infinitely many
occurrences of p’s and hence satisfy the acceptance condition. Furthermore, note that the proviso of the
rule guarantees that p 6∈Qzero, hence there is nothing to preserve regarding the probabilistic condition.

Case (SL). Assume the derivation ends with an application of the weak looping rule (WL).

p
≤p−→ {p}∪w

Strong Looping (SL): if p ∈ Qall and w is nonempty

p
≤p−→ w

This case is very similar to the one just considered for the rule (WL). The crucial difference is that,
in this case, it is possible that p∈Qzero and we need to guarantee that the set of infinite paths (with
infinitely many p) generated by the looping construction has probability 0.

This is enforced by the assumption w 6= /0. This means that the partial run ρ has some reachable
ports. Therefore, the set of paths eventually in ending in a port has a probability ε strictly bigger than
0. This ensures that, after the looping construction, the set of infinite paths never reaching a port has
probability 0.

p

r

r

...

p

r

...

Figure 6: An illustration of the (U) rule. Into the run on the left we plug the run in the middle and obtain the run on the right.

Case (U): Assume the derivation ends with an application of the binary rule (U).

p
≤q−→ {r}∪w r ≤s−→ v

Unification (U):
p
≤max(q,s,r)−→ w∪ v
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By induction hypothesis, we can assume that the profiles p
≤q−→ {r}∪w and r ≤s−→ v are realizable

by regular partial runs, ρ1 and ρ2, respectively. To construct a regular partial run for the desired profile

p
≤max(q,s,r)−→ w∪ v it is sufficient to plug the partial run ρ2 in every port r of ρ1, as shown in Figure 6.

Case (D): This is a trivial case, as the rule simply corresponds to the operation of merging two ports
having the same type.

7 Completeness

In this section we prove that if a profile p
≤q−→ w is realizable by a regular partial run, then it is derivable

in the deductive system with a derivation of size smaller or equal than f (q, |w|), where

Definition 27. The function f :N2→ N is defined, by induction on the first argument, as follows:

• f (0,n) = (c1 ·n)+ c2, for appropriate constants c1,c2∈N,

• f (q,n) = (K · (|Q|+1))+(|Q| · |w|), where K = max


f (q−1,2|w|)+h(2|w|) · |w|+ |w|2,
f (q−1,2|w|) · (2|w|+1)+ |w|2,
(3 f (q−1,2)+1)+ f (q−1,0)+1,
f (q−1,2|w|)+g(2|w|+|Q|) · |w|+ |w|2,

where Q is the set of states of the fixed subzero automaton and the auxiliary primitive recursive func-
tions g,h :N→ N are defined as:

• g(0) = f (q−1, |w|+ |Q|),

• g(n+1) = f (q−1,2(|w|+ |Q|))+g(n) · (|w|+ |Q|)+(|w|+ |Q|)2,

and

• h(0) = f (q−1, |w|),

• h(n+1) = f (q−1,2|w|)+h(n) · |w|+ |w|2.

Remark. The formulas defining f ,g,h in Definition 27 look very technical at the first glance, but in fact
they just reflect the recursive construction in the proof.

The proof goes by induction on the order type of the state q (in the well order ≤ on states). Since
we identify the set of states Q with the set of numbers {0, . . . , |Q| − 1}, we write q− 1 to denote the
predecessor of q.

7.1 Base case

Let us assume that q is the minimal state (w.r.t. the order ≤ on Q). That is, q = 0. Let us fix an arbitrary
partial run having profile p

≤q−→ {q1, . . . ,qn}.
In this case, since the partial run has profile p

≤q−→ {q1, . . . ,qn}, and the root p is an inner vertex, we

know that p≤ q and therefore q=p. We can then conclude that the profile is of the form p
≤p−→{q1 . . .qn}.

We need to construct a derivation of p
≤p−→ {q1 . . .qn} having size ≤ f (0, |w|), i.e., linearly proportional

in |w|. Here we distinguish two cases: p∈Qall and p 6∈Qall.
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Subcase p 6∈ Qall. If p 6∈ Qall then there can not exist any infinite path in the partial run. Indeed every
infinite path only consists of inner states, thus labeled by p. Hence the existence of such an infinite path
is a contradiction with the definition of partial run which requires that every infinite path has maxinf
state in Qall. As a consequence the partial run is well-funded and in fact, by weak König’s lemma, a
finite tree. A derivation of the profile p

≤p−→{q1, . . . ,qn} is then obtainable by subsequent applications of
the rules (A) and (U) and (D). This is best explained by a simple example. Figure 7 illustrates the case
of a partial run of profile p

≤p−→ {q1,q2,q3,q4}.

p

p p

p p

q3 q2q1 q2

p q4

q1 q1

Figure 7: A partial run realizing the profile p
≤p−→ {q1,q2,q3,q4}. The partial run is finite.

Note that the partial run has also profile p
≤p−→ {q1,q1,q4,q1,q2,q3,q2} by identifying each leaf with

a singleton port. We will show how to derive the profile p
≤p−→ {q1,q1,q4,q1,q2,q3,q2}. The desired

profile p
≤p−→ {q1,q2,q3,q4} can then be obtained by iterated applications (exactly three in this case) of

the Deduplication (D) rule. The derivation of the profile p
≤p−→ {q1,q1,q4,q1,q2,q3,q2} can be obtained

by first deriving the profiles p
≤p−→{q1,q1,q4} and p

≤p−→{q1,q2,q3,q2} corresponding to the left subtree
and the right subtree respectively. The desired profile is then obtained by two applications of the axiom
(A) and two applications of the (U) rule. All these derivations are presented in Figure 8.

A
p
≤p−→ {p,q4}

A
p
≤p−→ {q1,q1}

U
p
≤p−→ {q1,q1,q4}

A
p
≤p−→ {p, p}

A
p
≤p−→ {q1,q2}

U
p
≤p−→ {p,q1,q2}

A
p
≤p−→ {q3,q2}

U
p
≤p−→ {q1,q2,q3,q2}

A
p
≤p−→ {p, p} p

≤p−→ {q1,q1,q4}
U

p
≤p−→ {p,q1,q1,q4}

A
p
≤p−→ {q1,q2,q3,q2}

U
p
≤p−→ {q1,q1,q4,q1,q2,q3,q2}

Figure 8: Derivation of the profile p
≤p−→ {q1,q1,q4,q1,q2,q3,q2}.
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Note that all instances of the axiom rule are valid, because the partial run of Figure 7 guarantees
the existence of transitions p→ (q1,q1), p→ (p,q4), p→ (p, p), p→ (q1,q2) and p→ (q3,q2) in the
automaton. Furthermore, notice that the constructed derivation has size linearly proportional to the size
of the assumed partial run having profile p

≤q−→ {q1, . . . ,qn}. This leads to:

Claim 28. There exists a regular partial run with profile p
≤p−→ {q1, . . . ,qn} which is of size linear

proportional with the size of the multiset w = {q1, . . . ,qn}.

Proof. (of the Claim) The (finite number of) transitions in the subzero automaton can be divided into
three kinds:

(1) p→ (p, p),

(2) p→ (p,r) or p→ (r, p), with r 6= p, and

(3) p→ (r,s), with r,s 6= p.

Note that transition of types (2) and (3) introduce leaves in the partial run.

Definition 29. We say that a transition of type (2) is w-productive if r is in w. Similarly, we say that
transition of type (3) is w-productive if both r and s are in w.

Note that only transitions of type (1) and w-productive transitions of type (2) and (3) can appear in

a partial run having profile p
≤q−→ w, as all other transition introduce ports which are not in w. It is also

evident that, for each q∈w, some w-productive transition introducing a leaf labeled by q must appear in
the partial run.

It is then clear that if a partial run having profile p
≤q−→ {q1, . . . ,qn} exists, then there exists a partial

run which uses at most |w|many w-productive transitions, introducing each of the states appearing in the
multiset w. Hence the size of this partial run is linear in the size of w.

Subcase p ∈ Qall. Also in this case all inner states are p’s, but since p ∈ Qall, this time a partial run
of the profile p

≤p−→ {q1 . . .qn} may contain infinite paths. Note, furthermore, that if p∈Qzero, then the
sequence q1 . . .qn is not empty (i.e., there are some ports) because otherwise all paths (and, therefore, a
set of probability 1 in the full binary tree) would be in Qzero.

To deal with this case, it is sufficient to find some height h such that all ports in {q1, . . . ,qn} appear
(with the required multiplicities) as leaves at some depth ≤ h. By “cutting” the (potentially infinite) par-
tial run of profile p

≤p−→ {q1 . . .qn} at depth h we obtain a partial run having profile p
≤p−→ {q1, . . . ,qn, p}

(the new port p is present if p appears as some leaf at depth ≤ h). As an illustrative example, consider
the partial run with profile p

≤p−→ {q1,q1,q2,q3} of Figure 9.
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p

p p

p p

q3 pp q2

p p

. . .

p q1

q1 p

q1 port q1 port q2 port q3 port

Figure 9: A partial run with profile p
≤p−→ {q1,q1,q2,q3}.

The least depth at which all ports appear with the required multiplicities is h=3. Using the rules (A),
(U) and (D), as done in the previous case, we can derive the profile p

≤p−→ {q1,q1,q2,q3, p} and using
similar ideas as in Claim 28 we can prove that this derivation has size linear in |w|+1.

Once a derivation of the profile p
≤p−→{q1,q1,q2,q3, p} is obtained, having size linearly proportional

to |w|+1, we derive the profile p
≤p−→ {p,q1,q1,q2,q3} by applying one of the two looping rules (WL)

or (SL) depending if p ∈ Qzero or not:

1. Case p 6∈ Qzero: in this case we obtain the desired profile by application of the weak looping rule:

p
≤p−→ {q1,q1,q2,q3, p}

WL
p
≤p−→ {q1,q1,q2,q3}

2. Case p∈Qzero: if the multiset w is not empty (this is the case in this example, w = {q1,q1,q2,q3}),
one can apply the strong looping rule:

p
≤p−→ {p,q1,q1,q2,q3}

SL
p
≤p−→ {q1,q1,q2,q3}

Hence, the final derivation has size linearly proportional to |w|, i.e., size f (0, |w|) = c1 · |w|+ c2 for
appropriate constants c1,c2 ∈ N, as stated in Definition 27.

7.2 Inductive step

We reason by induction on q and in the inductive step we assume that any realizable profile p
<q−→

{q1 . . .qn} is derivable in the deductive system (note the strict inequality <q) by a proof of size at most
f (q− 1, |{q1, . . . ,qn}|). In order to complete the inductive step we will consider an arbitrary realizable

profile of the form p
≤q−→{q1, . . . ,qn} and we will prove that it is derivable by a derivation of size at most

f (q, |{q1, . . . ,qn}|). Let us fix an arbitrary partial run ρ having profile p
≤q−→ {q1 . . .qn}.
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p

p1 q

q1 q2

q2 p2

q1 p2

q3 p1

. . . . . .

(a) Partial run ρ having profile p
≤q−→

{q1,q2,q2,q3}.

p

p1 q

q1 q2

q2 p2

q1 p2

q3 p1

(b) Partial run ρh up to depth h, where all ports ap-
pear with the required multiplicities, having profile

p
≤q−→ {q1,q2,q2,q3}∪{p1, p2}.

Figure 10: A run and its cut.

Let h∈N the least depth such that all ports in w appear with at least the required multiplicities in the
partial run ρ at depth≤ h. E.g., if w = {r,r,s} then at depth≤ h, there must be at least two leaves labeled
by r and at least one leaf labeled by s. For the run ρ in Figure 10a the least such h is 3 as visible in Figure
10b. Let ρh be the partial run ρ up-to depth h, i.e., where all vertices below depth h are removed.

Note, that ρh has profile p
≤q−→ w∪P where P ⊆ Q is the set (i.e, multiset with multiplicities 1) of

states labeling leaves in ρh that do not appear in w. In the example depicted above, P = {p1, p2}.
We can assume without loss of generality that, for each pi∈P, all sub-partial runs of ρ rooted at the

vertices (which are leaves of ρh) labeled by pi are identical. If they are not, simply select one and replace
all others by it. This produces another partial run ρ ′ having the same profile as ρ .

pi

. . .

Figure 11: Sub-partial run rooted at pi.

So, for each pi∈P, the sub-partial run rooted at pi (Figure 11) which in what follows we denote by ρi,

has profile pi
≤q−→ wi for some wi ⊆ w. In the rest of the proof we will show how to construct derivations

for:
• p

≤q−→ w∪P, i.e., the profile of ρh,

• pi
≤q−→ wi, i.e., the profile of each ρi, for each pi∈P.

By iterated applications (|P|-many) of the unification rule (U), and subsequent applications of the rule

(D), it will then be possible to obtain a derivation of the desired profile p
≤q−→ w. The following figure

shows one instance of such proof.
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p
≤q−→ {q1,q2,q2,q3, p1, p2} p1

≤q−→ w1
U

p
≤q−→ {q1,q1,q2,q3, p2}∪w1D (|w1|-many times)
p
≤q−→ {q1,q1,q2,q3, p2} p2

≤q−→ w2
U

p
≤q−→ {q1,q1,q2,q3}∪w2D (|w2|-many times)
p
≤q−→ {q1,q1,q2,q3}

Figure 12: Example of a proof for w = {q1,q2,q2,q3} and P = {p1, p2}, see Figure 10a.

Furthermore, if p
≤q−→ w∪P and pi

≤q−→ wi are derivable by proofs of size N and Mi, respectively,
then the final proof of p

≤q−→ w will have size linearly proportional to N +∑pi∈P Mi + |P| · |w|, where the
expression |P| · |w| is an upper bound on the number of vertices corresponding to the application of the
(U) and (D) rules. Therefore, by letting K = max{N,Mi} and since |P| ≤ |Q| where Q is the set of states
of the subzero automaton, the size of derivation is bounded by

f (q, |w|) = (K · (|Q|+1))+(|Q| · |w|). (1)

On the next few pages (see Equation 7 at the very end of this Section) we will prove an upper bound

K ≤max


f (q−1,2|w|)+h(2|w|) · |w|+ |w|2,
f (q−1,2|w|) · (2|w|+1)+ |w|2,
(3 f (q−1,2)+1)+ f (q−1,0)+1,
f (q−1,2|w|)+g(2|w|+|Q|) · |w|+ |w|2.

This agrees with Definition 27 and will show that profile p
≤q−→ w can be proved by a derivation of size

≤ f (q, |w|).

Remark. Note how the multiset wi ⊆ w of each profile pi
≤q−→ wi is irrelevant in the process of proof

construction, as all the ports in wi are removed by |wi|-many applications of the (D) rule immediately

after being introduced by the (U) rule. Hence deriving a profile pi
≤q−→ u, for some u ⊆ w, is sufficient

for the purpose.

How to construct a derivation of: p
≤q−→ w∪P.

Since p
≤q−→ w∪P is the profile of the (finite) partial run ρh, then the profile is derivable by iterated

applications of the rules (U), (A) and (D), by using the same ideas discussed in the base case of the
induction (see Figure 8).

What will require more work is to establish an upper bound N on the size of this derivation. The
reader not interested in the details regarding the estimation of the value N can ignore the following claim
and its proof.

Claim 30. The profile p
≤q−→ w∪P can be derived by a derivation of size

N ≤ f (q−1,2|w|)+(g(2|w|+|Q|) · |w|)+ |w|2.

where the function g :N→ N is defined as in Definition 27.
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Proof of the claim. For each inner vertex x (i.e., not a leaf) labeled by q in ρh, let ρx
h be the sub-partial

run rooted at x. The following picture shows ρx
h where x is the right child of the root of the partial run ρh

showed in Figure 10b.

q

q1 q2

q2 p2

Figure 13: Partial run ρx
h .

We define the type of x as the maximal multiset (see Definition 4) wx ⊆ w∪P with respect to the
multiset of states labeling leaves in ρx

h . In particular ρx
h has profile q

≤q−→ wx. Note that there are only
finitely many types, as there are only finitely many multisubsets of wx ⊆ w∪P. We now show how to
construct derivations of each of the finitely many profiles q

≤q−→ wx. The proof is by induction on the
complexity of types, which we now define.

Definition 31. A type v⊆ w∪P is of complexity 0 if there exists some x (labeled by q) in ρh such that:

1. there are no vertices labeled by q in any path from x (excluded) to any leaf (also excluded) in ρh,

2. x has type v, that is v = wx.

A type v⊆ w∪P has complexity n+1 if there exists some x (labeled by q) in ρh such that:

1. the first state y labeled by q in any path from x (excluded) to any leaf (also excluded) has type of
complexity ≤ n,

2. x has type v, that is v = wx.

We now show, by induction on the complexity of types, that

Subclaim. Every profile q
≤q−→ wx, with wx a type having complexity n, can be derived by a proof of size

≤ g(n).

Proof of the subclaim.

Base case: how to derive q
≤q−→ wx with wx a type of complexity 0.

The fact that wx has complexity 0 means that ρx
h has no inner vertex labeled by q. So by induction

hypothesis, there exists a derivation of q
<q−→ wx of size f (q−1, |wx|).

Since |wx| ≤ |w∪P| ≤ |w∪Q|, where Q is the set of states in the zero automaton, we get that the size

of the proof of q
≤q−→ wx has size ≤ g(0) = f (q−1, |w|+ |Q|), as desired.

Inductive case: how to derive q
≤q−→ wx with wx a type of complexity n+1.

Let ρx
h |q be the partial run ρx

h where all vertices below the first occurrences of q’s have been removed.

The partial run ρx
h |q has profile q

<q−→ w′x∪{q, . . . ,q} (note the strict inequality < q), for some w′x ⊆ wx

(this is because some ports in wx might not appear in ρx
h |q since some vertices where removed) and where
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{q, . . . ,q} denotes the multiset of leaves labeled by q in ρx
h |q (up to a maximal multiplicity of |wx|). Note

that
|w′x∪{q, . . . ,q}| ≤ 2|wx| ≤ 2(|w|+ |Q|).

From the the inductive assumption on q, we know that the profile q
<q−→w′x∪{q, . . . ,q} can be proved

using a derivation of size at most f (q−1, |w′x∪{q, . . . ,q}|). Moreover, we have

f (q−1, |w′x∪{q, . . . ,q}|)≤ f (q−1,2(|w|+ |Q|)),

because f is non-decreasing in the second coordinate.
Now that we have constructed a derivation of q

<q−→ w′x ∪ {q, . . . ,q} we can combine it with the

derivations of q
≤q−→ wy corresponding to all vertices y, labeled by q, which appears as leaves in ρx

h |q.
These derivations can be constructed by induction hypothesis on the complexity of the types wy (the fact
that each wy has complexity ≤ n follows, by definition, from the assumption that wx has type n+1). So,
by means of application of the (U) and (D) rule (see Figure 12) we can construct the desired derivation
of q

≤q−→ wx. This completes the proof of the subclaim.

Since the derivation of q
≤q−→ wx is obtained by combining:

1. the derivation of q
<q−→ w′x∪{q, . . . ,q}, having size ≤ f (q−1,2(|w|+ |Q|))

2. the |wx|-many derivations q
≤q−→ wy, having size ≤ g(n),

and recalling that |wx| ≤ |w|+ |Q|, we have that the size of the proof q
≤q−→ wx is smaller or equal than:

f (q−1,2(|w|+ |Q|))+g(n) · (|w|+ |Q|)+(|w|+ |Q|)2 = g(n+1)

where the expression (|w|+ |Q|)2 counts the number of applications of the (U) and (D) rules.

We have established that, for every type wx of complexity n, the profile q
≤q−→ wx can be derived by

a proof of size ≤ g(n). Since the number of types v⊆ w∪P is bounded by 2|w|+|Q|, each type has com-

plexity at most 2|w|+|Q|. Hence, we know that an arbitrary profile q
≤q−→ wx can be derived by a derivation

of size ≤ g(2|w|+|Q|).

Now we are ready to conclude the proof of Claim 30. We need to construct a proof of the profile p
≤q−→

w∪P of ρh of size at most N. Let ρh|q denote the profile ρh where all vertices below the first occurrences

of q have been removed. Then ρh|q has profile p
<q−→ w′ ∪{q, . . . ,q} (note the strict inequality) where

w′ ⊆ w and, as before {q, . . . ,q}, denotes the multiset of leaves labeled by q in ρh|q (up to a maximal

multiplicity of |w|). Since |w′| ≤ |w| and |{q, . . . ,q}| ≤ |w|, a derivation of p
<q−→ w′∪{q, . . . ,q} of size

≤ f (q−1,2|w|) can be obtained by induction hypothesis on q.

Using this derivation and the appropriate required derivations q
≤q−→ wx (each having size bounded

by g(2|w|+|Q|)), we can get a derivation of size

N ≤ f (q−1,2|w|)+g(2|w|+|Q|) · |w|+ |w|2, (2)

where the expression |w|2 counts the number of (U) and (D) rules required to combine the sub-derivations.
This finishes the proof of Claim 30.
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How to construct a derivation of: pi
≤q−→ wi.

In this section we describe how to construct a derivation of pi
≤q−→ wi for each pi∈P. We consider

separately the three cases: (1) q 6∈ Qall (with either q∈Qzero or q 6∈Qzero), (2) q ∈ Qall and q 6∈Qzero,
and (3) q ∈ Qall and q∈Qzero.

Subcase q 6∈Qall. Consider the sub-partial run ρi rooted at one leaf labeled by pi having profile pi
≤q−→

wi, for some wi ⊆ w. For example, in the image depicted, the sub-partial run rooted at p1.

pi

. . .

Figure 14: Sub-partial run rooted at pi.

Our goal now is to derive the profile pi
≤q−→ wi. Since q is the maximal inner state in this sub-

partial run, and it is not in Qall, we conclude that there are no infinite paths in ρi having infinitely many
occurrences of q.

If there are no vertices labeled by q at all in ρi, then the profile of ρi is actually pi
<q−→ wi and this is

derivable by inductive hypothesis on q by a proof of size bounded by f (q−1, |wi|).
So assume there exist some vertices in ρi labeled by q. For any such vertex x, let us denote with ρx

i

the sub-partial run of ρi rooted at x. The partial run ρx
i has profile q

<q−→ wx
i , for some wx

i ⊆ wi. The
multiset wx

i is called the type of x.

Following the same idea presented earlier, we prove how to derive all these profiles q
<q−→ wx

i by
induction on the appropriate notion of complexity of types. The notion of type is similar but technically
different than the one introduced in the proof of Claim 30.

Definition 32. A type v⊆ wi is of complexity 0 if there exists some x (labeled by q) in ρi such that:

1. there are no vertices labeled by q below x (excluded x itself)

2. x has type v, that is v = wx
i .

A type v⊆ wi has complexity n+1 if there exists some x (labeled by q) in ρi such that:

1. the first (if any) state y labeled by q in any path from x (excluded) has type of complexity ≤ n,

2. x has type v, that is v = wx
i .

From the fact that there are no infinite paths with infinitely many q’s in ρi, we deduce that each type
has a finite complexity. Furthermore, there are at most 2|wi| ≤ 2|w| types (i.e., multisubsets of wi).

Claim 33. Each type wx
i of complexity n, the profile q

<q−→ wx
i is derivable by a proof of size smaller or

equal than h(n) where the function h :N→ N is defined as in Definition 27 as:

• h(0) = f (q−1, |w|),

• h(n+1) = f (q−1,2|w|)+(h(n) · |w|)+ |w|2.
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From the claim follows that each q
<q−→ wx

i can be derived by a proof of size ≤ h(2|w|).

Proof of the Claim.
Base case: how to derive q

≤q−→ wx
i given wx

i a type of complexity 0.
The fact that wx

i has complexity 0 means that ρx
i has no inner vertices (excluded the root x itself)

labeled by q. So by induction hypothesis, there exists a derivation of q
<q−→ wx

i of size f (q− 1, |wx
i |).

Since |wx
i | ≤ |wi| ≤ |w|, the proof has size ≤ f (q−1, |w|) = h(0), as desired.

Inductive case: how to derive q
≤q−→ wx

i given wx
i , a type of complexity n+1.

Let ρx
i |q be the partial run ρx

i where all vertices below the first occurrences of q’s have been removed.

q

q

Figure 15: Removing all vertices below q’s in the partial run ρx
i .

The partial run ρx
i |q has profile q

<q−→w′x∪{q, . . . ,q} (note the strict inequality < q), for some w′x⊆wx
i

(this is because some ports in wi
x might not appear in ρx

i |q since some vertices were removed) and where
{q, . . . ,q} denotes the multiset of leaves labeled by q in ρx

i |q (up to a maximal multiplicity of |wx
i |). Note

that
|w′x∪{q, . . . ,q}| ≤ 2|wx

i | ≤ 2|w|.

From the inductive assumption on q the profile q
<q−→w′x∪{q, . . . ,q} can be proved using a derivation

of size at most f (q−1, |w′x∪{q, . . . ,q}|). Moreover, we have

f (q−1, |w′x∪{q, . . . ,q}|)≤ f (q−1,2|w|),

because f is non-decreasing in the second coordinate.

Now we are ready to construct the desired derivation q
≤q−→ wx

i . We construct it using the derivation
of q

<q−→ w′x∪{q, . . . ,q}, rules (U) and (D) and appropriate auxiliary derivations q
<q−→ wy

i of type ≤ n.
The resulting proof has then size ≤ f (q−1,2|w|)+(h(n) · |w|)+ |w|2 = h(n+1).

We are ready to construct a proof of the profile pi
≤q−→ wi of ρi and prove an appropriate estimation

of its size (see Equation 3). Let ρi|q denote the profile ρi where all vertices below the first occurrences

of q have been removed. Then ρi|q has profile p
<q−→ w′ ∪{q, . . . ,q} (note the strict inequality) where

w′ ⊆ wi and, as before {q, . . . ,q}, denotes the multiset of leaves labeled by q in ρi|q (up to a maximal

multiplicity of |w|). Since |w′| ≤ |wi| ≤ |w| and |{q, . . . ,q}| ≤ |w|, a derivation of p
<q−→ w′∪{q, . . . ,q}

of size ≤ f (q−1,2|w|) can be obtained by induction hypothesis on q.

Using this derivation and the appropriate required derivations q
≤q−→ wx (having size bounded by

h(2|w|)), we can get a derivation of size

Mi ≤ f (q−1,2|w|)+(h(2|w|) · |w|)+ |w|2. (3)
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Subcase q ∈ Qall and q 6∈ Qzero. Consider the sub-partial run ρi rooted at pi.

pi

. . .

Figure 16: Sub-partial run rooted at pi.

Our goal now is to derive the profile pi
≤q−→ wi. If there are not states labeled by q in ρi, then the

partial run ρi actually has profile pi
<q−→wi and this is derivable by inductive hypothesis on q with a proof

of size ≤ f (q−1, |wi|)≤ f (q−1, |w|). So let us assume that there are some states labeled by q in ρi.
Note, that unlike the previous case, this time it is possible that the partial run ρi contains infinite

paths with infinitely many q as this would satisfy the Qall condition and would not constitute a problem
with respect to the Qzero conditions, since q 6∈Qzero. Let ρi|q be obtained by ρi by removing all vertices
below the first occurrences of states labeled by q.

pi

q

Figure 17: Removing all vertices below q’s in the partial run ρi.

Note, that the obtained tree ρi|q is itself a partial run with profile pi
<q−→w′∪{q, . . . ,q}, for a multiset

w′ contained in wi and where {q, . . . ,q} denotes the multiset of leaves labeled by q up to a maximal
multiplicity of |wi|. Moreover, in ρi|q all inner nodes of ρ ′ are different than q. Hence we can derive

pi
<q−→ w′ ∪{q, . . . ,q} (note the strict inequality) by induction hypothesis on q with a proof of size ≤

f (q−1,2|w|).
Now, if pi=q, we can obtain the desired derivation of pi

≤q−→ w′ by application of the Weak Looping
(WL) rule:

q
<q−→ w′∪{q, . . . ,q}

D
q

<q−→ w′∪{q}
WL

q
<q−→ w′

If instead pi 6= q, then for all leaves in ρi|q labeled by q, we can derive q
<q−→ w′′, for some w′′⊆wi as

described just above for the case pi=q. Note, that there are at most 2|w| such derivations, as w′′ ⊆wi ⊆w,
and each derivation has size bounded by f (q−1,2|w|).

We can then combine the proof of the profile pi
<q−→ w′ ∪{q, . . . ,q} (having size ≤ f (q− 1,2|w|))

with all the relevant profiles q
<q−→ w′′ (having size ≤ f (q− 1,2|w|) ) to obtain the desired derivation.
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The final proof has size:

Mi ≤ f (q−1,2|w|)+( f (q−1,2|w|) ·2|w|)+ |w|2 = f (q−1,2|w|) · (2|w|+1)+ |w|2, (4)

where the last term |w|2 counts the number of applications of (U) and (D) rule to combine all sub-
derivations into the final derivation.

Subcase q ∈ Qall and q∈ Qzero. Consider the sub-partial run ρi rooted at pi.

pi

. . .

Figure 18: Sub-partial run rooted at pi.

Our goal now is to derive the profile pi
≤q−→ wi. As in the previous case, if there are no states labeled

by q in ρi, then the partial run ρi actually has profile pi
<q−→wi and this is derivable by inductive hypothesis

on q with a proof of size f (q−1, |wi|). Therefore let us assume that some states in ρi are labeled by q.
We distinguish two cases: wi 6= /0 and wi = /0, where wi is the multiset of ports in ρi. If wi 6= /0 then

our argument proceeds exactly as in the previous case with the only difference that the derivation of the
profile pi

<q−→ wi is obtained by application of the Strong Looping rule (SL) rather than (WL). Hence (as
in Equation 4) we have a proof of size

Mi ≤ f (q−1,2|w|)+( f (q−1,2|w|) ·2|w|)+ |w|2. (5)

Consider then the case wi= /0, i.e., the case of ρi having profile pi
<q−→ /0. Since q∈Qzero, the set of

paths in ρi having infinitely many occurrences of q has probability 0.

Claim 34. Since ρi is a regular tree, there exists a subtree ρ ′ of ρi that does not contain any vertex
labeled by q.

Proof. By contradiction, if vertices labeled by q are reachable by all states in the tree ρi, then by reg-
ularity (i.e., ρi can be represented as a finite graph), the set of paths visiting infinitely many q’s has
probability 1.

Remark. The above claim is the only point in the proof where the regularity assumption is used.

Let r be the root of the subtree. The subtree ρ ′ has profile r
<q−→ /0 (note the strict inequality) which is

derivable by induction on q with a proof of size at most f (q−1,0). Now, from the partial run ρi, remove

all the vertices below the state r. In this way we obtain a new partial run having profile pi
≤q−→ {r}. We

can derive this profile as described in the previous part of the proof (case wi 6= /0, see Equation 5) with
a derivation having size ≤ f (q− 1,2|{r}|)+ ( f (q− 1,2|{r}|) · 2|{r}|)+ |{r}|2 = f (q− 1,2)+ 2 f (q−
1,2)+1 = 3 f (q−1,2)+1. Then, by application of the rule (U) we can obtain the desired derivation:
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pi
≤q−→ {r} r

<q−→ /0
Unification (U):

pi
≤q−→ /0

The resulting proof has size

Mi ≤ (3 f (q−1,2)+1)+ f (q−1,0)+1. (6)

This concludes the proof regarding the derivability of pi
≤q−→wi of ρi. That is, we have established in this

Subsection (Subsection 7.2, see Equations 3, 4, 5 and 6) that, for each pi∈P, the profile pi
≤q−→ wi of ρi

can be proved by a derivation of size

Mi ≤max


f (q−1,2|w|)+h(2|w|) · |w|+ |w|2,
f (q−1,2|w|) · (2|w|+1)+ |w|2,
(3 f (q−1,2)+1)+ f (q−1,0)+1.

From Equation 2 we know that

N ≤ f (q−1,2|w|)+g(2|w|+|Q|) · |w|+ |w|2.

Therefore, following Equation 1, we know that K = max{N,Mi} is bounded by

K ≤


f (q−1,2|w|)+h(2|w|) · |w|+ |w|2,
f (q−1,2|w|) · (2|w|+1)+ |w|2,
(3 f (q−1,2)+1)+ f (q−1,0)+1,
N ≤ f (q−1,2|w|)+g(2|w|+|Q|) · |w|+ |w|2

(7)

This completes the proof of Theorem 25.
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