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Multiparty sessions are systems of concurrent processes, which allow several participants to com-

municate by sending and receiving messages. Their overall behaviour can be described by means

of global types. Typable multiparty session enjoy lock-freedom. We look at multiparty sessions as

open systems by a suitable definition of connection transforming compatible processes into gateways

(forwarders). A relation resembling the standard subtyping relation for session types is used to for-

malise compatibility. We show that the session obtained by connection can be typed by manipulating

the global types of the starting sessions. This allows us to prove that lock-freedom is preserved by

connection.

1 Introduction

Distributed systems are seldom developed as independent entities and, either directly in their design

phase or even after their deployment, they should be considered as open entities ready for interaction

with an environment. In general, it is fairly natural to expect to connect open systems as if they were

composable modules, and in doing that we should rely on “safe” methodologies and techniques, guaran-

teeing the composition not to “break” any relevant property of the single systems.

In [1] a methodology has been proposed for the connection of open systems, consisting in replacing

any two participants - if their behaviours are “compatible” - by two forwarders, dubbed gateways, en-

abling the systems to interact. The behaviour of any participant can be looked at as an interface since,

without loss of generality, the notion of interface is interpreted not as the description of the interac-

tions “offered” by a system but, dually, as those “required” by a possible environment (usually another

system).

Inspired by [22], the aim of the present paper is to look for a choreography formalism enabling to

“lift” the connection-by-gateways by means of a proper function definable on protocol descriptions. The

function should yield the protocol of the system obtained by connecting the systems described by the

arguments of the function itself. Connected systems would hence enjoy all the good communication

properties guaranteed by the formalism itself, which - with no ad-hoc extension of the syntax - could be

seen as a choreography formalism for open systems.

We took into account the choreography model of MultiParty Session Types (MPST) [17, 18]. Of

course not all of the MPST formalisms are suitable for our aim. For instance, in the formalisn of [9]

the requirements imposed by its type system are too strong for the gateway processes to be typed, so

preventing the function we are looking for to be definable.
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The MPST formalism that we introduce in the present paper (inspired by [27]) proved to be a right

candidate. The simplicity of the calculus allows to get rid of channels and local types. Moreover,

its abstract point of view for what concerns global and local behaviours (looked at as infinite regular

trees) also enables to focus on the relevant aspects of the investigation without the hindering syntactic

descriptions of recursion. In particular, with respect to [27], we relax the conditions imposed on global

types in order to be projectable, so ensuring projectability of “connected” global types. (a property that

does not hold in the formalism of [27]). In our formalism, typable systems are guaranteed to be lock-free

[20]. The systems obtained by connecting typable systems are lock-free too. The main tool is a function

from the global types of the original systems to the global type of the system obtained by connection.

In the present setting it is also possible to investigate in a clean way the notion of interface compatibility:

we show that the compatibility relation used in [1] can be relaxed to a relation closely connected to

the observational preorder of [27], in turn corresponding to the subtyping relation for session types of

[14, 11].

Outline The first three sections introduce our calculus of multiparty sessions, together with their

global types, and prove the properties of well-typed sessions. In the following two sections we define the

compatibility relations and the gateway connections for sessions and global types, respectively. Our main

result, i.e. the typability and hence the lock-freedom of the session obtained by gateway connection, is

Theorem 6.7. Sections 7 and 8 conclude discussing related and future works, respectively.

2 Processes and Multiparty Sessions

We use the following base sets and notation: messages, ranged over by ℓ,ℓ′, . . . ; session participants,

ranged over by p,q, . . .; processes, ranged over by P,Q, . . . ; multiparty sessions, ranged over by

M ,M ′, . . . ; integers, ranged over by n,m, i, j, , . . . .

Processes implement the behaviours of single participants. The input process p?{ℓi.Pi | 1≤i≤n} waits

for one of the messages ℓi from participant p; the output process p!{ℓi.Pi | 1≤i≤n} chooses one message

ℓi and sends it to participant p. We use Λ as shorthand for {ℓi.Pi | 1≤i≤n}. We define the multiset of

messages in Λ as msg({ℓi.Pi | 1≤i≤n}) = {ℓi | 1 ≤ i ≤ n}. After sending or receiving the message ℓi the

process reduces to Pi (1≤ i≤ n). The set Λ in p?Λ acts as an external choice, while the same set in p!Λ

acts as an internal choice. In a full-fledged calculus, messages would carry values, namely they would

be of the form ℓ(v). Here for simplicity we consider only pure messages. This agrees with the focus of

session calculi, which is on process interactions that do not depend on actual transmitted values.

For the sake of abstraction, we do not take into account any explicit syntax for recursion, but rather

consider processes as, possibly infinite, regular trees.

It is handy to first define pre-processes, since the processes must satisfy conditions which can be

easily given using the tree representation of pre-processes.

Definition 2.1 (Processes) (i) We say that P is a pre-process and Λ is a pre-choice of messages if

they are generated by the grammar:

P ::=coinductive 0 || p?Λ || p!Λ Λ ::= {ℓi.Pi | 1≤i≤n}
and all messages in msg(Λ) are pairwise distinct.

(ii) The tree representation of a pre-process is a directed rooted tree, where: (a) each internal node is

labelled by p? or p! and has as many children as the number of messages, (b) the edge from p? or

p! to the child Pi is labelled by ℓi and (c) the leaves of the tree (if any) are labelled by 0.
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(iii) We say that a pre-process P is a process if the tree representation of P is regular (namely, it has

finitely many distinct sub-trees). We say that a pre-choice of messages Λ is a choice of messages if

all the pre-processes in Λ are processes.

We identify processes with their tree representations and we shall sometimes refer to the trees as the

processes themselves. The regularity condition implies that we only consider processes admitting a finite

description. This is equivalent to writing processes with µ-notation and an equality which allows for an

infinite number of unfoldings. This is also called the equirecursive approach, since it views processes as

the unique solutions of (guarded) recursive equations [26, Section 20.2]. The existence and uniqueness of

a solution follow from known results (see [10] and [5, Theorem 7.5.34]). It is natural to use coinduction

as the main logical tool, as we do in most of the proofs. In particular, we adopt the coinduction style

advocated in [21] which, without any loss of formal rigour, promotes readability and conciseness.

We define the set ptp(P) of participants of process P by: ptp(0) = /0 and

ptp(p?{ℓi.Pi | 1≤i≤n}) = ptp(p!{ℓi.Pi | 1≤i≤n}) = {p}∪ptp(P1)∪ . . .∪ptp(Pn)
The regularity of processes assures that the set of participants is finite.

We shall write ℓ.P⊎Λ for {ℓ.P}∪Λ if ℓ 6∈msg(Λ) and Λ1⊎Λ2 for Λ1∪Λ2 if msg(Λ1)∩msg(Λ2) = /0.

We shall also omit curly brackets in choices with only one branch and trailing 0 processes.

A multiparty session is the parallel composition of pairs participants/processes.

Definition 2.2 (Multiparty Sessions) A multiparty session M is defined by the following grammar:

M ::=inductive p⊲P || M |M
and it should satisfy the following conditions:

(a) In p1 ⊲P1 | . . . | pn ⊲Pn all the pi’s (1≤ i≤ n) are distinct;

(b) In p⊲P we require p 6∈ ptp(P) (we do not allow self-communication).

We shall use ∏
1≤i≤n

pi ⊲Pi as shorthand for p1 ⊲P1 | . . . | pn ⊲Pn.

We define pts(p⊲P) = {p} and pts(M |M ′) = pts(M )∪pts(M ′).

Operational Semantics The structural congruence ≡ between two multiparty sessions establishes that

parallel composition is commutative, associative and has neutral elements p⊲0 for any fresh p.

The reduction for multiparty sessions allows participants to choose and communicate messages.

Definition 2.3 (LTS for Multiparty Sessions) The labelled transition system (LTS) for multiparty ses-

sions is the closure under structural congruence of the reduction specified by the unique rule:
[COMM]

msg(Λ)⊆ msg(Λ′)

p⊲q!(ℓ.P⊎Λ) | q⊲p?(ℓ.Q⊎Λ′) |M
pℓq
−−→ p⊲P | q⊲Q |M

Rule [COMM] makes the communication possible: participant p sends message ℓ to participant q. This

rule is non-deterministic in the choice of messages. The condition msg(Λ) ⊆ msg(Λ′) assures that the

sender can freely choose the message, since the receiver must offer all sender messages and possibly

more. This allows us to distinguish in the operational semantics between internal and external choices.

We use M
λ
−→M ′ as shorthand for M

pℓq
−−→M ′. We sometimes omit the label writing −→. As usual,

−→∗ denotes the reflexive and transitive closure of −→.

Example 2.4 Let us consider a system (inspired by a similar one in [1]) with participants p, q, and h

interacting according the following protocol. Participant p keeps on sending text messages to q, which
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has to deliver them to h. After a message has been sent by p, the next one can be sent only if the previous

has been received by h and its propriety of language ascertained, i.e if it does not contain, say, rude or

offensive words. Participant h acknowledges to q the propriety of language of a received text by means

of the message ack. In such a case q sends to p an ok message so that p can proceed by sending a further

message. More precisely:

1. p sends a text message to q in order to be delivered to h, which accepts only texts possessing a

good propriety of language;

2. then h either

(a) sends an ack to q certifying the reception of the text and its propriety. In this case q sends

back to p an ok message and the protocol goes back to 1., so that p can proceed by sending a

further text message;

(b) sends a nack message to inform q that the text has not the required propriety of language. In

such a case q produces transf (a semantically invariant reformulation of the text), sends it

back to h and the protocol goes to 2. again. Before doing that, q informs p (through the notyet

message) that the text has not been accepted yet and a reformulation has been requested;

(c) sends a stop message to inform q that no more text will be accepted. In such a case q informs

of that also p.

A multiparty session implementing this protocol is: M = p⊲P | q⊲Q | h⊲H where

P = q!text.P1 P1 = q?{ok.P,notyet.P1,stop}
Q = p?text.h!text.Q1 Q1 = h?{ack.p!ok.Q,nack.p!notyet.h!transf.Q1,stop.p!stop}
H = q?text.H1 H1 = q!{ack.H,nack.q?transf.H1,stop}

We end this section by defining the property of lock-freedom for multiparty session as in [20]. Lock-

freedom ensures both progress and no starvation (under fairness assumption). I.e. it guarantees the

absence of deadlock and that all participants willing to communicate can do it. Recall that p ⊲ 0 is the

neutral element of parallel composition.

Definition 2.5 ( Lock-Freedom) We say that a multiparty session M is a lock-free session if

(a) M −→∗M ′ implies either M ′ ≡ p⊲0 or M ′ −→M ′′, and

(b) M −→∗ p⊲P |M ′ and P 6= 0 imply p⊲P |M ′ −→∗ M ′′ λ
−→ and p occurs in λ .

3 Global Types and Typing System

The behaviour of multiparty sessions can be disciplined by means of types, as usual. Global types

describe the whole conversation scenarios of multiparty sessions. As in [27] we directly assign global

types to multiparty sessions without the usual detour around session types and subtyping [17, 18].

The type p→ q : {ℓi.Gi | 1≤i≤n} formalises a protocol where participant p must send to q a message

ℓi for some 1≤ i≤ n and then, depending on which ℓi was chosen by p, the protocol continues as Gi. We

use Γ as shorthand for {ℓi.Gi | 1≤i≤n} and define the multiset msg({ℓi.Gi | 1≤i≤n}) = {ℓi | 1≤ i≤ n}. As

for processes, we define first pre-global types and then global types.

Definition 3.1 (Global Types) (i) We say that G is a pre-global type and Γ is a pre-choice of com-

munications if they are generated by the grammar:

G ::=coinductive end || p→ q : Γ Γ := {ℓi.Gi | 1≤i≤n}
and all messages in msg(Γ) are pairwise distinct.
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(ii) The tree representation of a pre-global type is built as follows: (a) each internal node is labelled

by p→ q and has as many children as the number of messages, (b) the edge from p→ q to the

child Gi is labelled by ℓi and (c) the leaves of the tree (if any) are labelled by end.

(iii) We say that a pre-global type G is a global type if the tree representation of G is regular. We say

that a pre-choice of communications Γ is a choice of communications if all the pre-global types in

Γ are global types.

We identify pre-global types and global types with their tree representations and we shall sometimes

refer to the tree representation as the global types themselves. As for processes, the regularity condition

implies that we only consider global types admitting a finite representation.

The set ptg(G) of participants of global type G is defined similarly to that of processes. The regularity

of global types assures that the set of participants is finite. We shall write ℓ.G⊎ Γ for {ℓ.G} ∪ Γ if

ℓ 6∈ msg(Γ) and Γ1⊎Γ2 for Γ1∪Γ2 if msg(Γ1)∩msg(Γ2) = /0. We shall omit curly brackets in choices

with only one branch and trailing ends.

Since all messages in communication choices are pairwise distinct, the set of paths in the trees rep-

resenting global types are determined by the labels of nodes and edges found on the way, omitting the

leaf label end. Let ρ range over paths of global types. Formally the set of paths of a global type can be

defined as a set of sequences as follows (ε is the empty sequence):

paths(end) = {ε} paths(p→ q : {ℓi.Gi | 1≤i≤n}) =
⋃

1≤i≤n{p→ qℓi ρ | ρ ∈ paths(Gi)}
Note that every infinite path of a global type has infinitely many occurrences of→.

Example 3.2 A global type representing the protocol of Example 2.4 is:

G = p→ q : text.q→ h : text.G1

G1 = h→ q : {ack : q→ p : ok.G,

nack : q→ p : notyet.q→ h : transf.G1,

stop : q→ p : stop}

In order to assure lock-freedom by typing we require that the first occurrences of participants in

global types are at a bounded depth in all paths starting from the root. This is formalised by the following

definition of weight.

Definition 3.3 (Weight) Let weight(ρ1 (q→ r)ℓρ2,p) = length(ρ1) if p 6∈ ρ1 and p ∈ {q, r}, then

weight(G,p) =

{

max{weight(ρ ,p) | ρ ∈ paths(G)} if p ∈ ptg(G),

0 otherwise

Example 3.4 If G is as in Example 3.2, then weight(G,p) = weight(G,q) = 0, and weight(G,h) = 1. If

G′ = p→ q : {ℓ1.r→ p : ℓ3, ℓ2.G
′}, then weight(G′, r) = ∞.

The standard projection of global types onto participants produces session types and session types

are assigned to processes by a type system [17, 18]. The present simplified shape of messages allows us

to define a projection of global types onto participants producing processes instead of local types.

The projection of a global type onto a participant returns, if any, the process that the participant

should run to follow the protocol specified by the global type. If the global type begins by establishing a

communication from p to q, then the projection onto p should send one message to q, and the projection

onto q should receive one message from p. The projection onto a third participant r skips the initial

communication, that does not involve her. This implies that the behaviour of r must be independent of

the branch chosen by p, that is the projections on r of all the branches must be the same. However, in case

of projections yielding input processes from the same sender, we can allow the process of r to combine

all these processes, proviso the messages are all distinct.
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Definition 3.5 (Projection) Given a global type G and a participant p, we define the partial function ↾p
coinductively as follows:

G↾p = 0 if p 6∈ ptg(G)
(p→ q : {ℓi.Gi | 1≤i≤n}) ↾p = q!{ℓi.Gi↾p| 1≤i≤n}
(q→ p : {ℓi.Gi | 1≤i≤n}) ↾p = q?{ℓi.Gi↾p| 1≤i≤n}

(q→ r : {ℓi.Gi | 1≤i≤n}) ↾p =











G1↾p if p 6∈ {q, r} and Gi↾p= G j↾p (1≤ i, j ≤ n)

s?(Λ1⊎ . . .⊎Λn) if p 6∈ {q, r}, Gi↾p= s?Λi (1≤ i≤ n) and
msg(Λi)∩msg(Λ j) = /0 for 1≤ i 6= j ≤ n

We say that G↾p is the projection of G onto p if G↾p is defined. We say that G is projectable if G↾p is

defined for all participants p.

This projection is the coinductive version of the projection given in [12, 15], where processes are replaced

by local types.

As mentioned above, if p is not involved in the first communication of G, and G starts with a choice

between distinct messages, then in all branches the process of participant p must either behave in the

same way or be a different input, so that p can understand which branch was chosen.

Example 3.6 The global type G of Example 3.2 is projectable, and by projecting it we obtain G↾p= P,

G↾q= Q, G↾h= H , where P, Q, and H are as defined in Example 2.4. Also the global type G′ of Example

3.4 is projectable, G′↾p= q!{ℓ1.r?ℓ3, ℓ2.G
′↾p}, G′↾q= p?{ℓ1, ℓ2.G

′↾q}, G′↾r= p!ℓ3. Notice that G′ has two

branches, the projection of the first branch onto r is p!ℓ3, the projection of the second branch onto r is

just the projection of G′ onto r, so p!ℓ3 is the (coinductive) projection of G′ onto r.

Definition 3.7 (Well-formed Global Types) A global type G is well formed if weight(G,p) is finite and

G↾p is defined for all p ∈ ptg(G).

The global type G of Example 3.2 is well formed, while the global type G′ of Example 3.4 is not well

formed. In the following we only consider well-formed global types.

To type multiparty sessions we use the preorder 6 on processes below, inspired by the subtyping of [7].

Definition 3.8 (Structural Preorder) We define the structural preorder on processes, P 6 Q, by coin-

duction:

[SUB-0]

0 6 0

[SUB-IN]

Pi 6 Qi ∀1≤ i≤ n

p?({ℓi.Pi | 1≤i≤n}⊎Λ)6 p?{ℓi.Qi | 1≤i≤n}
=====================================

[SUB-OUT]

Pi 6 Qi ∀1≤ i≤ n

p!{ℓi.Pi | 1≤i≤n}6 p!{ℓi.Qi | 1≤i≤n}
===============================

The double line in rules indicates that the rules are interpreted coinductively. Rule [SUB-IN] allows

bigger processes to offer fewer inputs, while Rule [SUB-OUT] requires the output messages to be the

same. The regularity condition on processes is crucial to guarantee the termination of algorithms for

checking structural preorder. As it will be further discussed in Remark 6.8, the current proof fails if we

type processes used as gateways by means of the preorder 6+ obtained by substituting rule
[SUB-OUT

+]

Pi 6 Qi ∀1≤ i≤ n

p!{ℓi.Pi | 1≤i≤n}6 p!({ℓi.Qi | 1≤i≤n}⊎Λ)
====================================

for rule [SUB-OUT].

The typing judgments associate global types to sessions: they are of the shape ⊢M : G.
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Definition 3.9 (Typing system) The only typing rule is:
[T-SESS]

∀i ∈ I Pi 6 G↾pi
ptg(G)⊆ {pi | i ∈ I}

⊢∏
i∈I

pi ⊲Pi : G

This rule requires that the processes in parallel can play as participants of a whole communication proto-

col or they are the terminated process, i.e. they are smaller or equal (according to the structural preorder)

to the projections of a unique global type. The condition ptg(G)⊆{pi | i∈ I} allows to type also sessions

containing p⊲0, a property needed to assure invariance of types under structural congruence. Notice that

this typing rule allows to type multiparty session only with global types which can be projected on all

their participants. A session M is well typed if there exists G such that ⊢M : G.

4 Properties of Well-Typed Sessions

We start with the standard lemmas of inversion and canonical form, easily following from Rule [T-SESS].

Lemma 4.1 (Inversion Lemma) If ⊢ ∏
i∈I

pi ⊲Pi : G, then Pi 6 G↾pi
for all i ∈ I and ptg(G)⊆ {pi | i ∈ I}.

Lemma 4.2 (Canonical Form Lemma)

If ⊢M : G and ptg(G) = {pi | i ∈ I}, then M ≡ ∏
i∈I

pi ⊲Pi and Pi 6 G↾pi
for all i ∈ I.

To formalise the properties of Subject Reduction and Session Fidelity [17, 18], we use the standard

LTS for global types given below. Rule [ICOMM] is justified by the fact that in a projectable global type

r→ s : Γ, the behaviours of a participant p different from r and s and starting with an output are the same

in all branches, and hence they are independent from the choice of r, and may be executed before it.

Definition 4.3 (LTS for Global Types) The labelled transition system (LTS) for global types is specified

by the rules:

[ECOMM]

p→ q : (ℓ.G⊎Γ)
pℓq
−−→ G

[ICOMM]

Gi
pℓq
−−→ G′i {p,q}∩{r,s}= /0 for all i (1≤ i≤ n)

r→ s : {ℓi.Gi | 1≤i≤n}
pℓq
−−→ r→ s : {ℓi.G

′
i | 1≤i≤n}

The following lemma relates projections and reductions of global types.

Lemma 4.4 (Key Lemma) (i) If G↾p= q!Λ and G↾q= p?Λ′, then msg(Λ) = msg(Λ′). Moreover

G
pℓq
−−→ Gℓ and ℓ.Gℓ↾p∈ Λ and ℓ.Gℓ↾q∈ Λ′ for all ℓ ∈ msg(Λ).

(ii) If G
pℓq
−−→ G′, then G↾p= q!Λ and G↾q= p?Λ′ and ℓ ∈ msg(Λ) = msg(Λ′).

Proof. (i). The proof is by induction on n = weight(G,p). If n = 0, then we have G = p→ q : Γ and

msg(Γ) = msg(Λ) = msg(Λ′) and ℓ.Gℓ↾p∈ Λ and ℓ.Gℓ↾q∈ Λ′ by definition of projection. If n > 0, then

G = r→ s : {ℓi.Gi | 1≤i≤n} and {p,q}∩ {r,s} = /0 and Gi↾p= q!Λ and Gi↾q= p?Λ′ for all i, 1 ≤ i ≤ n,

by definition of projection. By the induction hypothesis, msg(Λ) = msg(Λ′). Moreover, again by the

induction hypothesis, Gi
pℓq
−−→ Gℓ

i and ℓ.Gℓ
i ↾p∈ Λ and ℓ.Gℓ

i ↾q∈ Λ′ for all i, 1 ≤ i ≤ n. We get G
pℓq
−−→ Gℓ

using rule [ICOMM], where Gℓ = r→ s : {ℓi.G
ℓ
i | 1≤i≤n}. The definition of projection implies Gℓ↾p= Gℓ

1↾p
and Gℓ↾q= Gℓ

1↾q.

(ii). The proof is by induction on weight(G,p) and by cases on the reduction rules.

The case of rule [ECOMM] is easy. For rule [ICOMM], by the induction hypothesis, Gi ↾p= q!Λi and
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Gi↾q= p?Λ′i and ℓ ∈ msg(Λi) = msg(Λ′i) for all i, 1≤ i≤ n. By definition of projection Gi↾p= G j↾p and

Gi↾q= G j↾q for 1≤ i, j ≤ n. Again by definition of projection G↾p= G1↾p and G↾q= G1↾q. �

Subject Reduction says that the transitions of well-typed sessions are mimicked by those of global

types.

Theorem 4.5 (Subject Reduction) If ⊢M : G and M
pℓq
−−→M ′, then G

pℓq
−−→ G′ and ⊢M ′ : G′.

Proof. If M
pℓq
−−→M ′, then

M ≡ p⊲q!(ℓ.P⊎Λ) | q⊲p?(ℓ.Q⊎Λ′) | ∏
1≤ j≤m

r j ⊲R j

M ′ ≡ p⊲P | q⊲Q | ∏
1≤ j≤m

r j ⊲R j

Since ⊢M : G, by Lemma 4.1 we have that q!(ℓ.P⊎Λ) 6 G↾p, p?(ℓ.Q⊎Λ′) 6 G↾q and R j 6 G↾r j

(1≤ j≤m). By definition of 6, from q!(ℓ.P⊎Λ)6G↾p we get G↾p= q!(ℓ.P0⊎Λ0) and P6P0. Similarly

from p?(ℓ.Q⊎Λ′)6 G↾q we get G↾q= p?(ℓ.Q0⊎Λ′0) and Q 6 Q0. Lemma 4.4(i) implies G
pℓq
−−→ G′ and

G′↾p= P0 and G′↾q= Q0. We show G↾r j
6 G′↾r j

for each j, 1≤ j ≤ m by induction on weight(G, r j) and

by cases on the reduction rules. For rule [ECOMM] we get G= p→ q : (ℓ.G′⊎Γ). By Definition 3.5 either

G↾r j
= G′↾r j

or G↾r j
6 G′↾r j

. For rule [ICOMM] Gi↾r j
6 G′i↾r j

for 1≤ i ≤ n by the induction hypothesis. In

both cases G↾r j
6 G′↾r j

. We conclude ⊢M ′ : G′. �

Session fidelity assures that the communications in a session typed by a global type are done as

prescribed by the global type.

Theorem 4.6 (Session Fidelity) Let ⊢M : G.

(i) If M
pℓq
−−→M ′, then G

pℓq
−−→ G′ and ⊢M ′ : G′.

(ii) If G
pℓq
−−→ G′, then M

pℓq
−−→M ′ and ⊢M ′ : G′.

Proof. (i). It is the Subject Reduction Theorem.

(ii). By Lemma 4.4(ii), G↾p= q!Λ and G↾q= p?Λ′ and ℓ∈msg(Λ) = msg(Λ′). By Lemma 4.4(i), ℓ.G′↾p∈
Λ and ℓ.G′↾q∈ Λ′. By Lemma 4.2, M ≡ p ⊲P | q ⊲Q | M0 and P 6 G↾p and Q 6 G↾q. By definition

of 6 we get P = q!(ℓ.P′⊎Λ1) with msg(Λ) = {ℓ}∪msg(Λ1) and P′ 6 G′↾p, and Q = p?(ℓ.Q′⊎Λ2) with

msg(Λ2)∪{ℓ} ⊇ msg(Λ′) and Q′ 6 G′↾q. Hence M
pℓq
−−→ p⊲P′ | q⊲Q′ |M0 = M ′ and ⊢M ′ : G′. �

Let ⊢+ be the typing system obtained by using 6+ (as defined on page 82) in rule [T-SESS]. Session

Fidelity for ⊢+ is weaker than for ⊢. If M = p ⊲ q!.ℓ1 | q ⊲ p?{ℓ1, ℓ2} and G = p→ q : {ℓ1, ℓ2}, then

⊢+ M : G and G
pℓiq−−→ end with i = 1,2, but the only reduction of M is M

pℓ1q−−→ p ⊲ 0. Notice that

q!.ℓ1 6+ G↾p but q!.ℓ1 66 G↾p and p?{ℓ1, ℓ2}= G↾q.

Clearly ⊢M : G implies ⊢+ M : G, and a weakening of the vice versa is shown below.

Theorem 4.7 If ⊢+ M : G, then ⊢M : G′ for some G′.

Proof. The proof is by coinduction on G. Let G= p→ q : Γ. Then, by Lemmas 4.2 and 4.1 (which easily

extend to ⊢+), Definition 3.5 and the definition of 6+, M ≡ p ⊲ q!Λ | q ⊲ p?Λ′ |M ′ and q!Λ 6+ G↾p
and p?Λ′ 6+ G↾q. Again by the definition of 6+, msg(Λ)⊆ msg(Γ)⊆ msg(Λ′). Let Λ = {ℓi.Pi | 1≤i≤n},

Γ = {ℓi.Gi | 1≤i≤n}⊎Γ′ and Λ′ = {ℓi.Qi | 1≤i≤n}⊎Λ′′. Then M
pℓiq−−→ p ⊲Pi | q ⊲Qi |M ′ and G

pℓiq−−→ Gi

for all i, 1≤ i≤ n. Since the proof of Theorem 4.5 easily adapts to ⊢+, we get ⊢+ p⊲Pi | q⊲Qi |M ′ : Gi
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for all i, 1≤ i≤ n. By coinduction there are G′i such that ⊢ p⊲Pi | q⊲Qi |M ′ : G′i for all i, 1≤ i≤ n. We

can choose G′ = p→ q : {ℓi.G
′
i | 1≤i≤n}. �

We end this section by showing that the type system ⊢ assures lock-freedom. By Subject Reduction

it is enough to prove that well-typed sessions are deadlock-free and no participant waits forever. The

former follows from Session Fidelity, while the latter follows from the following lemma that says that

reducing by rule [ECOMM] the weights of the not involved participants strictly decrease.

Lemma 4.8 If G
pℓq
−−→G′ by rule [ECOMM] and r 6∈ {p,q} and r∈ ptg(G), then weight(G, r)>weight(G′ , r).

Proof. Rule [ECOMM] implies G = p→ q : (ℓ.G′⊎Γ). If ρ is a path of G′, then (p→ q)ℓρ is a path in

G. This gives weight(G, r) > weight(G′, r). �

Multiparty session typability guarantees lock-freedom.

Theorem 4.9 (Lock-Freedom) If session M is well typed, then M is lock-free.

Proof. Let G be a type for M . If M 6≡ p ⊲ 0, then G 6= end. Let G = q→ r : Γ. By definition of

reduction G
qℓr
−→ G′ for some ℓ, and this implies M

qℓr
−→M ′ by Theorem 4.6(ii). This shows condition

(a) of Definition 2.5. The proof of condition (b) of Definition 2.5 is by induction on n = weight(G,p).

If n = 0 then either G = p→ q : Γ or G= q→ p : Γ and G
λ
−→ G′ with p in λ by rule [ECOMM]. If n > 0

then G = q→ r : Γ with p 6∈ {q, r} and G
qℓr
−→ G′ for all ℓ ∈ msg(Γ) by rule [ECOMM]. By Lemma 4.8

weight(G,p) > weight(G′,p) and induction applies. �

It is easy to check that ⊢M : G, where M and G are the multiparty session and the global type of

Examples 2.4 and 3.2, respectively. By the above result, M of Example 2.4 is hence provably lock-free.

5 Connection of Multiparty-Sessions via Gateways

Given two multiparty sessions, they can be connected via gateways when they possess two compatible

participants, i.e. participants that offer communications which can be paired and can hence be trans-

formed into forwarders, that we dub “gateways”. We start by discussing the relation of compatibility

between processes by elaborating on Examples 2.4 and 3.2.

If we decide to look at the participant h as an interface, the messages sent by her have to be considered as

those actually provided by an external environment; and the received messages as messages expected by

such an environment. In a sense, this means that, if we abstract from participants’ names in the process

H , we get a description of an interface (in the more usual sense) of an external system, rather than an

interface of our system.

In order to better grasp the notion of compatibility hinted at above, let us dub “ERS” the operation

abtracting from the participants’ names inside processes. So, in our example we would get

ERS(H) = ◦?text.ERS(H1) ERS(H1) = ◦!{ack.ERS(H),nack.◦?transf.ERS(H1),stop}
Let us now take into account another system that could work as the environment of the system having

the G of Example 3.2 as global type. Let assume such a system to be formed by participants k, r and s

interacting according the following protocol:

Participant k sends text messages to r and s in an alternating way, starting with r.

Participants r and s inform k that a text has been accepted or refused by sending back, respectively,
either ack or nack.
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In the first case it is the other receiver’s turn to receive the text: a message go is exchanged

between r and s to signal this case;

in the second case, the sender has to resend the text until it is accepted. Meanwhile the involved

participant between r and s informs the other one that she needs to wait since the previous

message is being resent in a transf ormed form.

This protocol can be implemented by the multiparty session M ′ = r ⊲R | s⊲S | k⊲Kr

where

R = k?text.R1 R1 = k!{ack.s!go.R2,nack.s!wait.k?transf.R1} R2 = s?{go.R,wait.R2}

S = r?{go.k?text.S1,wait.S} S1 = k!{ack.r!go.S,nack.r!wait.k?transf.S1}
Kr = r!text.K′r K′r = r?{ack.Ks,nack.r!transf.K′r}
Ks = s!text.K′s K′s = s?{ack.Kr,nack.s!transf.K′s}

The “behaviour as interface” of participant k corresponds to

ERS(Kr) = ERS(Ks) = ◦!text.ERS(K′r) ERS(K′r) = ERS(K′s) = ◦?{ack.ERS(Kr),nack.◦!transf.ERS(K′r)}
Notice that the mapping ERS equates Kr and Ks, i.e. ERS(Kr) = ERS(Ks).
The interactions “offered” and “requested” by ERS(H) and ERS(Kr) do not precisely match each other,

that is ERS(H) 6= ERS(Kr) (where (·) is the standard syntactic duality function replacing ‘!’ by ‘?’ and

vice versa [16]). Nonetheless it is easy to check that, even if the system p ⊲P | q ⊲Q of Example 2.4

can safely deal with a message stop coming from its environment, no problem arises in case no such a

message will ever arrive.

In the following definition, instead of explicitly introduce the “ERS” function, we simply formalise the

compatibility relation in such a way two processes are compatible (as interfaces) whenever they offer

dual communications to arbitrary participants, and the set of input labels is a subset of the set of output

labels.

Definition 5.1 (Processes’ Compatibility) The interface compatibility relation P↔Q on processes (com-

patibility for short), is the largest symmetric relation coinductively defined by:

[COMP-0]

0↔0

[COMP- O/I ]

Pi↔Qi ∀1≤ i≤ n

p!({ℓi.Pi | 1≤i≤n}⊎Λ)↔q?{ℓi.Qi | 1≤i≤n}
=====================================

The double line in rule [COMP-O/I ] indicates that the rule is coinductive. Notice that the relation↔ is

insensitive to the names of senders and receivers. It is immediate to verify that process compatibility

is similar and simpler than the subtyping defined in [14]. Therefore an algorithm for checking process

compatibility can be an easy adaptation of the algorithm given in [14].

For what concerns our example, it is straightforward to verify that H↔Kr.

Useful properties of compatibility are stated in the following proposition, whose proof is simple.

Proposition 5.2 (i) If P↔p?(Λ⊎Λ′), then P↔p?Λ.

(ii) If p!(ℓ.P⊎Λ)↔q?ℓ.Q, then P↔Q.

Similarly to what is done in [1] for the setting of Communicating Finite State Machines (CFSMs), the

presence of two compatible processes H and K in two multiparty sessions M and M ′ enables to connect

these systems by transforming H and K in such a way each message received by H is immediately sent

to K, and each message sent by H is first received from K. And similarly for what concerns K. In the

following definition we hence transform an arbitrary process P not containing a fixed participant h into a

process which: 1. sends to h each message received in P; 2. receives from h each message sent in P.

We call gw(P,h) the so obtained process.
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Definition 5.3 (Gateway Process) Let h 6∈ ptp(P). We define gw(P,h) coinductively as follows

gw(0,h) = 0

gw(p?{ℓi.Pi | 1≤i≤n},h) = p?{ℓi.h!ℓi.gw(Pi,h) | 1≤i≤n}
gw(p!{ℓi.Pi | 1≤i≤n},h) = h?{ℓi.p!ℓi.gw(Pi,h) | 1≤i≤n}

A first lemma assures the soundness of the previous definition.

Lemma 5.4 If h 6∈ ptp(P), then gw(P,h) is defined and is a function.

Proof. The proof is by coinduction. If P = p?{ℓi.Pi | 1≤i≤n}, then

gw(p?{ℓi.Pi | 1≤i≤n},h) = p?{ℓi.h!ℓi.gw(Pi,h) | 1≤i≤n}
By coinduction gw(Pi,h) is defined and is a function for 1 ≤ i ≤ n. The thesis hence follows. Similarly

when P is an output process. �

The gateway process construction enjoys the preservation of the structural preorder. This property is

the key to get Theorem 6.7 below and it essentially relies on the fact that bigger processes offer the same

output messages.

Lemma 5.5 Let h 6∈ ptp(P)∪ptp(Q). If P 6 Q, then gw(P,h)6 gw(Q,h).

Proof. We only consider the case of input processes, the proof for output processes is similar and

simpler.

If P= p?{ℓi.Pi | 1≤i≤n} and Q= p?{ℓi.Qi | 1≤i≤n′}with n′≤n, then gw(P,h)= p?{ℓi.h!ℓi.gw(Pi,h) | 1≤i≤n}
and gw(Q,h) = p?{ℓi.h!ℓi.gw(Qi,h) | 1≤i≤n′}. From P 6 Q we get Pi 6 Qi for all i, 1 ≤ i ≤ n′. By

coinduction gw(Pi,h)6 gw(Qi,h), which implies h!ℓi.gw(Pi,h)6 h!ℓi.gw(Qi,h) for all i, 1≤ i≤ n′, and

hence gw(P,h)6 gw(Q,h), by definition of 6 (Definition 3.8). �

Lemma 5.5 fails for 6+. For example, if P = p!ℓ1 and Q = p!{ℓ1, ℓ2}, then P 6+ Q, but gw(P,h) =
h?ℓ1.p!ℓ1

+> h?{ℓ1.p!ℓ1, ℓ2.p!ℓ1}= gw(Q,h).

The following relationship between compatibility and structural preorder of processes will be essen-

tial in the proof of our main result (Theorem 6.7).

Lemma 5.6 If P↔Q, then P 6 P′ and Q 6 Q′ imply P′↔Q′.

Proof. Let us assume P = p!{ℓi.Pi | 1≤i≤n} 6 P′ = p!{ℓi.P
′
i | 1≤i≤n}

l
Q = q?{ℓi.Qi | 1≤i≤n′} 6 Q′ = q?{ℓi.Q

′
i | 1≤i≤n′′} with n′′ ≤ n′ ≤ n

From P↔Q we get Pi↔Qi for all i, 1 ≤ i ≤ n′. From P 6 P′ we get Pi 6 P′i for all i, 1 ≤ i ≤ n. From

Q 6 Q′ we get Qi 6 Q′i for all i, 1≤ i≤ n′′. By coinduction we have P′i↔Q′i for all i, 1≤ i≤ n′′. We can

then conclude P′↔Q′. �

The vice versa does not hold. For example p!ℓ↔q?ℓ and q?{ℓ,ℓ′}6 q?ℓ, but p!ℓ↔q?{ℓ,ℓ′} is false.

The formal definition of connection of multiparty sessions via gateways is based on the notion of

process compatibility (Definition 5.1) and on the addition of communications to a process (Definition

5.3).

Definition 5.7 (Multiparty-Sessions’ Compatibility)

Two multiparty sessions M , M ′ are compatible via the participants h, k (notation (M ,h)↔(M ′,k)) if

pts(M )∩pts(M ′) = /0 and M ≡M1 | h⊲H and M ′ ≡M2 | k⊲K with H↔K.
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Definition 5.8 (Multiparty-Sessions’ Connection via Gateways)

Let M ≡M1 | h⊲H, M ′ ≡M2 | k⊲K and (M ,h)↔ (M ′,k). We define M h↔kM ′, the connection of

M and M ′ via gateways, through h and k, by

M h↔kM ′ , M1 |M2 | h⊲gw(H,k) | k⊲gw(K,h)

Example 5.9 For what concerns M of Example 2.4, M ′ defined on page 86, h and k, it is not difficult

to check that

M h↔kM ′ = p⊲P | q⊲Q | r ⊲R | s⊲S | h⊲ Ĥ | k⊲ K̂r

where

Ĥ=gw(H,k)=q?text.k!text.Ĥ1 Ĥ1=k?{ack.q!ack.Ĥ, nack.q!nack.q?transf.k!transf.Ĥ1, stop.q!stop}
K̂r = gw(Kr,h) = h?text.r!text.K̂′r K̂′r = r?{ack.h!ack.K̂s, nack.h!nack.h?transf.r!transf.K̂′r}
K̂s = gw(Ks,h) = h?text.s!text.K̂′s K̂′s = s?{ack.h!ack.K̂r, nack.h!nack.h?transf.s!transf.K̂′s}

In the following section we shall prove that lock-freedom is preserved by the session connection via

gateways. This follows from the fact that we define an operator building a global type such that the

participant processes of the session obtained by connection via gateways are smaller than or equal to the

projections of this global type.

6 Connection of Global Types via Gateways

The composition defined in the previous section can be shown to be lock-freedom preserving by means

of Theorem 4.9. In fact it is possible to define a function on global types with compatible participants,

which corresponds to the lifting of the construction in Definition 5.8 to the level of global types.

Definition 6.1 (Global-Types’ Compatibility) Two global types G, G′ are compatible via the partici-

pants h, k (notation (G,h)↔(G′,k)) if ptg(G)∩ptg(G′) = /0 and G↾h↔G′↾k.

Definition 6.2 (Global-Types’ Connection via Gateways) Let (G,h)↔(G′,k). We define

Gh↔kG′ , CN(h,k,#,G,G′)
where CN is coinductively given by the following clauses, assuming {p,q, r,s}∩{h,k} = /0.

The clauses must be applied in the given order.

(1) CN(h,k,#,end,G′) = G′

(2) CN(h,k,#,p→ h : {ℓi.Gi | 1≤i≤n},G′) = p→ h : {ℓi.CN(h,k, ℓ→i ,Gi,G
′) | 1≤i≤n}

(3) CN(h,k, ℓ→,G,k→ s : {ℓ′j.G
′
j | 1≤ j≤m}) = h→ k : ℓ.k→ s : ℓ.CN(h,k,#,G,G′ι)

if ℓ= ℓ′ι with 1≤ ι ≤ m

(4) CN(h,k, ℓ→,G, r→ s : {ℓ′j.G
′
j | 1≤ j≤m}) = r→ s : {ℓ′j.CN(h,k, ℓ→,G,G′j) | 1≤ j≤m}

(5) CN(h,k,#,G, r→ k : {ℓ′j.G
′
j | 1≤ j≤m}) = r→ k : {ℓ′j.CN(h,k, ℓ′j

←
,G,G′j) | 1≤ j≤m}

(6) CN(h,k, ℓ←,h→ q : {ℓi.Gi | 1≤i≤n},G′) = k→ h : ℓ.h→ q : ℓ.CN(h,k,#,Gι ,G
′)

if ℓ= ℓι with 1≤ ι ≤ n

(7) CN(h,k, ℓ←,p→ q : {ℓi.Gi | 1≤i≤n},G′) = p→ q : {ℓi.CN(h,k, ℓ←,Gi,G
′) | 1≤i≤n}

(8) CN(h,k,#,p→ q : {ℓi.Gi | 1≤i≤n},G′) = p→ q : {ℓi.CN(k,h,#,G′,Gi) | 1≤i≤n}

(9) CN(h,k,#,G, r→ s : {ℓ′j.G
′
j | 1≤ j≤m}) = r→ s : {ℓ′j.CN(k,h,#,G′j,G) | 1≤ j≤m}

The argument ‘ℓ→’ (resp. ‘ℓ←’) in CN(h,k, ℓ→,G,G′) (resp. CN(h,k, ℓ←,G,G′)) is used when a send-

ing of the message ‘ℓ’ from k (resp. h) is expected in the second (resp. first) global type in the subsequent



Barbanera & Dezani-Ciancaglini 89

recursive calls.

The argument ′#′ is used instead when all other possible interactions can occur in either the first or the

second global type in the subsequent recursive calls.

In global types, the order of interactions between pairs of unrelated participants is irrelevant, since we

would get the very same projections. In clauses (8) and (9), however, we swap roles h and k, as well as their

corresponding global types in the “recursive call”. We do that in order to avoid that in CN(h,k,#,G,G′)
the interactions preceding a communication via gateway all belong to G (or G′) and that the communica-

tion is completed after the description of interactions all belonging to G′ (or G). In this way the parallel

nature of the interactions in G and G′ that are not affected by the communications via gateways is made

visually more evident.

Example 6.3 The protocol implemented by the multiparty session M ′ defined on page 86 can be repre-

sented by the following global type Gr:

Gr = k→ r : text.G′r

G′r = r→ k : {ack.r→ s : go.Gs,

nack.r→ s : wait.k→ r : transf.G′r}

Gs = k→ s : text.G′s

G′s = s→ k : {ack.s→ r : go.Gr,

nack.s→ r : wait.k→ s : transf.G′s}

Then, by Definition 6.2, the composition, via h and k, of the G of Example 3.2 and the above Gr is:

Gh↔kGr = p→ q : text.q→ h : text.h→ k : text.k→ r : text.G′rk↔hG1

G′rk↔hG1 = r→ k : {ack.k→ h : ack.h→ q : ack.r→ s : go.q→ p : ok.Gs
k↔hG,

nack.k→ h : nack.h→ q : nack.r→ s : wait.q→ p : notyet.

q→ h : transf.h→ k : transf.k→ r : transf.G′rk↔hG1}

Gs
k↔hG = p→ q : text.q→ h : text.h→ k : text.k→ s : text.G1

h↔kG′s

G1
h↔kG′s = s→ k : {ack.k→ h : ack.h→ q : ack.q→ p : ok.s→ r : go.Gh↔kGr,

nack.k→ h : nack.h→ q : nack.q→ p : notyet.s→ r : wait.

q→ h : transf.h→ k : transf.k→ s : transf.G1
h↔kG′s}

In Gh↔kGr the text messages coming from p are delivered to q and, alternately, to r and s till they are

accepted (ack). Participant p is informed when text messages are accepted (ok). During the cycle, q

transforms a not yet accepted text into a more suitable form. The messages between q and r and s are

exchanged by passing through the coupled forwarders h and k.

It is worth pointing out that in Gh↔kGr, the stop branch of G disappeared. In fact, since any message

coming from h in G does now come from k (which is now the gateway forwarding the messages coming

in turn from either r or s), the function CN takes care of the fact that only ack or nack can be received by

(the gateway) h. This fact is reflected in the following Theorem 6.6, where it is shown that the projections

on h and k of Gh↔kG′ are a “supertype” of gw(G↾h,k) and gw(G′↾k,h), respectively.

We could look at both h and p as interfaces: h representing a social-network system, which does not

accept rude language, and p a social-network client sending text messages and requiring to be informed

about their delivery status. From this point of view, the global type G of Example 3.2 actually describes a

“delivery-guaranteed” service for text messages, assuring messages to be eventually delivered by means

of a text-transformation policy.

The following lemma assures that the global types obtained during the evaluation of CN are always

compatible.



90 Open Multiparty Sessions

Lemma 6.4 Let (G,h)↔(G′,k). Then for any call in the tree of the recursive calls of CN(h,k,#,G,G′):

(a) if the call is CN(h,k,#,Y,Y′), then Y↾h↔ Y′↾k;

(b) if the call is CN(h,k, ℓ→,Y,Y′), then p?ℓ.Y↾h↔ Y′↾k for some p;

(c) if the call is CN(h,k, ℓ←,Y,Y′), then Y↾h↔ p?ℓ.Y′↾k for some p.

Proof. We show (a), (b) and (c) simultaneously by induction on the depth of the call in the tree, and by

cases on the applied rule. For rule (1) the proof is immediate, since no new call is generated.

Rule (2). By induction on (a), (p→ h : {ℓi.Yi | 1≤i≤n})↾h↔ Y′↾k. By Definition 3.5

(p→ h : {ℓi.Yi | 1≤i≤n})↾h= p?{ℓi.Yi↾h| 1≤i≤n}
Then p?{ℓi.Yi↾h| 1≤i≤n} ↔ Y′↾k, which implies p?ℓi.Yi↾h↔ Y′↾k for 1≤ i≤ n by Proposition 5.2(i).

Rule (3). By induction on (b), p?ℓ.Y↾h↔ (k→ s : {ℓ′j.Y
′
j | 1≤ j≤m})↾k. By Definition 3.5

(k→ s : {ℓ′j.Y
′
j | 1≤ j≤m})↾k= s!{ℓ′j.Y

′
j↾k| 1≤ j≤m}

By Proposition 5.2(ii) ℓ= ℓ′ι with 1≤ ι ≤ m implies Y↾h↔ Y′ι↾k.

Rule (4). By induction on (b), p?ℓ.Y↾h↔ (r→ s : {ℓ′j.Y
′
j | 1≤ j≤m})↾k. By Definition 5.1 the projection

(r→ s : {ℓ′j.Y
′
j | 1≤ j≤m})↾k

must be an output, which implies (r→ s : {ℓ′j.Y
′
j | 1≤ j≤m})↾k= Y′1↾k and Y′j↾k= Y′l↾k for 1≤ j, l ≤ m by

Definition 3.5. We conclude p?ℓ.Y↾h↔ Y′j↾k for 1≤ j ≤ m.

Rule (8). By induction on (a), (p→ q : {ℓi.Yi | 1≤i≤n})↾h↔ Y′↾k. By Definition 3.5 either

(p→ q : {ℓi.Yi | 1≤i≤n})↾h= Y1↾h
and Yi↾h= Yl ↾h for 1 ≤ i, l ≤ n or (p→ q : {ℓi.Yi | 1≤i≤n})↾h= t?(Λ1 ⊎ . . .⊎Λn) and Yi↾h= t?Λi for

1 ≤ i ≤ n. In the first case we get immediately Yi↾h ↔ Y′↾k for 1 ≤ i ≤ n. In the second case by

Proposition 5.2(i) t?(Λ1⊎ . . .⊎Λn) ↔ Y′↾k implies t?Λi ↔ Y′↾k, i.e. Yi↾h↔ Y′↾k, for 1≤ i≤ n.

The proofs for rules (5), (6),(7) and (9) are similar to those of rules (2), (3),(4) and (8), respectively. �

Using the previous lemma we can show the soundness of Definition 6.2.

Lemma 6.5 Let (G,h)↔ (G′,k). Then CN(h,k,#,G,G′) is defined and it is a global type, i.e. a regular

pre-global type.

Proof. To show that CN(h,k,#,G,G′) is defined, let us assume, towards a contradiction, that in the tree of

the recursive calls of CN(h,k,#,G,G′) there is one leaf on which no rule of Definition 6.2 can be applied.

If the recursive call is CN(h,k,#,Y,Y′), then the applicable rules are (1), (2), (5), (8) and (9). So the only

deadlock would be for Y = h→ p : Γ and Y′ 6= r→ k : Γ′ and Y′ 6= r→ s : Γ′′. This is impossible since

by Lemma 6.4(a) Y↾h↔ Y′↾k. If the recursive call is CN(h,k, ℓ→,Y,Y′), then the applicable rules are

(3) and (4). So the only deadlock would be for Y′ 6= r→ s : Γ and Y′ 6= r→ k : Γ′. This is impossible

since by Lemma 6.4(b) p?ℓ.Y↾h↔ Y′↾k. The proof for the recursive call CN(h,k, ℓ←,Y,Y′) uses Lemma

6.4(c) and it is similar to the previous one.

The regularity of the obtained pre-global type follows from observing that the regularity of G and G′

forbid an infinite path, in the tree of the recursive calls, in which no two calls are identical. �

We can now prove the main result concerning projections of types obtained by connecting via gateways.

Theorem 6.6 If (G,h)↔(G′,k), then Gh↔kG′ is well formed. Moreover

(i) gw(G↾h,k)6 (Gh↔kG′)↾h and gw(G′↾k,h)6 (Gh↔kG′)↾k;

(ii) G↾p6 (Gh↔kG′)↾p and G′↾q6 (Gh↔kG′)↾q ,

for any p ∈ ptg(G) and q ∈ ptg(G′) such that p 6= h and q 6= k.
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Proof. It is easy to verify that if

w = max{weight(G,p) | p ∈ ptg(G)} and w′ = max{weight(G′,p) | p ∈ ptg(G′)}
then weight(Gh↔kG′,p)≤ 2(w+w′) for all p ∈ ptg(G)∪ptg(G′). Since (i) and (ii) imply that Gh↔kG′ is

projectable for all p ∈ ptg(G)∪ptg(G′), then Gh↔kG′ is well formed. Let ⋆ ∈ {#, ℓ→, ℓ←}.
(i). We only show gw(G↾h,k) 6 (Gh↔kG′)↾h, the proof of gw(G′↾k,h) 6 (Gh↔kG′)↾k is specular. We

prove that, for any recursive call CN(h,k,⋆,Y,Y′) in CN(h,k,#,G,G′), the following relations between

processes hold:

(a) gw(Y↾h,k)6 CN(h,k,#,Y,Y′)↾h;

(b) k!ℓ.gw(Y↾h,k)6 CN(h,k, ℓ→,Y,Y′)↾h;

(c) gw(Y↾h,k)6 CN(h,k, ℓ←,Y,Y′)↾h.

We prove (a), (b) and (c) simultaneously by coinduction on Y and Y′ and by cases on the rule applied to

get Gh↔kG′ = CN(h,k,#,G,G′). Rules (1), (4), (5), (7), (8) and (9) do not modify the communications of

participant h, so coinduction easily applies.

Rule (2): CN(h,k,#,p→ h : {ℓi.Yi | 1≤i≤n},Y′) = p→ h : {ℓi.CN(h,k, ℓ→i ,Yi,Y
′) | 1≤i≤n}.

Let Y = p→ h : {ℓi.Yi | 1≤i≤n}, then Y↾h= p?{ℓi.Yi↾h| 1≤i≤n} by Definition 3.5.

gw(Y↾h,k) = p?{ℓi.k!ℓi.gw(Yi↾h,k) | 1≤i≤n} by Definition 5.3

6 p?{ℓi.CN(h,k, ℓ→i ,Yi,Y
′)↾h| 1≤i≤n} by rule [SUB-IN] of Definition 3.8 since

k!ℓi.gw(Yi↾h,k)6 CN(h,k, ℓ→i ,Yi,Y
′)↾h

for 1≤ i≤ n by coinduction on (b)

= (p→ h : {ℓi.CN(h,k, ℓ→i ,Yi,Y
′) | 1≤i≤n})↾h by Definition 3.5

Rule (3):CN(h,k, ℓ→,Y,k→ s : {ℓ′j.Y
′
j | 1≤ j≤m}) = h→ k : ℓ.k→ s : ℓ.CN(h,k,#,Y,Y′ι), where ℓ = ℓ′ι

with 1≤ ι ≤ m.
k!ℓ.gw(Y↾h,k) 6 k!ℓ.CN(h,k,#,Y,Y′ι)↾h by rule [SUB-OUT] of Definition 3.8 since

gw(Y↾h,k)6 CN(h,k,#,Y,Y′ι)↾h
by coinduction on (a)

= (h→ k : ℓ.k→ s : ℓ.CN(h,k,#,Y,Y′ι))↾h by Definition 3.5

Rule (6): CN(h,k, ℓ←,h→ q : {ℓi.Yi | 1≤i≤n},Y′) = k→ h : ℓ.h→ q : ℓ.CN(h,k,#,Yι ,Y
′), where ℓ = ℓι

with 1≤ ι ≤ n. Let Y = h→ q : {ℓi.Yi | 1≤i≤n}, then Y↾h= q!{ℓi.Yi↾h| 1≤i≤n} by Definition 3.5.

gw(Y↾h,k) = k?{ℓi.q!ℓi.gw(Yi↾h,k) | 1≤i≤n} by Definition 5.3

6 k?ℓ.q!ℓ.gw(Yι↾h,k) by rule [SUB-IN] and ℓ= ℓι

6 k?ℓ.q!ℓ.(CN(h,k,#,Yι ,Y
′))↾h by rules [SUB-IN] and [SUB-OUT] since

gw(Yι↾h,k)6 CN(h,k,#,Yι ,Y
′)↾h

by coinduction on (a)

= (k→ h : ℓ.h→ q : ℓ.CN(h,k,#,Yι ,Y
′))↾h by Definition 3.5

(ii). We only show G↾q6 (Gh↔kG′)↾q for q ∈ ptg(G) and q 6= h. The proof of G↾s6 (Gh↔kG′)↾s for

s ∈ ptg(G′) and s 6= k is specular. We consider the recursive calls CN(h,k,⋆,Y,Y′) in CN(h,k,#,G,G′).
We prove Y↾q6 CN(h,k,⋆,Y,Y′)↾q by coinduction on Y,Y′ and by cases on the applied rule. The only

rule which modifies the communications of q is rule (6). Let Y = h→ q : {ℓi.Yi | 1≤i≤n}, then

Y↾q = h?{ℓi.Yi↾q| 1≤i≤n} by Definition 3.5

6 h?ℓ.Yι↾q by rule [SUB-IN] and ℓ= ℓι

6 h?ℓ.(CN(h,k,#,Yι ,Y
′))↾q by rule [SUB-IN] since by coinduction

Yι↾q6 CN(h,k,#,Yι ,Y
′)↾q

= (k→ h : ℓ.h→ q : ℓ.CN(h,k,#,Yι ,Y
′))↾q by Definition 3.5

�
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We now show that if we start from two well-typed sessions which are compatible, then by building their

connection via gateways we get a well-typed session too. This is relevant, since well-typed sessions

enjoy lock-freedom (Theorem 4.9).

Theorem 6.7 If (M ,h)↔(M ′,k) and ⊢M : G and ⊢M ′ : G′, then ⊢M h↔kM ′ : Gh↔kG′.

Proof. The typing ⊢M : G implies ptg(G) ⊆ pts(M ). The typing ⊢M ′ : G′ implies ptg(G′) ⊆
pts(M ′). Then pts(M )∩ pts(M ′) = /0 gives ptg(G)∩ ptg(G′) = /0. Let M = M1 | h ⊲ H and

M ′ = M2 | k⊲K. By construction

M h↔kM ′ = M1 |M2 | h⊲gw(H,k) | k⊲gw(K,h)
From ⊢M : G we get H 6 G↾h. From ⊢M ′ : G′ we get K 6 G′↾k. Lemma 5.6 implies G↾h↔G′↾k.

Lemma 5.5 implies gw(H,k)6 gw(G↾h,k) and gw(K,h)6 gw(G′↾k,h).
We conclude ⊢M h↔kM ′ : Gh↔kG′ using the projections of Gh↔kG′ given in Theorem 6.6. �

It is worth noticing that (G,h)↔(G′,k) and ⊢M : G and ⊢M ′ : G′ do not imply (M ,h)↔(M ′,k).
Take as example M = p⊲h?ℓ | h⊲p!ℓ, M ′ = q⊲k!ℓ | k⊲q?{ℓ,ℓ′}, G= h→ p : ℓ, G′ = q→ k : ℓ. In fact

p!ℓ↔q?{ℓ,ℓ′} does not hold.

Remark 6.8 The proof of Theorem 6.7 uses Lemma 5.5 which fails for the typing system ⊢+. In spite of

this, we conjecture that Theorem 6.7 holds for ⊢+ as well. The main reason is that compatibility requires

all inputs to have corresponding outputs, and this forbids to exploit the difference between 6 and 6+.

Of course we could relax our typing system so that, in Rule [T-SESS], 6 is used for interface processes

(i.e. those that are transformed into gateways when systems are connected), while 6+ is used for all

other processes. This would result, however, in a fairly serious restriction of the flexibility of system

connections, since we should establish a priori the interfaces of systems.

As a possible general applications of our results, let us suppose we have two systems that corre-

spond to multiparty-sessions that are compatible via some participants (according to Definition 5.7) and

that are well typed (according to Definition 3.9). At this point we can “deploy” the connected system

(following Definition 5.8) without any further verification step, since Theorem 6.7 ensures that in such

conditions we have a well-typed and hence lock-free connected system. Besides, we are able to provide

the documentation (the global type) of the resulting systems.

7 Related Works

The distinguishing feature of an open system of concurrent components is its capacity of communicating

with the “outside”, i.e. with an environment of the system. This ability provides means for composing

open systems to larger systems (which may still be open). In order to compose systems “safely”, it is

common practice to rely on interface descriptions.

MPST systems [18, 8, 25] are usually assumed to be closed, since all the components needed for the

functioning of the system must be already there. In [1] a novel approach to open systems has been

proposed where, according to the current needs, the behaviour of any participant can be regarded as an

“interface”. An interface is hence intended to represent - somehow dually with respect to the standard

notion of interface - part of the expected communication behaviour of the environment. Identifying

a participant behaviour as interface corresponds to expecting such a behaviour to be realised by the

environment rather than by an actual component of the system. Then, according to such an approach,

there is actually no distinction between a closed and an open system. In particular, once two systems
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possess two “compatible” interfaces, they can be connected. The connecting mechanism of [1] uses

suitable forwarders, dubbed “gateways”, for this purpose. The gateways are automatically synthesised

out of the compatible interfaces and the connection of two systems simply consists in replacing the latter

by the former.

In the present paper we have provided a multiparty formalism and we have adapted the approach

of [1] to it. Our calculus of multiparty sessions is like those of [12, 15], but for the use of coinduction

instead of induction which is inspired by [6, 27]. As in [27] we get rid of local types, which in many

calculi are similar to processes [7, 12, 15]. The syntax of global types is the coinductive version of the

standard syntax [18] and the notion of projection is an extension of both the standard projection [18] and

the projection given in [27]. Our global types assure lock-freedom of multiparty sessions.

A relevant feature of our formalism is that the connection operation on systems can be “lifted” to

the level of global types. In [1], where systems of CFSMs were taken into account, such a lifting was

done by extending the syntax of global descriptions with a new symbol, whose semantics is indeed the

connection-by-gateways at system level. Instead in the present paper we can use the standard syntax to

build the global type of the session obtained by connecting. Moreover, we have shown that the compati-

bility relation of [1], which requires duality, can be relaxed to a relation strongly similar to session-types’

subtyping [14, 11]. Our structural preorder on processes mimics the subtyping relation between session

types of [7], which is a restriction of the subtyping of [11]. This choice is justified by the fact that the

subtyping of [11] allows process substitution, while the subtyping of [14] allows channel substitution, as

observed in [13].

In [23] global types are build out of several local types (under certain conditions). We also aim at

getting global types, the difference being that this is obtained out of the global types describing the two

systems which are connected. The “dynamic” addition of participants (they can join/leave the session

after it’s been set up) is supported in the calculus of [19]. In that work the extension of a system is part

of the global protocol. The extension operation is sort of “internalised”. We take instead the standard

point of view of open systems, where the possible extensions cannot be “programmed” in advance. The

two approaches to the system-extension issue look orthogonal.

Both “arbiter processes” [4] and “mediums” [3] coordinate communications described by global

types. A difference with the present paper is that their aim is to reduce the interactions in multiparty

sessions to interactions in binary sessions. Our gateways do instead act as simple “forwarders”, with

the aim of connecting two multiparty systems. Nonetheless, our work could be further developed and

investigated in the logical context of [4]: in the logical interpretation of multiparty sessions one could

introduce a “connection-cut” corresponding to a sort of connection-by-gateways-operator. Then the good

properties of the system corresponding to the proof containing the cut should be guaranteed by proving

that the “connection-cut” is actually an admissible rule. The proof should consist in a “connection-cut

elimination” procedure corresponding to our CN function on global types, once extended (as we claim it

can be, see next Section) in order to “bypass” the use of gateways.

8 Future Works and Conclusion

The MPST framework does work fairly well for the design of closed systems, but does not possess the

flexibility open systems can offer. Managing to look at global types as overall descriptions of open sys-

tems results in the possibility of a modular design of systems. From another point of view, by means

of our approach one could develop systems where some participants, instead of representing actual pro-

cesses, describe sort of “API calls”, along the line of what some researchers refer to as Behavioural-API.
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Moreover, the theory we propose could be helpful also after the system implementation phase. Let us

assume to have a system developed using the MPST software-development approach. After the imple-

mentation phase, one could realise that the service corresponding to a participant of the system can be

more suitably provided by another system. The participant can then be safely replaced by a gateway

connection with the other system and the connection operation on global types enables to get a global

view of what is going on in the resulting system.

We conjecture the completeness of our process compatibility, i.e. that the session (M ,h)↔(M ′ ,k)
can reduce to a stuck session whenever h and k are not compatible. This could be shown by taking

inspiration from the completeness proofs for subtyping of [12, 15].

The use of gateways enables us to get a “safe” systems’ composition by minimally affecting the sys-

tems themselves, being just the interfaces to be modified. One could however wonder whether gateways

are strictly necessary to get safe connections in our multiparty-sessions’ setting. As suggested in [22],

one could try to “bypass” the use of gateways by taking the interface participants out and changing some

senders’ and receivers’ names in the other participants’ “code”. The following simple example shows

that just a renaming would not work in general. Let us consider the following global types.

G = p→ h : ℓ.G G′ = k→ r : ℓ.k→ s : ℓ.G′

It is immediate to check that the multiparty sessions corresponding to G and G′ are

M = p⊲P | h⊲H M ′ = k⊲K | r ⊲R | s⊲S

where P = h!ℓ.P H = p?ℓ.H K = r!ℓ.s!ℓ.K R = k?ℓ.R S = k?ℓ.S

On the side of M ′ we could take K out and change some senders’ and receivers’ names in R and S in

order they can receive the message ℓ directly from p, so obtaining R̃ = p?ℓ.R̃ and S̃ = p?ℓ.S̃. On the side

of M , instead, after taking out H , we could not get a sound connection by a simple renaming for the re-

cipient h in P = h!ℓ.P, since the message ℓ should be delivered, alternately, to R̃ and S̃. A safe connection

would hence imply also a modification of the “code” of P as follows: P̃ = r!ℓ.s!ℓ.P̃. We conjecture that

the function h↔k on global types can be redefined in such a way that, in the present example, by project-

ing Gh↔kG′ we exactly obtain p ⊲ P̃ | r ⊲ R̃ | s ⊲ S̃. This new connection operation on global types would

result in a useful tool for the modular design of systems via global types. We leave the investigation of

such alternative definition of h↔k for future work.

The results of this paper would be more applicable accounting for asynchronous communications. In

particular, a first relevant step would consist in allowing gateways to interact asynchronously. We expect

the compatibility could be extended, since the subtyping for asynchronous multiparty sessions is more

permissive than the subtyping for the synchronous ones [25]. Of course this extension requires care,

being the subtyping of [25] undecidable, as shown in [2, 24].

The connection via gateways proposed by the authors of [1] and exploited in the present paper in a

multiparty sessions setting does produce networks of systems possessing a tree-like topology. In order

to get general graphs topology, it sounds natural to extend the present “single interface” connection to

a “multiple interfaces” one. Such an extension, however, immediately reveals itself to be unsound: by

connecting via gateways more than one pair of compatible interfaces one could obtain a deadlocked

system. A very simple example for that is G= p→ h : ℓ and G′ = k→ s : ℓ

By projection we get the systems M = p⊲h!ℓ | h⊲p?ℓ and M ′ = k⊲ s!ℓ | s⊲k?ℓ

It is immediate to check that p and s are compatible, as well as h and k. Simultaneously connecting

M and M ′ through both the compatible pairs (p,s) and (h,k) would result in the following deadlocked

system p⊲ s?ℓ.h!ℓ | h⊲p?ℓ.k!ℓ | k⊲h?ℓ.s!ℓ | s⊲k?ℓ.p!ℓ

(A similar example can be developed also in the CFSMs setting of [1]). In order to guarantee “safeness”

of multiple connections, suitable requirements have hence to be devised. An adaptation to the present

setting of the interaction type system of [9] could be investigated in future for such an aim.
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