
M. Bartoletti, L. Henrio, A. Mavridou, A. Scalas (Eds.):
12th Interaction and Concurrency Experience (ICE 2019).
EPTCS 304, 2019, pp. 137–155, doi:10.4204/EPTCS.304.9

c© Y. Xiao & E. Tuosto

On Learning Nominal Automata with Binders

Yi Xiao
Department of Informatics

University of Leicester (UK)
yx104@leicester.ac.uk

Emilio Tuosto
Gran Sasso Science Institute (IT) and

Department of Informatics, University of Leicester (UK)
emilio.tuosto@gssi.it

We investigate a learning algorithm in the context of nominal automata, an extension of classical
automata to alphabets featuring names. This class of automata captures nominal regular languages;
analogously to the classical language theory, nominal automata have been shown to characterise
nominal regular expressions with binders. These formalisms are amenable to abstract modelling
resource-aware computations.

We propose a learning algorithm on nominal regular languages with binders. Our algorithm
generalises Angluin’s L? algorithm with respect to nominal regular languages with binders. We show
the correctness and study the theoretical complexity of our algorithm.

1 Introduction

This paper combines nominal languages and learning automata to abstractly model computations con-
nected with resource awareness. Here, we do not restrict ourselves to a specific type of resources; rather
we think of resources in a very abstract and general sense. We use names as models of resources and
(abstract) operations on names as developed in nominal languages (see Section 2 for an overview) as
mechanisms to capture basic properties of resources; in particular we focus on the dynamic allocation
and deallocation of resources. More precisely, we take inspiration from binders with dynamic scoping of
nominal languages in an operational context based on finite state nominal automata. The states of these
automata have transitions to explicitly (i) allocate names, corresponding to scope extrusion of nominal
languages, and (ii) to deallocate names corresponding to garbage collection of (unused) names. Our
theory sets in the context of nominal regular expressions that transfer the traditional Kleene theorem to
the nominal framework adopted here. In fact, the class of nominal languages that we consider can be
characterised as those accepted by nominal automata or, equivalently, that can be generated by nominal
regular expressions. The latter algebraic presentation (that we borrow from the literature and review in
Section 2) features, besides the usual operations of regular expressions (union, concatenation, Kleene-star),
a name binding mechanism and a special resource-aware complementation operation. Our results rely on
the closure properties of these class of languages that has been already demonstrated in the literature.

In this context, we develop a learning algorithm for nominal automata. We take inspiration from the
L? algorithm of Angluin (also reviewed in Section 2). As we will see, the design of the algorithm requires
some ingenuity and opens up the possibility of interesting investigations due to richer structure brought in
by names and name binding.

Nominal languages and learning The pioneering work on languages on infinite alphabet is [21]. And,
the theory of nominal languages has been advocated as a suitable abstraction for computations with
resources emerging from the so-called nominal calculi which bred after the seminal work introducing the
π-calculus [29, 28, 35]. Abstract theories capturing the computational phenomena in this context have
been developed in [16, 17, 15] in parallel with a theory of nominal automata [30, 14, 33]. The formal

http://dx.doi.org/10.4204/EPTCS.304.9

138 On Learning Nominal Automata with Binders

connections between these theories have been unveiled in [18]. Later, [25] proposed the notion of nominal
regular languages and the use of nominal automata as acceptors of such languages. As observed in [25, 4]
are not suitable to handle name binding as registers are ’global’; the nominal model in [4] is instead
closer (see also the comment below Example 11.4 of [4]) to history dependent automata [33], which are
also the inspiration for the model of automata in [25]. The nominal automata in [4] are (abstractions
of) deterministic HD-automata (which can be seen as ’implementation’ of orbit-finite nominal automata
following the connection between nominal and named set of [18]). This class of automata is more
expressive than the classes of automata capturing nominal regular expressions as ours or nominal Kleene
algebras [24]. In fact, as noted in [24] this automata accept languages with words having arbitrarely deep
nesting of binders. However, orbit-finite nominal automata are not closed under any reasonable notion of
complementation [4]. Note that the resource-sensitive complementation operation of [25] is essential in
our context. On the other hand, the use of symmetries to capture binding offers a more flexible mechanism
to express patterns or words that escape the constraints that the use of ’nested scoping’ imposes in our
language.

A main motivation for this proposal is the abstract characterisation of basic features of computations
with resources. For instance, nominal automata have applications to the verification of protocols and
systems [12, 13]. Other approaches to verify resource-aware computations have also been based on
automata models [3, 10, 11] employ usage automata (UA) to express and model check patterns of
resource-usage. A distinguishing feature of the approach in [25, 26] is that allocation and deallocation of
resources is abstracted away with binders. Inspired by the scope extrusion mechanism of the π-calculus,
the allocation of a resource corresponds to an (explicit) operation that introduces a fresh name; likewise,
the deallocation of a resource corresponds to an (explicit) operation to “free” names. We illustrate this
idea with an example. Consider the following expression

Ê = 〈n.〈m.m〉?n〈k.k?〉n〉

which is a nominal regular expression where n,m,k are names, ? is the usual Kleene-star operation, and
subexpressions of the form 〈n.E〉 represent the binding mechanism whereby name n is bound (that is
“local”) to expression E. Intuitively, Ê describes a language of words starting with the allocation of a
freshly generated name, conventionally denoted n, followed by the words generated by the subexpression
〈m.m〉? post-fixed by n, and so on. Note that in Ê name m occurs in a nested binder for name n. According
to [25], Ê corresponds to the following nominal automaton:

q0start

q2

q3

q5

q6

q7

q4

〈〈

1

〈〈

2

〉〉 〈〈

1

2

〉〉

〉〉

which from the initial state q0 allocates a fresh name through the transition labelled 〈〈 to state q2. Notice
how bound names are rendered in the nominal automaton: they are concretely represented as (strictly

Y. Xiao & E. Tuosto 139

positive) natural numbers. This allows us to abstract away from the identities of bound names. In fact, the
identity of bound names is immaterial and can be alpha-converted, that is replace with any other name
provided that the name has not been used already. The use of numbers enables a simple “implementation”
of alpha-conversion. More precisely, think of numbers as being addresses of registers of states. For
instance, q3 has 2 registers addressed by 1 and 2 respectively. Then the self-loop transition in state q3 can
consume any name n, provided that n is different than the name (currently) stored in register 1. Finally,
note that the content of registers is local to states; once a deallocation transition 〉〉 is fired, the content in
last allocated register is disregarded.

For a practical example, we consider a scenario based on servers to show how nominal regular
languages with binders can suitably specify usage policies of servers S1, . . . ,Sk, such that, ∀1≤ h≤ k Sh
offers operations {oh1 , . . . ,ohk}= Oh. Given an alphabet

Σ =
k⋃

h=1

{lih , loh}∪Oh where symbols lih , loh represent basic input and output activities

consider the regular expressions on Σ Eh = (lih〈s.ehloh〉)
∗ eh = (∑

o∈Oh

o.eo)
∗

Name s is a fresh session identifier which the symbol 〈 allocates when the session starts and the symbol 〉
deallocates when the session ends. Note that s may occur in eh to e.g., avoid re-authentication. Resources
(activities, sessions, operations, etc.) can be abstracted as letters and names, and the (de)allocation
represent the binding and freshness conditions. Intuitively, we give the following nominal regular
expressions with Σ=

⋃k
h=1{lih , loh}∪{readFead,updateProfile} and n1 6= n2 be distinct names. Operations

readFeed, updateProfile allow users read a feed and to update a profile.

E1 = (li1〈n1.e1lo1〉)∗ e1 = (n readFeed+updateProfile E2)
∗ E2 = (li2〈n2.e2lo2〉)∗

From the above equations, we see clearly the binders delimit the scope of n1 and n2. And, n2 is nested in
n1. Intuitively, the approach above relaxes the condition of classical language theory that the alphabet of
a language is constant. Binder allow us to extend the alphabet “dynamically”. This is strongly related
to other approaches in the literature, where languages over infinite alphabets are considered. A form
of regular expressions, called UB-expressions, for languages on infinite alphabets investigated in [22].
In [37] pebble automata are compared to register automata. This class of languages are not suitable for
our purposes as they do not account for freshness.

Alternative approaches investigating languages over infinite alphabets are those in [4, 36]. A finite
representation of nominal sets and automata with data symmetries and permutations is given in [4]; this
presentation differs from the one in [26]. Using the equivalence in [18], the nominal regular expressions
with binders of [26] can be transferred into the context as the style of [4]. In fact, permutations permit to
encode name binding and give an implicit representation of name scoping in nominal words. On the other
hand, [36] defines bar strings and considers another representation of nominal sets and automata with
binders, regular expressions, and non-deterministic nominal automata over them. An example of bar string
with names a, b, and c is ab|ccb that represents a word where name c following a is bound in the rest of
the string. A key observation is that in [4] the scope of binders models load freshness and it is fixed: once
stated, the scope extends as far as possible “to the right”. In our setting, this would account to allocate a
resource and never deallocate, that is, |b in [4] corresponds to the notation 〈〈b.b of [26] where the angled
bracket opens the scope of the binder restricting the occurrences of name b after the dot symbol; in this
notation 〉〉 are used to close the scope opened by 〈〈. To illustrate the differences from [26], we consider

140 On Learning Nominal Automata with Binders

the example under local freshness semantics [4, p. 5]. Let A be a set of names, and a, b, and c be names
in A, {|a|b, |a|a} is alpha-equivalent to {|a|a}, unlike in [26] where is {〈〈a.a〉〉〈〈b.b〉〉,〈〈a.a〉〉〈〈a.a〉〉} is
alpha-equivalent to {〈〈a.a〉〉〈〈b.b〉〉} while {〈〈a.a〈〈b.b〉〉〉〉,〈〈a.a〈〈a.a〉〉〉〉} is alpha-equivalent to {〈〈a.a〈〈b.b〉〉〉〉}.
Thus, without the closing scope, the two kinds of context are not easily transferred to each other. Bar
string |a|ba could be corresponding to 〈〈a.a〈〈b.b〉〉a〉〉 or 〈〈a.a〈〈b.ba〉〉〉〉 under open conditions. However, if
|a|ba is a word in the language {cdc ∈ A3 | c 6= d}, |a|ba is corresponding to 〈〈a.a〈〈b.b〉〉a〉〉.

One of the most known and used learning algorithm is L? introduced by Angluin [1]. As surveyed in
Section 2, given a regular language, L? creates a deterministic automaton that accepts the language. This
is done by mimicking the “dialogue” between a learner and a teacher; the former poses questions about
the language to the latter. In L? there are two types of queries the learner can ask the teacher: membership
queries allow the learner to check whether a word belongs to the input language while with equivalence
queries the learner checks if an automaton accepts or not the language. The automaton is “guessed” by
the learner according to the answers the teacher provides to queries. The outcome of an equivalence
query may be a counterexample selected by the teacher to exhibit that the automaton does not accept the
language.

The L? algorithm has been extended to several classes of languages [6, 31, 32]. Using a categorical
approach, the L? algorithm has been generalised to other classes of automata such as Moore and Mealy [20].
An interesting line of research is the one explored in [6] which applies learning automata to distributed
systems based on message-passing communications to learn communicating finite-state machines [7] from
message-sequence charts. Applications of learning automata are in [32] and [31]. The former defines a
framework based on L? to fully automatise an incremental assume-guarantee verification technique and
the latter proposes an optimised approach for integrated testing of complex systems.

Variants of Angluin’s algorithm for languages over infinite alphabets have attracted researchers’
attention. An L? algoritm for register automata is given in [5] where so-called session automata support
the notion of fresh data values. Session automata are defined over pairs of finite-infinite alphabets.
Interestingly, session automata also have a canonical form to decide equivalence queries.

Like [5], [8] works on register automata and data language but the latter aims to the application of
dynamic black-box analysis. The key point is that [8] uses a tree queries instead of membership queries
and ensures the observation tables closeness and register-consistency. Further, [8] defines a new version
of equivalence to achieve the correctness and termination of the algorithm.

Recently, [9] proposes a learning algorithm which extends L? to nominal automata. The main
difference between our approach and the one in [9] is the representation of nominal languages and
nominal automata. Language theories for infinite alphabets [4, 34] are used in [9], handling names
through finitely-supported permutations. Accordingly, in [9] observation tables and the states of nominal
automata are orbit-finite. Another difference is the operation on counterexamples. Unlike in L?, [9] adds
the counterexamples into columns. It is an interesting research direction to optimise our work on the
operations of the counterexamples in the future.

Main contributions Our main objective is to develop a learning algorithm for nominal languages, with
a focus on resources. The baseline to tackle this objective is the use of binders and languages on infinite
alphabets. Section 3 collects our main results.

Our first achievement is the design of a learning algorithm that generalises Angluin’s L? algorithm
to nominal regular languages with binders. We call our algorithm nL? (after nominal L?), as a tribute
to Angluin’s work. This is attained by retaining the basic scheme of L? (query / response dialogue
been a learner and a teacher) and ideas of L? (the represenation of a finite state automaton with specific

Y. Xiao & E. Tuosto 141

a observation table). Technically, this requires a revision of the main concepts of Angluin’s theory.
In particular, the type of queries and answers now have to account for names and the allocation and
deallocation operations on them. Consequently, we have to reconsider the data structure to represent
observation tables and hence the notions of closedness and consistency.

Interestingly, this revision culminates in Theorem 4 and Theorem 5 respectively showing how the
learned nominal automata associated behave and the correctness of nL?. Finally, we discuss the complexity
of nL?.

2 Background

We survey the principal concepts need in the rest of the paper. In particular, we review basics of formal
language theory, its nominal counterpart, and the learning algorithm of Angluin’s L? [1].

2.1 Regular Languages

Regular Languages, regular expressions and finite automata have a well-known relationship established by
the Kleene theorem [23]. A regular language can be represented by regular expressions and accepted by a
finite state automaton. In this section, we introduce necessary notions and definitions for these concepts.

An alphabet is a set (whose elements are often called letters or symbols). We denote a finite alphabet
as Σ. A word is a sequence of symbols of an alphabet. Let w be a word, we denote the length of w as |w|.
The word of length zero is called empty word and denoted by ε . The concatenation of two words is denoted
as · . We define Σ? =

⋃
∞
n=0 Σn, where Σ0 = {ε} and for each n > 0, Σn = {w ·w′

∣∣ w ∈ Σ and w′ ∈ Σn−1}.
A language L is a set of words over an alphabet Σ, that is, L⊆ Σ?.

Other language operations we use are concatenation, union, Kleene-star and complementation.
Assuming that L and L′ are languages over Σ, we have the following standard definitions:
• concatenation L ·L′ = {w ·w′

∣∣ w ∈ L and w′ ∈ L′},
• union L∪L′ = {w

∣∣ w ∈ L or w ∈ L′},

• Kleene-star L? =
⋃

∞
n=0 Ln =

{
{ε} n = 0

Ln−1 ·L n 6= 0
,

• complementation LC = {w ∈ Σ?
∣∣ w /∈ L}.

A regular expressions over Σ is a term derived from the grammar where a ∈ Σ:

re ::= ε
∣∣ /0
∣∣ a
∣∣ re+ re

∣∣ re · re
∣∣ re?

(where operators are listed in inverse order of precedence). Given two regular expressions re and re′,
re+ re′ denotes the union of re and re′, re · re′ denotes the concatenation of re and re′, and re? denotes the
Kleene-star of re.

A finite automaton over alphabet Σ is a five-tuple M = 〈Q,q0,F,δ 〉 such that Q is a finite set of states,
q0 is the initial state, F ⊆ Q is the finite set of final states, δ ⊆ Q×Σ×Q is a relation from states and
alphabet symbols to states. The automaton M is deterministic when δ is a function on Q×Σ→ Q. We
extend the transition relation δ to Σ? in the obvious way, define the language of an automaton M as usual,
and denote it as L(M).

It is well-known that regular expressions denote regular languages; we let L (re) denote the language
of a regular expression re.
Theorem 1 ([19]). A language L is regular iff there exists a finite automaton M such that L = L(M).
Moreover, there exists a minimal finite automaton M accepting L and M is unique.

142 On Learning Nominal Automata with Binders

2.2 Nominal Languages

We use the nominal regular expressions introduced in [26, 27]. Languages over infinite alphabets are
generalised to nominal automata and nominal expressions [4, 26, 27, 36, 37]. The approach in [26] is
distinguished by the use of names and binders in the expressions. In the following, we recall the basic
notions first and then we survey nominal languages [26]. Hereafter, we fix a countably infinite set of
names N .

A nominal language over N and Σ is a set of nominal words w over N and Σ, that is terms derived
by the grammar

w ::= ε
∣∣ a
∣∣ n ∣∣ w ·w

∣∣ 〈〈n.w〉〉 where n ∈N and a ∈ Σ

A name is bound in a word when it occurs in the scope of a binder. Occurrences of names not bound are
called free. For example, n is bound in word 〈〈n.na〉〉m while m is free.

A nominal regular expression is a term derived from the grammar

ne ::= ε
∣∣ /0
∣∣ a
∣∣ n ∣∣ ne+ne

∣∣ ne ·ne
∣∣ ne?

∣∣ 〈n.ne〉 where n ∈N and a ∈ Σ

In nominal expressions, binders are represented as 〈n. 〉 for n ∈N . If the names in a nominal expression
are all bound, the nominal expression is closed. Nominal regular expressions denote nominal languages.

Definition 1. [26] The nominal language L (ne) of a nominal regular expression ne is defined as

• L (ε) = {ε} L (/0) = /0 L (a) = {a} L (n) = {n}
• L (ne1 +ne2) = L (ne1)∪L (ne2)

• L (ne1 ·ne2) = L (ne1) ·L (ne2) = {w · v
∣∣ w ∈L (ne1),v ∈L (ne2)}

• L (ne?) =
⋃

k∈N
L (ne)k, where L (ne)k =

{
{ε} k = 0

L (ne) ·L (ne)k−1 k 6= 0

• L (〈n.ne〉) = {〈〈n.w〉〉
∣∣ w ∈L (ne)}.

The closure properties of nomianl regular languages are stated below:

Theorem 2. [26] Nominal regular languages are closed under union, intersection, and resource sensitive
complementation.

The main difference with respect to classical regular expressions is on complementation. Since, the
complement of L (ne) is not a nominal regular language, the classical complementation does not work in
the nominal case. Therefore, [26] give the following definition:

Definition 2. [26] Let ne be a nominal regular expression. The resource sensitive complement of L (ne)
is the set {w /∈L (ne)

∣∣ θ(w)≤ θ(ne)} where

• ne ∈ {ε, /0}∪N ∪Σ =⇒ θ(ne) = 0

• ne = ne1 +ne2 or ne1 ·ne2 =⇒ θ(ne) = max(θ(ne1),θ(ne2))

• ne = 〈n.ne〉 =⇒ 1+θ(ne)

• ne = ne? =⇒ θ(ne).

and the depth θ of a word is defined as the depth the corresponding expression.

We now define the notions of nominal automata adopted here. Let N be the set of natural numbers and
define n = {1, · · · ,n} for each n ∈ N. Considering a set of states Q paired with a map ‖ ‖ : Q→ N, let us
define the local registers of q ∈ Q to be ‖q‖. We use a definition of nominal automata [25] as Definition 3.
Moreover, we describe how to allocate names via maps σ : ‖q‖→N .

Y. Xiao & E. Tuosto 143

Definition 3 (Nominal Automata [25]). Let Nfin ⊂N be a finite set of names. A nominal automaton
with binders over Σ and Nfin, (Σ,Nfin)-automaton for short, is a tuple M = 〈Q,q0,F,δ 〉 such that

• Q is a finite set of states equipped with a map ‖ ‖ : Q→ N
• q0 is the initial state and ‖q0‖= 0

• F is the finite set of final states and ‖q‖= 0 for each q ∈ F

• for each q∈Q and α ∈ Σ∪Nfin∪{ε,〈〈,〉〉}, we have a set δ (q,α)⊆Q such that for all q′ ∈ δ (q,α)
must hold:

– α = 〈〈 =⇒ ‖q′‖= ‖q‖+1
– α =〉〉 =⇒ ‖q′‖= ‖q‖−1
– otherwise =⇒ ‖q′‖= ‖q‖

A transition is a triple (q,α,q′) such that q′ ∈ δ (q,α).

A nominal automaton M is deterministic if, for each q ∈ Q,{
|δ (q,α)|= 0, if (α = 〈〈 and ‖q‖= max{‖q′‖ | q′ ∈ Q}) or (α =〉〉 and ‖q‖= 0)
|δ (q,α)|= 1, otherwise

.

Let M = 〈Q,q0,F,δ 〉 be a nominal automata over Σ and Nfin, we denote the image of a map σ by Im(σ)
and the empty map by /0. Let q be a state, w be a word whose free names are in Nfin ∪ Im(σ) and
σ : ‖q‖→N be a map, a configuration of M is denoted by 〈q,w,σ〉. A configuration 〈q,w,σ〉 is initial
if q = q0, w is a word whose free names are in Nfin, and σ = /0; a configuration 〈q,w,σ〉 is accepting if
q ∈ F , w = ε , and σ = /0. Given q,q′ ∈ Q and two configurations t = 〈q,w,σ〉 and t ′ = 〈q′,w′,σ ′〉, M
moves from t to t ′ if there is s ∈ Σ∪N ∪{ε,〈〈,〉〉}∪N such that q′ ∈ δ (q,s) and

s ∈ ‖q‖, w = σ(s)w′, σ ′ = σ and ∀n > s : σ(s) 6= σ(n)

s ∈Nfin \ Im(σ) w = aw′, σ ′ = σ

s ∈ Σ w = aw′, σ ′ = σ

s = ε w = w′, σ ′ = σ

s = 〈〈 w = 〈〈w′, σ ′ = σ [‖q′‖ 7→ n]
s =〉〉 w =〉〉w′, σ ′ = σ|‖q′‖

where σ [‖q′‖ 7→ n] extends σ by allocating the maximum index in ‖q‖ to n and σ|‖q′‖′ is restriction on

‖q′‖ of σ . The language accepted by M is the set of nominal words w such that M moves from the initial
configuration 〈q,w,σ〉 to an accepting configuration. (For more details see [25, 27]).

Theorem 3. [26] Every language recognised by a nominal automaton is representable by a nominal
regular expression. Conversely, every language represented by a nominal regular expression is acceptable
by a nominal automaton.

2.3 Angluin’s Algorithm L?

The algorithm L? was introduced in [1] to learn a finite automaton accepting a given regular language L
over an alphabet Σ. The basic idea of the algorithm is to implement a dialogue between a learner and a
teacher. The learner may ask the teacher for membership queries “w ∈ L?” to check whether a word w is
in the given language. Moreover, the learner may submit an automaton M to the teacher who replies “yes”

144 On Learning Nominal Automata with Binders

if L(M) = L, or provides a counter-example showing that L(M) 6= L. The teacher is assumed to answer
all the learner’s questions correctly.

Key data structures of L? are observation tables representing finite predicates of words over Σ

classifying them as members of L or not.
Definition 4 (Observation Tables [1]). An observation table (S,E,T) consists of nonempty finite languages
S,E ⊆ Σ? such that S is prefix-closed and E is suffix-closed, and a function T : (S∪S ·Σ) ·E→{0,1}.

The rows of an observation table are labelled by elements of S∪S ·Σ, and the columns are labelled
by elements of E with the entry for row s and column e given by T (s · e). A row of the table can be
represented by a function row(s) : E→{0,1} such that row(s)(e) = T (s · e). A word s · e is a member of
L of (S,E,T) iff T (s · e) = 1. An observation table (S,E,T) is closed when

∀w ∈ S ·Σ .∃s ∈ S .row(w) = row(s)

An observation table (S,E,T) is consistent when for all a ∈ Σ and all s,s′ ∈ S

row(s) = row(s′) =⇒ row(sa) = row(s′a)

A closed and consistent observation table (S,E,T) has an associated finite automaton M = (Q,δ ,q0,F)
given by
• Q = {row(s)

∣∣ s ∈ S},
• q0 = row(ε),

• F = {row(s)
∣∣ row(s)(ε) = 1,s ∈ S},

• δ (row(s),a) = row(s ·a), a ∈ Σ.
To see that this is a well-defined automaton, note that the initial state is defined since S is prefix-closed

and must contain ε . Similarly, E is suffix-closed and must contain ε . And, if s,s′ ∈ S,row(s) = row(s′),
then T (s) = T (s · ε) and T (s′) = T (s′ · ε) are equal as defined. The transition function is well-defined
since the table is closed and consistent. Suppose s and s′ are elements of S such that row(s) = row(s′).
Since the table (S,E,T) is consistent, ∀a ∈ Σ,row(sa) = row(s′a). And the value of row(sa) is equal to
such a row(s′′) for an s′′ ∈ S, since the table is closed.

The learning process of L? is shown in Figure 1. Let L be the input regular language over an alphabet
Σ. Initially, the observation table ({ε},{ε},T) is such that T is initialised by asking for membership
queries about ε and each element in Σ (line 2). Then the algorithm enters into the main loop (lines 3-23).
Inside of the main loop, a while loop tests the current observation table (S,E,T) for closedness (line 5)
and consistency (line 11).

If the current observation table (S,E,T) is not closed, the algorithm finds s′ in S ·Σ such that row(s′)
is different from row(s) for all s ∈ S. Then the word s′ is added into S and new rows are added for words
s′ ·a for all a ∈ Σ. Thus, T is extended to (S∪S ·Σ) ·E by asking for membership queries about missing
elements.

Similarly, if (S,E,T) is not consistent, the algorithm finds s1,s2 ∈ S,e ∈ E, and a ∈ Σ such that
row(s1) = row(s2) but row(s1 ·a)(e) 6= row(s2 ·a)(e). The word a · e is added into E. That is, each row in
the table has a new column a ·e. T is extended to (S∪S ·Σ) ·E by asking for missing elements row(s)(a ·e)
for all s ∈ (S∪S ·Σ).

An associated automaton M is constructed when the observation table (S,E,T) is closed and consistent.
And then, an equivalence query about M is asked for. The algorithm terminates and outputs M when the
teacher replies “yes” to the query. If the teacher replies with a counterexample c, the word c and all its
prefixes are added into S, and then T is extended by asking membership queries about new entries in
(S∪S ·Σ) ·E. Then, a new round for the main loop of closedness and consistency starts.

Y. Xiao & E. Tuosto 145

1: Initialisation: S = {ε},E = {ε}.
2: Construct the initial observation table (S,E,T) by asking for membership queries about (S∪S ·Σ) ·E.
3: repeat
4: while (S,E,T) is not closed or not consistent do
5: if (S,E,T) is not closed then
6: find s′ ∈ S ·Σ such that
7: row(s) 6= row(s′) for all s ∈ S ,
8: add s′ into S,
9: extend T to (S∪S ·Σ) ·E using membership queries.

10: end if
11: if (S,E,T) is not consistent then
12: find s1,s2 ∈ S,e ∈ E and a ∈ Σ such that
13: row(s1) = row(s2) and row(s1 ·a)(e) 6= row(s2 ·a)(e),
14: Add a · e into E,
15: extend T to (S∪S ·Σ) ·E using membership queries.
16: end if
17: end while
18: Construct an automaton M from table (S,E,T) and ask teacher an equivalence query.
19: if teacher replies a counterexample c then
20: add c and all its prefixes into S.
21: extend T to (S∪S ·Σ) ·E using membership queries.
22: end if
23: until teacher replies yes to equivalence query M.
24: Halt and output M.

Figure 1: The learner in L?.

3 Nominal Learning

In this section, we introduce our learning algorithm based on nominal automata. Our teacher still answers
two kinds of queries: membership queries and equivalence queries regarding a target nominal regular
language.

3.1 Preliminaries

Before introducing our learning algorithm, some auxiliary notions are necessary to give a concrete
representation of nominal languages and automata. In fact, binders yield infinitely many equivalent
representation of nominal words due to alpha-conversion. For instance, 〈〈n.n〉〉 and 〈〈m.m〉〉 are the same
nominal word up-to renaming of their bound name. We introduce canonical expressions to give a finitary
representation of nominal regular languages.

Definition 5 (Canonical expressions). Let 1≤ n ∈ N a natural number and ne a closed nominal regular
expression. The n-canonical representation χ(ne,n) of ne is defined as follows

• ne ∈ {ε, /0}∪Σ =⇒ χ(ne,n) = ne

• χ(ne+ne′,n) = χ(ne,n)+χ(ne′,n)

• χ(ne ·ne′,n) = χ(ne,n) ·χ(ne′,n),

146 On Learning Nominal Automata with Binders

• χ(ne∗,n) = (χ(ne,n))∗

• ne = 〈n.ne′〉 =⇒ χ(ne,n) = 〈n.χ(ne′[n/n],n+1)〉
where ne′[n/n] is the capture-avoiding substitution of n for n in ne′. The canonical representation of ne is
the term χ(ne,1).

Note that the map χ(,) does not change the structure of the nominal regular expression ne. Basically,
χ(,) maps nominal regular expressions to terms where names are concretely represented as positive
numbers.
Example 1. Given Σ = {a,b}, we give some examples of canonical representations of nominal expres-
sions.

• aba is the canonical representations of itself; indeed χ(aba,1) = aba

• χ(〈n.an〉,1) = χ(〈m.am〉,1) = 〈1.a1〉 is the canonical representation of both 〈n.an〉 and 〈m.am〉

• the canonical representation of ne = 〈n.an〈m.nbm〉〉〈m.m〉 is χ(ne,1) = 〈1.a1χ((〈m.1bm〉),2)〈1.1〉
= 〈1.a1〈2.1b2〉〉〈1.1〉.

Note that the map χ(,) replaces names with numbers so that alpha-equivalent expressions are mapped
to the same term (second example above).

Canonical expressions are the linguistic counter part of the mechanism used in the definition of
(Σ,N f in)-automaton give in [27], where transitions with indexes can consume bound names of words.
Thus, we use canonical expressions in order to represent nominal languages concretely.

Fix a nominal regular language L, in our algorithm, the learner asks for membership queries about
legal words. If a word w is not legal, the learner marks it as ⊥ in the observation table. The membership
query consists of a legal word w and it has the following possible answers:

• if w ∈ L, the answer is “1”,

• if w is a prefix of a word in L, the answer is “P”,

• otherwise, the answer is “0”.

As in Angluin’s L? algorithm, only the teacher knows L. Unlike in L?, the learner in our algorithm
does not know the whole alphabet An. The learner knows Σ initially and learns names via counterexamples.
We will see that the learner knows the whole alphabet when the algorithm terminates.

Remark. The answer “P” is used for efficiency. In fact, the teacher could answer “0” instead of “P”.
However, this would require the learner to ask more membership or equivalence queries. This is confirmed
by some experimental results that are not in scope of this paper.

3.2 Nominal observation tables

Observation tables are pivotal data structure to ensure the algorithm’s functionalities. A closed and
consistent observation table allows us to construct a minimal automaton. We extend Angluin’s observation
tables to nominal observation tables, n-observation tables for short.

Definition 6 (n-observation table). A legal word is a prefix of a nominal word; the depth ‖w‖ of a legal
word w is the highest number of nested binders in w. Let

A0 = Σ and An = {〈〈,〉〉}∪Σ∪n for 0 < n ∈ N

A tuple (S,E,T,An) is an n-observation table if

Y. Xiao & E. Tuosto 147

• S⊆ An
∗ is a prefix-closed set of legal strings, for all s ∈ S,‖s‖ ≤ n,

• E ⊆ An
∗ is suffix-closed,

• T : (S∪S ·An) ·E→{0,1,P,⊥}.
As in Angluin’s definition, an n-observation table (S,E,T,An) consists of rows labelled by legal words

in S∪S ·An and columns labelled by words in E:

row : (S∪S ·An)→ (E→{0,1,P,⊥})
row(s)(e) = T (s · e)

In order to reflect the layers of nominal automata, we use ‖ ‖ to distinguish rows. Therefore, we need
the following auxiliary notion of equivalence of rows: in an n-observation table (S,E,T,An), for all
s,s′ ∈ S∪S ·An,

row(s) .
= row(s′) ⇐⇒ row(s) = row(s′) and ‖s‖= ‖s′‖.

Accordingly, the definition of closed and consistent table changes as follows.

Definition 7 (Closed and Consistent Tables). An n-observation table (S,E,T,An) is closed when

∀s′ ∈ S ·An.∃s ∈ S. row(s′) .
= row(s).

An n-observation table (S,E,T,An) is consistent when

∀α ∈ An.∀s,s′ ∈ S row(s) .
= row(s′) =⇒ row(sα)

.
= row(s′α).

3.3 From n-observation tables to nominal automata

Analogously to Angluin’s theory, closed and consistent n-observation tables correspond to deterministic
finite nominal automata.

Definition 8. The (Σ,N f in)-automaton M = (Q,q0,F,δ) associated with a closed and consistent n-
observation table (S,E,T,An) is defined as

• Σ = An \{{〈〈,〉〉}∪n}, N f in = n,

• a set of states Q = {(row(s),‖s‖) | s ∈ S} with a map ‖ ‖M, and ‖q‖M = ‖s‖ for each q =
(row(s),‖s‖) ∈ Q,

• an initial state q0 = (row(ε),‖ε‖),
• a set of final states F = {(row(s),‖s‖) | row(s)(ε) = 1,‖s‖= 0 and s ∈ S},
• A transition function is a partial function δ : Q×An→Q: for all s∈ S,α ∈An, δ ((row(s),‖s‖),α)=
(row(sα),‖sα‖) if sα ∈ S∪S ·An.

Accordingly, we define a partial function δ ∗ : Q×An
∗→ Q inductively as follows

δ
∗(q,ε) = q

δ
∗(q,aw) = δ

∗(δ (q,a),w)

for all a ∈ An, w ∈ An
∗, q ∈ Q. Note that δ ∗(q,a) = δ ∗(q,a · ε) = δ ∗(δ (q,a),ε) = δ (q,a).

Lemma 1. Let M = (Q,q0,F,δ) be the automaton associated with a closed and consistent n-observation
table (S,E,T,An). Suppose w,u ∈ An

∗. We have δ ∗(q,w ·u) = δ ∗(δ ∗(q,w),u) for all q ∈ Q.

148 On Learning Nominal Automata with Binders

Proof. By induction on length of w.

Theorem 4. Assume that M = (Q,q0,F,δ) is the automaton associated with a closed and consistent
n-observation table (S,E,T,An).

• For all w in S∪S ·An, δ ∗(q0,w) = (row(w),‖w‖).

• For all w in S∪S ·An and u in E, δ ∗(q0,w ·u) in F if and only if

row(w)(u) = 1.

Proof. Let w = w′a in S∪S ·An and u = a ·u′ in E.

Since S is prefix-closed, all prefixes of w are in S, that is, w′ is in S. We know:

δ
∗(q0,w) = δ

∗(q0,w′a)

= δ
∗(δ ∗(q0,w′),a) by Lemma 1

= δ
∗((row(w′),‖w′‖),a) by induction hypothesis

= δ ((row(w′),‖w′‖),a) by the definition of δ
∗

= (row(w′a),‖w′a‖) by the definition of δ

= (row(w),‖w‖)

Since E is suffix-closed, all suffixes of u are in E. Depending on the length of u, we have two situations.

• When u = ε , row(w)(u) = row(w)(ε) and δ ∗(q0,w · u) = δ ∗(q0,w). From preceding proof,
δ ∗(q0,w) = (row(w),‖w‖). Because the table is closed, there is a w′ ∈ S such that row(w′) .

=
row(w). δ ∗(q0,w · u) is in F if and only if row(w′) is in F from the definition of F . Thus
row(w′)(ε) = row(w)(ε) = 1, that is, row(w)(u) = 1.

• Assume that when the length of u′ ∈E is n, we have that for all w in S∪S ·An and u in E, δ ∗(q0,w ·u)
in F if and only if row(w)(u) = 1. Let u = au′ and u ∈ E. Because the table is closed, there is a
w′ ∈ S such that row(w′) .

= row(w).

δ
∗(q0,w ·u) = δ

∗(δ ∗(q0,w),u) by Lemma 1

= δ
∗((row(w),‖w‖),u) by preceding proof

= δ
∗((row(w′),‖w′‖),u) since row(w′) = row(w)

= δ
∗((row(w′),‖w′‖),au′) u = au′

= δ
∗(row(w′ ·a),u′) by closedness and definition of δ

= δ
∗(δ ∗(q0,w′ ·a),u′) by preceding proof

= δ
∗(q0,w′ ·a ·u′)

By induction hypothesis on u′, δ ∗(q0,w′ ·a ·u′) is in F if only if row(w′ ·a)(u′) = 1. Because row(w) .
=

row(w′) and u = au′, row(w′ ·a)(u′) = T (w′ ·a ·u′) = row(w′)(a ·u′) = row(w′)(u) = row(w)(u). There-
fore δ ∗(q0,w ·u) in F if and only if row(w)(u) = 1.

We are now ready to introduce a learning algorithm for our nominal automata.

Y. Xiao & E. Tuosto 149

1: Initialisation: S = {ε},E = {ε}, n = 0
2: Asking for membership queries about ε and each a ∈ An build the initial observation table (S,E,T,An).
3: repeat
4: while (S,E,T,An) is not closed or consistent do
5: if (S,E,T,An) is not closed then
6: find s′ ∈ S ·An such that row(s) .

= row(s′) is not satisfied for all s ∈ S
7: add s′ into S
8: extend T to (S∪S ·An) ·E using membership queries.
9: end if

10: if (S,E,T,An) is not consistent then
11: find s1,s2 ∈ S,e ∈ E and a ∈ An such that row(s1)

.
= row(s2) but row(s1 ·a)(e) 6= row(s2 ·a)(e).

12: Add a · e into E
13: extend T to (S∪S ·An) ·E using membership queries.
14: end if
15: end while
16: Construct an automata M associated to (S,E,T,An).
17: Ask equivalence query about M.
18: if teacher replies a counterexample c then
19: add c and all its prefixes into S.
20: extend An with ‖s‖ for all s ∈ S, ‖s‖> 0.
21: extend T to (S∪S ·An) ·E using membership queries.
22: end if
23: until teacher replies yes to M.
24: Halt and output M.

Figure 2: The learner of Learning Algorithm for Nominal Automaton

4 The nL? Algorithm

We dubbed our algorithm nL?, after nominal L?. The algorithm is shown in Figure 2. The learner in
nL? is similar to the one in L?. Basically, our learner modifies the initial n-observation table until it
becomes closed and consistent in the nominal sense (according to notions introduced before). When the
current n-observation table (S,E,T,An) is closed and consistent, the learner would ask the teacher if the
automaton associated with (S,E,T,An) accepts the input language L. If this is the case, the teacher will
reply “yes” and the learning process halts. Otherwise, the learning process continues after the teacher has
produced a counterexample.

Because of the new definitions of closedness and consistency, we refine some actions about checking
closedness (line 6) and consistency (line 11). If the current n-observation table (S,E,T,An) is not
closed, the learner finds a row s′ such that for no s ∈ S we have row(s′) .

= row(s). If (S,E,T,An) is not
consistent, the learner finds a word a · e, with a ∈ An and e ∈ E, such that for some s1 ∈ S and s2 ∈ S with
row(s1)

.
= row(s2), we have row(s1 ·a)(e) 6= row(s2 ·a)(e).

The main difference with respect to the algorithm of Angluin is that the learner has partial knowledge
of the alphabet. The alphabet An is enlarged by adding names (line 20) during the learning process. More
precisely, the learner expands the alphabet if the counterexample requires to allocate fresh names. When
names are required, the operators of allocations and deallocations are added into An. When the algorithm
terminates, the learner’s alphabet An is the alphabet of the given language. Like in the original algorithm,
our algorithm terminates when the teacher replies “yes” to an equivalence query.

We now show that nL? is correct. That is, that eventually the teacher replies “yes” to an equivalence

150 On Learning Nominal Automata with Binders

query. In other word, nL? terminates with a “yes” answer to an equivalence query. Hence, the automaton
submitted in the query accepts the input language.

Theorem 5. The algorithm terminates, hence it is correct.

Proof. We show that the if- and the while-statements terminate. Let us consider the if-statements first.
It is easy to check that closedness and consistency are decidable because these properties require just
the inspection of the n-observation table (which is finite). Hence, the if-statements starting at lines 5
and 10 never diverge because their guards do not diverge and their then-branch is a finite sequence of
assignments:

• The if-statement for closedness (line 5) terminates directly if the table is closed. Otherwise, in case
of making a table closed, we find a row s′ ∈ S ·An such that row(s′) .

= row(s) is not satisfied for all
s ∈ S. The algorithm adds s′ into S. Since An is finite and bounded by n, the sets S and E are both
finite. Thus, S ·An is a finite set and there are finitely many choices for s′. That is, line 7 can only be
executed finitely times. Besides, the content of rows is one of the permutations and combinations of
{0,1,P,⊥} which also has finite possibilities. So we conclude that the branch terminates.

• Similarly, the if-statement for consistency (line 10) terminates directly if the table is consistent.
Otherwise, to make the table consistent the algorithm searches for two rows s1,s2 ∈ S satisfying the
condition at line 11. As in the previous case for closedness, to add elements into E there are only
finitely many possibilities s1, s2, a, and e (line 12). Thus, the branch of the if-statement terminates.

Therefore, the while-statement (line 4) terminates in finite repetitions, since the algorithm makes a table
closed and consistent in finite operations. Then, the algorithm will succeed in construct an automata M
associated to a closed and consistent table. Next, the learner asks for an equivalence query. The teacher
replies a counterexample c (line 18) or yes (line 23). It remains to prove that the learner only asks finitely
many equivalence queries.

Let M be the nominal automaton associated to the current n-observation table (S,E,T,An). Assume
that the equivalence query about M fails. The teacher has to find a counterexample c; this is finitely
computable since the nominal regular expressions are closed under the operations of Kleene algebra and
under resource complementation. Hence, the if-statement on line 18 goes the branch extending the table
(line 19). Then, the algorithm will start a new loop (line 4) for the modified table by the counterexamples.
We can prove that a closed and consistent table builds a minimal finite automaton (omitted for space
reasons). A new automaton M′ will be constructed when the extended table (S,E,T,An) is closed and
consistent. Since M′ handles the counterexample, M′ has more equivalent states to the minimal automaton
accepted the given language, compared with M. Repeating this process, the automaton associated with
a closed and consistent table has the same number of the minimal automaton which accepted the given
language. Since the minimal automaton is unique, the two minimal automata are equal. The teacher relies
yes to the automaton at such a point. Therefore, with respect to the number of the states of the minimal
automaton accepted the given language, equivalence queries are finite and the algorithm terminates
finally.

In the following, we analyse the number of queries and the execution time of nL? in the worst case.
Let M be the minimal automaton accepting the given language and let M have s states. Let b be a bound
on the maximum length of the counterexamples presented by the teacher.

From the Figure 2 (line 1), we know that S and E contain one element λ initially. As the algorithm
runs, it will add one element to S when (S,E,T,An) is not closed (line 8). And it will add one element to

Y. Xiao & E. Tuosto 151

E when (S,E,T,An) is not consistent (line13). For each counterexample of length at most b presented by
the teacher, the algorithm will add at most b elements to S (line 19).

Thus, the cardinality of S is depends on s and b. In detail, S is at most

1+(s−1)+b(s−1) = s+b(s−1)

because (S,E,T,An) can be not closed at most s−1 times. As the same as the teacher replies counter-
examples at most s−1 times. And each time the teacher replies with a counterexample of length b, S will
be increased by at most b elements.

The cardinality of E is at most s, because (S,E,T,An) can be not consistent at most s−1 times.
The cardinality of S ·An could calculate from two parts: the cardinality of S and the cardinality of An.

We already know the cardinality of S is at most s+b(s−1). As the definition of An, let k be the cardinality
of Σ. Therefore the cardinality of An is k+n+2 and the cardinality of S ·An is (k+n+2)(s+b(s−1))
at most.

Therefore, the maximum cardinality of (S∪S ·An) ·E is at most

(k+n+2)(s+b(s−1))s= O((k+n)bs2).

The minimal automaton M has s states and the table (S,E,T,An) has one row initially. In the worst
case, the table (S,E,T,An) adds only a distinguished row by every counterexample. The algorithm
produces at most s−1 equivalence queries.

Running nL?: An Example Given a finite alphabet Σ = {a,b}, we have an example of learning a
language L representing as canonical nominal regular expression cne = ab〈1∗〉.

In the first step, we initialize S1 = {ε}, E1 = {ε}, n = 0 and A0 = Σ, and construct T1 as follows.
Step 1

T1=

‖ ‖ ε

0 ε P
0 a P
0 b 0

(S1,E1,T1,A0) consistent? There is only one row in
S, thus the table is consistent.
(S1,E1,T1,A0) closed? No, row(b) 6= row(ε).
So, S2← S1∪{b} and we go to step 2.

Step 2
Let S2 = S∪{b} and E2 = E and then construct a new observation table (S2,E2,T2,A0) through member-
ship queries.

T2=

‖ ‖ ε

0 ε P
0 b 0
0 a P
0 aa 0
0 ab P

(S2,E2,T2,A0) closed?
√

(S2,E2,T2,A0) consistent?
√

Then, we compute the automaton M:

q0start q1

a
b

a

b

Teacher replies no and a counterexample, say, ab〈〈1.〉〉.
It is in L not in M. And we go to step 3.

Step 3
Let S3← S2∪{a,ab,ab〈〈1.,ab〈〈1.〉〉}, E3← E2, and n = 1, and then, the alphabet is extended to A1 =
Σ∪ n∪{〈〈,〉〉}. We should construct new observation tables sequentially through membership queries.
Then we check the new table for closeness and consistency.

152 On Learning Nominal Automata with Binders

T3=

‖ ‖ ε

0 ε P
0 b 0
0 a P
0 ab P
1 ab〈〈1. P
0 ab〈〈1.〉〉 1
1 〈〈1. 0
0 a P
0 ab〈〈1.〉〉a 0
0 ab〈〈1.〉〉b 0
1 ab〈〈1.1 P
1 ab〈〈1.a 0
· · · · · · · · ·

(S3,E3,T3,A1) consistent?
No, row(ab) = row(ε) but row(ab〈〈1.) 6= row(〈〈1.) .
(S3,E3,T3,A1) closed?
No, row(〈〈1.) with ‖〈〈1.‖= 1 has a fresh content.

Step 4
Let S4← S3∪{〈〈1.},E4← E3∪{〈〈1.}, we should construct a new observation table (S4,E4,T4,A1) and
check the new table for closeness and consistency.

T4=

‖ ‖ ε 〈〈1.
0 ε P 0
0 b 0 0
0 a P 0
0 ab P P
1 ab〈〈1. P ⊥
0 ab〈〈1.〉〉 1 0
1 〈〈1. 0 ⊥
0 ba 0 0
0 bb 0 0
1 ab〈〈1.1 P ⊥
1 ab〈〈1.a 0 ⊥
·· · · · · · · · · · ·

Once the table is closed and consistent, we ask an
equivalence query.
Finally, the teacher replies “yes” to an equivalence
query about. The learning progress terminates. The
learner automaton is as below.

q0start q1 q2

q3

q4 q5

q6

a

b
a

b

a,b

〈〈

a,b
1

〉〉

a,b

a,b

a,b,1

〉〉

5 Conclusions

The learning algorithm L? was introduced more than thirty years ago and has been intensively extended
to many types of models in following years. This algorithm continues to attract the attention of many
researchers [2, 36, 9].

Y. Xiao & E. Tuosto 153

We designed a learning algorithm for a class of languages over infinite alphabet; more precisely,
we have considered nominal regular languages with binders [25, 27]. We have tackled the finitary
representations of the alphabets, words and automata for retaining the basic scheme and ideas of L?.
Hence, we revised and added definitions for the nominal words and automata. Further, accounting for
names and the allocation and deallocation operations, we revised the data structures and notions in L?.
Accordingly, we have proposed the learning algorithm, nL?, to stress the progress of learning a nominal
language with binders. We have proved the correctness and analysed the complexities of nL?.

As for L?, a key factor for the effectiveness of and nL? is the selection of counterexamples. Due
to possibly infinite number of candidate counterexamples, the selection of the counterexamples is non-
deterministic in nL?. We are developing an implementation of nL? to study effective mechanisms to resolve
this non-determinism. Interestingly, the rich structure of nominal automata offer different directions to
solve this problem. In fact, we started to investigate this issue and defined two different strategies used by
the teacher to generate counterexamples based on the “size” of the counterexamples and on the preference
of the teacher for counterexamples with maximal or minimal number of fresh names. Initial experiments
show how the strategies impact on the convergence of nL?. This immediately suggest that nL? could be
improved by designing different strategies to generate “better” counterexamples, that is counterexamples
that allow the learner to learn “more quickly”.

References

[1] Dana Angluin (1987): Learning Regular Sets from Queries and Counterexamples. Inf. Comput. 75(2), pp.
87–106, doi:10.1016/0890-5401(87)90052-6.

[2] Dana Angluin & Tyler Dohrn (2017): The Power of Random Counterexamples. In: International Conference on
Algorithmic Learning Theory, ALT 2017, 15-17 October 2017, Kyoto University, Kyoto, Japan, pp. 452–465.
Available at http://proceedings.mlr.press/v76/angluin17a.html.

[3] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari & Roberto Zunino (2009): Local policies for
resource usage analysis. ACM Trans. Program. Lang. Syst. 31(6), doi:10.1145/1552309.1552313.

[4] Mikołaj Bojańczyk, Bartek Klin & Slawomir Lasota (2014): Automata theory in nominal sets. Logical
Methods in Computer Science 10(3), doi:10.2168/LMCS-10(3:4)2014.

[5] Benedikt Bollig, Peter Habermehl, Martin Leucker & Benjamin Monmege (2013): A Fresh Approach to
Learning Register Automata. In: Developments in Language Theory - 17th International Conference, DLT2013,
Marne-la-Vallée, France, June 18-21, 2013. Proceedings, pp. 118–130, doi:10.1007/978-3-642-38771-5 12.

[6] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern & Martin Leucker (2010): Learning Communicating
Automata from MSCs. IEEE Trans. Software Eng. 36(3), pp. 390–408, doi:10.1109/TSE.2009.89.

[7] Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State Machines. JACM 30(2), pp. 323–342,
doi:10.1145/322374.322380.

[8] Sofia Cassel, Falk Howar, Bengt Jonsson & Bernhard Steffen (2016): Active learning for extended finite state
machines. Formal Asp. Comput. 28(2), pp. 233–263, doi:10.1007/s00165-016-0355-5.

[9] Giuseppe Castagna & Andrew D. Gordon, editors (2017): Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017. ACM,
doi:10.1145/3009837.

[10] Pierpaolo Degano, Gian Luigi Ferrari & Gianluca Mezzetti (2012): Nominal Automata for Resource Usage
Control. In: Implementation and Application of Automata - 17th International Conference, CIAA 2012, Porto,
Portugal, July 17-20, 2012. Proceedings, pp. 125–137, doi:10.1007/978-3-642-31606-7 11.

http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://proceedings.mlr.press/v76/angluin17a.html
http://dx.doi.org/10.1145/1552309.1552313
http://dx.doi.org/10.2168/LMCS-10(3:4)2014
http://dx.doi.org/10.1007/978-3-642-38771-5_12
http://dx.doi.org/10.1109/TSE.2009.89
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1007/s00165-016-0355-5
http://dx.doi.org/10.1145/3009837
http://dx.doi.org/10.1007/978-3-642-31606-7_11

154 On Learning Nominal Automata with Binders

[11] Pierpaolo Degano, Gian Luigi Ferrari & Gianluca Mezzetti (2013): Towards Nominal Context-Free Model-
Checking. In: Implementation and Application of Automata - 18th International Conference, CIAA 2013,
Halifax, NS, Canada, July 16-19, 2013. Proceedings, pp. 109–121, doi:10.1007/978-3-642-39274-0 11.

[12] Gianluigi Ferrari, Giovanni Ferro, Stefania Gnesi, Ugo Montanari, Marco Pistore & Gioia Ristori (1997): An
Automata Based Verification Environment for Mobile Processes. In Ed Brinksma, editor: TACAS, LNCS
1217, Springer, pp. 275–289.

[13] Gianluigi Ferrari, Stefania Gnesi, Ugo Montanari, Marco Pistore & Gioia Ristori (1998): Verifying Mobile
Processes in the HAL Environment. In: Proc. 10th International Computer Aided Verification Conference, pp.
511–515, doi:10.1007/BFb0028772.

[14] Gianluigi Ferrari, Ugo Montanari & Marco Pistore (2002): Minimizing Transition Systems for Name Passing
Calculi: A Co-algebraic Formulation. In Mogens Nielsen & Uffe Engberg, editors: Foundations of Soft-
ware Science and Computation Structures, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 129–143,
doi:10.1007/3-540-45931-6 10.

[15] Murdoch J. Gabbay (2001): A Theory of Inductive Definitions with alpha-Equivalence. phdthesis, University
of Cambridge, UK. Available at http://www.gabbay.org.uk/papers.html#thesis.

[16] Murdoch J. Gabbay & Andrew M. Pitts (1999): A New Approach to Abstract Syntax Involving Binders. In
Giuseppe Longo, editor: LICS, IEEE, Trento, Italy, pp. 214–224, doi:10.1109/LICS.1999.782617.

[17] Murdoch J. Gabbay & Andrew M. Pitts (2002): A New Approach to Abstract Syntax with Variable Binding. J.
of Formal Aspects of Computing 13(3-5), pp. 341–363, doi:10.1007/s001650200016.

[18] Fabio Gadducci, Marino Miculan & Ugo Montanari (2006): About permutation algebras, (pre)sheaves and
named sets. Higher-Order and Symbolic Computation 19(2-3), pp. 283–304, doi:10.1007/s10990-006-8749-3.

[19] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2001): Introduction to Automata Theory, Languages,
and Computation, 2Nd Edition. SIGACT News 32(1), pp. 60–65, doi:10.1145/568438.568455.

[20] Bart Jacobs & Alexandra Silva (2014): Automata learning: A categorical perspective. In: Horizons of the
Mind. A Tribute to Prakash Panangaden, Springer, pp. 384–406, doi:10.1007/978-3-319-06880-0 20.

[21] Michael Kaminski & Nissim Francez (1994): Finite-Memory Automata. Theor. Comput. Sci. 134(2), pp.
329–363, doi:10.1016/0304-3975(94)90242-9.

[22] Michael Kaminski & Tony Tan (2006): Regular Expressions for Languages over Infinite Alphabets. Fundam.
Inform. 69(3), pp. 301–318, doi:10.1007/978-3-540-27798-9 20.

[23] Stephen C. Kleene (1956): Representation of Events in Nerve Nets and Finite Automata. In John Shannon,
Claude E. McCarthy, editor: Automata Studies, Princeton University Press, pp. 3–42.

[24] Dexter Kozen, Konstantinos Mamouras, Daniela Petrisan & Alexandra Silva (2015): Nominal Kleene Coal-
gebra. In: Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, pp. 286–298, doi:10.1007/978-3-662-47666-6 23.

[25] Alexander Kurz, Tomoyuki Suzuki & Emilio Tuosto (2012): A Characterisation of Languages on Infinite
Alphabets with Nominal Regular Expressions. In: Theoretical Computer Science - 7th IFIP TC 1/WG 2.2
International Conference, TCS 2012, Amsterdam, The Netherlands, September 26-28, 2012. Proceedings, pp.
193–208, doi:10.1007/978-3-642-33475-7 14.

[26] Alexander Kurz, Tomoyuki Suzuki & Emilio Tuosto (2012): On Nominal Regular Languages with Binders.
In Lars Birkedal, editor: Foundations of Software Science and Computational Structures, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 255–269, doi:10.1007/978-3-642-28729-9 17.

[27] Alexander Kurz, Tomoyuki Suzuki & Emilio Tuosto (2013): Nominal Regular Expressions for Languages
over Infinite Alphabets. Extended Abstract. CoRR abs/1310.7093. Available at http://arxiv.org/abs/
1310.7093.

[28] Robin Milner (1999): Communicating and mobile systems - the Pi-calculus. Cambridge University Press.

[29] Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, I. Inf. Comput.
100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4.

http://dx.doi.org/10.1007/978-3-642-39274-0_11
http://dx.doi.org/10.1007/BFb0028772
http://dx.doi.org/10.1007/3-540-45931-6_10
http://www.gabbay.org.uk/papers.html#thesis
http://www.gabbay.org.uk/papers.html#thesis
http://dx.doi.org/10.1109/LICS.1999.782617
http://dx.doi.org/10.1007/s001650200016
http://dx.doi.org/10.1007/s10990-006-8749-3
http://dx.doi.org/10.1145/568438.568455
http://dx.doi.org/10.1007/978-3-319-06880-0_20
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1007/978-3-540-27798-9_20
http://dx.doi.org/10.1007/978-3-662-47666-6_23
http://dx.doi.org/10.1007/978-3-642-33475-7_14
http://dx.doi.org/10.1007/978-3-642-28729-9_17
http://arxiv.org/abs/1310.7093
http://arxiv.org/abs/1310.7093
http://dx.doi.org/10.1016/0890-5401(92)90008-4

Y. Xiao & E. Tuosto 155

[30] Ugo Montanari & Marco Pistore (2000): pi-Calculus, Structured Coalgebras, and Minimal HD-Automata. In:
Mathematical Foundations of Computer Science 2000, 25th International Symposium, MFCS 2000, Bratislava,
Slovakia, August 28 - September 1, 2000, Proceedings, pp. 569–578, doi:10.1007/3-540-44612-5 52.

[31] Oliver Niese (2003): An integrated approach to testing complex systems. Ph.D. thesis, Technical Uni-
versity of Dortmund, Germany. Available at http://eldorado.uni-dortmund.de:8080/0x81d98002_
0x0007b62b.

[32] Corina S. Pasareanu, Dimitra Giannakopoulou, Mihaela Gheorghiu Bobaru, Jamieson M. Cobleigh & Howard
Barringer (2008): Learning to divide and conquer: applying the L? algorithm to automate assume-guarantee
reasoning. Formal Methods in System Design 32(3), pp. 175–205, doi:10.1007/s10703-008-0049-6.

[33] Marco Pistore (1999): History Dependent Automata. Ph.D. thesis, Dipartimento di Informatica, Università di
Pisa.

[34] Andrew M. Pitts (2015): Names and Symmetry in Computer Science (Invited Tutorial). In: 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pp. 21–22,
doi:10.1109/LICS.2015.12.

[35] Davide Sangiorgi & David Walker (2001): The Pi-Calculus - a theory of mobile processes. Cambridge
University Press.

[36] Lutz Schröder, Dexter Kozen, Stefan Milius & Thorsten Wißmann (2017): Nominal Automata with Name
Binding. In: Foundations of Software Science and Computation Structures - 20th International Conference,
FOSSACS 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, pp. 124–142, doi:10.1007/978-3-662-54458-7 8.

[37] Luc Segoufin (2006): Automata and Logics for Words and Trees over an Infinite Alphabet. In: Computer
Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged,
Hungary, September 25-29, 2006, Proceedings, pp. 41–57, doi:10.1007/11874683 3.

http://dx.doi.org/10.1007/3-540-44612-5_52
http://eldorado.uni-dortmund.de:8080/0x81d98002_0x0007b62b
http://eldorado.uni-dortmund.de:8080/0x81d98002_0x0007b62b
http://dx.doi.org/10.1007/s10703-008-0049-6
http://dx.doi.org/10.1109/LICS.2015.12
http://dx.doi.org/10.1007/978-3-662-54458-7_8
http://dx.doi.org/10.1007/11874683_3

	1 Introduction
	2 Background
	2.1 Regular Languages
	2.2 Nominal Languages
	2.3 Angluin's Algorithm L

	3 Nominal Learning
	3.1 Preliminaries
	3.2 Nominal observation tables
	3.3 From [s] to nominal automata

	4 The nL Algorithm
	5 Conclusions

